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Joan Josep Ferrando * and Salvador Mengual
Departament d’Astronomia i Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain
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The perfect fluid solution admitting a group G3 of isometries acting on orbits S2 whose curvature has a
gradient which is tangent to the fluid flow (T-models) are studied from a thermodynamic approach. All the
admissible thermodynamic schemes are obtained, and the solutions compatible with the generic ideal gas
equation of state are studied in detail. The possible physical interpretation of some previously known
T-models is also analyzed.
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I. INTRODUCTION

The spherically symmetric solutions of the Einstein
equation have played an essential role in developing the
general relativity theory. But despite the extensive literature
on spherically symmetric spacetimes (see, e.g., [1–3] and
references therein), the interest in this topic has not waned
nowadays, and several open issues are currently under
study. For example, the analyses of the cosmic censorship
conjecture have reinforced the study of the properties of
the perfect fluid solutions (see [4,5] and references therein).
On the other hand, only recently an IDEAL (Intrinsic,
Deductive, Explicit and ALgorithmic) characterization of
these geometries has been obtained [6,7], although this
kind of approach has been known for longer for some
noteworthy solutions [8,9].
Static perfect fluid spheres are themost basic and simplest

models for studying the stellar structure in both Newtonian
and relativistic theories (see, e.g., [1,10]), and the paradig-
matic Friedmann-Lemaître-Robertson-Walker (FLRW) cos-
mological models are also spherically symmetric solutions.
On the other hand, the most remarkable solution for model-
ing both gravitational collapse and cosmological inhomo-
geneities is the Lemaître-Tolmanmodel [1,11,12], which is a
spherically symmetric dust solution.
Other non-stationary spherically symmetric perfect

fluid spacetimes have been widely considered, and enough
families of solutions are known (see [1,2,13] and references
therein). Nevertheless, most solutions have been obtained
in the dust case or by prescribing a (nonphysical) time
dependence of the pressure, or also by imposing particular
barotropic relations. Consequently, further work is required
to study the physical meaning of the spherically symmetric
perfect fluid solutions, a study that can also be extended to

the plane and hyperbolic symmetries. This task implies
analyzing admissible equations of state that fulfill neces-
sary macroscopic constraints for physical reality: energy
conditions, compressibility conditions and positivity of
some thermodynamic quantities.
We have set ourselves the goal of studying in detail the

spacetimes admitting a group G3 of isometries acting on
spacelike two-dimensional orbits S2 that model the evolu-
tion of a thermodynamic perfect fluid in local thermal
equilibrium fulfilling the necessary macroscopic con-
straints for physical reality. Below, we will explain what
these macroscopic constraints mean and we present a
method to carry them out.

A. Macroscopic necessary conditions
for physical reality

The evolution of a relativistic perfect fluid is described
by an energy tensor in the form T ¼ ðρþ pÞu ⊗ uþ pg,
and fulfilling the conservative condition ∇ · T ¼ 0. This
constraint consists of a differential system of four equations
on five hydrodynamic quantities (unit velocity u, energy
density ρ, and pressure p):

C∶ dpþuðpÞuþðρþpÞa¼ 0; uðρÞþ ðρþpÞθ¼ 0;

ð1Þ

where a and θ are, respectively, the acceleration and the
expansion of u, and where uðqÞ denotes the directional
derivative, with respect to u, of a quantity q, uðqÞ ¼ uα∂αq.
We are interested in perfect energy tensors T that model

realistic fluids when the thermodynamic perfect fluid
approximation is suitable, that is, when the transport
coefficients vanish (or are negligible) [10,14]. Next, we
summarize the complementary general macroscopic
requirements that must be imposed on T to represent the
energetic evolution of a physically realistic perfect fluid
(see the recent paper [15] for more details).
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Plebański [16] energy conditions are necessary algebraic
conditions for physical reality and, in the perfect fluid case,
they state:

E∶ − ρ < p ≤ ρ: ð2Þ

Furthermore, if we want to describe the (non isoener-
getic, _ρ ≠ 0) evolution of a thermodynamic perfect fluid
in local thermal equilibrium, the hydrodynamic quantities
fu; ρ; pg must fulfill the hydrodynamic sonic condition
[17,18]:

S∶ dχ ∧ dp ∧ dρ ¼ 0; χ ≡ uðpÞ
uðρÞ : ð3Þ

When this condition holds, the indicatrix of the local
thermal equilibrium χ is a function of state, χ ¼ χðρ; pÞ,
which physically represents the square of the speed of
sound in the fluid, χðρ; pÞ≡ c2s . Moreover, a set
fn; ϵ; s;Θg of thermodynamic quantities (matter density
n, specific internal energy ϵ, temperature Θ and specific
entropy s) exists, which is constrained by the common
thermodynamic laws [1,10,14]. Namely, the conservation
of matter:

∇ · ðnuÞ ¼ uðnÞ þ nθ ¼ 0; ð4Þ

the local thermal equilibrium relation, which can be
written as

Θds ¼ dh −
1

n
dp; h≡ ρþ p

n
; ð5Þ

where h is the relativistic specific enthalpy, and the
decomposition defining the specific internal energy:

ρ ¼ nð1þ ϵÞ: ð6Þ

When the conservation equations C and the hydrodynamic
sonic condition S hold, we say that T ≡ fu; ρ; pg defines
the hydrodynamic flow of a thermodynamic perfect fluid in
local thermal equilibrium. Then, the family of thermody-
namic schemes fn; ϵ; s;Θg associated with a hydrodynamic
flow T ≡ fu; ρ; pg is obtained as follows [18]: the specific
entropy s and the matter density n are of the form s ¼ sðs̄Þ
and n ¼ n̄Rðs̄Þ, where sðs̄Þ and Rðs̄Þ are arbitrary real
functions of a particular solution s̄ ¼ s̄ðρ; pÞ to the equa-
tion uðsÞ ¼ 0, and n̄ ¼ n̄ðρ; pÞ is a particular solution to
the equation (4). Moreover, Θ and ϵ are determined,
respectively, by (5) and (6).
A basic physical requirement imposed on the thermo-

dynamic schemes is the positivity of the matter density, of
the temperature and of the specific internal energy,

P∶ Θ > 0; ρ > n > 0: ð7Þ

Finally, in order to obtain a coherent theory of shock
waves for the fundamental system of perfect fluid hydro-
dynamics [(1), (4), (5), (6)] one must impose the relativistic
compressibility conditions [19–22]. They impose the
inequalities H1: ðτ0pÞs < 0, ðτ00pÞs > 0, and the inequality
H2: ðτ0sÞp > 0, where the function of state τ ¼ τðp; sÞ is the
dynamic volume, τ ¼ ĥ=n, ĥ ¼ h=c2 being the dimension-
less enthalpy index. In [23] we have shown that the
compressibility conditions H1 only restrict the hydrody-
namic quantities, and that they can be stated in terms of the
function of state c2s ¼ χðρ; pÞ:

H1∶ 0 < χ < 1; ðρþ pÞðχχ0p þ χ0ρÞ þ 2χð1 − χÞ > 0:

ð8Þ

However, compressibility condition H2 imposes constraints
on the thermodynamic scheme and it can be stated as [23]

H2∶ 2nΘ >
1

s0ρ
: ð9Þ

B. Procedure to determine physically
admissible perfect fluid solutions

Note that in the general necessary macroscopic constraints
C, E, S, P, H1 and H2 specified above, we must distinguish
two types of conditions according to their nature:

(i) Hydrodynamic constraints: the conservation equa-
tion C, the energy conditions E, the hydrodynamic
sonic condition S, and the compressibility condi-
tions H1 exclusively involve the hydrodynamic
quantities fu; ρ; pg. They fully determine the hydro-
dynamic flow of the thermodynamic fluid in local
thermal equilibrium and, consequently, restrict the
admissible gravitational field as a consequence of
the Einstein equations.

