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We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-
Minkowskian effective field theory approach. We derive the conserved stress-energy tensor linearly
coupled to gravity and the classical probability amplitude of graviton emission at leading and next-to-
leading order in the Newton’s constant G. The amplitude can be expressed in compact form as one-
dimensional integrals over a Feynman parameter involving Bessel functions. We use it to recover the
leading-order radiated angular momentum expression. Upon expanding it in the relative velocity between
the two bodies v, we compute the total four-momentum radiated into gravitational waves at leading-order in
G and up to an order v;8 finding agreement with what was recently computed using scattering amplitude
methods. Our results also allow us to investigate the zero frequency limit of the emitted energy spectrum.
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I. INTRODUCTION

The understanding of the dynamics of binary systems and
their gravitational wave emission has been crucial for the
extraordinary discovery of LIGO/Virgo [1,2]. This field has
recently received a renewed attention, particularly in the
application of the so-called post-Minkowskian (PM) frame-
work [3–12], which consists of expanding the gravitational
dynamics in the Newton’s constant G while keeping
the velocities fully relativistic. This is complementary to
the post-Newtonian approach (see [13,14] and references
therein), where one expands in both velocity andG, since in a
bound state these two are related by the virial theorem.
Recently, progress has been made within the PM

framework, thanks to the application of several comple-
mentary approaches: in particular, the effective one-body
method [10,11,15,16], the use of scattering amplitude
technics, such as the double copy [17–19], generalized
unitarity [20–22], and effective field theory (EFT) [23–30]
(see [31–39] for the quantum field theoretic description of
gravity), and worldline EFT approaches [40–44]. These
developments concern the scattering of unbound states, but
results can be extended to bound states by applying an
analytic continuation between hyperbolic and elliptic
motion [45,46]. The progress has addressed the conser-
vative binary dynamics up to 3PM order [47–50], as well as
tidal [51–57], spin [58–62], and radiation effects [63–70],
and have spurred other new interesting results (see, e.g.,
[71–73] for an incomplete list).
The culminating product of the scattering amplitude

program is the recent derivation of the 4PM two-body
Hamiltonian [74]. At this order, a tail effect is present
[75–77] and manifests an infrared divergence proportional

to the leading-order (G3) energy of the radiated
Bremsstrahlung, the gravitational waves emitted during
the scattering of two masses approaching each other
from infinity. Studies on the leading-order gravitational
Bremsstrahlung include [9,78–83]. The full leading-order
energy spectrum found in [74] was independently obtained
in [84] using the formalism of [27], which derives classical
observables from scattering amplitudes and their unitar-
ity cuts.
In this paper, we study the gravitational Bremsstrahlung

using a worldline approach inspired by nonrelativistic
general relativity (NRGR) [85] (see [86–90] for reviews)
and recently applied to the PM expansion [40–42,50,91]. In
particular, we first define the Feynman rules that allow us to
derive the leading and next-to-leading order stress-energy
tensor linearly coupled to gravity. From this, we compute
the classical probability amplitude of graviton emission,
which is directly related to the waveform in Fourier space.
The amplitude is the basic ingredient for the computation of
observables such as the radiated four-momentum and
angular momentum, which we discuss in various limits
and compare to the literature.

II. POST-MINKOWSKIAN EFFECTIVE
FIELD THEORY

We consider the scattering of two gravitationally inter-
acting spinless bodies with mass m1 and m2 approaching
each other from infinity. The gravitational dynamics is
described by the usual Einstein-Hilbert action. Neglecting
finite size effects, which would contribute at higher order in
G (see, e.g., [42,51]), the bodies are treated as external
sources described by point-particle actions. We use the
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Polyakov-like parametrization of the action and fix the
vielbein to unity. This has the advantage of simplifying
the gravitational coupling to the matter sources [42,92,93].
Therefore, using the mostly minus metric signature, setting
ℏ¼c¼1 and defining the Planck mass asmPl≡1=

ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
,

we have

S ¼ −2m2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p
R

−
X
a¼1;2

ma

2

Z
dτa½gμνðxaÞUμ

aðτaÞUν
aðτaÞ þ 1�; ð1Þ

where, for each body a, τa is its proper time and Uμ
a ≡

dxμa=dτa is its four-velocity.
To compute the waveform, we need the (pseudo) stress-

energy tensor Tμν, defined as the linear term sourcing the
gravitational field in the effective action [33,85,94], i.e.,

Γ½xa; hμν� ¼ −
1

2mPl

Z
d4xTμνðxÞhμνðxÞ: ð2Þ

In this equation, hμν ≡mPlðgμν − ημνÞ denotes a radiated
field propagating on shell, while Tμν must include the
contribution of both potential modes, i.e., off-shell modes
responsible for the conservative forces in the two-body
system, and radiation modes. (We will come back to this
split below.)
From the Fourier transform of Tμν, defined by

