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In a previous work [L. Asprea, G. Gasbarri, and A. Bassi, Gravitational decoherence: A general
nonrelativistic model, Phys. Rev. D 103, 104041 (2021).] we derived a quantum master equation for the
dynamics of a scalar bosonic particle interacting with a weak, stochastic and classical gravitational field. As
standard matter is made of fermions, such an equation should be suitably extended to describe more
relevant experimental situations. Here we derive a nonrelativistic model for the gravitational decoherence
of spin 1/2 particles. We enrich the treatment by also considering a coupling with an external classical
electromagnetic field. We comment on the differences with the scalar bosonic model and we describe the

regimes in which they become negligible.
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I. INTRODUCTION

The recent exciting first detections of gravitational waves
[1,2], which marked a new era in astrophysics and
cosmology, have pushed the scientific community towards
the construction of ever more sophisticated ground and
space based detectors [3—7] to observe waves in a variety of
ranges in order to sketch a first map of the stochastic
gravitational background. Within the framework of quan-
tum theory, a stochastic gravitational background affects
the dynamics of matter propagation [8,9] and, when the
quantum state is in a superposition, it leads to decoherence
effects, as typical of noisy environments. Different models
for the description of this phenomenon have been proposed
[10-16]. However, they do not agree on the decoherence
mechanism (the preferred basis and rates) at which it takes
place. In order to solve such apparent contradictory results,
we derived in [17] a novel model for the decoherence effect
induced by a stochastic gravitational perturbation on non-
relativistic scalar bosonic particles. Our model has so far
proven to be able to describe more general scenarios than
those present in the literature, as it is able to qualitatively
recover them [10-16] as appropriate limiting cases, thus
solving the decoherence basis puzzle. However, it might
not be general enough to describe the outcome of a real
experiment. The particles commonly employed in experi-
ments (atoms, neutrons, electrons...) in fact have a charge, a
spin, and could be coupled to other external fields, like the
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Maxwell one for instance. For the above reasons, in this
paper we will derive an analogous model, this time for spin
1/2 fermions interacting with both a gravitational pertur-
bation and an external electromagnetic field.

The paper is organized as follows. In Sec. I we derive
the equations of motion in Hamiltonian form for a spin 1/2
fermionic field minimally coupled to a weakly perturbed
flat metric. We then specialize such equation to the
nonrelativistic regime in Sec. III and proceed with the
canonical quantization of the bosonic field in the single
particle sector, obtaining a Schrodinger like equation for a
test particle interacting with a weakly perturbed gravita-
tional field.

In Sec. IV we compare the fermionic model derived here
with the bosonic one derived in [17].

In Sec. V we specialize to the case of a stochastic
gravitational perturbation and derive the corresponding
master equation. We discuss the decoherence effect with
explicit reference to the preferred eigenbasis and charac-
teristic decoherence time. We also show under which
assumptions our master equation is able to reproduce
decoehrence in the position or momenutm eigenbasis only
thus recovering the results of the literature [11-15,17].

II. EQUATIONS OF MOTION

We first derive the equations of motion (EOM) for a spin
1/2 fermionic field minimally coupled to linearized gravity.
We start from the action for the Dirac field in curved
spacetime [18]

© 2021 American Physical Society
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S = /d4x,/—g£ (1)
with the Lagrangian density

ihc . _ _ _
L=—lpr'e", Day = " Dapy'v] = mc*py, (2)

where e, (x) is the so called vierbein field [19], an
auxiliary field used in order to extend the definition of
fermions as irreducible spin 1/2 representations of the
Poincaré group to curved spacetimes (see Appendix A),
and

ie

o A (3)

1
Dy = 0y +glra vl y +
is the covariant derivative with respect to both the spin
(wg?) and the electromagnetic (A,) connections. In this
framework the metric tensor g, and the affine connection
I'B€ are described by the following pair of equations:

(4)

{ e nues” = gap

v v B vp ,C TB
CUA” —eB/‘nﬂaAe p—l—eB”nPe pF AC-

Note that Eq. (4) holds only for a torsion free, metric
compatible connection [19].

In order to describe a weak perturbation of the metric, we
now write the metric as the sum of a flat background
N = diag(+ — ——), and a perturbation £,

g/,w = rl[ll/ + h’mﬂ (5)

and since we are interested in studying the dynamics of the
Dirac field interacting with a weak gravitational perturba-
tion, perform a Taylor expansion of the fermionic action
around the flat background metric and truncate the series at
the first perturbative order (See Appendix B for the explicit
calculation). Thus, we obtain the effective Lagrangian L
acting on flat spacetime

S— / d*x (l%c o7V, =V, () r"w] (1 +W(Th>>

tr(h ihc
- <1 + (2 ))mczni/y/—ThW[y'/y”V”w—V”(y?)y”yd)
+0(h?)

E/d4xﬁeff+0(h2), (6)

where V,, is the flat covariant derivative with respect to the
electromagnetic connection. The EOM for the matter field
are obtained (at first order in the perturbation 4,,) from the
Euler Lagrange equations

aﬁeff 8 Eeff
v =
oy “OV 0 ()

and in the harmonic gauge they read

h o
ihOy = eAgy + mc? (1 + %) Py — % hojy'w

h , j
—inc(1+2),0 8,-—|—£A,~ s
2 hc

+ %Cho,- (af + %A’)w
+ ihich. .yOyi <a.i + ieA./)W
2 Y hc
+ mTChoiyi}/j <3j + %Aj)y/
ihc
=5 Daltr(M)y"r"w + O(W)y

= “Hy + O(h)y. 8)

As in the case of a scalar field studied in [17], we are not
allowed to give a probabilistic interpretation to the field y,
because the conserved charged Q associated to the internal
U(1) symmetry (y — e'“y; Wy — e~*“r) via Noether’s
Theorem reads

oL oL
= _je d3x< eff ot eff )
Q / Vo) ? TV 0V ")

) h L ho i
= hec/d3x<z,1/1 (1 — tr(h) _¥>W —y %}/%/’l//),

©)
instead of the required
p= /d3x1//T1//. (10)
We therefore apply the transformation
T o= (1=l
(11)

v - Ty
H - $:=THT'+ihT0,(T™")
so that, in the new representation,the conserved charge can

be expressed by the standard form in Eq. (10). After some
algebra the EOM (8) reads

iy = [mc*y° + € + Oly, (12)

where
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mc? . . e . ihc )
Gj = eAO + ThOOVO + thhOi (8’ - h—CAl> + Ta,(hf))
3in in
- ?&(”(h)) + Zat(hoo),

(13)

= —zhc(l + )(a —%A >a/’ —|—%8,(h0i)ai
z,<81——AJ> ‘+’h—ca< 4 )
(14)

are respectively the even (diagonal) and odd (off diagonal)
parts of the Hamiltonian §, with o* = y%* and X' =
diag(c’, 6).