(ii) Thermodynamic constraints: the positivity condi-
tions P and the compressibility condition H2 restrict
the thermodynamic schemes fn; ϵ; s;Θg associated
with a hydrodynamic flow fu; ρ; pg. Consequently,
they do not restrict the gravitational field and the
admissible thermodynamics offer different physical
interpretations for a given hydrodynamic perfect
fluid flow.

In order to implement the above macroscopic constraints
in looking for physically admissible new perfect fluid
solutions and in analyzing the previously known ones,
we have proposed in [15] a general procedure in five steps:

Step 1 Determine the subfamily of the thermodynamic
solutions by imposing the hydrodynamic sonic con-
dition S on the solutions to the conservative equations C.

Step 2 Obtain, for this subfamily, the coordinate depend-
ence of the hydrodynamic quantities u, ρ, p and the
indicatrix function c2s ¼ χðρ; pÞ.
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Step 3 Analyze, for these thermodynamic solutions, the
hydrodynamic constraints for physical reality, namely,
the energy conditions E and the compressibility
conditions H1.

Step 4 Obtain the thermodynamic schemes fn; ϵ; s;Θg
associated with these solutions.

Step 5 Analyze, for the thermodynamic schemes
fn; ϵ; s;Θg already obtained, the general thermody-
namic constraints for physical reality, namely,
the positivity conditions P and the compressibility
condition H2.

This procedure or an adapted version thereof has been used
elsewhere in studying the ideal gas Stephani universes
[23,24], the classical ideal gas solutions [25] and the
singular and the regular models of the thermodynamic
class II Szekeres-Szafron solutions [15,26]. Our further
study of the physical reality of the spacetimes admitting a
group G3 of isometries on orbits S2 will be also based on
this approach.

C. About this paper

In comoving-synchronous coordinates, the metric of a
perfect fluid solution admitting a three-dimensional group
G3 of isometries acting on spacelike two-dimensional orbits
S2 has the form [2]:

ds2 ¼ −e2νdt2 þ e2λdr2 þ Y2C2ðdx2 þ dy2Þ; ð10Þ

ν ¼ νðr; tÞ; λ ¼ λðr; tÞ; Y ¼ Yðr; tÞ; ð11Þ

C¼Cðx;yÞ≡
�
1þk

4
ðx2þy2Þ

�
−1
; k¼0;�1; ð12Þ

where the value of k distinguishes the plane, spherical and
hyperbolic symmetries.
The r dependence of the functions ν and Y plays an

important role in the analysis of the Einstein equations for a
perfect energy tensor source. Thus, usually one considers
separately the cases ν ¼ νðtÞ (geodesic motion) or/and
Y ¼ YðtÞ (T-models) [1,2]. On the other hand, Ruban [27]
showed that the spherically perfect fluid T-models have
geodesic motion (see also [13]), a result that can be
extended to the plane and hyperbolic symmetries (see,
for example, [1]). Hereon in, T-models refer to the perfect
fluid solutions whose metric has the form (10)–(12) with
ν ¼ νðtÞ and Y ¼ YðtÞ.
The spherical dust T-model was published in a pioneer

paper by Datt [28] and rediscovered later by Ruban [27,29],
and the general perfect fluid solution with a nonconstant
pressure was considered by Korkina and Martinenko [30].
An exhaustive list of the particular solutions presented by
several authors can be found in [13], but the physical
meaning of any of these solutions is doubtful.
The geometric and physical properties of the dust

T-models were analyzed by Ruban [29] (see also [1]).

The metric is invariant under the group of rotations but, since
Y depends only of t, the spacelike 3-spaces t ¼ constant do
not contain their center of symmetry. The geometry of these
3-spaces is that of a three-dimensional cylinder, that is, the
direct product of a 2-sphere and an open straight line. A
similar situation occurs in the flat or the hyperbolic sym-
metries by changing the 2-sphere by a plane or a hyper-
boloid. Moreover, extensive work (see [1,13,31,32] and
references therein) has been devoted to extended this study
to the Szekeres solutions of class II [33], which are their
generalizations without symmetries. The solutions with
nonconstant pressure basically keep the geometric properties
of the dust solutions [34], but the physical meaning of these
T-models is still an open problem.
Here, we present a thermodynamic approach to the

T-models. It is worth remarking that these metrics define
a subfamily of the class II Szekeres-Szafron solutions
[1,13,33,35,36], the only one left to study from a thermo-
dynamical approach. The other thermodynamic Szekeres-
Szafron solutions of class II, the singular and the regular
models, have recently been studied elsewhere [15,26].
In Sec. II, we revisit the perfect fluid field equations for

the T-models and we show that they can be formulated as
ordinary differential equations which are linear for a
suitable choice of the unknown metric functions.
Section III is devoted to analyzing the general thermo-

dynamic properties of the T-models by obtaining the
hydrodynamic quantities and the hydrodynamic equation
of state c2s ¼ χðρ; pÞ. All the possible thermodynamic
interpretations of each solution of the field equations are
also presented by obtaining all the compatible thermody-
namic schemes.
In Sec. IV we study the T-models that are compatible

with the equation of state of a generic ideal gas, p ¼ k̃nΘ,
to which we apply our procedure to analyze the physical
reality of the solutions. We show that some of the solutions
demonstrating good physical behavior belong to the
Szekeres-Szafron ideal singular models considered in
[26]. The physical behavior of some thermodynamic
schemes is analyzed.
It is known [13] that the spatially homogeneous limit of

the T-models, λ ¼ λðtÞ, are the Kompanneets-Chernov-
Kantowski-Sachs (KCKS) metrics [37,38]. These models
were considered by Kompanneets and Chernov [37] and
were studied by Kantowski and Sachs [38] for a dust
source. One particular solution in this family was obtained
and analyzed by McVittie and Wiltshire [39], and later
generalized by Herlt [40] for the inhomogeneous case. In
Sec. V we generalize this McVittie-Wiltshire-Herlt solution
to any curvature and we discuss the unclear physical
interpretation of this solution.
Finally, in Sec. VI we point out our results, we remark

on the constraints in looking for solutions that model
a classical ideal gas, and we comment on our ongoing
work.
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II. T-MODELS: FIELD EQUATIONS FOR THE
METRIC FUNCTIONS

If we make eλ ¼ ωðt; rÞ > 0, e−2ν ¼ vðtÞ > 0 and
Y2 ¼ φðtÞ > 0 in the metric line element (10), then it
follows that the metric tensor of a T-model can be written as

ds2¼−
1

vðtÞdt
2þω2ðt;rÞdr2þφðtÞC2ðdx2þdy2Þ; ð13Þ

where C is given in (12). Moreover, from the general
expressions for the field equations for the metric (10) (see,
for example, [1,2]), it follows that (13) is a perfect fluid
solution if, and only if, the metric functions vðtÞ, ωðt; rÞ
and φðtÞ meet the differential equation:

2vφω̈þ ð_vφþ v _φÞ _ω −
�
vφ̈þ 1

2
_v _φþ2k

�
ω ¼ 0; ð14Þ

where a dot denotes derivative with respect to the time
coordinate t.
The unit velocity of the fluid u ¼ ffiffiffi

v
p ∂t is geodesic and

its expansion is

θ ¼ ffiffiffi
v

p �
_φ

φ
þ _ω

ω

�
¼ ffiffiffi

v
p ∂t½lnðφωÞ�: ð15Þ

And the pressure p and the energy density ρ are then
given by:

p ¼ v
�
1

4

_φ2

φ2
−
φ̈

φ
−
1

2

_φ

φ

_v
v

�
−
k
φ
; ð16Þ

ρ ¼ v

�
1

4

_φ2

φ2
þ _φ

φ

_ω

ω

�
þ k
φ
: ð17Þ

The spatially homogeneous limit of the T-models are
the KCKS metrics [37,38], which admit a group G4 of
isometries acting on orbits S3. They can also be charac-
terized by one of the following three equivalent conditions:
(i) the metric function ωðt; rÞ factorizes, and then one can
take the coordinate r so that ω ¼ ωðtÞ, (ii) the energy
density is homogeneous, ρ ¼ ρðtÞ, and (iii) the fluid
expansion is homogeneous, θ ¼ θðtÞ.
Note that (14) is a second order linear differential

equation for the function ωðt; rÞ when vðtÞ and φðtÞ are
given. Consequently, its general solution is of the form
ωðt; rÞ ¼ ω1ðtÞQ1ðrÞ þ ω2ðtÞQ2ðrÞ. Moreover, we can
change the coordinate r so that

ωðt; rÞ ¼ ω1ðtÞ þ ω2ðtÞQðrÞ; ð18Þ

where QðrÞ is an arbitrary real function, and with ωiðtÞ
being two particular solutions to Eq. (14).
We have the freedom to choose the coordinate t without

changing the spacetime metric. Therefore, we can impose a

condition on the time-dependent functions v, φ and ωi that
fixes this election. Consequently, the space of solutions
depends on two arbitrary real functions, one depending on
r, QðrÞ, and the other one depending on time.
For example, if we take vðtÞ ¼ 1, then the coordinate t is

the proper time of the comoving observer. In this case, for
every choice of the function φðtÞ, Eq. (14) determines two
particular solutions ωiðtÞ. Thus, the space of solutions is
controlled by the functions fφðtÞ; QðrÞg.
On the other hand, it is quite common in the literature

(see, for example, [2,13]) to consider t ¼ Y ¼ ffiffiffi
φ

p
. Then, if

we give vðtÞ, the functions ωiðtÞ are determined by
Eq. (14), and thus the space of solutions is controlled by
the functions fvðtÞ; QðrÞg. But we can also give as input
one of the functions ωi, and then Eq. (14) becomes a first
order linear differential equation for the function vðtÞ; once
this equation is solved, we can proceed to determine the
other ωi by once again using (14) with the vðtÞ previously
obtained. This procedure has been used, for example, by
Herlt [40].
It is worth remarking that our choice of the metric

function φ ¼ Y2 as an unknown of the field equations,
leads us to Eq. (14), which is also a linear equation for φ.
Then, this equation is linear for the three involved metric
functions, a fact that may certainly be of interest to a further
search for new solutions.
The solutions known so far have been obtained by

prescribing the free metric functions in a way that allows
for the analytical integration of field equations [1,2,40], but
without any evident physical meaning. Therefore, it seems
of interest to study the thermodynamic interpretation of the
known solutions, as well as to obtain new solutions that
meet some previously prescribed physical properties.

III. THERMODYNAMICS OF THE T-MODELS

Now we analyze when the T-models (13)–(14) represent
the evolution in local thermal equilibrium of a fluid that
meets the suitable macroscopic physical constraints stated
in Sec. I A. Note that the existing symmetries imply that all
the scalar invariants, and in particular the energy density ρ,
the pressure p and the indicatrix function χ, depend on two
functions at most. Then, the sonic condition S given in (3)
identically holds and, consequently, step 1 in the procedure
presented in Sec. I B is achieved for the full set of
T-models. Thus, we proceed to analyze step 2.

A. Metric and hydrodynamic quantities:
unit velocity, energy density and pressure

In the previous section we have already given the metric
and the hydrodynamic quantities of the T-models. Now,
for the sake of simplicity and in order to facilitate the
calculation in studying the thermodynamic properties, we
choose v ¼ 1. This means that the time coordinate t is the
proper time of the Lagrangian observer associated with the
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fluid. Then, it follows that the metric tensor of the perfect
fluid T-models can be written as

ds2¼−dt2þ½ω1ðtÞþω2ðtÞQðrÞ�2dr2þφðtÞC2ðdx2þdy2Þ;
ð19Þ

where C is given in (12), and ωiðtÞ are two particular
solutions of the second order differential equation:

2φω̈þ _φ _ω−ðφ̈þ 2kÞω ¼ 0: ð20Þ

The unit velocity of the fluid u ¼ ∂t is geodesic and its
expansion is

θ ¼ _φ

φ
þ _ω

ω
¼ ∂tðln½φðω1 þ ω2QÞ�Þ: ð21Þ

And the pressure p and the energy density ρ are then
given by

p ¼ 1

4

_φ2

φ2
−
φ̈

φ
−
k
φ
; ð22Þ

ρ ¼ 1

4

_φ2

φ2
þ _φ

φ

_ω1 þ _ω2Q
ω1 þ ω2Q

þ k
φ
: ð23Þ

Note that, with our choice vðtÞ ¼ 1, the space of
solutions of the T-models depends on the real functions
fφðtÞ; QðrÞg. Moreover, the barotropic limit (KCKS met-
rics) is achieved when QðrÞ ¼ constant. These barotropic
models may represent an isentropic evolution of a thermo-
dynamic fluid [18] (see Sec. VI). On the other hand,
solutions in local thermal equilibrium with constant pres-
sure lead, necessarily, to an isobaroenergetic evolution,
_ρ ¼ _p ¼ 0 [18]; then, the fluid expansion vanishes as a
consequence of (1), and (21) implies that ω factorizes
and the metric is a degenerate KCKS model. Moreover, if
_φ ¼ 0 then (22) and (23) imply that ρþ p ¼ 0 and the
energy conditions (2) do not hold. From now on, in this
paper, we will consider the T-models (19)–(20) with
Q0ðrÞ ≠ 0, _pðtÞ ≠ 0 and _φ ≠ 0.