T̃μνðkÞ ¼ R
d4xTμνðxÞeik·x, one can compute the (classical)

probability amplitude of one graviton emission with
momentum k and helicity λ ¼ �2 [85],

iAλðkÞ ¼ −
i

2mPl
ϵ�λμνðkÞT̃μνðkÞ; ð3Þ

where ϵλμνðkÞ is the transverse-traceless helicity-2 polari-
zation tensor, with the normalization ϵ�λμνðkÞϵμνλ0 ðkÞ ¼ δλλ0
(see definition in the Appendix A). At distances r much
larger than the interaction region, the waveform is given in
terms of the amplitude as (see, e.g., [95])

hμνðxÞ ¼ −
1

4πr

X
λ¼�2

Z
dk0

2π
e−ik

0uϵλμνðkÞAλðkÞjkμ¼k0nμ ; ð4Þ

where u≡ t − r. The amplitude is evaluated on shell, i.e.,
kμ ¼ k0nμ, with nμ ≡ ð1;nÞ and n the unitary vector
pointing along the graviton trajectory.
We can obtain the stress-energy tensor defined above by

matching Eq. (2) to the effective action computed order by
order in G using Feynman diagrams. Let us now introduce
the Feynman rules. Adding the usual de Donder gauge-
fixing term to Eq. (1),

Sgf ¼
Z

d4x

�
1

2
∂ρhμν∂ρhμν −

1

4
∂ρh∂ρh

�
; ð5Þ

where h≡ ημνhμν, from the quadratic part of the gravita-
tional action, one can extract the graviton propagator,

ð6Þ

where Pμν;ρσ ≡ 1
2
ðημρηνσ þ ημσηνρ − ημνηρσÞ. As usual, we

must specify the contour of integration in the complex k0

plane by suitable boundary conditions. This is customarily
done by splitting the gravitons into potential and radiation
modes (see, e.g., [42,85]). Potential modes never hit the
pole k2 ¼ 0, so the choice of boundary conditions does not
affect the calculations. For radiationmodes, onemust impose
retarded boundary conditions, i.e., ½ðk0þ iϵÞ2− jkj2�−1, to
account only for outgoing gravitons. Even though they are
not relevant at the order in G at which we work here, in
general, one must treat with care the pole of radiation modes
since they play a key role for hereditary effects at higher
orders [96].
Finally, from the gravitational action, one can derive the

cubic interaction vertex, which is the only one relevant for
this paper. In the de Donder gauge, it can be found, for
instance, in [33,97].
Thanks to the Polyakov-like form, the point-particle

action contains only a linear interaction vertex. However, in
order to isolate the powers of G, we parametrize the world-
line by expanding around straight trajectories [42,50], i.e.,

xμaðτaÞ ¼ bμa þ uμaτa þ δð1ÞxμaðτaÞ þ…; ð7Þ

Uμ
aðτaÞ ¼ uμa þ δð1ÞuμaðτaÞ þ… ð8Þ

Here, ua is the (constant) asymptotic incoming velocity and
ba is the body displacement orthogonal to it, ba · ua ¼ 0,
while δð1Þxμa and δð1Þuμa are, respectively, the deviation from
the straight trajectory and constant velocity of body a at
orderG, induced by the gravitational interaction. Moreover,
we define the impact parameter as bμ ≡ bμ1 − bμ2 and the
relative Lorentz factor as

γ ≡ u1 · u2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; ð9Þ

where v is the relativistic relative velocity between the two
bodies.
The expansion of the worldline action in the second line

of Eq. (1) generates two Feynman interaction rules that
differ by their order in G. At zeroth order, we have [withR
q ≡

R d4q
ð2πÞ4]
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ð10Þ

where a filled dot denotes the point particle evaluated using
the straight worldline. At first order in G, we have

ð11Þ

where the correction OðGnÞ to the trajectory is denoted by
the order n inside the circle. Following [42], the OðGÞ
correction to the velocity and the trajectory can be
computed by solving the geodesic equation obtained from
the effective Lagrangian at order G. In the de Donder
gauge, it reads, for particle 1,

