
 

Formation of bound states of scalar fields in AdS-asymptotic wormholes
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We use the Wentzel-Kramers-Brillouin (WKB) approximation to study the formation and propagation of
bound states in the vicinity of a wormhole in the nonminimal derivative coupling theory of gravity. The
wormhole throat connects two anti–de Sitter spacetimes. We show that when the scalar field lies in high
orbital states, the corresponding potential has potential barriers that block the passage of a classical field.
We investigate the behavior of the bound states trapped in the potential wells and provide the flow between
the two AdS regions.
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I. INTRODUCTION

Wormholes in general relativity (GR) are solutions of
Einstein equations that connect different parts of the
Universe or two different Universes. The concept of the
wormhole can originally be traced back to Flamm in 1916
[1] and then wormhole-type solutions were considered, in
1935, by Einstein and Rosen (ER), where they considered
an elementary particle model represented by a physical
space being connected by a wormhole-type solution known
as ER bridge [2] (For a review of the early developments of
the wormhole concept see [3]). Then, wormholes were
further developed in the pioneering articles of Misner and
Wheeler [4] and Wheeler [5].
Lorentzian wormholes in GR were studied byMorris and

Thorne [6] where a static spherically symmetric metric was
introduced and conditions for traversable wormholes were
found. However, a condition on the wormhole throat leads
to the violation of the null energy condition (NEC). A
matter distribution of exotic or phantom matter allows in
GR the formation of traversable wormhole geometries. This
type of matter has been discussed in cosmological contexts
[7], for possible observational settings. There have been
many efforts to build a wormhole with ordinary matter
satisfying the NEC. In [8] the construction of thin-shell
wormholes was studied, where the supporting matter is
concentrated on the wormhole throat. In [9] it was shown
that in theories were higher order terms in curvature are
present it is possible to build thin-shell wormholes sup-
ported by ordinary matter. Also in the case of building a
wormwole in GR having cylindrical symmetry with rota-
tion, exotic matter can be avoided [10,11]. Recently there
are many studies of wormhole solutions in modified gravity

theories like Brans-Dicke theory [12], fðRÞ gravity [13],
Einstein-Gauss-Bonnet theory [14], Einstein-Cartan theory
and general scalar-tensor theories [15].
The simplest and very well studied modifications of GR

are the scalar-tensor theories [16]. The presence of a scalar
field coupled to gravity has important implications in local
and global solutions in these theories. The Horndeski
Lagrangian [17] provides one of the best studied scalar-
tensor theories. The reason is that the Horndeski theories
lead to second-order field equations, they give rise to
consistent theories without ghost instabilities [18–21] and
they preserve a classical Galilean symmetry [22,23]. The
Horndeski theory has been studied in short and large
distances. In particular a subclass of Horndeski theories
was studied inwhich the scalar field is kinetically coupled to
the Einstein tensor. Then black hole solutions were found
[24–28], known as Galilean black holes, and also wormhole
geometries were generated [29–31]. At large distances the
presence of the derivative coupling acts as a friction term
in the inflationary period of the cosmological evolution
[32–38]. This derivative coupling introduces a mass scale in
the theory which can be constrained, at large distances, by
the recent results on gravitational waves (GWs) [39].
The effects of the Galileon black holes were studied in

[40]. Considering a test wave in the vicinity of a Galileon
black hole it was shown that a Regge-Wheeler potential
arose and the formation and the behavior of bound states
trapped in this potential well or penetrating the horizon of
the Galileon black hole, was investigated. The strength of
the coupling of the scalar field to Einstein tensor, which
signals how strongly matter is coupled to gravity, plays a
decisive role on the behavior of the bound states. Studying
the energies going to infinity (the Schwarzschild limit) they
form a continuum, corresponding to a continuous distri-
bution and the absence of bound states. Moreover, the
bandwidths decrease for large values of the coupling so the
bound states become more and more stable while reducing
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the coupling renders the quasi-bound states unstable and at
some point the bound states no longer exist.
In this work we study the bound states in a wormhole

geometry in the scalar-tensor Horndeski theory. These
wormhole solutions are exact static spherically symmetric
solutions in the subclass of the Horndeski theory in which
the scalar field is coupled kinetically to curvature. These
solutions are generated by phantom matter and the worm-
hole throat connects two anti–de Sitter (AdS) spacetimes
[41]. Their stability was studied in [42]. This coupling
respects the shift symmetry as in the Galileon black holes,
and because of that it does not allow the scalar field to have
self-interacting terms. This property leads to the fact that
the coupling constant of the scalar field to the Einstein
tensor Gμν appears directly in the metric functions of the
wormhole solutions without being connected with the other
parameters of the solution.
Scalar fields around black holes and wormholes in the

presence of a cosmological constant exhibit nontrivial
behaviors in curved space-times. The method that gives
a better understanding of the physical results and improves
their accuracy is based on the Wentzel-Kramers-Brillouin
(WKB) approximation. In [43,44] stationary solutions in
the Schwarzschild–anti–de Sitter (SAdS) background were
investigated and the energy levels of scalar fields were
accurately obtained. In our study using the WKB approxi-
mation we will consider a probe scalar field of real matter
scattered off in the wormhole background. We will calcu-
late the bound states and the energy levels in this wormhole
background solving semi-classically the Klein-Gordon
equation.
There are various studies of field propagation in

wormhole geometries. In [45] an application of quan-
tum-mechanical principles to a microscopic variant of
the traversable wormholes introduced by Morris and
Thorne were presented. Various aspects of transversal
wormholes that they exhibit quantum teleportation by an
interaction between the two asymptotic boundaries were
studied in [46]. This work was further extended in [47] by
studying quantum teleportation through time-shifted AdS
wormholes. In [48] quantum random walks between
traversable wormholes and quantum channels were studied.
The effects of closed Universes that branch off or join onto
an asymptotically AdS spacetime by means of an effective
quantum field theory in an AdS background were studied in
[49]. The problem of reversibility of wormholes in the
framework of quantum improvement of gravity theory was
investigated in [50]. Euclidean wormholes in a holographic
setup were discussed in [51].
The motivation of this work is to study the quantum

mechanical effects of a wormhole in AdS spacetime in
which the matter appears explicitly in the shift and lapse
functions. Because the matter which support the wormhole
has a negative kinetic energy, i.e., is a phantom field, it
would be interesting to study what kind of bound states are

formed in the wormhole configuration and what is their
dynamics. This may help us to understand if matter is
localized in the throat or if it can tunnel from one region
(universe) to the second region (universe). For this reason
we have chosen to work with an exact wormhole solution in
the scalar-tensor Horndeski theory. However, there are
some criticisms of the stability of the wormhole solutions
in a asymptotically flat spacetime in the scalar-tensor
Horndeski theory [52].
In our study the wormhole lives in a asymptotically AdS

spacetime. Nevertheless, the stability is an important issue
in all wormhole configurations because of the presence of
phantom matter. In order to study the stability of the
wormhole solutions one has to calculate the gravitational
tensor (axial and polar) and the scalar perturbations of these
solutions. The introduction of gravitational perturbations
(such as the ones considered in [53]-[54]) may lead to an
unstable wormhole, due to the presence of phantom matter,
which can potentially expand or collapse into a black hole
[55,56]. As a first step the scalar perturbations in the
background of the wormhole solution [29] was carried out
in [57]. These perturbations generated echoes in this
wormhole background and it was found that they do not
decay with time, but have constant and equal amplitude to
that of the initial ringdown. The constancy of the amplitude
of echoes is related to the absence of dissipation and may be
an indication of the existence of normal oscillation modes,
as well as potential instabilities. To have a better under-
standing of the stability issue the gravitational perturbations
has to be calculated [58]. Recently in [59], various Morris-
Thorne-like wormholes were studied and it was found that
some models could be linearly stable under gravitational
perturbations.
The work is organized as follows. In Sec. II we discuss

the wormhole solution presented in [29]. In Sec. III we
calculate the Regge-Wheeler potential generated in the
background of this wormhole solution. In Sec. IV using the
WKB approximation we calculate the bound states and the
energy levels and in Sec. V we study the quantum gravity
effects in the extreme mass limit and we calculate the
nonresonant energies supported by the potential wells. In
the Appendix we derive the quantization condition and in
Sec. VI we conclude.