B. The indicatrix function: speed of sound

In order to simplify calculations we define the following
functions:

σðtÞ≡ φ̈

φ
; βðtÞ≡ _φ2

φ2
; ξðtÞ≡ k

φ
;

Ωðt; rÞ≡ _ω1 þ _ω2Q
ω1 þ ω2Q

: ð24Þ

Then, the pressure, the energy density and the expansion
take the following form:

p¼1

4
β−σ−ξ; ρ¼1

4
βþξþ

ffiffiffi
β

p
Ω; θ¼

ffiffiffi
β

p
þΩ: ð25Þ

Now we can calculate the square of the speed of sound
in terms of the hydrodynamic quantities ρ and p by using
the expression (3) of the indicatrix function. Note that
now, with the choice v ¼ 1, we have uðqÞ ¼ _q for any
scalar quantity q. From Eq. (1) and the expression of the
expansion (25), we obtain

uðρÞ¼ _ρ¼−
1ffiffiffi
β

p ½ρ2þðpþqÞρþpq�;q≡3

4
β−ξ: ð26Þ

Consequently, we have the following result:

Proposition 1. For the T-models (19)–(20), the square
of the speed of sound takes the expression

c2s ¼
uðpÞ
uðρÞ ¼ χðρ; pÞ≡ 1

AðpÞρ2 þ BðpÞρþ CðpÞ ; ð27Þ

where A, B and C are the functions of t (and then of p)
given by

AðpÞ≡−
1ffiffiffi
β

p
_p
; BðpÞ≡AðpþqÞ; CðpÞ≡Apq: ð28Þ

It is worth remarking that the expression (27) for the
square of the speed of sound is similar to that obtained for
the singular and regular models of the thermodynamic
Szekeres-Szafron solutions of class II [15,26]. This fact
was to be expected since the T-models define the subfamily
of this class that we had left to study from a thermodynamic
approach.
The equation of state c2s ¼ χðρ; pÞ given in (27) collects

all the thermodynamic information that can be expressed
using exclusively hydrodynamic quantities. Note that the
dependence on the variable ρ is explicit, but the dependence
on p is implicit through the functions A, B and C given in
(28). These functions only depend on φðtÞ and its deriv-
atives. Thus the explicit form of χðρ; pÞ may be obtained
when a specific φðtÞ is given (see the following sections).
Once steps 1 and 2 of the procedure proposed in Sec. I B

have been achieved, we could formally impose the restric-
tions required in step 3 (energy and compressibility
conditions H1). Nevertheless, we delay this study for
subclasses of solutions that fulfill complementary physical
requirements, and once we have obtained the explicit form
of χðρ; pÞ. Now we analyze step 4 for the whole set of T-
models.

C. Thermodynamic scheme: entropy,
matter density and temperature

In this subsectionwe solve the inverse problem [18] for the
T-models (19)–(20) by obtaining the full set of thermody-
namic quantities: specific entropy s, matter density n and
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temperatureΘ. The metric functionQðrÞ plays an important
role in this thermodynamic scheme. From the expressions
given in (24) and (25) we obtain

Q ¼ −
ðρ − pÞφω1 − ð _φω1Þ· − 2kω1

ðρ − pÞφω2 − ð _φω2Þ· − 2kω2

≡Qðρ; pÞ: ð29Þ

Note that Q ¼ Qðρ; pÞ is a function of state whose depend-
ence on ρ is explicit, while its dependence on p is partially
implicit through the functions of time ωiðtÞ and φðtÞ. We
have that _Q ¼ 0 and, consequently,Q is a particular solution
of uðsÞ ¼ 0.
On the other hand, from the expression (21) of the

expansion it follows that n̄ ¼ ½φðω1 þ ω2QÞ�−1 is a par-
ticular solution of the matter conservation equation (4).
Then, taking into account the thermodynamic view pre-
sented in Sec. I B, we obtain the following:

Proposition 2. The thermodynamic schemes associated
with the T-models (19)–(20) are determined by a specific
entropy s and a matter density n of the form:

sðρ; pÞ ¼ sðQÞ; nðρ; pÞ ¼ 1

φðω1 þ ω2QÞNðQÞ ; ð30Þ

where sðQÞ and NðQÞ are two arbitrary real functions.
The temperature of the thermodynamic scheme defined

by each pair fs; ng given in proposition above can be
obtained from the thermodynamic relation (5). Expressions
(25) and (30) imply that the specific enthalpy is

h ¼ ρþ p
n

¼ NðQÞ½λ1ðtÞ þQλ2ðtÞ�; ð31Þ

λiðtÞ≡ _φ _ωi þ
�
_φ2

2φ
− φ̈

�
ωi ¼ 2Yð _Y _ωi − ŸωiÞ; ð32Þ

where Y ¼ ffiffiffi
φ

p
. Then, from (5) we have Θ ¼ ð∂h∂sÞp ¼

1
s0ðQÞ ð∂h∂QÞt and, taking into account (31), we obtain the

following:

Proposition 3. For the T-models (19)–(20), the temper-
ature Θ of the thermodynamic schemes given in
Proposition takes the expression

Θ ¼ lðQÞλ1ðtÞ þmðQÞλ2ðtÞ≡ Θðρ; pÞ; ð33Þ

where λiðtÞ is given in (32) and

lðQÞ≡ N0ðQÞ
s0ðQÞ ; mðQÞ≡ 1

s0ðQÞ ½QN0ðQÞ þ NðQÞ�:

ð34Þ

The last step of the procedure presented in Sec. I B
consists in the study of the compatibility of the

thermodynamic schemes above considered with the pos-
itivity conditions P and the compressibility condition H2.
This analysis will be efficient when we consider a specific
solution and we may obtain all the thermodynamic quan-
tities in terms of the hydrodynamic ones ρ and p (see the
following sections).

IV. T-MODELS COMPATIBLE WITH
THE EQUATION OF STATE
OF A GENERIC IDEAL GAS

Now we will analyze when the T-models and the
associated thermodynamic schemes considered above are
compatible with the equation of state of a generic ideal gas,
namely

p ¼ k̃nΘ; k̃≡ kB
m

: ð35Þ

In [18] we have shown that Eq. (35) restricts the functional
dependence of the indicatrix function c2s ¼ χðρ; pÞ. More
precisely: a perfect energy tensor T ¼ fu; ρ; pg represents
the evolution of a generic ideal gas in local thermal
equilibrium if, and only if, it fulfills the ideal gas sonic
condition:

SG∶ χ ¼ χðπÞ ≠ π; χ ≡ uðpÞ
uðρÞ ; π ≡ p

ρ
: ð36Þ

On the other hand, in [23] we have proved that, for an
indicatrix function of the form (36), χ ¼ χðπÞ, the com-
pressibility conditions H1 given in (8) become

HG
1 ∶ 0< χ < 1; ζ≡ ð1þ πÞðχ − πÞχ0 þ 2χð1− χÞ> 0:

ð37Þ

Moreover, the equation of state (35) and the positivity
conditions P given in (7) imply a non-negative thermody-
namic pressure, p > 0. Consequently, the energy condi-
tions E given in (2) become (here we shall consider nonshift
perfect fluids, ρ ≠ p):

EG∶ ρ > 0; 0 < π < 1; π ¼ p
ρ
: ð38Þ

Note that, in order to study the solutions with the hydro-
dynamic behavior of a generic ideal gas,we can fairlymodify
the procedure exposed in Sec. I B by changing the sonic
condition S, the energy condition E and the compressibility
conditions H1 by the corresponding SG, EG and HG

1 .