δð1Þuμ1ðτÞ ¼
m2

4m2
Pl

Z
q

�δðq · u2Þ
e−iq·b−iq·u1τ

q2
Bμ
1; ð12Þ

δð1Þxμ1ðτÞ ¼
im2

4m2
Pl

Z
q

�δðq · u2Þ
e−iq·b−iq·u1τ

q2ðq · u1 þ iεÞB
μ
1; ð13Þ

where we use the notation �δðnÞðxÞ≡ ð2πÞnδðnÞðxÞ, and

Bμ
1 ≡ 2γ2−1

2
qμ

q·u1þiε − 2γuμ2 þ uμ1. (An analogous expression
holds for particle 2.) The þiϵ in the above equations
ensures to recover straight motion in the asymptotic past,
i.e., δð1Þuμ1ð−∞Þ ¼ 0 and δð1Þxμ1ð−∞Þ ¼ 0. At our order in
G, the deflected trajectories are completely determined by
potential gravitons, but, in general, one must take into
account also radiation modes with appropriate boundary
conditions. Note also that at higher order it can be

convenient to use different gauge-fixing conditions to
simplify the graviton vertices [42].

III. STRESS-ENERGY TENSOR

The radiated field can be computed in powers of G in
terms of the diagrams shown in Fig. 1. The leading stress-
energy tensor is obtained from Fig. 1(a) and corresponds to
the one of free point-particles, i.e.,

T̃μν
Fig: 1aðkÞ ¼

X
a

mau
μ
auνaeik·ba�δðωaÞ; ð14Þ

where for convenience, we define

ωa ≡ k · ua; a ¼ 1; 2: ð15Þ

This generates a static and nonradiating contribution to the
amplitude, proportional to�δðωaÞ. While this contribution
can be neglected when computing the radiated momentum,
it must be crucially included for the computation of the
angular momentum, as shown below.
At the next order, we find

T̃μν
Fig: 1bðkÞ ¼

m1m2

4m2
Pl

Z
q1;q2

μ1;2ðkÞ
1

q22

�
2γ2 − 1

ω1 þ iϵ
qðμ2 u

νÞ
1 − 4γuðμ2 u

νÞ
1 −

�
2γ2 − 1

2

k · q2
ðω1 þ iϵÞ2 −

2γω2

ω1 þ iϵ
− 1

�
uμ1u

ν
1�; ð16Þ

T̃μν
Fig: 1cðkÞ ¼

m1m2

4m2
Pl

Z
q1;q2

μ1;2ðkÞ
1

q21q
2
2

�
2γ2 − 1

2
qμ2q

ν
2 þ ð2ω2

2 − q21Þuμ1uν1 þ 4γω2q
ðμ
2 u

νÞ
1

− ημν
�
γω1ω2 þ

2γ2 − 1

4
q22

�
þ 2ðγq21 − ω1ω2Þuðμ1 uνÞ2

�
; ð17Þ

where

μ1;2ðkÞ≡ eiðq1·b1þq2·b2Þ�δð4Þðk − q1 − q2Þ�δðq1 · u1Þ�δðq2 · u2Þ; ð18Þ

and we have used momentum conservation, on-shell, and
harmonic-gauge conditions to simplify the final expression.
Of course, we must also include the analogous dia-
grams with bodies 1 and 2 exchanged. The contribution

in Fig. 1(b) comes from evaluating the worldline along
deflected trajectories, while the one in Fig. 1(c) comes from
the gravitational cubic interaction. We have checked that
the sum of these two contributions is transverse for on shell

(a) (b) (c)

FIG. 1. The three Feynman diagrams needed for the compu-
tation of the stress-energy tensor up to NLO order in G. To
compute the symmetric one, it is enough to exchange 1 ↔ 2.
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momenta, i.e., kμT̃μν ¼ 0 for k2 ¼ 0, as expected for
radiated gravitons. We have also verified that the finite
part of the stress-energy tensor agrees with that computed
in [40] once the contribution from the dilaton is removed.

IV. AMPLITUDES AND WAVEFORMS

We expand the amplitude defined in Eq. (3) in powers

of G, Aλ ¼ Að1Þ
λ þAð2Þ

λ þ � � �. Given the definition (3)

and the stress-energy tensor (14), the leading order
reads

Að1Þ
λ ðkÞ ¼ −

1

2mPl

X
a

maϵ
�λ
μνðnÞuμauνaeik·ba�δðωaÞ: ð19Þ

The NLO can be obtained by summing Eqs. (16) and
(17) and inserting the result in Eq. (3). Integrating over one
of the internal momenta,

Að2Þ
λ ðkÞ ¼ −

m1m2

8m3
Pl

ϵ�λμνðnÞ
�
eik·b1

��
−
2γ2 − 1

2

k · Ið1Þ
ðω1 þ iϵÞ2 þ

2γω2

ω1 þ iϵ
Ið0Þ þ 2ω2

2Jð0Þ

�
uμ1u

ν
1

þ
�
2γ2 − 1

ω1 þ iϵ
Iμð1Þ þ 4γω2J

μ
ð1Þ

�
uν1 − 2ðγIð0Þ þ ω1ω2Jð0ÞÞuμ1uν2 þ

2γ2 − 1

2
Jμνð2Þ

��
þ ð1 ↔ 2Þ; ð20Þ

where we have defined the following integrals:

Iμ1…μn
ðnÞ ≡

Z
q

�δðq · u1 − ω1Þ�δðq · u2Þ
e−iq·b

q2
qμ1…qμn ; ð21Þ

Jμ1…μn
ðnÞ ≡

Z
q

�δðq · u1 − ω1Þ�δðq · u2Þ
e−iq·b

q2ðk − qÞ2 q
μ1…qμn :

ð22Þ

[The indices inside these integrals must be changed when
evaluating the symmetric contribution ð1 ↔ 2Þ.] As de-
tailed in Appendix B, the first set of integrals in Eq. (21)
can be solved in terms of Bessel functions. The second set
of integrals in Eq. (22) comes exclusively from the
gravitational cubic interaction in Fig. 1(c). Unfortunately,
we were not able to come up with an explicitly solution to
these integrals. However, we can express them as one-
dimensional integrals over a Feynman parameter, involving
Bessel functions.
To simplify the treatment, from now on, we choose a

frame in which one of the two bodies, say 2, is at rest.
Moreover, for convenience, we can set bμ2 ¼ 0 and bμ1 ¼ bμ

and define the unit spatial vectors in the direction of v and
of the impact parameter b, respectively, ev ≡ v=v and
eb ¼ b=jbj, with ev · eb ¼ 0. We also define vμ ≡ ð1; vevÞ
so that

uμ2 ¼ δμ0; uμ1 ¼ γvμ ¼ γð1; vevÞ: ð23Þ

The energies of the radiated gravitons measured by the
two bodies become, respectively, ω2 ¼ k0 ≡ ω and
ω1 ¼ γωn · v. The amplitude simplifies to the following
compact forms:

Að1Þ
λ ðkÞ ¼ −

m1

2mPl

γv2

n · v
ϵ�λij e

i
ve

j
v�δðωÞeik·b; ð24Þ

Að2Þ
λ ðkÞ ¼ −

Gm1m2

mPlγv
ϵ�λij e

i
Ie

j
JAIJðkÞeik·b; ð25Þ

where the functions AIJ can be obtained after solving the
integrals (21) and (22). We find

Avv ¼ c1K0ðzðn · vÞÞ þ ic2½K1ðzðn · vÞÞ − iπδðzðn · vÞÞ�

þ
Z

1

0

dyeiyzvn·eb ½d1ðyÞzK1ðzfðyÞÞ þ c0K0ðzfðyÞÞ�;

ð26Þ

Avb ¼ ic0½K1ðzðn · vÞÞ − iπδðzðn · vÞÞ�

þ i
Z

1

0

dyeiyzvn·ebd2ðyÞzK0ðzfðyÞÞ; ð27Þ

Abb ¼
Z

1

0

dyeiyzvn·ebd0ðyÞzK1ðzfðyÞÞ; ð28Þ

where K0 and K1 are modified Bessel functions of the
second kind, and we have introduced

z≡ jbjω
v

; ð29Þ

and

fðyÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − yÞ2ðn · vÞ2 þ 2yð1 − yÞðn · vÞ þ y2=γ2

q
:

ð30Þ

The coefficients c0, c1, and c2 depend on v and on the
relative angles between the graviton direction and the basis
ðev; ebÞ. Moreover, d0, d1, and d2 depend also on the
integration parameter y. Their explicit form is given in
Appendix C. In Eqs. (26) and (27), we have also included
the nonradiating contribution proportional to a delta
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function,1 which may become relevant, for instance, when
computing the radiated angular momentum at NLO.
For small velocities, we find agreement between our

amplitude and the waveform in Fourier space of [82]. In
this limit, fðyÞ → 1, eiyzvn·eb → 1, γ → 1, and thus,2

Avv →
v→0

zK1ðzÞ þ K0ðzÞ; ð32Þ

Avb →
v→0

− i½K1ðzÞ þ zK0ðzÞ − iπδðzÞ�; ð33Þ

Abb →
v→0

− zK1ðzÞ: ð34Þ

We have also checked that we recover their amplitude in the
forward and backward limit (i.e., n along the direction of
ev), for which n · eb → 0 and the integral in y can be solved
exactly. The waveform can be computed by replacing the
amplitude in Eq. (4) and integrating in k0. We discuss this
calculation in Appendix D.