II. WORMHOLE SOLUTION IN THE SCALAR-
TENSOR HORNDESKI THEORY

As we already mentioned there are wormhole solutions
in scalar-tensor theories. We briefly present the wormhole
solution of the following gravitational theory with a non-
minimal derivative coupling (NMDC) of a scalar field to
Einstein tensor presented in [29]. Consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
8π

− ½εgμν þ ηGμν�φ;μφ;ν

�
; ð2:1Þ
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where φ is a real massless scalar field and η is a parameter
of nonminimal kinetic coupling with the dimension of
length-squared. We note that we are using natural units
such that G ¼ c ¼ ℏ ¼ 1. The ε parameter equals �1. In
the case ε ¼ 1we have a canonical scalar field with positive
kinetic term, and the case ε ¼ −1 describes a phantom
scalar field with negative kinetic term.
Following the results of [25] the authors in [29]

considered a spherically symmetric metric ansatz of the
form

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ ρ2ðrÞdΩ2: ð2:2Þ

In order for this spacetime to describe a wormhole
geometry, two main conditions have to be met. First, the
spacetime must contain a minimum S2 hypersurface of
nontrivial radius a, while the radial coordinate r → r0,
where r0 is a regular minimum of ρðrÞ. This is more strictly
understood as a spacetime with no center [60], which yields
that ρðrÞ ≥ a, ∀ r ∈ R. The r > r0 region corresponds to
the “upper universe," the r < r0 region corresponds to the
“lower universe," while the r ¼ r0 hypersurface is under-
stood as the throat of the wormhole. The second main
condition entails the absence of event horizons, which
yields that fðrÞ is positive definite. Finally, one should note
that the metric components fðrÞ, gðrÞ need to be regular
and nonzero.
Since we are interested in spherically symmetric sol-

utions, we can also choose φ ¼ φðrÞ. Under this ansatz, the
equations of motion of the theory are given by

ffiffiffiffiffi
fg

p
g

ψ

�
ερ2 þ η

�
ρρ0f0

fg
þ ρ02

g
− 1

��
¼ C0; ð2:3aÞ

ρρ0
f0

f
¼ gðg − ρ02Þ − 4πηψ2ðg − 3ρ02Þ þ 4περ2ψ2g

g − 12πηψ2
;

ð2:3bÞ

ρρ0

2

�
f0

f
−
g0

g

�

¼ gðg− ρ02 − ρρ00Þ þ 4πηψ2ð2ρ02 þ ρρ00Þ þ 4πηρρ0ðψ2Þ0
g− 12πηψ2

;

ð2:3cÞ

where C0 is an integration constant, and ψ ≡ φ0. Setting the
integration constant C0 ¼ 0 [29], one can find an exact
solution to (2.3) given by

fðrÞ ¼ C1

ρ
exp

�
−
Z ðερ2 − ηÞg

ηρρ0
dr

�
; ð2:4Þ

where C1 is an integration constant. Using this result, along
with (2.3b), one can also derive ψ2

ψ2ðrÞ ¼ ερ2g
8πηðερ2 − ηÞ : ð2:5Þ

Making use of Eqs. (2.4) and (2.5), the solutions to the
equations of motion, (2.3), are given by the following
branches:

A. εη > 0

fðrÞ ¼ C1

ρ
exp

�
−
Z ðερ2 − ηÞg

ηρρ0
dr

�
; ð2:6Þ

gðrÞ ¼ ρ02ðρ2 − 2l2ηÞ2
ðρ2 − l2ηÞ2FðrÞ

; ð2:7Þ

FðrÞ ¼ 3 −
8m
ρ

−
ρ2

3l2η
þ lη

ρ
arctanh

ρ

lη
: ð2:8Þ

B. εη < 0

fðrÞ ¼ C1

ρ
exp

�
−
Z ðερ2 − ηÞg

ηρρ0
dr

�
; ð2:9Þ

gðrÞ ¼ ρ02ðρ2 þ 2l2ηÞ2
ðρ2 þ l2ηÞ2FðrÞ

; ð2:10Þ

FðrÞ ¼ 3 −
8m
ρ

þ ρ2

3l2η
þ lη

ρ
arctan

ρ

lη
: ð2:11Þ

Here m is an integration constant and lη ¼ jεηj1=2 is a
characteristic scale of the nonminimal kinetic coupling.
The above equations suggest that we are free to choose

the coefficient of the S2 hypersurface in the metric. Korolev
and Sushkov [29] proposed a wormhole configuration of
the above solution of the form:

ρðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; ð2:12Þ

where a > 0 is a free parameter. If fðrÞ and gðrÞ are
everywhere positive and regular function with a domain
r ∈ ð−∞;∞Þ, then the solution describes a wormhole with
a throat at r ¼ 0, while the parameter a is just the throat
radius. An important note here is the fact that the coor-
dinates ðt; r; θ;ϕÞ are not the Schwarzschild coordinates
since r is not the curvature radius of a coordinate
sphere r ¼ Const > 0.
Substituting ρðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
into the formulas (2.5),

(2.6)–(2.11), we derive the solutions for gðrÞ and ψ2ðrÞ in
an explicit form. The solution (2.4) for fðrÞ contains the
indefinite integral, which in this case cannot be expressed
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in terms of elementary functions. From the two branches of
solutions, only the case where εη < 0 can be considered
physical [29]. In particular, one needs to set ϵ ¼ −1 and
η > 0 [29]. In this case, by substituting ρðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
into the formulas (2.9)–(2.11) and (2.4), we obtain the
following solutions:

gðrÞ ¼ r2ðr2 þ a2 þ 2l2ηÞ2
ðr2 þ a2Þðr2 þ a2 þ l2ηÞ2FðrÞ

; ð2:13Þ

fðrÞ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p exp

�Z
r

0

rðr2þa2þ2l2ηÞ2
l2ηðr2þa2Þðr2þa2þ l2ηÞFðrÞ

dr

�
;

ð2:14Þ

ψ2ðrÞ ¼ −
ε

8πl2η

r2ðr2 þ a2 þ 2l2ηÞ2
ðr2 þ a2Þðr2 þ a2 þ l2ηÞ3FðrÞ

; ð2:15Þ

where

FðrÞ ¼ 3 −
8mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p þ r2 þ a2

3l2η

þ lηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p

lη

�
; ð2:16Þ

and the integration constant C1 ¼ a in the expression for
fðrÞ is chosen so that fð0Þ ¼ 1. The function FðrÞ has a
minimum at r ¼ 0, thus, to make it everywhere positive, it
is sufficient to demand Fð0Þ > 0. Hence one can derive the
limitation on the upper value of the parameter m

m <
a
2

�
3

4
þ α2

12
þ 1

4α
arctan α

�
¼ Mcrit; ð2:17Þ

where α≡ a=lη is the dimensionless parameter which
defines the ratio of two characteristic sizes: the wormhole
throat radius a and the scale of nonminimal kinetic
coupling lη. In the particular case a ≪ lη we get
2m < a. Furthermore, we assume that the value of m
satisfies the condition (2.17), and therefore the function
FðrÞ is positive definite, i.e., FðrÞ > 0. An important note
is that the solutions (2.13)–(2.14) of the theory correspond
to two AdS-asymptotic spacetimes. We may as well note
that the wormhole solution described above is Z2 sym-
metric under the inversion of (r → −r). This is definitely
not a condition for the existence of a wormhole geometry.
More general wormhole geometries, that violate the afore-
mentioned Z2 symmetry have not (yet) been found in this
particular subclass of Horndeski theory.
In GR to generate a wormhole solution we choose a

static spherically symmetric metric, and as we already
discussed, conditions on this metric function were imposed.
However, the condition on the wormhole throat leads to the
violation of NEC which implies the presence of exotic

matter. The amount of exotic matter which is required for
the formation of the wormhole depends on the spacetime
geometry and in [61] wormhole geometries were found
which are supported by arbitrarily small quantities of exotic
matter. In the scalar-tensor theory we consider, the infor-
mation of the presence of exotic matter appears explicitly in
the metric function [see rel. (2.9)] and the amount of exotic
matter present in the wormhole geometry depends on how
strong is the coupling of matter to curvature through the
coupling η of the scalar field to the Einstein tensor.