We are interested in the description of the dynamics of a
positive energy particle system in the nonrelativistic limit.
In such a limit, the particle and antiparticle sectors are
noninteracting with one another, that is to say, the EOM (8)
can be recast to a system of two decoupled equations
respectively for the large (y; ) and the small (y) compo-
nent of the bispinor y = (y y, ). While this is evident and
straightforward for the free case [20], for an interacting
theory decoupling the two components is a very compli-
cated task that can only be achieved perturbatively.

In the next section we will provide a standard prescription
for the diagonalization of the EOM in the nonrelativis-
tic limit.

hc ..
+Tc€t/kai(h0j>zk

III. NONRELATIVISTIC LIMIT AND
CANONICAL QUANTIZATION

We aim to find a representation of the bispinor field y
in which the EOM (12) are diagonal. This representation
|

h h? h ie  \?
o 0 2 00} 00 _
H=¢eAy+7Y [mc <1+—2) om <1+—2><V _hcA)

\Y

he i ihze l’l()()

e IAF I s (1
ih’e ; . lh e o . e .

- 16m2C2€k1hijaj(Ek)Zl ikl ]’l Ek ((9/ —%AJ>ZZ+
n’e ile . 7°

) 2h018< >+8m2C2€ljlh0k8i(ij)zl_

can be found in non relativistic limit following the Foldy-
Wouthuysen Method [21], which allows one to write
perturbatively (at any order in £) two decoupled equations,
one for each component of the field. The method is
operatively characterized by the application of an appro-
priate unitary transformation U,

y -y =Uy (15)
H -9 =U9-ind,)U™"
=mc* + € + O + 0(h?), (16)

such that, in the new representation, the antidiagonal part
O is of higher order in Z than the diagonal G'. By
neglecting @ one recovers two decoupled equations. By
performing iteratively the transformation, one can always
find a representation of the bispinor field for which the
EOM are diagonal at any desired order in L.

In our case, the task is easily achieved by applying the
subsequent transformations

U= e—iy°(9/(2mcz)
U = e—iy°0’/(2mcz) (17)
U" = e—iy°(9”/(2mcz)

after which, with some algebra (see Appendix C) and by
neglecting the terms containing the derivatives of the

gravitational perturbation of order ”; or higher[22], the

Hamiltonian density to order & ; reads

he hoo n? . e . e
1 BXS ——hy (0 ——Al) [0 ——AJ
2m<+2) P S L

hVE

ih’e . ie
4m2C2 eljlhOijk (3, —EAI> 21

ie  \4
6 |:h4C4(1 + 2]’100) <V —_ %A> + hzecz(l + 2h00)B2

. ) . h3
+2n*cthy; <V —%A)2 (8’ Y > (81 __AJ> ;C €' h,, F"B {2, %}

hc

Wlecd ie \2 ie \2
—I—Te’”{(V—%A) ,hijik}Zl—h3€C3(1+2h00>{<v—%A> ,Bk}Zk]

5
+Hy+ O(h?) + O(0h) + O (%) :
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where B and E are the magnetic and electric fields, and in
terms of the four-potential they read:

B= VxA

k __ 1 ijk

B* = —§€j FU
Fij: —EijkBk.

€;jx represent the Levi-Civita symbol, and

72 e . o
Hy = =g 0i(loo) <al - #’)yo om0 Oilhoo)t”
i ”j’T"ai(hé) + %eifka,.(hoj)zk - %at(tr(h))
in n n?
+ Zaz(hoo) +7° [% 9'(hoo)V; = am

n* _ (tr(h) . 2 (tr(h)
~2m®! <T - hﬂO)V "m0 (T‘ hm)

0 ()W

ih?
- OV, = 0 VIE] (20)

Note that as the transformations (17) are unitary [23], they
preserve the conserved charge in (9) i.e., the probability
density in the nonrelativistic limit.

In the nonrelativistic limit the EOM (18) does not mix
the two components y; and y, of the field (up to a very
small correction). As we are only interested in the dynamics
of particles, we restrict the analysis to the first field
component y;, that we rename as y in what follows.

Since the dynamics preserves the probability density, we
are allowed to apply the canonical quantization prescription
and impose the equal time commutation relations

(1. %), (X)) = [ (2. %).97 (1, %)] = O

to obtain the EOM for the quantum field. The equation thus
obtained does not allow for the creation or annihilation of
particles. We can thus safely project it onto a single particle
sector to obtain the single particle Schrodinger-like equa-
tion

ihd,|p(1)) = (Hy+ H,+ H, + H,, + H,))|p(1))  (22)
with

he

N 1 e 2
o2 s € o\ _ oY .
Hy = mc t5 (p CA(x)) + eAp(X) 2ch(x) c
(23)
N he [P . . N
r i <§ E(X) - E(X) xp> c
e g E®X) r 4<A —A(ﬁ))4
8m?c? 8m3co |© P
2,2R2(%) — 3 (a € aron\2 phio
+ 72ec?B2(R) — hec {(p CA(X)) B (x)}ok}
(24)
ﬁp
me” 0004 ¢ 1 00(; ¢ )
=+ 5 h%(z, %) h(t, %), [ p——A(X)
S (1,20, P} = e ey (% 1) FIy (%)
D) 0i\b> ) 4m ij\ & k I
1 ; e N N e ~
_m{hl(z‘,x), (pl ——Ai(t,x)) (pj _EA’(t’X)>}
he . .
~ dme w(X,1)B(X) -, (25)
ihe h2e
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N h
Hd:

s ot (8- 400 ) 10— s 00,8 + 01y +

ihc hc . ~
Ze”kai(h()j(x))ﬂk

=200, rth(30) + 3 00000+ [ { ). (- S0 ) b= 2 {0, (9 - o)) |
:’; {a. <”<h2(f‘>) _ hoo(ﬁ)), <pi _ SAi(ﬁ)) } _ %al‘ai <”(h2(f‘)> - hoo(f()> - §A1(2)> })ok
— e ({ame. (- £a00) - {ahun.o' - S} 1)

where X, p are respectively the single particle position and
the momentum operator. The term H, is the usual Pauli
Hamiltonian [20] plus an irrelevant global phase mc? that
can be reabsorbed with the transformation

(1)) — €™ g(1)). (28)
The term A, encodes the standard relativistic corrections
[23] due to the presence of the electromagnetic field up to
|

N p>
H()(B) = mC2 + E

2
1,5 = %hoo(t

A

8m

(B) n 2 Ve o ih 00
B = 0 (ir{ (1,%)]) + 0, (1.

order Flnally, H H,and A rp respectively account for
the correctlons due to the presence of the weak gravitational

field of H, and H,.