A. Study of the ideal sonic condition SG

We must study the modified step 1 by analyzing which
T-models meet the ideal sonic condition SG given in (36).
From the expression of the indicatrix function (27) it
follows that (36) is equivalent to
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Ap2¼c1; Bp¼c2; C¼c3; ci¼ constant: ð39Þ

Then, expressions (28) lead to

c1¼−
p2ffiffiffi
β

p
_p
≠0; c2¼

c1
p
ðpþqÞ; c3¼

c1
p
q; ð40Þ

or, equivalently,

c2 ¼ c1 þ c3; c1q ¼ c3p; _p ¼ −
p2

c1
ffiffiffi
β

p : ð41Þ

If c3 ¼ 0, (41) implies q ¼ 0 and then β ¼ 3
4
ξ, that is,

function φðtÞ fulfills an equation of the form _φ2 ¼ c20φ.
Otherwise, if c3 ≠ 0, from the first equation in (25) and the
second equation in (41), and taking into account the
definitions of σ, β, ξ given in (24) and of q given in (26),
we obtain

_β ¼ 2
ffiffiffi
β

p ��
c3
c1

− 1

�
p −

3

2
β

�
;

_p ¼ 1

2

ffiffiffi
β

p ��
1 − 3

c1
c3

�
p − 3

c1
c3

β

�
: ð42Þ

Then, the two expressions (41) and (42) for _p lead to

2p2 þ c1

�
1 − 3

c1
c3

�
pβ − 3

c21
c3

β2 ¼ 0: ð43Þ

From the second expression in (41) and the definition (26)
of q we obtain p ¼ c1

c3
ð3
4
β − ξÞ. Then, we can substitute p

and Eq. (43) becomes

2ξ2 þ ð3c1 − c3 − 3Þβξþ 9

8
ð1 − 2c1 − 2c3Þβ2 ¼ 0: ð44Þ

This equation is a necessary constraint for the compatibility
of the ideal sonic condition. Now we consider two cases.
If k ¼ 0, then ξ ¼ 0, and (44) states 2ðc1 þ c3Þ ¼ 1.
Otherwise, if k ≠ 0, for a given β, (44) is a second degree
algebraic equation for ξ that must admit solution. Then, this
solution is of the form ξ ¼ b0β, b0 ¼ constant ≠ 0.
Consequently, the ideal sonic condition admits a solution
if one of the two following conditions holds:

(i) k ¼ 0, and c2 ¼ c1 þ c3 ¼ 1
2
.

(ii) k ≠ 0, and _φ2 ¼ c20φ, c0 ¼ constant.
Case (ii) leads to negative pressures and is not compatible
with the generic ideal gas equation of state (35). It will be
analyzed in Sec. V. Now, we focus on case (i), the T-models
with k ¼ 0 which are compatible with the equation of state
of a generic ideal gas. From now on, they will be called
ideal T-models, and we study in detail for them the five
steps required in analyzing the physical reality of the
solutions.

B. Metric line element of the ideal T-models

First, we achieve the first step of our procedure by
completing the integration of the ideal sonic condition SG.
As a consequence of the constraints (i) for ci,
c2 ¼ c1 þ c3 ¼ 1

2
, we can consider a constant γ such that

c1 ¼
γ − 1

2γ
; c2 ¼

1

2
; c3 ¼

1

2γ
: ð45Þ

Then, taking into account definitions (24) and that k ¼ 0,
Eq. (41) states:

p ¼ 3

4
ðγ − 1Þ _φ

2

φ2
; _p _φ ¼ −

2γ

γ − 1
φp2: ð46Þ

This first order differential system for the functions pðtÞ
and φðtÞ can be easily integrated and we get

φ ¼
�
3

2
κγðt − t0Þ

� 4
3γ

; p ¼ 3κ2ðγ − 1Þφ−3
2
γ; ð47Þ

where κ is an arbitrary nonvanishing constant. Note that the
constant t0 determines an origin of time and can be taken as
zero. Likewise, the change of the metric function φ for a
positive constant factor leaves themetric unchanged because
it can be knocked out by changing the coordinates x and y for
the square root of this factor. Nevertheless, the sign of the
constant κ determines the sign of the derivative of φ,
_φ ¼ 2κφ1−3γ

4 . Consequently, κ > 0 for expanding models,
and then t > 0. And for contracting models κ < 0, and
then t < 0.
Now we are going to determine the metric function

ω2 ¼ ½ω1ðtÞ þ ω2ðtÞQðrÞ�2. A straightforward calculation
shows that, for k ¼ 0, ω2 ¼ ffiffiffi

φ
p

is a solution of Eq. (20).
And ω1 ¼ ffiffiffi

φ
p

α is a solution to this equation if and only if

α ¼ αðtÞ fulfills _α ¼ Cφ−3
2. Then, we can easily determine

αðtÞ if we use the expression (47) for φðtÞ, and then
ω2 ¼ φðtÞ½αðtÞ þQðrÞ�2. Note that, as QðrÞ is an arbitrary
function, the metric expression is invariant if we change α
by an additive constant and a factor (changing appropri-
ately the function Q and the coordinate r). Finally, we
arrive at the following:

Proposition 4. The ideal T-models have a metric line
element of the form:

ds2 ¼ −dt2 þ φðtÞð½αðtÞ þQðrÞ�2dr2 þ dx2 þ dy2Þ;
ð48Þ

where QðrÞ is an arbitrary function and

φðtÞ ¼ jtj 43γ; αðtÞ ¼
� jtj1−2

γ ; if γ ≠ 2

ln jtj; if γ ¼ 2
ð49Þ
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The time coordinate takes values either in the interval t > 0
(expanding models) or in the interval t < 0 (contracting
models).
On the other hand, from (49) and expression (21), the

expansion of the fluid flow takes the expression:

θ ¼ 2

γt

�
1þ 1

2
δ

�
; δ ¼ δðt; rÞ≡ α̃ðtÞ

αðtÞ þQðrÞ ;

α̃ðtÞ ¼
� ðγ − 2ÞαðtÞ; if γ ≠ 2

2; if γ ¼ 2
; ð50Þ

where αðtÞ is given in (49).

C. Hydrodynamic quantities: energy density,
pressure and speed of sound

Now we carry out the second step by obtaining the
coordinate dependence of the hydrodynamic quantities ρ,
p, and the indicatrix function c2s ¼ χðπÞ. From the expres-
sions (16) and (17) we can obtain the time dependence of
the pressure and the energy density by taking ω2 ¼ ffiffiffi

φ
p

and
ω1 ¼ ffiffiffi

φ
p

α and making use of (49).
On the other hand, the indicatrix function χðπÞ can be

determined from (27) by taking into account (39) and (45).
Then, we obtain the following:

Proposition 5. For the ideal T-models (48)–(49) the
pressure p and the energy density ρ take the expression:

p ¼ 4ðγ − 1Þ
3γ2

1

t2
; ð51Þ

ρ ¼ 4

3γ2
1

t2
½1þ δðt; rÞ�; ð52Þ

where δðt; rÞ is given in (50). And the square of the speed of
sound is given by

c2s ¼ χðπÞ≡ 2γπ2

ðπ þ 1Þðπ þ γ − 1Þ ; π ≡ p
ρ
: ð53Þ

D. Curvature singularities and spacetime domains

Proposition 5 shows that the ideal T-models have a
curvature singularity at t ¼ 0 and, when QðrÞ < 0, another
one at αðtÞ þQðrÞ ¼ 0. We briefly analyze them for the
expanding models (for the contracting models the study is
similar).
The existence of these kind of singularities has been

already remarked by several authors in the homogeneous
case ω ¼ ωðtÞ (KCKS metrics). Kantowski [41] pointed
out that (i) when φðt0Þ ¼ 0, the metric line element on the
sphere (plane or hyperboloid) vanishes at t ¼ t0, and we
have infinite energy density and pressure, and (ii) when
ωðt1Þ ¼ 0, the one-dimensional metric line element ω2dr2

vanishes at t ¼ t1, and we have infinite energy density.