III. THE REGGE-WHEELER POTENTIAL

Having found the solutions of the field equations, we
may continue with the main problem at hand. We wish to
study the propagation of a test scalar field in the vicinity of
the wormhole. In particular, our goal is to derive the energy
eigenstates of the scalar field in the wormhole and study the
transmission amplitudes between the two regions. In order
for these bound states to exist, the Klein-Gordon equation
in the wormhole background has to exhibit a radial
potential containing at least one local well.
The Klein-Gordon equation of motion for a test massless

scalar field Φ in a spherically symmetric curved back-
ground reads

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΦ� ¼ 0: ð3:1Þ

We choose the ansatz of Φðt; r; θ;ϕÞ ¼ RðrÞYl
mðθ;ϕÞe−iwt

to disentangle the radial, angular and temporal parts of the
field. Using the above ansatz we can reduce the differential
equation of motion to the following ODE

hðrÞ∂r½ρ2ðrÞhðrÞ∂rRðrÞ� þ ½w2 − lðlþ 1ÞfðrÞ�RðrÞ ¼ 0;

ð3:2Þ

where we set hðrÞ ¼
ffiffiffiffiffiffi
fðrÞ

pffiffiffiffiffiffi
gðrÞ

p . Introducing the tortoise coor-

dinate r�,

dr� ¼ dr
hðrÞ ⇒ hðrÞ d

dr
¼ d

dr�
; ð3:3Þ

we simplify the above equation to

∂r� ½ρ2ðrÞ∂r�RðrÞ� þ ½w2 − lðlþ 1ÞfðrÞ�RðrÞ ¼ 0: ð3:4Þ

The next step is to perform the substitution RðrÞ ¼ uðrÞ
ρðrÞ. The

radial equation, after some simple algebra, takes the
following form,

∂2uðrÞ
∂r�2 þ ½w2 − V2

RWðrÞ�uðrÞ ¼ 0; ð3:5Þ
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where V2
RW is interpreted as the squared Regge-Wheeler

potential, so as to recover the Hamilton-Jacobi equation.
The explicit form of the potential reads

V2
RW ¼ lðlþ 1Þ fðrÞ

ρ2ðrÞ

þ 2fðrÞgðrÞ ∂2ρðrÞ∂r2 þ gðrÞ ∂fðrÞ∂r
∂ρðrÞ
∂r − fðrÞ ∂gðrÞ∂r

∂ρðrÞ
∂r

2gðrÞρ2ðrÞ :

ð3:6Þ
Let us note that Eq. (3.6) is a general solution for the
Regge-Wheeler potential of a spherically symmetric metric.
In general, we shall be looking for stationary state solutions
of the Klein-Gordon equation. Equation (3.5) will be
solved using the WKB approximation which we review
in the following section.

IV. WKB APPROXIMATION

The WKB approximation is a powerful semianalytical
method for solving linear differential equations whose
highest derivative is multiplied by a small parameter ϵ.
Let us consider the following second order differential
equation

ϵ2yðxÞ00 ¼ QðxÞyðxÞ: ð4:1Þ
The WKB formula consists of an asymptotic approxima-
tion to yðxÞ of the following form

yðxÞ ∼ exp

�
1

δ

X∞
n¼0

SnðxÞ
δn

�
: ð4:2Þ

This expression is the starting formula from which all
WKB approximations are derived. Differentiating (4.2)
twice yields

y00 ∼
�
1

δ2

�X∞
n¼0

δnS0n

�
2

þ 1

δ

X∞
n¼0

δnS00n

�
y: ð4:3Þ

Plugging (4.3) into (4.1), one finds that

ϵ2

δ2
S020 þ 2ϵ2

δ
S00S

0
1 þ

ϵ2

δ
S000 þ � � � ¼ QðxÞ; ð4:4Þ

which provides the solution for each Sn by equating terms
of the same order. Setting δ ¼ ϵ, one finds the following
recursive sequence of equations

S020 ¼ QðxÞ; ð4:5Þ

2S00S
0
1 þ S000 ¼ 0; ð4:6Þ

2S00S
0
n þ S00n−1 þ

Xn−1
j¼1

S0jS
0
n−j ¼ 0; n ≥ 2: ð4:7Þ

Up to the second order, making use of the first two
equations in (4.5), one finds the eikonal and transport
equations

S0ðxÞ ¼ �
Z

x ffiffiffiffiffiffiffiffiffiffiffi
Qðx0Þ

p
dx0; ð4:8Þ

S1ðxÞ ¼ −
1

4
lnQðxÞ: ð4:9Þ

The formal WKB approximation of Eq. (4.1) is the linear
combination of the solutions and reads, to first order:

yðxÞ ∼ AQ−1=4ðxÞ exp
�
1

ϵ

Z
x ffiffiffiffiffiffiffiffiffiffiffi

Qðx0Þ
p

dx0
�

þ BQ−1=4ðxÞ exp
�
−
1

ϵ

Z
x ffiffiffiffiffiffiffiffiffiffiffi

Qðx0Þ
p

dx0
�
: ð4:10Þ

The factors A and B are integration constants.
WKB has been extensively used in the study of dis-

sipative and dispersive phenomena, in finding the energy
eigenvalues of a wavefunction in a potential well, in
extracting the quasinormal frequencies of black holes,
etc. A deep and detailed analysis of this method can be
found in [62]. An application of WKB in quantum
mechanical phenomena can be found in [63,64]. We will
use the WKB approximation to find quantum bound states
trapped in the vicinity of the AdS-wormhole potential
barriers. In the figure below, we show the Regge-Wheeler
potential of the NMDCwormhole for different values of the
orbital quantum number.
As can be seen from Fig. 1, high values of the orbital

quantum number result in the creation of two distinct
potential wells, one for each region. Thus a scalar field
trapped in one region can tunnel to the second region
through the potential peak on the throat. The final result is
of course the formation of bound states and the problem

FIG. 1. Regge-Wheeler potential for different values of the
orbital quantum number. The throat is located at r ¼ 0. We have
fixed the other parameters to m ¼ 0.1, a ¼ 1, lη ¼ 1.
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parallels that of a particle wave function in the potential
created by the nuclei in a diatomic molecule. It is clear from
the form of the potential that the transmission amplitude of
the tunneling effect is highly dependent on the orbital
number of the test scalar field. As such, since for low orbital
numbers the potential peak at the throat is small, the
wormhole allows free passage of the states with low orbital
quantum numbers. Therefore, we concludes that the throat
acts as a low-pass filter on the transmission of the test wave.
However, due to the tunneling effects we are considering,
this is not exactly the case. The flow between the two
regions is indeed inhibited by the contribution of the states
with high orbital quantum numbers, but if one waits long
enough, the current density is seen to oscillate between
confinement in each region.
In the following, we will be referring to the potential

peak of the throat as Vmax. Let us consider a frequency
value of the scalar field, w2 ∈ ðVmin; VmaxÞ, that cuts the
potential four times, as depicted in Fig. 2.
The four turning points are denoted as ri for i ¼ 1, 2, 3,

4. This results in five regions, labeled A to E from left to
right, where the WKB solution changes branch. The
amplitudes of the WKB wave functions can be derived
from continuity boundary conditions on the turning points.
Since, however, the WKB approximation diverges there,
one needs to perform a Taylor expansion of the potential in
the vicinity of the turning points and solve the correspond-
ing differential equation, which results in the Airy func-
tions. Then, one needs to take the asymptotic limit of the
Airy function solutions and match them with the WKB
wave functions. The matching procedure can be found in
the Appendix of [43]. It is clear that for frequencies above
the maximum of the potential at the throat, the problem is
reduced to finding energy eigenstates in a potential well.
Depending on the orbital number of the scalar field, there

is a different number of energy eigenvalues which lie below
the potential maximum at the throat. In particular, fixing the
values of the parameters to m ¼ 0.1, a ¼ 1, lη ¼ 1, one

finds that s-waves can traverse the wormhole freely and that
there are no bound states below Vmax. In the following, we
present the solutions for the test scalar field, whose energy
is small enough in order to interact with the throat and we
have fixed the parameters to m ¼ 0.1, a ¼ 1, lη ¼ 1.
The WKB solutions for each region read