IV. DIFFERENCES WITH THE
BOSONIC MODEL

Equation (18) is rather instructive as it extends the
nonrelativistic Hamiltonian obtained in [17] for the scalar
field which we recall below [24]

. n? A C o 0ife o o Lo o s
7X>_8_m{h00(tvx)7p2}+§{ho(tvx)vpi}_E{hj(t’x)vp[pj}

£)) = 2o, (1re (1.9)). (29)

to describe the dynamics of a charged quantum particle (with spin 1/2) subject to a gravitational perturbation and to an

external electromagnetic field. It is however as instructive to consider the electromagnetic free case i.e.,

the limit

A(t,X) = 0, in order to directly compare the fermionic and bosonic Hamiltonian. By taking the limit A(z,X) — 0 of

Eq. (18), we obtain

A2
By = me? + 22
2m
2
b oF) — KhOO(,,,;)

b 2

. h
" == i6m

c ‘ i '
%ez/ka (h()j( X))oy + Zhat(hoo(ﬁ>) +7° L?_m {81(}100(&))’ (ﬁl -

- Lo (- o) - Lo (*

{a,-(hoo(ﬁ)), <ﬁ" - ;N(&)) }y - %a Oi(hoo(R))r" + =~ 0,1y (R)) = ==

n? o C o 0ire on o | A
_%{hO()(t?X)vpz}—i_E{ho(t’X)’pi}_m{hj(tvx)’pipj} (30)

the 3 o (r(h(R))

;Al‘@)}
(hz(ﬁ)) _ hm(ﬁ)), <13i - %Ai(ﬁ)> }

oo, s)) - et ({0, (- S,) |

~{amn. (¢~ a0)) )]

(31)
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As expected, the bosonic and the fermionc description
match for the gravity free case (Hy®) = H,"). They also
match for the terms proportional to the gravitational
perturbation 4,,. This is also to be expected—suppose in
fact that there was actually a difference in the terms
hooP?/2m or mc?hgy,y. This would imply that e.g., a simple
change form Cartesian to Rindler [25] coordinates would
predict that a boson and a fermion would fall with the same
acceleration in the first (Cartesian) but not the second
(Rindler) reference frame, which would violate the weak
equivalence principle. The same line of reasoning can be
applied to the other terms containing h;; and hy;. It is
interesting however to notice that some differences arise
for the terms containing the derivatives of the gravita-
tional perturbation dh,,. Such differences originated when
we required the matter field to allow for a probabilistic
interpretation in order to canonically quantize the system
(see Eq. (11) and Eq. (x) of [17]).

V. MASTER EQUATION WITH
ELECTROMAGNETIC FIELD

In this section we derive a master equation to describe
the decoherence effect induced by a weak stochastic
gravitational perturbation on a spin 1/2 fermionic particle.
For the sake of simplicity and compactness of the result, we
will restrict our analysis to the Pauli Hamiltonian A, and its
gravitational corrections H p» as the terms H,and H, p are of
higher order in the nonrelativistic expansion [26], and the
term F, contains derivatives of the gravitational perturba-
tions (as in typical experimental situations [1,3-6] they are
negligible and would not add any further informative
content to the analysis in any case).
|

/AN a?
— 050 + =5 [ AL ["an TS

atc? d3qd3q’/fdt g, q;t.1)

A

o =

) (a) : 4
@ d3qd3cI’/’dt fa.q5n)
) @3 Jo ! 4

where we have introduced

B (P —<A(r %))? mc*  he

B (R, p) = M B(1,%) -
00(X, D) I + > Ime (t.X) o
e (i tA(LR) (D - A1 X))  mc?
h‘zj(va) - 4m + 2
he A
5 e (%), (36)

for the sake of compactness, and &, = eo'1ge~ o1,

Badq [+ O q:tt o
A ( ) [{e/9%/7, Ego(

This means that we approximate Eq. (22) to

ihd,| (1)) = (Ho + H,)|¢(7)). (32)

If the metric is random, Eq. (32) becomes a stochastic
differential equation. As a consequence the predictions are
given by taking the stochastic average over the random
gravitational field. We then need to specify its stochastic
properties.

As done for the bosonic particle case, we assume the
noise to be Gaussian with zero mean. For the sake of
simplicity, we also assume the different components of the
metric fluctuation to be uncorrelated. This means that the
noise is fully characterized by

Elh, (x.1)] = 0
[E[h;w(x’t)h;w(y’s)] = azf/w(x7 Y1 S), (33)

where we recall that E[-] denotes the stochastic average, a
represents the strength of the gravitational fluctuations, and
f(x,y;1,s) is the two-point correlation function.

We move to the density operator formalism, and write
the von Neumann equation for the averaged density matrix

i

0,p(6) = = [Ho(0). (0] = 1 E[I1,(1). ()]

= E[g[Q(1)]], (34)

where p(1) = E[Q(r)]. We solve the above equation per-
turbatively exploiting the cumulant expansion [27] (see
Appendix C of [17]). With the further help of the
Gaussianity, zero mean, and noncorrelation of different
components, we can rewrite Eq. (34) in Fourier space
[28] as

P
>
SN—
—
—

m-..

=
ke
~
=
I
S
—
>
>
SN—
—
>
—~
~
S—

[{e™ %M, b}, [{e /™, pi}, p(1)]

[{el /7, 2R B)}. [{ ™0 /P 2%, B) 1 p()]] + O(1a22). (35)

The above equation describes the dynamics of a pointlike
spin 1/2 fermionic particle in presence of an external weak,
stochastic gravitational field (with the further assumptions
made in this section) and an external electromagnetic field.

We specialize Eq. (35) to the Markovian limit, i.e., we
assume the noise to be delta correlated in time, with the
further assumptions of isotropy and homogeneity of the
noise, so that its correlation function reads

fr(x,y;t,s) = A (x —y)o(t—s), (37)
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where the factor A is, in principle, a generic coefficient with
the dimension of a time. Note that the white noise
assumption makes physical sense only if the correlation
time (z.) of the gravitational fluctuations is much smaller
than the free dynamics’ characteristic time (z,,, ), or in the
case where the contribution to the dynamics due to the
gravitational perturbation is not affected by the free
evolution dynamics, i.e., the operators describing the
perturbation commute with the free dynamics operator
|

— 1B (0)

a*l

ip

H,. In such cases, as a first approximation, we can take A
to be

A =min(z,,1). (38)
Note that this choice does not affect the generality of the
analysis as we leave u#*(x —y) unspecified.