On the other hand, Collins [42] showed that, under the energy
conditions (2) and the first compressibility condition in (8),
theKCKSperfect fluid solutions aregeodesically incomplete.
In the nonhomogeneous case ω ¼ ωðt; rÞ, we have also

these curvature singularities, but the second one is not
simultaneous for the co-moving observer. Now, the col-
lapsing time depends on r, t1 ¼ t1ðrÞ.
In our ideal T-models we have ω ¼ ffiffiffiffiffiffiffiffiffi

φðtÞp ½αðtÞ þQðrÞ�
and, consequently, ω ¼ 0 when φ ¼ 0. Thus, the full line
element of the 3-spaces t ¼ constant vanishes at t ¼ 0, and
we have a big bang singularity. Both, energy density and
pressure diverge at t ¼ 0. On the other hand, if t1 ¼ t1ðrÞ is
such that αðt1Þ þQðrÞ ¼ 0, the metric distance on the
coordinate lines of the coordinate r vanishes, and we have a
singularity with a divergent energy density at t ¼ t1.
This analysis shows that we have two disconnected

spacetime domains defined by

R0 ¼ ft > 0; αðtÞ þQðrÞ < 0g;
R1 ¼ ft > 0; αðtÞ þQðrÞ > 0g: ð54Þ

Note that when QðrÞ > 0∀ r, R0 ¼ ∅.

E. Ideal T-models: analysis of the solutions
and energy conditions

The energy conditions EG given in (38) imply p > 0.
Then, the expression (51) for the pressure means that,
necessarily, γ > 1. Note that we have a flat FLRW limit by
taking α ¼ 0 in the metric (48) (or, δ ¼ 0 in the expressions
of the expansion and energy density). In this limit we have a
barotropic evolution of the form p ¼ ðγ − 1Þρ. These
FLRW models fulfill the energy condition (38) when
γ < 2, and they are the so-called γ-law models [43]. The
inhomogeneous models with γ < 2 belong to the Szekeres-
Szafron ideal singular models studied in [26]. Nevertheless,
in our inhomogeneous T-models with γ ≥ 2 there may be
regions where the energy conditions meet. We will also
study them here.
Note that γ is a thermodynamic parameter that defines

the equation of state (53) and set the time dependence of the
metric [see (48)–(49)]. The metric also depends on an
arbitrary real function QðrÞ which determines the inho-
mogeneity. If Q ¼ constant, then the metric is an (homo-
geneous) KCKS model.
If we denote the energy density of the FLRW limit as ρF,

then we have ρ ¼ ρFð1þ δÞ and p ¼ ðγ − 1ÞρF. Thus, the
function δ ¼ δðt; rÞ given in (50) is the energy density
contrast with respect to the FLRW limit. Nevertheless, note
that it is not the energy density contrast with respect to a
homogeneous background (the KCKS limit acquired
when Q ¼ constant).
With the notation introduced above, we have

ρ − p ¼ ρFð2 − γ þ δÞ. Consequently, the solution meets
the energy conditions if, and only if, γ > 1 and δ > γ − 2.
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The spacetime regions where this last inequality holds
strongly depend on whether γ is greater than, equal to, or
less than 2. The analysis of each case shows different
behaviors summarized in Table I. We only develop the
expanding models (t > 0) in detail. The behavior of the
contracting models (t < 0) can then be obtained from
the expanding ones by exchanging the future for the past.
The energy conditionsEG involve themetric functionsαðtÞ

and QðrÞ, and they only hold in the spacetime domain R1.
Moreover, the functionQðrÞ can be chosen such that there is
always a time t1where theEG hold, and then they alsohold for
later times. The only models with a negative δ can take place
when γ < 2 andQ > 0. Then, the time coordinate covers its
entire domain t > 0 (that is, regionR1, sinceR0 ¼ ∅), and δ
increases from a finite negativevalue (at early times) to zero at
later times (the model approaches the γ-law FLRW limit).
Models with γ < 2 and a positive δ also approach the FLRW
limit for later times. Models with γ ≥ 2 have, necessarily, a
positive δ. When γ ¼ 2 the solution approaches the shift
(ρ ¼ p) FLRWmodel at later times. And, if γ > 2, the energy
density contrast decreases from large values and approaches a
positive value for later times.
Note that, for each model, the sign of the energy density

contrast does not change throughout the spacetime domain
where the energy conditions EG hold. Nevertheless, a
suitable election of the function QðrÞ can model regions
with an excess or a lack of energy density (with respect to a
homogeneous KCKS background defined by a constant
value of the function Q).
It is worth remarking that the expansion (50) of our

inhomogeneous model has the same sign as the FLRW
limit when δ > −2. This occurs for the models with a
positive energy density contrast but also for δ < 0 in the
domain where the energy conditions hold. This fact
justifies that we speak of expanding models when t > 0,
and of contracting models when t < 0.

F. Ideal T-models: compressibility conditions HG
1

The compressibility conditions HG
1 have been studied in

[26] for the Szekeres-Szafron ideal singular models. The

indicatrix function in that case is of the form (53) with
1 < γ < 2. Thus, we can now follow the same reasoning,
which is also valid for γ ≥ 2, and we obtain the same result
for the ideal T-models as that obtained in [26]. Namely, we
have the following: the ideal T-models (48)–(49) fulfill the
compressibility conditions H1 provided that they fulfill the
energy conditions EG, that is, in the spacetime domain R1.

G. Thermodynamic schemes of the ideal T-models

In the last two previous subsections we have acquired
step 3 in analyzing the physical meaning of the ideal
T-models. Now we can perform step 4 by particularizing
the general study of the thermodynamic schemes pre-
sented in Sec. III C. Note that the thermodynamic
quantities depend on the metric functions φðtÞ, ω1ðtÞ
and ω2ðtÞ, and on two functions, NðQÞ and sðQÞ, of
the metric function QðrÞ. The former now take the
expression ω1 ¼ ffiffiffi

φ
p

α, ω2 ¼ ffiffiffi
φ

p
, with φðtÞ and αðtÞ

given in (49). And each choice of the latter determines
a specific thermodynamic scheme with a specific
entropy and a mass density given in (30), and a
temperature given in (32)–(34).
Thus, we can determine the thermodynamic quantities as

a function of the state depending on the hydrodynamic
quantities ρ and p if we obtain the functions Qðρ; pÞ and
λiðpÞ given in (29) and (32). Note that Qðρ; pÞ can be
obtained from (50)–(52). Table II collects these expressions
distinguishing the cases γ ≠ 2 and γ ¼ 2.
Then, we have that a particular ideal T-model admits a

different thermodynamic interpretation for each choice of
the functions NðQÞ and sðQÞ. In [26] we have studied in
detail three thermodynamic schemes associated to the
Szekeres-Szafron singular models that also apply for the
ideal T-models when γ < 2: models with a generic ideal
gas thermodynamic scheme, the Lima-Tiomno [44] models
and the models with the temperature of the FLRW limit. In
these three cases, step 5 of our approach has been analyzed:
the positivity conditions P hold, and the compressibility
condition H2 holds in a wide spacetime domain. All these
results are summarized in Table 2 of [26]. A detailed study

TABLE II. Thermodynamic schemes of the ideal T-models.
This table offers the mass density nðρ; pÞ and the functions
Qðρ; pÞ and λiðpÞ that determine the specific entropy sðρ; pÞ ¼
sðQÞ and the temperature Θðρ; pÞ ¼ lðQÞλ1ðtÞ þmðQÞλ2ðtÞ,
with lðQÞ and mðQÞ given in (34). The constants K̃, K, l1
and l2 depend on the parameter γ as K̃ ≡ −ðγ − 1Þγ̂1−2

γ ,

K ≡ ðγ − 2Þγ̂, l1 ≡ 2γ̂ and l2 ≡ 4
3γ γ̂

1
γ−1, where γ̂ ≡ 2

ffiffiffiffiffiffi
γ−1

p ffiffi
3

p
γ
.