UAðr�Þ ¼
Nð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
1

r�
jpðr�0Þjdr�0

�
; ð4:11aÞ

UBðr�Þ ¼
2Nð−1Þnffiffiffiffiffiffiffiffiffiffiffi

pðr�Þp sin

�Z
r�

r�
1

pðr�0 Þdr�0 þ π=4

�
; ð4:11bÞ

UCðr�Þ ¼
2N cos ξffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�Z
r�
3

r�
jpðr�0 Þjdr�0

�

þ N sin ξffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
3

r�
jpðr�0Þjdr�0

�
; ð4:11cÞ

UDðr�Þ ¼
2Nffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp sin

�Z
r�
4

r�
pðr�0 Þdr�0 þ π=4

�
; ð4:11dÞ

UEðr�Þ ¼
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�

r�
4

jpðr�0 Þjdr�0
�
; ð4:11eÞ

with the quantization condition

tan ξ ¼ �2eζ; ð4:12Þ

where the � factor corresponds to even ðþÞ and odd ð−Þ
energy level numbers, n and as we will show later its
connection to the well-known Bohr-Sommerfeld quantiza-
tion condition [64]. The various factors found in the
solutions are defined as follows

pðr�Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − V2

RWðr�Þ
q

; ð4:13Þ

jpðr�Þj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
RWðr�Þ − w2

q
; ð4:14Þ

ξ≡
Z

r�
4

r�
3

pðr�0 Þdr�0 ; ð4:15Þ

ζ ≡
Z

r�
3

r�
2

jpðr�0 Þjdr�0 : ð4:16Þ

The quantization condition (4.12) can be derived in a
straightforward fashion from the scattering matrix of the
fields at the throat. The relations between the solutions in
regions B and D, which define the scattering matrix, are
worked out in the Appendix. The result reads

FIG. 2. Regions for the calculation of wave functions.
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�
UBin

UBout

�
¼

0
BBB@

eζ þ 1
4
e−ζ i

�
eζ − 1

4
e−ζ

�

−i
�
eζ − 1

4
e−ζ

�
eζ þ 1

4
e−ζ

1
CCCA
�
UDout

UDin

�
¼ S

�
UDout

UDin

�
; ð4:17Þ

where UBin
is the incoming wave from the left region to the

throat, while UBout
is the outgoing wave to the left region.

Similarly, UDout
is the outgoing wave to the right region,

whileUDin
is the incoming wave from the right region to the

throat. The functions UBin
; UBout

; UDout
and UDin

are the
WKB solutions with the lower limit of the integral fixed on
the throat turning point. In summary: UBin

and UDout
move

to the right, while UBout
and UDin

move to the left. The
transmission amplitude is given by

T ¼ 1

jS11j2
≈ e−2ζ: ð4:18Þ

Starting with the scattering matrix one may also prove, as
explained in the Appendix, that

S11e−2iξiþ S12 ¼ −iS22e2iξ þ S21; ð4:19Þ

which leads to (4.12). We observe that the solutions are
phase shifted at the AdS-barrier turning point by eiξ, which
gives rise to the e2iξ terms. On the other hand the reflection
on the AdS barrier, i.e., the asymptotic behavior of the
potential, imposes a π=2 phase difference between the
incoming and the outgoing wave: this lies at the origin of
the factors of i.
As we already discussed, Fig. 1 shows that for high

orbital numbers for the scalar field, the Regge-Wheeler
potential develops a potential peak around the throat and
two potential wells are formed, while for low orbital

numbers the potential peak at the throat is small and the
potential wells are flattened. Therefore, we expect that the
behavior of the scalar field passing through the throat, to
depend on the orbital numbers of the scalar wave. In Fig. 3
we depict the energy levels and the transmission amplitudes
for the energy eigenstates of the scalar field passing the
throat.
In particular in the left panel of Fig. 3 the results for the

energy eigenstates of the scalar field are shown. We see that
the lowest lying energy levels are almost degenerate for
high values of the orbital number. For example if we
concentrate on the data on the top, corresponding to l ¼ 6,
it is easily seen that the energy level for n ¼ 0 and n ¼ 1
are approximately the same, and similar conclusions hold
for the couple (n ¼ 2, n ¼ 3). For larger values of n, this
quasidegeneracy is less pronounced. This effect does not
hold for lower orbital states: for example no sign of
degeneracy is present for l ¼ 0, which corresponds to
the data set lying lowest in the figure. This provides some
indication that the throat indeed acts as a (quasi) low-pass
filter.
In the right panel of Fig. 3 we present a logarithmic plot

of the transmission amplitudes associated with energy
values calculated previously. The points in Fig. 3 are
different transmission amplitudes calculated from (4.18),
when one plugs in the WKB energy levels found previ-
ously. As one can see from the figure, the transmission
amplitudes for high orbital states are several orders of
magnitude smaller than the ones for the low orbital
quantum numbers. This is another indication that the throat

FIG. 3. (a) Ten lowest energy levels in the Regge-Wheeler potential for the values l ¼ 0, 2, 4, 6 of the orbital quantum number l. For
l ¼ 6 one gets the highest energy levels for each value of n, while the lowest ones appear for l ¼ 0. (b) Transmission amplitudes for the
energy eigenstates to pass the throat for various values of the orbital quantum number. The orbital quantum number l ¼ 1 has the
maximum transmission amplitudes for each n, while l ¼ 6 corresponds to the minimal ones. For l ¼ 0 there is no barrier, so that
transmission amplitude does not make sense in this case.
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blocks the high orbital states from moving between the two
regions.
To summarize our findings shown in Fig. 3: the energy

levels with fixed n increase monotonically with l, and as the
energy level n grows larger, the eigenstates of the scalar
field do not depend very much on the orbital number l and
tend to a common value.
The question is how we can understand the quasidege-

neracy of the orbital energy levels we observed in Fig. 3. To
see this, let us express the quantization condition, (4.12), as
cot ξ ¼ � 1

2
e−ζ. When the orbital state of the test scalar

field is high, the potential peak on the throat is very wide,
which results in high values for eζ. In this regime, e−ζ is of
course small, and the quantization condition can be
rewritten as

cot ξ ≈ −
�
ξ −

�
nþ 1

2

�
π

�
¼ � 1

2
e−ζ

→ ξ ≈
�
nþ 1

2

�
π ∓ 1

2
e−ζ: ð4:20Þ

The first part of the equation, ξ ≈ ðnþ 1
2
Þπ, is the well-

known Bohr-Sommerfeld quantization condition for a
particle trapped in a potential well. The second well that
is introduced due to the wormhole geometry, splits the
energy levels by a factor analogous to the potential barrier
on the throat. This means that the energy levels shown in
Fig. 3 can be approximated by solving for w2 the condition
ξ ≈ 1

2
π ∓ 1

2
e−ζ for the first couple of energy levels, ξ ≈

3
2
π ∓ 1

2
e−ζ for the second couple of energy levels, etc,

while the Bohr-Sommerfeld quantization condition would
result in degenerate states. These corrections are not
important for too large values of l. Therefore, the appear-
ance of the low energy levels in close pairs in Fig. 3 (left
panel) is due to the quantization condition, (4.12) and in a
sense the wormhole geometry imposes corrections to the
energy levels of the scalar field.
Our results so far can be better understood by studying

the zero component of the current associated with the scalar
field. We recall the definition of the relevant component:

ρ ¼ iðΦ�∂tΦ −Φ∂tΦ�Þ; ð4:21Þ

to detect whether the scalar field feels the presence of the
throat of the wormhole or not. As it is well known, the
quantity (4.21) is not positive definite, which is due to
the negative energy solutions that are contained in the
Klein-Gordon equation. However, due to the positive
definite nature of the effective potential, we keep only
the positive frequency solutions, thus restricting the range
of (4.21) in Rþ.
We consider a superposition of various energy eigen-

states with a common value for l

Φðt; r; θ;ϕÞ ¼
X
n;m

cnRnlðrÞYl
mðθ;ϕÞe−iwnlt: ð4:22Þ

Now, let us consider the superposition of the fundamental
and the first excited energy level for some fixed orbital
number l. This would result in a scalar field solution,

Φ ∼ c1Rn1lðrÞYl
mðθ;ϕÞe−iwn1l

t þ c2Rn2lðrÞYl
mðθ;ϕÞe−iwn2l

t:

ð4:23Þ

For definiteness we restrict our attention to the north pole of

the field, θ ¼ 0, where we recall that Yl
mð0;ϕÞ ¼

ffiffiffiffiffiffiffiffi
2lþ1
4π

q
δ0m.