In such a regime Eq. (35) is exact and it is easy to show
that it reduces to

" [ P @ U 5B} [ (5.8} (0]

a2 Ac?

——/d3qﬁ°"(Q)[{ei“'X/h,Pi},[{E‘iq'ﬁ/h,f’i}vﬁ(t)ﬂ

2r) R

a*l

(39)

- Gy | PO @25 B)) (e N2 5 B)). ()

Eq. (39) describes decoherence in a complex combination of position momentum and energy bases, as it contains double
commutators of functions of the position, momentum and free kinetic energy operators with the averaged density matrix.

In what follows we will specialize Eq. (39) to determine under which approximations it recovers decoherence in the

position or momentum eigenbasis only.
As for the bosonic case [17], the conditions

hOO > hOi

hOO z hij

(40)

AE < Mc*(1 — u®(Ax))

are sufficient for our master equation to describe decoherence in the position eigenbasis only, where in this case the energy

coherence needs to be modified to take into account the presence of the electromagnetic field, as £ =

above assumptions, Eq. (39) reads

az

o (27)3*m

L1 -

Contrary to the bosonic case, the condition of low mo-
mentum transfer

elaX/h g (42)
is necessary, but not sufficient, to recover deocherence in

the momentum or energy eigenbasis starting from Eq. (39).
One in fact needs the further condition

Ip| > [£A]
2 | e (43)
I | jee. B

In this regime, Eq. (39) can be approximated as

2
/ B qia™(q) |:eiq-f(/h (%

W. Under the

N (e e P
(41)
00 -~ 1i.o0
S R LN |
a’ic? ,
(20 2h / & qu" (q)[p;, [Pi, ()]
_@;;%Zfﬁ/cﬁqﬁij(q) {1321'511', %Zj’ﬁ(t)ﬂ’
(44)

which indeed describes decoherence in the momentum
eigenbasis.

024043-7



L. ASPREA and G. GASBARRI

PHYS. REV. D 104, 024043 (2021)

VI. CONCLUSIONS

In this paper we have extended the results of our previous
paper [17] to the ferminonic case. We have derived a model
of decoherence for nonrelativistic spin 1/2 particles inter-
acting with both a weak stochastic gravitational perturba-
tion and an external electromagnetic field. The resulting
Hamiltonian and master equation correctly reproduce the
results of the bosonic model in [17] up to very small
corrections. Such corrections account for relativistic effects
(different spin of the two kind of particles) and the different
quantization scheme employed.

The dynamics predicts also in this case decoherence in
the position, momentum and energy eigenbasis, though
under different limiting cases than those described in [17].
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APPENDIX A: VIERBEIN (OR TETRAD)
FORMULATION OF GRAVITY

We illustrate the basic ingredients of the tetrad formalism
of the General Relativity theory. For a more complete
treatment we address the reader to [19,29].

The standard geometrical interpretation of the gravita-
tional interaction is based on the notion of the Riemannian
metric (¢g) and the Christoffel connection (I"). The space-
time curvature, its dynamical evolution, and the interaction
with matter sources are described through differential
equations involving g and I'.

It is possible though to equivalently describe the geom-
etry of a Riemannian manifold (M) using the notion of
vierbein and local connection. Such a formalism is par-
ticularly convenient when one wants to formulate a theory
of gravity as a gauge theory, and wants to accommodate the
notion of particles as irreducible representations of the
Poincaré group in curved spacetimes [30-32].

We know that locally the laws of special relativity are
valid. This translates into the consideration that we can
attach at each and every point p of the Riemannian
manifold M a flat tangent manifold equipped with the flat
Minkowski metric.

There is a natural choice for the basis of such a tangent
space (T ,M), the coordinate (or differential) basis

(A1)

given by the partial derivatives of the coordinates. It follows
that a given four-vector A € T,M has components

A = AFe,y = AFD,. (A2)

The dual basis

W) = dx (A3)
spans the cotangent space, and it is given by the differential
of the coordinates. A dual vector B € T,M then has
components

B =B,eW = B,dx".

! (A4)

As T, M is a vector space, we are in principle free to choose
any orthonormal basis to span it, as long as 7'/, M preserves
the appropriate signature of the manifold. We therefore
introduce a set of basis vectors é,, which we choose as
noncoordinate unit vectors, and we denote this choice by
using small Latin letters for the indices of the noncoordi-
nate frame. Such a noncoordinate basis is called a tetrad
basis. The condition for preserving the signature of the
metric therefore reads

g(éav éb) = Nab = dlag(+7 -~ _)' (AS)
With this choice, we can clearly find a fixed orthonormal
basis that is independent of position. Then, from a local
perspective, any vector can be expressed as a linear
combination of the fixed tetrad basis vectors at the point
in the following way

(A6)

Vi =e, VE (A7)
The 4 x 4 invertible matrix e, (x) is called a vierbein field
(or tetrad), and it is the transformation matrix that maps the
tangent space 7, M into Minkowski space preserving the
inner product.

The inverse vierbein field (or tetrad) has components
et ,(x), and satisfies the orthonormality condition

et e, =&

el = &, (A8)
which come from the preservation of the inner product.
The vierbein fields are mixed indices objects, in the
sense that they carry one Minkowski spacetime index (a),
and one Riemannian index (u). Accordingly, they trans-
form under coordinate and Lorentz transformations respec-

tively as
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v

X
e, “coorde’? = e’ A9
H N H ax/y v ( )

e, (x)Lorentze]*(x) = A%e,".

—

. (A10)
We now consider the covariant derivative VX of a vector
(X) in the Minkowski frame. It will be given by the
standard derivative (0X) plus a correction given by the
affine connection of the Minkowski frame

(V”X”)dx” ® é(a) = (GMX“ + wM“bXb)dx” ® é(a)-
(A11)

The expression for the covariant derivative in the coor-
dinate basis instead reads

VX = (V,x")dx* ® 0,

I

= (9, X" + % X%)dx* ® 9,

= (0, X" + T} X*)dx" @ e, (x)e(y)

Ha
= €,%(x) (0, ("5 (x)X") + Trpe® (x)X")dx" @ 4.
(A12)

Upon comparing Eq. (A11) with Eq. (A12), we can express
the Minkowski frame or local affine connection in terms of
the tetrads and the usual affine connection as

@,%, X" = €,%(x)0,",(x) X" + ¢,4(x) e, (x)[%, X",
(A13)

Note that the above relation implies the metric compati-
bility condition

Ve, (x) =0,

V.95 = 0. (A14)
Observing that V,X“ must transform under a Lorentz boost
as X¢, it follows:

Vﬂ(A“b) = 0

= 0,(A%) +w,* Ay —w,  A.  (Al5)
Upon multiplying the last line of Eq. (A15) by A”, on the
left, we obtain the following relation:

(A16)

a __ Ab a c
o,y = NN w,f,

- Abdaﬂ (Aab>’
which tells us that the affine connection transforms inho-
mogeneously under Lorentz transformations.