V. RADIATED FOUR-MOMENTUM

In terms of the asymptotic waveform, the radiated four-
momentum at infinity (r → ∞) is given by [69,82]3

Pμ
rad ¼

Z
dΩdur2nμ _hij _hij; ð35Þ

where a dot denotes the derivative with respect to the
retarded time u and dΩ is the integration surface element.
Using Eq. (4) for the waveform, this can be expressed in

a manifestly Lorentz-invariant way in terms of the ampli-
tude (3) as [40]

Pμ
rad ¼

X
λ

Z
k

�δðk2Þθðk0ÞkμjAλðkÞfinitej2; ð36Þ

where θ is the Heaviside step function, and on the right-
hand side, we take only the finite part of the ampli-
tude, excluding the terms proportional to a delta function
that do not contribute to _hij. Thus, at leading order

jAλðkÞfinitej2 ¼ jAð2Þ
λ ðkÞfinitej2 þ � � �, and hence, the radi-

ated four-momentum starts at order G3.
Since the modulo squared of the amplitude is symmetric

under k → −k, the four-momentum cannot depend on the
spatial direction bμ. Moreover, the energy measured in

the frame of one body is the same as the one measured
in the frame of the other one; hence, the final result must
be proportional to uμ1 þ uμ2. Using Eq. (25), we can write
it as

Pμ
rad ¼

G3m2
1m

2
2

jbj3
uμ1 þ uμ2
γ þ 1

EðγÞ þOðG4Þ; ð37Þ

which confirms that at this order the result has homo-
geneous mass dependence and is thus fixed by the probe
limit [76,82,84]. The function EðγÞ can be found by
integrating over the phase space the modulo squared of
the amplitude,

EðγÞ ¼
Z

dΩ
Z

∞

0

dz
dE

dzdΩ
ðz;Ω; γÞ ð38Þ

with

dE
dzdΩ

≡ 2vz2

π2γ2
X
λ

jϵ�λij eiIejJAIJðz;ΩÞj2: ð39Þ

A more explicit but long expression of this function is
reported in Appendix E; see Eq. (E1).
Due to the involved structure of the y integrals in

Eq. (25), we were unable to compute E explicitly.
Nevertheless, we can first compute the integrals in y in
the v ≪ 1 regime at any order. Then we can perform the
phase-space integral expressing the angular dependence in
a particular coordinate system. We have computed the
energy up to order Oðv8Þ, obtaining
E
π
¼ 37

15
vþ 2393

840
v3 þ 61703

10080
v5 þ 3131839

354816
v7 þOðv9Þ:

ð40Þ

The radiated energy in center-of-mass frame, Prad · uCoM,
where

uμCoM ¼ m1u
μ
1 þm2u

μ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þm2

2 þ 2m1m2γ
p ; ð41Þ

agrees with the 2PN results [76,82,98] while Eq. (40)
matches the expansion of the fully relativistic result
recently found in [84]. This is a nontrivial check of our
NLO amplitude (25).
As an extra check, we can compute the leading-order

energy spectrum in the soft limit, which is obtained by
considering only wavelengths of the emitted gravitons much
larger than the interaction region, i.e., jbjω=v ≪ 1. For
Erad ≡ P0

rad, this is given by

dErad

dω

				
ω→0

¼ 1

2ð2πÞ3
X
λ

Z
dΩjωAλðkÞω→0j2: ð42Þ

1To compute this contribution, we have used this integral,Z
q
δðq · u1Þδðq · u2Þ

e−iq·bqμ

q2
¼ bμ

2πγvjbj2 : ð31Þ
2The signs in front of K0 and K1 of the last term of Eqs. (2.9b)

and (2.9c) of [82] are opposite to ours because of a different
Fourier transform convention.

3We are using a different normalization of hμν with respect to
these references, which explains the absence of the prefactor
ð32πGÞ−1.
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In this limit, the amplitude at orderG2 receives contributions
exclusively from the diagram in Fig. 1(b), so it is not affected
by the gravitational self-interactions. From Eqs. (25)–(28),
it reads

iAð2Þ
λ ðkÞω→0 ¼

Gm1m2

mPljbj
1

γωn · v
ϵ�λij ðc2eivejv þ 2c0eiveibÞ:

ð43Þ

Integrating Eq. (42) over the angles by fixing some angular

coordinate system and introducing the function IðvÞ≡
− 16

3
þ 2

v2 þ
2ð3v2−1Þ

v3 arctanhðvÞ [69], we obtain

dErad

dω

				
ω→0

¼ 4

π

ð2γ2 − 1Þ2
γ2v2

G3m2
1m

2
2

jbj2 IðvÞ þOðG4Þ; ð44Þ

which agrees with [70,99]. We will come back to this
result below.