As such, the solution takes the following general form

Φ ∼ c1Rn1lðrminÞYl
mðθ ¼ 0;ϕÞe−iwn1l

t

þ c2Rn2lðrminÞYl
mðθ ¼ 0;ϕÞe−iwn2l

t

∼ K1ðlÞe−iwn1l
t þ K2ðlÞe−iwn2l

t; ð4:24Þ

where

KiðlÞ ¼ ciRnilðrminÞYl
mðθ ¼ 0;ϕÞ≡ aieiδi :

Then, Eq. (4.21) reads after some algebra

ρ ¼ 2wn1la
2
1 þ 2wn2la

2
2 þ 2ðwn1l þ wn2lÞ

a1a2 cos½ðwn2l − wn1lÞt − δ�; δ≡ δ1 − δ2: ð4:25Þ

An important point here is that, sinceWKB breaks down on
the turning points, (4.25) is valid only in regions away from
them. Taking that into account we depict the graphs at the
fixed point, rmin, where the potential is close to a minimum.
This is because each orbital state propagates in a potential
with different minima points. Equation (4.25) shows that
the time evolution of the flow depends explicitly on the
difference of the two energy levels under consideration.
Hence it is clear that, for the quasidegenerate states, i.e., the
lowest energy eigenvalues of the field at large l, the
frequency of the flow is a very small number, resulting
in the particle living in one region for large periods of time.
For states, for which wn2l − wn1l is relatively large (for
example, for small l), the motion between the two regions
is rapid.
The strategy we chose was to fine tune the constants K1

and K2 in such a way that, at t ¼ 0, in the region on the
right is assigned a nonzero value for ρ, while the region on
the left has as small a value for ρ as possible. This has been
done to simulate a particle starting its motion from the right
[(universe)] and move toward the left one.
The time evolution for a superposition of two states with

a common l behaves exactly as predicted by Eq. (4.25), so
there is no point reproducing it here. The interesting
situation comes when we consider localized states, which
are constructed from superposing states with, say, two
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different values of l. In this case the states of small l, if they
are alone, move rapidly between the two regions, while the
states with large l move slowly. The question arises
what happens when both of them are present. The behavior
is complicated by the fact that, apart from the
differences wn2l1 − wn1l1 and wn4l2 − wn3l2 , characterizing
the two values l1 and l2, there exist contributions with the
frequencies wn4l2 − wn1l1 ; wn3l2 − wn1l1 ; wn4l2 − wn3l1 and
wn4l2 − wn2l1 .
We choose to construct localized states as a super-

position of l ¼ 2 and l ¼ 5 states (each one containing a
superposition of the fundamental and the first excited
eigenstate) to get an almost zero in the left region at
t ¼ 0. In Fig. 4 we depict a logarithmic plot of the flow. The
region on the left is empty at t ¼ 0, while its density
increases, in a complicated fashion, as time passes. On the
contrary, the right hand region is depleted for later times. In
addition, the period of the superposition is equal to the
period associated with l ¼ 5, which imposes a slow
motion. The contribution of l ¼ 2 generates the very rapid
oscillations within the dominant slow evolution.
It is of interest to see what will happen if one replaces the

contributions of l ¼ 2 by contributions with l ¼ 0, which
allow completely free passage between the two regions.
Figure 5 show us that the l ¼ 0 contributions just create

more rapidly oscillating behavior in the flow, while the
gross features of the graph still depend on the leading term
of l ¼ 5.

V. EXTREME MASS LIMIT

In our work so far, we have fixed the parameters of the
wormhole solution to some fixed values. One would
naturally ask if our results are sensitive to the change of
these parameters. Taking into account Eq. (2.17), we
consider the ratio a=lη. We observe that when a, i.e., the
radius of the wormhole, is significantly larger than the
nonminimal coupling, the potential peak in the throat seems
to vanish. This means that if the wormhole has a large
enough radius, the equation of motion from a test scalar
field will not depend on the throat characteristics, rather the
test field will just propagate in the background geometry.
This observation is made clear from Fig. 6, where we show
the drastic change in the potential by changing the throat
radius. As the throat radius becomes larger, the Regge-
Wheeler potential well becomes wider and the spectrum of
the energies tends to a continuum, rendering the corre-
sponding effects unimportant. This is true, even for
m → Mcrit, whereMcrit is given by (2.17). On the contrary,
when OðaÞ ≤ OðlηÞ, one finds that the throat creates a

FIG. 4. Flow in the left region (left panel) for a scalar field in a superposition of l ¼ 2 and l ¼ 5. The time range is equal to half a
period. The right panel depicts the corresponding behavior for the right hand region.

FIG. 5. Flow in the left region (left panel) for a scalar field in a superposition of l ¼ 0 and l ¼ 5. The time range is equal to half a
period. The right panel depicts the corresponding behavior for the right hand region.
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potential peak, similar to the one we’ve been working on. A
rather interesting result however, is that when OðaÞ ≤
OðlηÞ and the mass limits to the critical value, there occurs a
qualitative change in the form of the Regge-Wheeler
potential, as shown in Fig. 7.
As one can see from Fig. 7, in the limit of extreme mass

(m ≃Mcrit), and large orbital quantum number l, a poten-
tial well is created at the center, which means that the
lowest energy eigenstates are confined in the throat and
cannot escape. This leads to the conclusion that if the test
field is in a high orbital state, only sufficiently high energy
modes can escape to either region. Note that s-waves can
still traverse the wormhole freely. In the following we
present the WKB approximation for the above potential
for a test field of l > 5. Similarly to the prior investigation,
we will be referring to the global minimum of the potential
as Umin, while the local minima/maxima in each region
will be referred to as Vmin=Vmax. If we consider a
frequency value of the scalar field, w2 ∈ ðUmin; VminÞ,

this energy level cuts the potential twice and the problem
reduces to the treatment of a simple potential well
problem. As we explain at the end of this section, we
have found a couple of bound states in this energy range.
For higher energy levels (yet still smaller than Vmax), we
are going to have seven distinct regions, where the WKB
solution changes branch, labeled from left to right as A to
G, as depicted in Fig. 8. Finally there exist the bound
states with energy larger than Vmax which present no
particularly interesting characteristics.
In the following, we present the WKB solutions in each

region in the w2 ∈ ðVmin; VmaxÞ regime. The solutions in
the various regions read

UAðr�Þ ¼
NLffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
1

r�
jpðr�0 Þjdr�0

�
; ð5:1aÞ

UBðr�Þ ¼
2NLffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp sin

�Z
r�

r�
1

pðr�0 Þdr�0 þ π=4

�
; ð5:1bÞ

UCðr�Þ ¼
2NL cos ξffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�Z
r�
2

r�
jpðr�0 Þjdr�0

�

þ NL sin ξffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
2

r�
jpðr�0Þjdr�0

�
; ð5:1cÞ

UDðr�Þ ¼
4NL cos ξeζffiffiffiffiffiffiffiffiffiffiffi

pðr�Þp cos

�Z
r�

r�
3

pðr�0Þdr�0 − π

4

�

þ NL sin ξe−ζffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp cos

�Z
r�

r�
3

pðr�0Þdr�0 þ π

4

�

¼ 4NR cos ξeζffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp cos

�Z
r�
4

r�
pðr�0 Þdr�0 − π

4

�

þNR sin ξe−ζffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp cos

�Z
r�
4

r�
pðr�0 Þdr�0 þ π

4

�
; ð5:1dÞ

FIG. 6. The Regge-Wheeler potential for different values of the
radius to coupling ratio, α. We have fixed the other parameters to
m ¼ 0.1, l ¼ 5 and lη ¼ 1

FIG. 7. Regge-Wheeler potential for different values of the
orbital quantum number. The throat is located at r ¼ 0. We have
fixed the other parameters to m ¼ 0.5, a ¼ 1, lη ¼ 1.