One can construct the usual geometric objects from
(e,w), as it is typically done from (g,I'), such as the
curvature tensor

R®, =0,0,% — 0,0, + 0, @, — 0,0,
(A17)
and the torsion
_ b b
I, =0, =0, +®, % e, —w, e,”. (A18)

The field equations for the vierbein field can be derived
from a variational principle in the same fashion it is
typically done for the metric. In order to show it, let us
recall the inner product-signature preservation condition
Eq. (AS), which can be equivalently recast into

G = eﬂur/abevb- (A19)

It then follows that the variation of the metric can be
expressed in terms of the variation of the vierbein filed as

69/4 = evaéeya + e;m(sez/a = _(gﬂ/leya + gu/leﬂa)5e/la-
(A20)
The variation of the Einstein-Hilbert action (S = %x
[ d*x\/=gR [25]) then reads
0,8 = 1 d*x\/—g| R* —lg"”R 5
97 8nG 2 e
1 1 dg
—_ d4 RHY — Z g#VR IlV(Sﬂ
872G xe( 27 ) PER
1
= e d*xe <R,1”ey“ — ERéﬁeU” + R”,leﬂ“
1
- 5R5%e,[‘> set,
1
= %G d*xe <R"D - 58;]3) e, 8¢’ ,. (A21)
Recalling the expression for the Einstein tensor
(G = RW — % g"R), the above equation yields
G"e,* =0, (A22)

which must be interpreted as the Einstein’s equations for
the vierbein field e. Note that in order to switch back to
the usual metric formulation it is sufficient to multiply
the above equation by e*,. We have thus shown that the
vierbein formulation of general relativity is equivalent to
the standard metric one.

APPENDIX B: EOM FOR THE SPIN 1/2
FERMIONIC FIELD

We present the explicit steps for the derivation of the
effective action of the fermionic action coupled to a weak
gravitational perturbation.
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Consider the action for the Dirac field in curved
spacetime,

S:/d“x,/—gﬁD (B1)
with the Lagrangian density
ihc =l pA A =l 2=
Lp =—lpr'e  Da — e, Dapy'w] = metpy,  (B2)

where e, (x) is the so called vierbein field, the field that
maps the tangent space to the manifold M at point x 7' .M
(coordinate basis 0,) into Minkowski space (noncoordinate
basis e,), and

ie
Vo vo)o,w +—Aw  (B3)

1
:a —
L4 W+ he

8
is the covariant derivative with respect to both the spin and
the electromagnetic connections. The pair (e4”, w4**)
allows for an equivalent geometrization of the gravitational
interaction to the standard one given in terms of the metric
and the affine connection (g5, [ 5¢); the relation between
the two frameworks is given by

{ eA'nues” = gap (B4)

W = eghndeB , + eptnPeC T .
Note that (B4) holds only for a torsion free, metric
compatible connection.
We write the metric as the sum of a flat background
N = diag(+ — ——), and a perturbation £,
9w = N + hm/- (BS)
We are interested in studying the dynamics of the Dirac
field in presence of a weak gravitational perturbation. We
therefore perform a Taylor expansion of the action around
the flat background metric and truncate the series at the first
perturbative order

(y=9£)
S~ / d*x(\/=GL) |y — 1" (Tgﬂy> |y T O(R?).
(B6)
In order to work out the explicit expression for (‘/;'C), we

look at the variation of the action with respect to the metric
tensor

(B7)

Notice that the above expression can be equivalently
rewritten for a torsion free, metric compatible connection as

50)A;w

8,8 = / d‘&L\/_L)a C,,+L\/__g£)

Oe C 8(0,4”1/
:/d4

oL
¢ /—g——06
e-, + gawAW Dy

0\/=g 0\/=9g
L 5 ¢ 0 . B8
- ( 86 a + a(‘)A/u/ wAMD) ( )
By noticing that ()a\{_ 0, and defining -2 Be C =7 - and

oL

0wy,

=S4, we rewrite the above equation as

58S = /d“x, /=g|T *6e€, + S 6wy, + 2ec*LpdeC ]

= /d“x\/ —gl(Tc* + 2ec“Lp — Dy[S*c* = S*¢
+ ScAa +SaAC _ SCaA _ SaCAD(seCa}
= /d‘*x\/—g(BC" +2ecLp)seC,

= / d*x\/=g0%6eC,, (B9)

where B is the Belinfante stress energy tensor [33]. In the
case of a fermionic field it reads [34]

ihc 77 YT 77 104 Ay 77
Bc® ==~ pr*Dey = Depyy + yr Dy = Dy
1
§<Tc +7%). (B10)
Comparing Eq. (B7) and Eq. (B9), we notice
as,C Ly
®C oe a:—ET 5gAB
=5 T*%(gaces” + gpcea)de,
= T%5e® B11
C a

Thus we can write Eq. (B6) as
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+ ALy v =9)
9= O9aB

S~ / d4x[(\/—_g£D) hAB+0(h2)]

g=n

— [t (v=ato (e, g_nhABw(hz)]

_ / d*x (Z%C o7V, =V, () r"w] (1 T trgm)

tr(h ihc
- <1 +%) Mgy === Iy |7V y — V”(l/'f))/”l//])
+0(h?)

= / d*xLes + O(h?), (B12)

and recover Eq. (6) of the main text.

APPENDIX C: FOLDY WOUTHUYSEN
METHOD—FERMIONIC MODEL

Here we illustrate the Fouldy Wouthuysen method
applied to Eq. (12). Let us consider the transformations

H— $' = U(H - ihd,) U™, (1)
and specialize U to Eq. (17) i.e.,
U= e—iyOO/(chz) = elS. <C2)

With the help of the Baker-Campbell-Hausdorff identity:
, 4 2
9' = e¥(H—ind,)e™ = H +i[S. H] + 7 1SS 9]

+ 5 SISIS. B + -+

+h<—$—é[5,$]+é[$, [S,S]]+---> (C3)
Recalling that:
H=mc*P +C+0 (C4)
and noticing that
7. €l =0 (C5)
{r’.0}=0 (Co)
°0.7] = =20 (€7)
[r°0. €] =1[0. €] (C8)
[1°0.0] = 2/°0? (C9)

we get

b, — mCZyO (U 0/, (CIO)
where
O? ot 1
C=C+y <2mc2 B 8m3c6> 8m2c? ©.[0.¢]
+ihO) + - -- (C11)
/ L G % i o¢
o= 2me’ 0.€]- 3m?c* N 2me?” Ot (€12

We note that @' is of order ¢!, meaning that we need to
perform a further transformation if we want a nontrivial
diagonal EOM. The transformation that we perform is

U = e7ir"0/me) (C13)
after which the Hamiltonian reads
9" =m0+ +0" +--. (C14)
with
0 .
O =L _[0.6)+—1O0 +---. (CI5)

2mc? 2mc?