VI. RADIATED ANGULAR MOMENTUM

The angular momentum lost by the system is another
interesting observable as it can be related to the correction
to the scattering angle due to radiation reaction [69]. In
terms of the asymptotic waveform, this is given by [69,100]

Jirad ¼ ϵijk
Z

dΩdur2ð2hjl _hlk − xj∂khlm _hlmÞ: ð45Þ

As pointed out in [69], the waveform at order G is static
and can be pulled out of the time integration leaving
with the computation of the gravitational wave memory
Δhij ≡

Rþ∞
−∞ du _hij. This can be related to the classical

amplitude by Eq. (4),

Δhij ¼
i

4πr

X
λ

Z
dω
2π

ϵλij�δðωÞωAλðkÞω→0; ð46Þ

where from the right-hand side it is clear that only the soft
limit contributes to the gravitational wave memory.
Moreover, since at this order the soft limit is uniquely
determined by the diagram in Fig. 1(b), the radiated angular
momentum does not depend on the gravitational self-
interaction, confirming [69].
To compute the radiated angular momentum, it is con-

venient to introduce a system of polar coordinates, where
n¼ ðsinθ cosϕ; sinθ sinϕ;cosθÞ and an orthonormal frame
tangent to the sphere, with eθ¼ðcosθcosϕ;cosθsinϕ;
−sinθÞ and eϕ ¼ ð− sinϕ; cosϕ; 0Þ. To express Eq. (45)
in terms of the amplitudes, we can rewrite the angular
dependence in the polarization tensors of the first term inside
the parenthesis using 2εijkϵλjlϵ

�λ0
lk ¼ −iλniδλλ0 . The second

term can be rewritten by noticing that ϵijkxj∂k ¼ iL̂i, where
L̂i is the usual orbital angularmomentumoperator, expressed

in terms of the angles and their derivatives (seeAppendixA).
Using ϵ�λ0lm L̂ϵλlm ¼ λ cot θeθδλλ

0
, we obtain

Jrad ¼
X
λ

Z
dΩ
ð4πÞ2 ωA

ð2Þ
λ

�ðkÞω→0ĴĀ
ð1Þ
λ þOðG3Þ; ð47Þ

where Ĵ≡ λðnþ cot θeθÞ þ L̂, and we have introduced

Āð1Þ
λ as the leading-order amplitude striped off of the delta

function, i.e., defined by

Að1Þ
λ ðkÞ ¼ Āð1Þ

λ
�δðωÞeik·b: ð48Þ

One can perform the angular integral in Eq. (47) by aligning
ev and eb along any (mutually orthogonal) directions and
eventually obtains

Jrad ¼
2ð2γ2 − 1Þ

γv
G2m1m2J

jbj2 IðvÞðeb × evÞ; ð49Þ

where J ¼ m1γvjbj is the angular momentum at infinity.
This result agrees with [69].
As noticed in [70], from Eqs. (44) and (47), we observe

an intriguing proportionality between the energy spectrum
in the soft limit and the total emitted angular momentum.
We leave a more thorough exploration of this result for the
future.

VII. CONCLUSION

We have studied the gravitational Bremsstrahlung using a
worldline approach. In particular, we have computed through
the use of Feynman diagrams, expanding perturbatively inG,
the leading and next-to-leading order classical probability
amplitude of graviton emission and consequently, the wave-
form in Fourier space. The next-to-leading order amplitude
receives two contributions: one from the deviation from
straight orbits, which can be expressed in terms of modified
Bessel functions of the second kind; another from the cubic
gravitational self-interaction, which we could rewrite as one-
dimensional integrals over a Feynman parameter ofmodified
Bessel functions. When comparison was possible, we found
agreement with earlier calculations of thewaveforms [78,81]
in different limits.
We have used the amplitude to compute the leading-order

radiated angular momentum, recovering the result of [69].
Moreover, we have computed the total emitted four-momen-
tum expanded in small velocities up to order v;8 and we
found agreement with the recent results of [74,84]. Unfor-
tunately, wewere not able to reproduce their fully relativistic
result, which we leave for the future. Nevertheless, we have
built the foundations for an alternative derivation of the
recent results obtained with amplitude techniques.
Another interesting limit is for small gravitational

wave frequencies, where the amplitude does not receive
contributions from the gravitational interaction. We have
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computed the soft energy spectrum recovering an intriguing
relation with the emitted angular momentum [70]. Future
directions include the study of spin and finite-size effects
and a more thorough investigation of the relations between
differential observables.
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APPENDIX A: ANGULAR DEPENDENCE

We can introduce the transverse-traceless helicity-2
tensors, normalized to unity, in terms of the orthonormal
frame tangent to the sphere, eθ ¼ ðcos θ cosϕ; cos θ sinϕ;
− sin θÞ and eϕ ¼ ð− sinϕ; cosϕ; 0Þ, used in the main text.
We define