Qðρ; pÞ nðρ; pÞ λ1ðpÞ λ2ðpÞ
γ ≠ 2 K̃ðρ−pÞ

ρðγ−1Þ−p p
2−γ
2γ

ρðγ−1Þ−p
KNðQÞ ffiffiffi

p
p l1

ffiffiffi
p

p
l2p

1−1
γ

γ ¼ 2 1
2
lnð3pÞ þ 2p

ρ−p

ffiffi
3

p ðρ−pÞ
2NðQÞ ffiffiffi

p
p

ffiffiffip
3

p ½2 − lnð3pÞ� 2ffiffi
3

p ffiffiffi
p

p

TABLE I. This table provides, for the different values of the
parameter γ: (i) the spacetime region R1 where the energy
conditions EG hold (third column); (ii) the time interval where EG

is kept for a given QðrÞ (fourth column); (iii) the sign of the
energy density contrast δ, and the interval where it takes values
(fifth column).

αðtÞ EG t δ

γ < 2 ∞↘0
Q < −α �t1;∞½ > 0, ∞↘0
Q > 0 �0;∞½ < 0, ðγ − 2Þ↗0

γ ¼ 2 −∞↗∞ −α < Q �t1;∞½ > 0, ∞↘0

γ > 2 0↗∞ −α < Q < 0 �t1;∞½ > 0, ∞↘γ − 2
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of different thermodynamic schemes for any γ falls outside
the scope of this paper. Here, we will limit ourselves to
outlining some qualities of the scheme that allows us to
interpret the solutions γ ¼ 4=3 and γ ¼ 2 as generic ideal
gases in local thermal equilibrium. In [18] we presented an
algorithm that provides all the thermodynamic quantities of
the ideal gas scheme when the indicatrix function χ ¼ χðπÞ
is known.
If we consider the expression (53) for χðπÞ when

γ ¼ 4=3 or γ ¼ 2 and we apply this algorithm we obtain
the thermodynamic schemes summarized in Table III. On
the other hand, we know that, for the ideal gas schemes, the
compressibility condition H2 holds if, and only if, the
indicatrix function χðπÞ fulfills [23]

HG
2 ∶ ξ≡ ð2π þ 1ÞχðπÞ − π > 0: ð55Þ

For the χðπÞ of the ideal gas T-models this inequality holds
in an interval �πm; 1½ as the last column in Table III shows. It
is worth remarking that when γ ¼ 4=3 (and similarly, for
any γ < 2) the thermodynamic variables are not defined for
π ¼ 1=3 (similarly, for π ¼ γ − 1). The two resulting
subintervals are related with the two different cases where
the energy conditions hold when γ < 2 (see Table I).
Indeed, when Q < −α we have δ > 0 and then
π < γ − 1; and when Q > 0 we have δ < 0 and then
π > γ − 1. In Table III, for the models γ ¼ 4=3, we have
only considered the expression of the thermodynamic
variables when energy density contrast is positive. In this
case, we have π < 1=3, and in the limit χð1=3Þ ¼ 1=3,
χ0ð1=3Þ ¼ 1=2, the same values that the Synge gas [45].
Thus, this ideal gas scheme appears to be a good approxi-
mation to a relativistic gas.
Note that the ideal gas thermodynamic schemes consid-

ered in Table III can also be obtained from the generic
thermodynamic schemes in Table II by considering a
particular choice of the functions sðQÞ and NðQÞ: for
γ ¼ 4=3, sðQÞ ¼ s0 − 1

4
ln jQj, NðQÞ ¼ − 2

3
Q−2; for γ ¼ 2,

sðQÞ ¼ s0 − ln 3þ 2Q, NðQÞ ¼ 2
3
expf−Qg.

V. THE MCVITTIE-WILTSHIRE-HERLT
SOLUTION AND ITS GENERALIZATIONS

As commented in Sec. II, Herlt [40] proposed a method
to get an inhomogeneous T-model from a known

homogeneous KCKS metric, and he then applies this
method to generalize the (spherically symmetric)
McVittie and Wiltshire solution [39]. In the canonical form
(13) they take the time coordinate τ such that Y ¼ ffiffiffi

φ
p ¼ τ,

and they look for the model with ω ¼ τn ≡ ω1ðτÞ. Then,
the field equation (14) determines the function vðτÞ:

vðτÞ ¼ 1

n2 − 1
þ C0τ

−2ðnþ1Þ; ð56Þ

which gives the McVittie-Wiltshire solution. Then, sub-
stituting this expression in (14), we obtain an equation for
ωðtÞ. We know the particular solution ω1ðtÞ, and then we
can formally determine another one, ω2ðtÞ, in terms of an
integral [40]. When C0 ¼ 0 this integral can be explicitly
calculated and one obtains ω2ðτÞ ¼ τ−n. We name this
specific solution the McVittie-Wiltshire-Herlt T-model
(see also [2]).
We can easily recover the McVittie-Wiltshire-Herlt

(MWH) solution by working with the proper time t of
the Lagrangian observer. When C0 ¼ 0 we have that dt ¼
v−1=2dτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p
dτ and, consequently, φ ¼ Y2 ¼ f0t2,

with f−10 ¼ n2 − 1 > 0.
In this section we study the T-models (19)–(20) with

φ ¼ f0t2. In this way, we generalize the MWH T-model
to any curvature k ¼ 0, �1. Moreover, we analyze for
these solutions the macroscopic necessary condition for
physical reality.

A. Metric line element

If we take φðtÞ ¼ f0t2, then the field equation (20)
becomes

t2ω̈þ t _ω − k0ω ¼ 0; k0 ≡ 1þ k
f0

: ð57Þ

A straightforward calculation shows that this equation
admits a solution if k0 > 0, and two independent ones are

ω1ðtÞ ¼ tn; ω2ðtÞ ¼ t−n; n ¼
ffiffiffiffiffi
k0

p
> 0: ð58Þ

Then, the metric line element of the generalized MWH
T-models takes the form (19), where ωiðtÞ are given
in (58) and

φðtÞ ¼ f0t2 > 0: ð59Þ

TABLE III. This table provides, for the T-models with γ ¼ 4=3 and γ ¼ 2, the explicit expression of the matter
density n, the temperatureΘ and the specific entropy s in terms of the hydrodynamic quantities ρ and p for the generic
ideal gas thermodynamic scheme. Last column shows the constraints imposed by
the compressibility condition H2: π1 ¼ 1

13
ð ffiffiffiffiffi

17
p

− 2Þ ≈ 0.16, and π2 ¼ 1
7
ð2 ffiffiffi

2
p

− 1Þ ≈ 0.26.

nðρ; pÞ Θðρ; pÞ sðρ; pÞ H2

γ ¼ 4=3 ðρ−pÞ2
ρ−3p

p
k̃nðρ;pÞ s0 þ k̃ ln ½1p ½ρ−3pρ−p �4� π ∈�π1; 13 ½

γ ¼ 2 ðρ − pÞ expf 2p
ρ−pg

p
k̃nðρ;pÞ s0 − k̃½lnpþ 4p

ρ−p� π ∈�π2; 1½
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Note that, if k ¼ 1, then n > 1, and we recover the MWH
solution, if k ¼ −1, then n < 1, and if k ¼ 0, then n ¼ 1.
It is worth remarking that the choice φðtÞ ¼ f0t2 is

equivalent to _φ2 ¼ 4f0φ, Consequently, the case (ii) named
in Sec. IVA corresponds with the generalized MWH
metrics.