As O ~ O(i—;) we need to perform a final transformation

U’ = e—iy"O”/(chz)‘ (C16)

Finally the Hamiltonian reads

5
H := g/// — mczyo + (g/ + O<U_5) (C17)
C

In order to calculate the explicit expression of the
Hamiltonian in Eq. (C17), we pick the Pauli representation
for the Dirac gamma matrices,

1T 0 4 0 o
0= , = , C18
v ( 0 1 ) v (_6, 0 ) (C18)
) . 0 o o; 0
a’EO’:<, ), Z,»z(l ) C19
7y I 0 o (C19)
By exploiting the identities
. le . ie ie _.
O ——A ), |0y ——A =—-—F/
K hc > ( " he k)] he *
dal = —nl + ks,
{ai,al} = =257
n = -8 (C20)
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it only takes a bit of algebra to show that

0 0 . . .

4 Y . hoo ie ihc e . ihc  (tr(h) :
O = —ihc(14+=2)( 0, ——A; |y%/ —h O ——A Yy ——0,| —=—h 0y
2mc? 2mc2< ! C( + 2)( 7 he ]> + 2 ( hc )}/}’ 4 l( 2 o0 J7°¥

ih N 2
+ —8z(h05)7071>

- 2 he r h2 ; i ie j
o (T A B 1 nagsn P (o) (- 2
i i i j tr(h) i
+4—€th kF Z[:| + |: 8 hoo)v Ea (h,j)vf —%8, (T— hoo)V
.h2

- )Y, = 01 %~ 100, (S iy )| + 002 (ca1)

(1—2) it follows that the next term in Eq. (C11) is of order y° &fcﬁ ~ O(L—4) After

some algebra it reads

. 5 5 L in?c* ie
O = fl C (1 +h00 V——A —hEC +h00)B Zk_ 2 €l] 8,-(h00) 8J—h—Aj Zk
C
h%c? ; ie . e hec
+—6 (h00> <8 %Al> flz 2hij (8 _%A ) <6J _h_Aj> +T€jlhﬂF Zl
+

e ie
3 €118,-(hjk) (6](—%14]{)21

2 2
— 1262, (t r;h) - h00> o — h 7e oo, (@ - h00>>

= 1
¢ hc
mecd .. ie \2 ie \2/ . ie . e .
T il _ LRk 4.4p . _ i T Al j — _ AJ
(0N Y (92 ) (L) (L)
mec? in*c? ie \?2 ie
- € hj F "B L, 2} + —— 5 'fk{(V—hcA> ,a,-(hoo)(aj—hcAj>}zk
zh4 4 . ie
(- o)
. 4 4 . 2 .
+{<V—A) a,(h ij)<a.f—;;A-f)}—f‘2Ceiﬂ{<v—;ch> ,ai(hjk)<ak—;;Ak)}z,
. (tr(h) 0\ et _de N2 .o (tr(h)
e {(v > l<2 o )0rp + -1 (V= ioA) o0, ("
33
{Bk ' (h ,,)<a —h—A1> }zk+’h2ec eiﬂ{Bkzk,a(hOO)<a ——A )zl}
thec o i ie indec? it | ok e
— v B ,a(l/loo) 81‘_%Ai 2k+ 3 € sz,ai(hjm) 8 —%A Zl
3,3
n h3ec3{Bk, o, <"g’> - h00> ai}zk 4B ;C {Bk, 0.0 <”(2h) > }zk. (C22)

The last term in Eq. (C11) requires lengthy intermediate calculations in order to get to the final result. We start by
considering the expressions [0, €] and O separately. With the help of Eq. (C20) and some algebra
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. hoo ie . ihc . e . ; ;. ihc r(h) ;

[O,@]: |:—th(1+7> (81—%AJ>}/0}/J—I—T}1U(8J—%AJ> 0 +—a(l’l0,) 0 +—a <T—hoo ]/O}’,

3ih
8

2 ) . : .h ) h B .
€A0 + K]’l()()]/o + iflChOi <8’ - %Al> + g@,(hf)) + —Ce”kai(hoj)Zk 8t(tr(h)) + %at(l’loo):|

2 4 4

3
= ihmc*hy V7' + zhl;c Di(hoo)y" — ihechy;F /ol + h*c?8;(ho;)Via' — ihec (1 + %) 9;(Ag)dd
ih fl2 2 o L 'h2 2 .
i % higd (Ag)a + = (9, (o)) V'al = 9j(hoiVia')) - %ef“aiaj(ho,()alzl
2 2
- 0.0, erm)a + 0,0, (ho) (€23)
. ihc ; . ihc i e i
0= —78,(h00)via - hooa ( ) +_a ( )v a +§hl]at(A )a
”’—ca ) (ﬂ - h00> o, (C24)

Upon plugging the Egs. (C23) and (C24) into the last term in Eq. (C11), exploiting again the identities in Eq. (C20), and
with a lot of algebra, we arrive at the final expression

(0,10, 6] + irO) n? ie \2 eh ihle hoo\ (V
- =+—hy| V-——-A O —— hyB -’24+ ——(1+-2)|(=—xE-ExV].-X
8m2ct + 4m 0 c e dme w00 + 4m?3c? + 2 2~ x

n’e ine ‘ ile . e .
- (1 + l’loo) Wv -E - Wé’ klhij(?/ (Ek)El — 8m202 € klhijEk (8’ - hcA]>Z[

. . 2

il L ie ihe

5 e h()ij <8, - %Az) Zl + 8m202
hze . ihte . e

—— 0i(hg)E' — 1%, (hoo ) E; S5 — ———s

16m2c2 1( OO) 2626 z( 00) j=k 16m2c2

n? . e . in> ie
+ o 9i(hoo) (51 —%A’> —%G”kai(hoo) (aj _%Aj> Zi

eiﬂhOkai (ij)Z,

i j in’e ijl k
8 (h”)E + 16m2c2€ (9,(h]k)E 21

8m

nle . ine . ine . (tr(h)
- 8m 8 (h()])F + 8 c €Jlai(/’l0k)ij21 - 16m2c2 €/k8i< 2 )EJZk
ih

_._3 Jkl gima &) (ho;) a_i_eA o _i_eA Ty
16m2c€ € m\"0j T het ) k he k a=l
oo ie
_ v Ljklyi _ .
8m2c€ 0 ( )(8/{ Ak> <8 hCAl> Z[

ih3 )