FIG. 8. Regions for the calculation of wave functions.
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UEðr�Þ ¼
2NR cos ξffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�Z
r�
5

r�
jpðr�0 Þjdr�0

�

þ NR sin ξffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
5

r�
jpðr�0Þjdr�0

�
; ð5:1eÞ

UFðr�Þ ¼
2NRffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp sin

�Z
r�
6

r�
pðr�0 Þdr�0 þ π=4

�
; ð5:1fÞ

UGðr�Þ ¼
NRffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�

r�
6

jpðr�0 Þjdr�0
�
; ð5:1gÞ

where NL is the amplitude of the field in the left region
while NR is the amplitude of the field in the right region.

The different factors found in the solutions are defined as
follows:

pðr�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − V2

RWðr�Þ
q

; ð5:2Þ

jpðr�Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
RWðr�Þ − w2

q
; ð5:3Þ

ξ ¼
Z

r�
6

r�
5

pðr�0Þdr�0 ; ð5:4Þ

ζ ¼
Z

r�
5

r�
4

jpðr�0 Þjdr�0 : ð5:5Þ

The corresponding scattering matrix takes the form,

�
UBin

UBout

�
¼

0
BBBBB@

�
2e2ζ þ 1

8
e−2ζ

�
cos χ − i sin χ i

�
2e2ζ − 1

8
e−2ζ

�
cos χ

−i
�
2e2ζ − 1

8
e−2ζ

�
cos χ

�
2e2ζ þ 1

8
e−2ζ

�
cos χ þ i sin χ

1
CCCCCA
�
UFout

UFin

�
¼ S

�
UFout

UFin

�
; ð5:6Þ

where the variable χ is defined as

χ ¼
Z

r�
4

r�
3

pðr�0 Þdr�0 : ð5:7Þ

The quantization condition, similarly to the prior pro-
cedure, can be derived from the condition

S11e−2iξiþ S12 ¼ −iS22e2iξ þ S21; ð5:8Þ

which yields

2e2ζ cosχcos2ξ−
1

8
e−2ζ cos χsin2ξ¼ sinχ sinξ cosξ; ð5:9Þ

while the transmission amplitude is given by

T ¼ 1

jS11j2
¼ 4

ð4e2ζ þ 1
4
e−2ζÞ2 cos2 χ þ 4 sin2 χ

: ð5:10Þ

Equation (5.9) is complicated and difficult to produce
intuitively clear results. It is useful to consider even and odd
eigenfunctions separately, so that their investigation may be
simpler. One can perform an analysis of (5.1d) in terms of
odd and even scalar field contribution. We note the
alternative forms that follow

UDðr�Þ ¼ NL
K1 cos

χ
2
þ K2 sin

χ
2ffiffiffiffiffiffiffiffiffiffiffi

pðr�Þp cos

�Z
r�

0

pðr�0 Þdr�0
�

− NL
K1 sin

χ
2
− K2 cos

χ
2ffiffiffiffiffiffiffiffiffiffiffi

pðr�Þp sin

�Z
r�

0

pðr�0 Þdr�0
�
;

ð5:11Þ

UDðr�Þ ¼ NR
K1 cos

χ
2
þ K2 sin

χ
2ffiffiffiffiffiffiffiffiffiffiffi

pðr�Þp cos

�Z
r�

0

pðr�0 Þdr�0
�

þ NR
K1 sin

χ
2
− K2 cos

χ
2ffiffiffiffiffiffiffiffiffiffiffi

pðr�Þp sin

�Z
r�

0

pðr�0Þdr�0
�
;

ð5:12Þ

where

K1 ≡ 4 cos ξeζ þ sin ξe−ζ; K2 ≡ 4 cos ξeζ − sin ξe−ζ:

ð5:13Þ

In what follows we denote the even and odd contributions
to the scalar field as E and O respectively. As such,

E ¼ K1 cos
χ

2
þ K2 sin

χ

2
; ð5:14Þ

O ¼ K1 sin
χ

2
− K2 cos

χ

2
: ð5:15Þ
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Note that the product of the two contributions, E and O,
yields the quantization condition, (5.9), as expected.
Therefore, if the scalar field is odd, then the first

contribution of (5.11) and (5.12) is zero and NL ¼ −NR.
Similarly, NL ¼ NR if the scalar field is even. Let us
consider that the scalar field is even. Then,

O ¼ ð4 cos ξeζ þ sin ξe−ζÞ sin χ
2

− ð4 cos ξeζ − sin ξe−ζÞ cos χ
2
¼ 0; ð5:16Þ

which holds for the solutions

ξ ¼ ðnþ 1Þπ & χ ¼ 2mπ þ π

2
; ð5:17Þ

ξ ¼
�
nþ 1

2

�
π & χ ¼ 2mπ þ 3π

2
; ð5:18Þ

4e2ζ ¼ tan ξ
cos χ

2
þ sin χ

2

cos χ
2
− sin χ

2

; ð5:19Þ

where n;m ¼ 0; 1; 2;… Eqs. (5.17)–(5.19) represent the
scalar field quantization conditions derived from (5.9) for
the case where the scalar field is even. Let us note that,
under (5.17), the scalar field solution in the throat region,
(5.11), yields UDðr�Þ ∼ eζ, which is relatively a large
number. Therefore, if the transmission amplitude from
the throat to either region, T ¼ e−2ζ, is small, we expect
the density in these frequencies to be highly concentrated in
the throat region. As expected, (5.17) maximizes the
transmission amplitude (5.10). Thus, even though the
density will be highly concentrated in the throat region,
the field can still tunnel through from the left to the right
region and vice versa. Similarly, for the odd scalar field
case, we find

ξ ¼ ðnþ 1Þπ & χ ¼ 2mπ þ 3π

2
; ð5:20Þ

ξ ¼
�
nþ 1

2

�
π & χ ¼ 2mπ þ π

2
; ð5:21Þ

4e2ζ ¼ tan ξ
sin χ

2
− cos χ

2

sin χ
2
þ cos χ

2

: ð5:22Þ

Our results show that no solution of (5.17)–(5.18) or
(5.20)–(5.21), which we call resonant solutions, lies in
the region ðVmin; VmaxÞ. We found only non-resonant
energies, solutions of (5.19) and (5.22). This is because
the potential wells created for l ∈ ½6; 10� are not big enough
to support such states. Thus there remain just the solutions
of Eqs. (5.19) and (5.22). In the left panel of Fig. (9) we
present our results for all the energy eigenstates up to the
ninth excited state. The right panel shows the correspond-
ing transmission amplitudes of the energy eigenstates in the
ðVmin; VmaxÞ region in a logarithmic plot.
The first two energy levels in the left panel of Fig. 9

correspond to energy eigenstates trapped in the middle
potential well of the throat. This is the reason why the right
panel of Fig. 9 starts from n ¼ 2. There occurs an
interesting phenomenon in the pattern of the next excited
energies. From the left panel of Fig. 9, one would assume
that these energy states are quasidegenerate. However, the
right panel shows that this is not exactly the case, as the
n ¼ 4 energy eigenstate corresponds to a transmission
amplitude several order of magnitude higher than the n ¼
2 and n ¼ 3 solution. To explain this result, let us consider
the quantization condition (5.9)