ϵ�i ≡ 1ffiffiffi
2

p ð�eiθ þ ieiϕÞ; ϵ�2
ij ¼ ϵ�i ϵ

�
j : ðA1Þ

We can relate these tensors to the (real) plus and cross
parametrization often used in the literature by

ϵplusij ¼ ϵþij þ ϵ−ij; ϵcrossij ¼ −iðϵþij − ϵ−ijÞ: ðA2Þ

For convenience, here we also explicitly report the
expression of the (orbital) angular momentum operator
in terms of the same polar coordinates,

L̂x ¼ iðsinϕ∂θ þ cot θ cosϕ∂ϕÞ; ðA3Þ

L̂y ¼ −iðcosϕ∂θ − cot θ sinϕ∂ϕÞ; ðA4Þ

L̂z ¼ −i∂ϕ: ðA5Þ

APPENDIX B: INTEGRALS

To compute the integrals in Eq. (21), we first need the
master integral Ið0Þ, which can be solved by going to the

frame of body 2 as in Eq. (23) and by removing the delta
functions by integrating in q0 and in the spatial momentum
along v. This leaves us with

Ið0Þ ¼ −
1

γv

Z
d2q⊥
ð2πÞ2

eiq⊥·b

jq⊥j2 þ ω2
1

γ2v2

¼ −
1

2πγv
K0

�jbjω1

γv

�
;

ðB1Þ

where we can write jbj ¼
ffiffiffiffiffiffiffiffi
−b2

p
in a Lorentz-invariant

fashion.
We use this result to compute the descendant integrals

Iμ1…μn
ðnÞ (see analogous examples in [27]). For instance, by

the presence of δðq · u2Þ in the integrand, Iμð1Þ can only be a
sum of two pieces, one proportional to bμ and another
proportional to uμ1 − γuμ2. The piece proportional to bμ can
be computed by taking the derivative of Ið0Þ with respect to
bμ and projecting it along bμ with proper normalization. It
is easy to see that the other piece is proportional to Ið0Þ upon
projecting Iμð1Þ along uμ1 and taking into account the first
delta function.
To compute the integrals in Eq. (22), we can proceed

analogously. Although we were not able to solve the master
integral Jð0Þ in close form, we can express it in terms of an
integral over a Feynman parameter as

Jð0Þ ¼
Z

1

0

dye−iyk·b
Z
q

�δðq · u1 þ ðy − 1Þω1Þ

×�δðq · u2 þ yω2Þe−iq·b=q4

¼ jbj2
4πγv

Z
1

0

dye−iyk·b
K1ðzfðyÞÞ
zfðyÞ ; ðB2Þ

where the integral in q has been solved similarly to Ið0Þ.

APPENDIX C: COEFFICIENTS

The coefficients in Eqs. (26), (27), and (28) are

c0 ¼ 1− 2γ2; c1 ¼ −c0 þ
3− 2γ2

n · v
; c2 ¼ vc0

n · eb
n · v

;

d0ðyÞ ¼ fðyÞc0;

d1ðyÞ ¼ v2
4γ2ðy− 1Þðn · vÞ− c0ðy− 1Þ2 − 2y− 1

fðyÞ − d0ðyÞ;

d2ðyÞ ¼ −1þ ð1− yÞc0ðn · v− 1Þ: ðC1Þ

APPENDIX D: WAVEFORM IN
DIRECT SPACE

In this paper, we focus on computing the emitted energy
and angular momentum, obtained from the waveform in
Fourier space or, equivalently, the amplitude of graviton
emission. In this Appendix, which was added in v2 of the
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paper to address one of the reviewer’s comments, we show
how to find the waveform in direct space from the
expression of our amplitude.
First, we replace the NLO amplitude (25) in Eq. (4), we

go in the rest frame of particle 2 and integrate over q0,
removing�δðq · u2Þ. Then we can get rid of the other delta
function by integrating over k0, which leads to a three-
dimensional integral over q. More explicitly, at order G2,
one can find (with hλ ≡ ϵ�μνλ hμν),

hð2Þ�2 ¼
m1m2G
8mPlr

Z
q
eiq·b̃

�
qiN i

�
q2ðq · ev − iϵÞ

þ qiqjMij
�

q2ðq2 þ q · L · qÞ
�
; ðD1Þ

where [101]4

N i
� ≡ 4

γv
ðn · vÞ2 ðϵ

� · evÞ2½ð1þ v2Þni − 4veiv�

þ 8
γð1þ v2Þ

n · v
ðϵ� · evÞϵi�; ðD2Þ

Mij
� ≡ 16

γv4

ðn · vÞ3 ðϵ
� · evÞ2eivejv þ 8

γð1þ v2Þ
n · v

ϵi�ϵ
j
�

− 32
γv2

ðn · vÞ ðϵ
� · evÞeðiv ϵjÞ�; ðD3Þ

and we have introduced

b̃≡ bþ v
n · v

ðuþ b · nÞ; Lij ≡ 2
v

n · v
eðivnjÞ: ðD4Þ

The integrations in q can be performed following [101].
Eventually, one finds an expression of the waveform
equivalent to that of this reference, which agrees with [82].