. ie ihe
2C €]kl€l ﬁm(hoj) <6k Ak> <8k _flCAi> ZaZ + 8m2C2

M (ho) FriZy

n L ie inte . .
3 Gﬂdalai(hoj') <ak_hCAk>Zl_ elklai(hOj)F]kzl

_|_
l6m=c 16m?3c?

in . le . [/ ie
) — — AJ Jkig. . - — Al
8m 6 3 (hoj) <8 hCA > + 8m2c€ al(hoj) (8k flCAk) <8 flCA >

024043-13



L. ASPREA and G. GASBARRI PHYS. REV. D 104, 024043 (2021)

in ie n e .
ijl 5. k_ Ak )Y, — eki h - —— A2
o €000 (0 2 4 )5y = 1 10,0, h) (9 - 242
P 1930, (o) (9 -1 4, )= iHeimag), 3 (ho) (0
+16m2c€ i (hox) i~ e l+16m2c€ €"40,,0;(hor) | O;

ie B in®
- h_CAl> lea - 16m2c€]k18 81'(9]'(]’10/()2[ + —7 3om ) 2 (9 (9 8 (tr( ) hoo)

n? i _de N\ o B 0 in i e
——8 (h00)<8 _%A )7 _@8 9i(hoo)y _Wa 9 (hoo) (3 —%A )
> ie ih’e int e .
- 16m2C2€Jk8jat(h00) <3i _%Ai) Xy — 23 5€70,(hj ) F'E, +W6 9, (hi;) <8J —%AJ>
71713 i ie h i ie
+7 6m26261k8,3j(tr(h) — hgo) (a,- hCA>Zk+ o 12,2 00 (tr(h) = hep) <8i—%A,->. (C25)

So that the total Hamiltonian reads

hoo flz hoo ie 2
H = ¢eA 0 1 ——|14+—=](V=-——A
Aoty [ ( + 2) m\ T2 he
he hoo\ ok n? . e i ie i
2mce <1 2 )B %= th'j g hcA g hcA

he ii ihze hOO \Y h2e

+4—mc€”hﬂ<”f"zﬂ T <1 *7) <5X E-Ex V) E- (14 ho) s V-
ihze i ; ihze i . ie .

“Tomar € i EOT gz z ey (0, - h_cAj>Zl

ih’e ie n’e N in*e .
+ 4m2C2 € it hOkF (8 — %At> Zl — Whojai(Fu) + 8m2C2 Elﬂh()kai(ij)Zl

0 . 4
Y e
—_ 8m3c6 [fl4C4(1 + 2]’100) <V —_ ﬁA> + hZECZ(l + 2h00)B2

j 2/ e . . de [\ Rhlecd ie \2
wtctn (v—¢A i_ i\ (g i) LB i) (v A hFkls
+ C”( he v A G et e Py A e

3 1 2
€M F " BHZ, 2y} — e (1 + 2h00){ (v - ;l—eA> ,B"}Zk]
C

Wec

h2 . e ; o . ihc ;
_8_m8i(h00) (3 —%A) —Kaa (hoo)y +Tai(h0>
hc 3ih

T €%9;(hoj) 2y — ——0,(tr(h)) + %@(hoo)

8

n n - h* _ (tr(h)
0 i e — OV ——0. !
+ 4 |: 0 (hOO)vz 4m 0 (ht])v 'm 8, < 2 >v

i 2 r
I G () ooV, = 0,0 Vg = 20, (@ - h)]
1]5
+Hyy+ O(h*) + 0 <§> (C26)

with

024043-14



GRAVITATIONAL DECOHERENCE: A NONRELATIVISTIC SPIN ... PHYS. REV. D 104, 024043 (2021)

h’e . ihte e . . Rn? . e
Haa =~ Tomeea 00l E' ~ 1z € Oilhon) EjZe = 1@z 0/ () + g 01(lhon) (8 ‘n—cA>
in‘e . i ie n’e . . ihe
16m262€jlai<hjk)EkZl - 8—m€’k8i(hoo) (8]' —%A,) Zy _Wa (hoj)Fi! + 8m2C2€]lai(h0k)ijzl

ihle .. tr(h in3 o ie ‘o
om0 (5 <o ) Bz = o cttemed )] (0= o). (01 poae) b

i’

8m?c

. ie ie in’e ., _.
€]kl€[lm8m(h0j) <8k __Ak> <6‘k _%Ai> ZaZ“ + 3 7 2€]klal(h0j)Fkizl

hc m-c
3

7‘;13 Jkl i e h
—8 5 € 8(1’10]) 6/( _Ak 8 hCAi Zl+16m26

m-c
. 3 . .
i N n ki (. _te 1t
8 2 8 8 (hoj) (3 hCA + 8m26€ 6,(”101) (9]( flCAk 8 hCA 21

ki 5i ie in’e ikl j
€ 88i(h0j) ak_%Ak Zl_l6m26‘26 8i(h0j)F Y

— h3 kjla a (/’l ) ai _i_eA[ ) i 3 jklata (h ) 8 ie als
16m%c k 0j hc " em2e € Ok ac )
ih3 . . ie h3 ) )
+ 16m2061k161maamaj(h0k) (81 — h_CAl) lea — 2 6’”3’8,0]-(}10,()21
h? e . o e
——9:(h i Al 0__"" A (h 0 _ h i Al
8m al( 00) (a he )7 16m8 81( 00)7 16 7 28 a,( 00) <8 he )
nooo ie ine
BT €%9,0,(hgo) <3i - ﬁA’) - FERe €1, (hy ) F X,
int ie i’ it e .
+ 16m2c2€]k8t8j<tr<h) — hy) (3,- —%A,->Zk+32 5 2688 (tr(h) — hgo) + 20 268 (h; )(8} _%A]>
int ie in’ : ie

0 24 4 ; 2 : 24 4 : :
A LA _te _ e _in'c _te i ey
8m366 |: > € {(V he A) ,81(}100) (01 hCA/) }Zk > \Y hCA ,8 (ho()) 8, hCAl
ie \2 e . atct ie  \2 ie
- (h.. ) — — AJ - ijl - (h. k _ —— Ak
(V hcA> ,8,(hlj)<8 hcA )} 2 € {(V hcA> ,8,(h]k)<8 hcA )}Zl

h
+ ih3€C3€iﬂ{Bka, 3i(h00) (3] - %AJ) [} - ih3€C3{Bk, 8i(h00) (8, - %Al) }Zk

+ ifl3ec3€ijl{Bka, 8i(hja) <8a - ;l—eAa> Zl + h36C3 {Bk, 6,» <M - ]’l00> ai}Zk
3,.3
+h%{3k,aiai ("g’) >}zk]. (€27)

By neglecting the terms containing derivatives of the gravitational field of order ﬁ—i or higher (namely the term H,;), we
recover Eq. (18) of the main text.