2e2ζ cos χcos2ξ −
1

8
e−2ζ cos χsin2ξ ¼ sin χ sin ξ cos ξ:

ð5:23Þ

FIG. 9. (a) Ten lowest energy levels in the Regge-Wheeler potential for the values l ¼ 6, 7, 8, 9, 10 of the orbital quantum number l.
For l ¼ 10 one gets the highest energy levels for each value of n, while the lowest ones appear for l ¼ 6. (b) Transmission amplitudes for
the energy eigenstates in the ðVmin; VmaxÞ region to pass the throat for various values of the orbital quantum number. The orbital quantum
number l ¼ 6 has the maximum transmission amplitudes for each n, while l ¼ 10 corresponds to the minimal ones.
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Since we did not find any resonant energies, we can safely
assume that ξ ≠ nπ=2 and cosðχÞ ≠ 0 and divide the
expression by cosðχÞ sin2ðξÞ. The first eigenstates we find
in ðVmin; VmaxÞ, i.e., n ¼ 2; 3; 4 of the left panel of Fig. 9,
correspond to the regime of e2ζ ≫ 1. As such, the e−2ζ term
contributes little and the quantization condition (5.9) can be
rewritten in a much simpler way as follows

cot χ cot ξ ¼ 1

2
e−2ζ: ð5:24Þ

Performing a qualitative analysis on (5.24), we find that if
cot χ takes small values, then this means that we have an
energy eigenstate close to a maximum of the transmission
amplitude, (5.10), but not quite, as is the case of n ¼ 4 in
Fig. 9. If cot χ is not close to zero, then this would imply
that tan χ is just a positive or negative number, but not a
particularly large number. Let us set tan χ ¼ �c. As such,
Eq. (5.24) will yield

cot ξ ¼ � c
2
e−2ζ; ð5:25Þ

which is a modification of the previous quantization
condition, (4.12). The n ¼ 2 and n ¼ 3 energies can be
approximated by (5.25). Therefore, there are still correc-
tions enforced by the wormhole geometry, but the quasi-
degeneracy is not as pronounced as the previous case, i.e.,
the lower wormhole mass regime.
The flows we found are of no additional interest and

their forms are similar to the ones in Figs. 5 and 8, albeit
with stronger oscillating behavior due to the high fre-
quency difference of the cross terms that arise due
to (4.25).
As a consequence of the results, we presume that raising

the orbital state of the scalar field or fine-tuning the
wormhole characteristics, one would be able to find
resonant states. This result according to the prior analysis,
would result in a field that is highly localized in the throat
region. The maxima of the transmission amplitude, (5.10),
cannot provide these resonant energies, since it does not
account for the right and left potential wells of Fig. 7. A
search for the conditions that allow the existence of
resonant energies requires further investigation and we
leave it for a future work.
An interesting issue is that, for this choice of parameters,

we have found a couple of low lying states, localized within
the well of absolute minimum. These states correspond to
the lowest possible energies and, if a particle lies in these
states, it is confined in the throat region and cannot escape
to either of the two regions.

VI. CONCLUSIONS

We have studied the formation and propagation of
bound states in the vicinity of a wormhole when it is

described by a nonminimal derivative coupling theory in a
gravity theory. The wormhole throat connects two anti–de
Sitter spacetimes. We show that in high orbital states for
the scalar field, the corresponding potential has potential
barriers that block the passage of a classical particle. We
studied the flow from the right-hand region toward the
left-hand region for localized states in a single orbital
state, as well as in states of superposition of a low and a
high value of l. We found out that the flow is greatly
dominated by the larger value of l, while the lower value
merely induces high frequency oscillations, which perturb
the basic oscillation pattern.
It is interesting that, in the limit of large orbital number

states and for mass near a critical value, a qualitative
change takes place in the potential. In the extreme mass
limit, we found that there occurs a creation of a potential
well in the throat of the wormhole. This potential well
presents a global minimum of the Regge-Wheeler poten-
tial. As such, in this regime, the wormhole can trap a low
energy scalar particle in the throat region. It is important
to note however, that these scalar particles are still
accessible from the outside world, due to the lack of
an event horizon. For the higher energy eigenstates, we
found only nonresonant solutions for the values of the
wormhole characteristics we used due to the fact that the
potential wells cannot support resonant energies.
If the energy eigenstate is nonresonant, then it corre-

sponds to a low transmission amplitude and the results
share several features with the previous case. However, if
the energy eigenstate is a resonant solution, then the
transmission amplitude is maximized. This implies that
the scalar field can tunnel from the first region through the
middle potential well and appear in the second region.
Due to the reflecting AdS barriers however, the field will
become highly localized in the throat. This behavior is
strictly dependent on the existence of the middle potential
well and cannot be witnessed in the lower mass case. It
will be interesting to test whether these results are shared
with other solutions of AdS-asymptotic wormholes.
An extension of this work would be to study what are

the effects of the behavior we found of scalar particles
propagating through the wormhole configuration and
penetrating the wormhole throat, on early universe cos-
mology in the context of baby Universes. To yield some
information about the physics of closed Universes, worm-
holes in AdS spacetimes where discussed in [41]. Such
discussion is connected with the physics of inflation, and
its connection with vacuum decay. A very interesting
realization of such ideas is the baby Universe formation
by quantum tunneling which eventually is disconnected
from the parent spacetime [65]. These ideas were further
discussed in [66] where the negative cosmological con-
stant and the asymptotically AdS boundaries present in
the wormhole spacetimes, were connected to baby-
Universes.
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APPENDIX: S MATRIX AND QUANTIZATION
CONDITION

We begin with the Klein Gordon equation

d2u
dr�2

þ ðw2 − Veffðr�ÞÞu ¼ 0: ðA1Þ

At each turning point, r�i , we perform a first order Taylor
expansion of the form

p2ðr�Þ ¼ w2 − Veffðr�Þ ≈ −V 0
effðr�i Þðr� − r�i Þ

¼ −λið�Þðr� − r�i Þ; ðA2Þ

where the � signature is needed to keep all the λi positive.
Then, perform a change of variables of the following form

y ¼ λ1=3i ð�Þðr� − r�i Þ ¼ −λ−2=3i p2ðr�Þ: ðA3Þ

Under (A3), the differential equation (A1) takes the
following form

�
d2

dy2
− y

�
UðyÞ ¼ 0: ðA4Þ

This equation has known solutions which are the Airy
functions.
Equation (A4) has a solution of the form:

UðyÞ ¼ M1AiðyÞ þM2BiðyÞ. We are going to use the
asymptotic formulas of the Airy functions.
(1) At y ≪ 0, we have

UðyÞ ∼ M1e−iπ=4

2
ffiffiffi
π

p jyj1=4 exp
�
i
2

3
jyj3=2

�

þ M1eiπ=4

2
ffiffiffi
π

p jyj1=4 exp
�
−i

2

3
jyj3=2

�

þ M2eiπ=4

2
ffiffiffi
π

p jyj1=4 exp
�
i
2

3
jyj3=2

�

þ M2e−iπ=4

2
ffiffiffi
π

p jyj1=4 exp
�
−i

2

3
jyj3=2

�
: ðA5Þ

(2) At y ≫ 0, we have

UðyÞ ∼ M1

2
ffiffiffi
π

p
y1=4

exp

�
−
2

3
y3=2

�

þ M2ffiffiffi
π

p
y1=4

exp

�
2

3
y3=2

�
: ðA6Þ

This means that for each region, the WKB wavefunctions
must be validated by the corresponding Airy solutions.
Using the WKB wavefunctions we found for the first case,
we reach the following set of equations for each region of
the wormhole

(i) Right Region
Region E

UEðr�Þ ¼
Effiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�

r�
4

jpðr�0 Þjdr�0
�
: ðA7Þ

The Taylor expansion is done on r�4 and the corre-
sponding amplitudes of the WKB solutions with
respect to the Airy functions read