APPENDIX E: ENERGY AND SPECTRAL
DEPENDENCE

The spectral and angular dependence of the radiated
four-momentum is given by Eq. (39). Using the expressions
for the functions AIJ in Eqs. (26)–(28) and summing over
the helicities, we find

π2γ2

2vz2
dE

dzdΩ
¼ 2a2vvc21K

2
0ðzðn · vÞÞ þ 2avv½4abbc20 þ c2ð4avbc0 þ avvc2Þ�K2

1ðzðn · vÞÞ

þ 4c1K0ðzðn · vÞÞ½ð2a2vb − avvabbÞIðcÞ0 þ a2vvI
ðcÞ
1 − 2avvavbI

ðsÞ
2 �

þ 4K1ðzðn · vÞÞ½ð2abbavbc0 þ ð2a2vb − avvabbÞc2ÞIðsÞ0 þ ð2avvavbc0 þ a2vvc2ÞIðsÞ1 þ 2avvð2abbc0 þ avbc2ÞIðcÞ2 �
þ 2a2bb½ðIðcÞ0 Þ2 þ ðIðsÞ0 Þ2� þ 2a2vv½ðIðcÞ1 Þ2 þ ðIðsÞ1 Þ2� þ 8avvabb½ðIðcÞ2 Þ2 þ ðIðsÞ2 Þ2�
þ 4ð2a2vb − avvabbÞðIðcÞ0 IðcÞ1 þ IðsÞ0 IðsÞ1 Þ þ 8avbI

ðcÞ
2 ðabbIðsÞ0 þ avvI

ðsÞ
1 Þ− 8avbI

ðsÞ
2 ðabbIðcÞ0 þ avvI

ðcÞ
1 Þ; ðE1Þ

where we have defined aIJ ≡ ½ðeθ · eIÞðeθ · eJÞ þ
ðeϕ · eIÞðeϕ · eJÞ�=2,5 and the two sets of integrals,

IðsÞi ðz;ΩÞ≡
Z

1

0

dy sinðyzvn · ebÞgiðz;Ω; yÞ;

IðcÞi ðz;ΩÞ≡
Z

1

0

dy cosðyzvn · ebÞgiðz;Ω; yÞ; ðE2Þ

with

g0ðz;Ω; yÞ≡ d0ðyÞzK1ðzfðyÞÞ;
g1ðz;Ω; yÞ≡ c0K0ðzfðyÞÞ þ d1ðyÞzK1ðzfðyÞÞ;
g2ðz;Ω; yÞ≡ d2ðyÞzK0ðzfðyÞÞ: ðE3Þ

It is straightforward to integrate analytically over the polar
angle, while we were not able to integrate over the
azimuthal one. Because of its length, we prefer not to
report the integrated expression here.

4To compare these expressions with those in [101], one must
replace ev → ê1, eb → ê2, eθ → θ̂, eϕ → ϕ̂, nμ → ρμ, vμ → vμ2=γ
and use Eq. (A1).

5Choosing ev along z and eb along x, we have avv ¼ sin2 θ=2,
avb ¼ − sin θ cos θ cosϕ=2, abb ¼ ½cos2 θ cos2 ϕþ sin2 ϕ�=2.

MOUGIAKAKOS, RIVA, and VERNIZZI PHYS. REV. D 104, 024041 (2021)

024041-8



[1] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (Virgo, LIGO Scientific Collaborations),
GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[3] B. Bertotti, On gravitational motion, Nuovo Cimento 4,
898 (1956).

[4] B. Bertotti and J. Plebanski, Theory of gravitational
perturbations in the fast motion approximation, Ann. Phys.
(N.Y.) 11, 169 (1960).

[5] P. Havas and J. N. Goldberg, Lorentz-invariant equations
of motion of point masses in the general theory of
relativity, Phys. Rev. 128, 398 (1962).

[6] K. Westpfahl and M. Goller, Gravitational scattering of
two relativistic particles in postlinear approximation, Lett.
Nuovo Cimento 26, 573 (1979).

[7] M. Portilla, Scattering of two gravitating particles:
Classical approach, J. Phys. A 13, 3677 (1980).

[8] L. Bel, T. Damour, N. Deruelle, J. Ibanez, and J. Martin,
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