024043-15



L. ASPREA and G. GASBARRI

PHYS. REV. D 104, 024043 (2021)

[1] B.P. Abbott The LIGO and the VIRGO Collaborations,
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] B.P. Abbott The LIGO and the VIRGO Collaborations,
GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[3] J. Luo et al., TianQin: A space-borne gravitational wave
detector, Classical Quantum Gravity 33, 035010 (2016).

[4] S. Kawamura et al., The Japanese space gravitational
wave antenna—DECIGO, J. Phys. Conf. Ser. 122,
012006 (2008).

[5] M. Punturo et al., The Einstein telescope: A third-generation
gravitational wave observatory, Classical Quantum Gravity
27, 194002 (2010).

[6] T. Akutsuet al. The KAGRA Collaboration, Construction of
KAGRA: An underground gravitational-wave observatory,
Prog. Theor. Exp. Phys. 2018, 01 (2018).

[7] K. Danzmann the LISA Study Team, LISA: Laser interfer-
ometer space antenna for gravitational wave measurements,
Classical Quantum Gravity 13, A247 (1996).

[8] A.S.Y. Imry and Y. Aharonov, Phase uncertainty and loss
of interference: A general picture, Phys. Rev. A 41, 3436
(1990).

[9] B. Linet and P. Tourrenc, Changement de phase dans un
champ de gravitation: Possibilité de détection interféren-
tielle, Can. J. Phys. 54, 1129 (1976).

[10] E. Goklii and C. Lammerzahl, Metric fluctuations and the
weak equivalence principle, Classical Quantum Gravity 25,
105012 (2008).

[11] H. P. Breuer, E. Gokliiand C. Lammerzahl, Metric fluctua-
tions and decoherence, Classical Quantum Gravity 26,
105012 (2009).

[12] J.L.S. Gomez, in Decoherence Through Stochastic
Fluctuations of the Gravitational Field, edited by L. Diosi
and B. Lukacs (World Scientific, Singapore, 1992), Vol. 456,
pp. 88-93.

[13] W.L. Power and I. C. Percival, Decoherence of quantum
wave packets due to interaction with conformal space-time
fluctuations, Proc. Math. Phys. Eng. Sci. 456, 955 (2000).

[14] M. P. Blencowe, Effective Field Theory Approach to Gravi-
tationally Induced Decoherence, Phys. Rev. Lett. 111,
021302 (2013).

[15] B.L. Hu and C. Anastopoulos, A master equation for
gravitational decoherence: Probing the textures of space-
time, Classical Quantum Gravity 30, 165007 (2013).

[16] B. Lamine, S. Reynaud and M.T. Jaekel, Gravitational
decoherence of atomic interferometers, Eur. Phys. J. D 20,
165 (2002).

[17] L. Asprea, G. Gasbarri, and A. Bassi, Gravitational
decoherence: A general nonrelativistic model, Phys. Rev.
D 103, 104041 (2021).

[18] N.D. Birrell and P.C.W. Davies, Quantum Fields in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1982).

[19] J. Yepez, Einstein’s Vierbein field theory of curved space,
arXiv:1106.2037v1.

[20] W. Greiner, Relativistic Quantum Mechanics (Springer-
Verlag, Berlin Heidelberg, 2000).

[21] L. L. Foldy and S. A. Wouthuysen, On the Dirac theory of
spin 1/2 particles and its nonrelativistic limit, Phys. Rev. 78,
29 (1950).

[22] For the sake of compactness we relegate such terms to
Appendix D. Note also that in most experimental situations
such contributions are negligible in the case of gravity, and
they wouldn’t add any further informative content to the
analysis in any case.

[23] A. Watcher, Relativistic Quantum Mechanics, Theoretical
and Mathematical Physics (Springer, New York, 2011).

[24] We have added the superscripts (B) and (F) for respectively
bosonic and fermionic in order to avoid confusion.

[25] J. Wheeler, C. Misner, and K. Thorne, Gravitation (Free-
man, New York, 1973).

[26] Note however that one needs to be careful when applying
the results of this section to a real experimental situations, as
the term A, might dominate over A » (depending on the size
of E,B, and h,,) and should therefore be taken in consid-
eration.

[27] N.G. Van Kampenm, Stochastic Processes in Physics
and Chemistry (North Holland Personal Library, Elsevier,
1981).

[28] Recall that our choice for the Fourier transform is:

709 = oy | aFtaen”

[29] V. de Sabba and M. Gasperini, Introduction to Gravitation
(World Scientific, Singapore, 1985).

[30] T. W. B. Kibble, Lorentz invariance and the gravitational
field, J. Math. Phys. (N.Y.) 2, 212 (1961).

[31] D. W. Sciama, On the analogy between charge and spin in
general relativity, in Recent Developments in General
Relativity (Pergamon+ PWN, Oxford, 1962).

[32] F. W. Hehl, P. von der Heyde, and G. D. Kerlick, General
relativity with spin and torsion: Foundations and prospects,
Rev. Mod. Phys. 48 (1976).

[33] F.J. Belinfante, On the current and the density of the
electric charge, the energy, the linear momentum and the
angular momentum of arbitrary fields, Physica 7, 449
(1940).

[34] D.Z. Freedman and A. Van Proeyen, Supergravity (Cam-
bridge University Press, Cambridge, England, 2012).

024043-16


https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/1742-6596/122/1/012006
https://doi.org/10.1088/1742-6596/122/1/012006
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1093/ptep/ptx180
https://doi.org/10.1088/0264-9381/13/11A/033
https://doi.org/10.1103/PhysRevA.41.3436
https://doi.org/10.1103/PhysRevA.41.3436
https://doi.org/10.1139/p76-136
https://doi.org/10.1088/0264-9381/25/10/105012
https://doi.org/10.1088/0264-9381/25/10/105012
https://doi.org/10.1088/0264-9381/26/10/105012
https://doi.org/10.1088/0264-9381/26/10/105012
https://doi.org/10.1098/rspa.2000.0544
https://doi.org/10.1103/PhysRevLett.111.021302
https://doi.org/10.1103/PhysRevLett.111.021302
https://doi.org/10.1088/0264-9381/30/16/165007
https://doi.org/10.1140/epjd/e2002-00126-y
https://doi.org/10.1140/epjd/e2002-00126-y
https://doi.org/10.1103/PhysRevD.103.104041
https://doi.org/10.1103/PhysRevD.103.104041
https://arXiv.org/abs/1106.2037v1
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1016/S0031-8914(40)90091-X