E ¼ M1λ
1=6
4

2
ffiffiffi
π

p ; ðA8Þ

M2 ¼ 0: ðA9Þ

Region D
(1) Right turning point

UDðr�Þ ¼
D1DEffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
i
Z

r�
4

r�
pðr�0 Þdr�0

�

þ D2DEffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
−i

Z
r�
4

r�
pðr�0Þdr�0

�
:

ðA10Þ

The Taylor expansion is done on r�4 and the
corresponding amplitudes of the WKB solutions
with respect to the Airy functions read

D1DE ¼ M1λ
1=6
4 e−iπ=4

2
ffiffiffi
π

p ; ðA11Þ

D2DE ¼ M1λ
1=6
4 eþiπ=4

2
ffiffiffi
π

p : ðA12Þ

(2) Left turning point

UDðr�Þ ¼
D1CDffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
i
Z

r�

r�
3

pðr�0 Þdr�0
�

þ D2CDffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
−i

Z
r�

r�
3

pðr�0Þdr�0
�
:

ðA13Þ

The Taylor expansion is done on r�3 and the
corresponding amplitudes of the WKB solutions
with respect to the Airy functions read

D1CD ¼ λ1=63

�
L1e−iπ=4

2
ffiffiffi
π

p þ L2eiπ=4

2
ffiffiffi
π

p
�
; ðA14Þ
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D2CD ¼ λ1=63

�
L1eiπ=4

2
ffiffiffi
π

p þ L2e−iπ=4

2
ffiffiffi
π

p
�
; ðA15Þ

(3) Connection of solutions

D1CD exp ½iξ� ¼ D2DE; ðA16Þ

D2CD exp ½−iξ� ¼ D1DE: ðA17Þ

Region C:

UCðr�Þ ¼
C1CDffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�Z
r�
3

r�
jpðr�0 Þjdr�0

�

þ C2CDffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
3

r�
jpðr�0 Þjdr�0

�
:

ðA18Þ

The Taylor expansion is done on r�3 and the corre-
sponding amplitudes of the WKB solutions with
respect to the Airy functions read

C1CD ¼ L2λ
1=6
3ffiffiffi
π

p ; ðA19Þ

C2CD ¼ L1λ
1=6
3

2
ffiffiffi
π

p : ðA20Þ

(ii) Left Region
Region A

UAðr�Þ ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�
1

r�
jpðr�0Þjdr�0

�
: ðA21Þ

The Taylor expansion is done on r�1 and the corre-
sponding amplitudes of the WKB solutions with
respect to the Airy functions read

A ¼ J1λ
1=6
1

2
ffiffiffi
π

p : ðA22Þ

J2 ¼ 0: ðA23Þ

Region B
(1) Left turning point

UBðr�Þ ¼
B1ABffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
i
Z

x�

r�
1

pðr�0Þdr�0
�

þ B2ABffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
−i

Z
x�

r�
1

pðr�0 Þdr�0
�
:

ðA24Þ

The Taylor expansion is done on r�1 and the
corresponding amplitudes of the WKB solutions
with respect to the Airy functions read

B1AB ¼ J1λ
1=6
1 e−iπ=4

2
ffiffiffi
π

p ; ðA25Þ

B2AB ¼ J1λ
1=6
1 eþiπ=4

2
ffiffiffi
π

p : ðA26Þ

(2) Right turning point

UBðr�Þ ¼
B1BCffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
i
Z

r�
2

x�
pðr�0 Þdr�0

�

þ B2BCffiffiffiffiffiffiffiffiffiffiffi
pðr�Þp exp

�
−i

Z
r�
2

x�
pðr�0 Þdr�0

�
:

ðA27Þ

The Taylor expansion is done on r�2 and the
corresponding amplitudes of the WKB solutions
with respect to the Airy functions read

B1BC ¼ λ1=62

�
K1e−iπ=4

2
ffiffiffi
π

p þ K2eiπ=4

2
ffiffiffi
π

p
�
; ðA28Þ

B2BC ¼ λ1=62

�
K1eiπ=4

2
ffiffiffi
π

p þ K2e−iπ=4

2
ffiffiffi
π

p
�
: ðA29Þ

(3) Connection of solutions

B1AB exp ½iξ� ¼ B2BC; ðA30Þ

B2AB exp ½−iξ� ¼ B1BC; ðA31Þ

Region C

UCðr�Þ ¼
C1BCffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�Z
r�

r�
2

jpðr�0 Þjdr�0
�

þ C2BCffiffiffiffiffiffiffiffiffiffiffiffiffiffijpðr�Þjp exp

�
−
Z

r�

r�
2

jpðr�0 Þjdr�0
�
:

ðA32Þ

The Taylor expansion is done on r�2 and the corre-
sponding amplitudes of the WKB solutions with
respect to the Airy functions read:

C1BC ¼ K2λ
1=6
2ffiffiffi
π

p ; ðA33Þ
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C2BC ¼ K1λ
1=6
2

2
ffiffiffi
π

p : ðA34Þ

From the above equations, one can deduce the WKB wave
functions. Note that the connection of solutions for region
C is

C1BC ¼ C2CDe−ζ; ðA35Þ

C2BC ¼ C1CDeζ: ðA36Þ

Now for the scattering matrix and the quantization con-
dition, we start grouping stuff together:

(i) The scattering matrix, S, is of the form

�
B2BC

B1BC

�
¼ S

�
D1CD

D2CD

�
: ðA37Þ

To deduce the form of the scattering matrix we can
use Eqs. (A28)–(A29), then plug in (A33)-(A34),
use the connections of (A35)-(A36), plug in (A19)-
(A20) and finally plug in (A14)-(A15). That is

�
B2BC

B1BC

�
¼

0
BBB@

λ1=62

�
K1eiπ=4

2
ffiffi
π

p þ K2e−iπ=4

2
ffiffi
π

p
�

λ1=62

�
K1e−iπ=4

2
ffiffi
π

p þ K2eiπ=4

2
ffiffi
π

p
�
1
CCCA ðA38Þ

¼
�
C2BCeiπ=4 þ C1BCe−iπ=4

2

C2BCe−iπ=4 þ C1BCeiπ=4

2

�
ðA39Þ

¼
� L2λ

1=6
3ffiffi
π

p eζeiπ=4 þ
L1λ

1=6
3

2
ffiffi
π

p e−ζe−iπ=4

2

L2λ
1=6
3ffiffi
π

p eζe−iπ=4 þ
L1λ

1=6
3

2
ffiffi
π

p e−ζeiπ=4

2

�
ðA40Þ

¼
�

eζ þ 1
4
e−ζ iðeζ − 1

4
e−ζÞ

−iðeζ − 1
4
e−ζÞ eζ þ 1

4
e−ζ

�

×

�
D1CD

D2CD

�
: ðA41Þ

(ii) For the quantization condition we follow the same
procedure starting from (A41) and “going back-
wards”. That is: We use the connections of the
solutions (A30)–(A31) and plug in (A25)–(A26) and
finally (A22) for the left hand side. Similarly, we use
the connections of the solutions (A16)–(A17) and
plug in (A11)–(A12)) and finally (A8) for the right-
hand side. Therefore, the left-hand side of (A41) will
read

�
B2BC

B1BC

�
¼

�
eiξ 0

0 e−iξ

��
Ae−iπ=4

Aeiπ=4

�
: ðA42Þ

while the right-hand side of (A41) will read

�
D1CD

D2CD

�
¼

�
e−iξ 0

0 eiξ

��
Eeiπ=4

Ee−iπ=4

�
: ðA43Þ

Using now (A41)–(A43), one can find that

�
Ae−iπ=4

Aeiπ=4

�
¼

�
e−iξ 0

0 eiξ

�
S

�
e−iξ 0

0 eiξ

�

×

�
Eeiπ=4

Ee−iπ=4

�
: ðA44Þ

The system of Eqs. (A44) has a nonzero solution if

S11e−2iξiþ S12 ¼ −iS22e2iξ þ S21; ðA45Þ

the solution of which yields the quantization
condition.
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relatives au problème des isopérimètres, Mem. Acad. St.
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