B. Pressure and energy density.
Study of the energy conditions

Now, we particularize the expressions of the pressure
(22) and the energy density (23) for the generalized MWH
T-models and we obtain

p ¼ −
n2

t2
; ð60Þ

ρ ¼ n2

t2

�
1þ 2

n
t2n −QðrÞ
t2n þQðrÞ

�
: ð61Þ

Note that the pressure is negative and this fact disqualifies
these solutions as ideal gas models. Nevertheless, it is
known that continuous media with negative pressures exist
and it is suitable to analyze the energy conditions for these
models.
From the expressions (60) and (61) it follows that the

first inequality of the energy conditions E given in (2),
−ρ < p, is equivalent to ðt2n −QÞðt2n þQÞ−1 > 0. Both
factors of this expression cannot be simultaneously neg-
ative, and both are positive if and only if

jQðrÞj < t2n: ð62Þ
On the other hand, the second energy inequality, p ≤ ρ,
holds if ρ > 0, that is, if ðt2n −QÞðt2n þQÞ−1 > −n=2,
which is a consequence of the above condition (62).
Moreover, in this case the expression (21) of the expansion
becomes

θ ¼ 2

t

�
1þ n

2

t2n −QðrÞ
t2n þQðrÞ

�
: ð63Þ

Note that if the energy conditions hold, then the sign of the
expansion depends on the sign of the time coordinate.
Thus, it follows that the generalized MWH solution

fulfills the energy conditions in the spacetime domain
defined by (62). Moreover, for a given time t1, we can
always choose the inhomogeneity function QðrÞ such that
(62) holds. Then, for expanding models, the energy
conditions hold for t > t1 > 0 (in the future); for con-
tracting models (t < 0) the energy conditions hold for
t < t1 < 0 (in the past).

C. Speed of sound. Compressibility conditions

We can obtain the indicatrix function χðρ; pÞ, which
gives the square of the speed of sound, by specifying the
general expression (27) of the T-models for this case.

Indeed, from the expressions (58)–(59) of the metric
functions, and taking into account (24)–(26), we can
determine the functions (28). Then, by substituting in
(27) we obtain

c2s ¼ χðπÞ≡ 4π2

ðπ þ 1Þ½ð4 − n2Þπ − n2� ; π ≡ p
ρ
: ð64Þ

Note that the indicatrix function is of the ideal gas type, in
accordance with case (ii) of Sec. IVA. Then, we can
analyze the compressibility conditions HG

1 in the regions
where the energy conditions meet. In this case we have
−1 < π < 0, and then the first inequality in (37), 0 < χ,
implies n2 < ð4 − n2Þπ ¼ ðn2 − 4Þð−πÞ < n2 − 4. This
contradiction shows that compressibility conditions are
not satisfied anywhere.
In summary, the McVittie-Wiltshire-Herlt solution is not

a good model to represent a perfect fluid in local thermal
equilibrium.

VI. DISCUSSION

A. Analysis of the results

In this paper we have shown that, for the T-models, the
field equations can be written as a differential equation that
is linear for an adequate choice of the three unknown metric
functions. One of these functions can be arbitrarily fixed
with a specific choice of the time coordinate, and then the
space of solutions is controlled by two real functions
fφðtÞ; QðrÞg, which fully determine the gravitational field.
Then, the hydrodynamic quantities of the fluid, unit
velocity u, energy density ρ and pressure p, are also fixed
by the functions fφðtÞ; QðrÞg.
Each of these solutions can be furnished with a set of

thermodynamic quantities, matter density n, entropy s,
temperature Θ and specific internal energy ϵ, constrained
by the common thermodynamic laws. The richness of such
thermodynamic schemes also depends on two arbitrary real
functions fNðQÞ; sðQÞg, and they offer different thermo-
dynamic interpretations of a given gravitational field
fφðtÞ; QðrÞg. Here we have given the expression of the
thermodynamic quantities fn; s;Θ; ϵg in terms of the four
functions fφðtÞ; QðrÞ; NðQÞ; sðQÞg.
The thermodynamic study commented above is formal

but it points out the solutions and the thermodynamics that
are candidates to model a physically realistic perfect fluid
in local thermal equilibrium. Complementary macroscopic
physical requirement (energy and compressibility condi-
tions and positivity of some thermodynamic quantities)
must be imposed on the thermodynamic solutions in order
to obtain physically realistic models. Here we have
imposed the compatibility of the thermodynamic solutions
with the generic ideal gas equation of state, a condition that
is only compatible with plane symmetry. Then, the metric
function φðtÞ depends on a constant parameter γ, which
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fixes the function of state that gives the square of the speed
of sound in terms of the energy density and the pressure.
Moreover, we obtain for any γ the spacetime domains
where the macroscopic physical constraints hold.
We have also analyzed from a thermodynamic perspec-

tive the previously known MWH solution and we have
shown its unsatisfactory physical meaning as a perfect fluid
in local thermal equilibrium.

B. Why there are no solutions that model
a classical ideal gas?

Classical ideal gases are the ideal gases that also fulfill
the classical dependence of the specific internal energy
on the temperature, ϵ ¼ cvΘ. For them, the indicatrix
function takes the form χ ¼ γπ

1þπ, where γ ≡ 1þ k̃
cv

is the
adiabatic index [25]. The study undertaken in Sec. IVon the
T-models compatible with the equation of state (35) of a
generic ideal gas leads to an indicatrix function of the
form (27). Thus, no solutions that model a classical ideal
gas exist.
It is worth remarking that we find a similar negative

result in analyzing the ideal gas models belonging to the
family of the Szekeres-Szafron solutions of class II, in both
singular [26] and regular [15] models. In [25] we have also
searched for classical ideal gas solutions in the family of the
R-models in geodesic motion, and the result has also been
negative: the only solutions are the homogeneous ones
(classical ideal gas FLRW models [25]).
A question naturally arises: are these negative results a

consequence of a more general basic result? The answer is
affirmative. Indeed, in [46] we have characterized the unit
velocities of the classical ideal gas solutions of the hydro-
dynamic equations, and we have shown the following
result: a geodesic and expanding timelike unit vector u is
the unit velocity of a classical ideal gas if and only if u is
vorticity free and its expansion is homogeneous, that is,
u ¼ −dt and θ ¼ θðtÞ.
Note that the Szekeres-Szafron solutions have a geodesic

and expanding fluid flow. Consequently, only those with
homogeneous expansion can be a candidate to model a
classical ideal gas. But, for these metrics, homogeneous
expansion is tantamount to barotropic evolution. Thus
[13,36], for class II (and consequently in the limit admitting
a G3, the T-models) the metric is either a FLRWmodel or a
KCKS solution; and, for class I (and consequently in the
limit admitting a G3, the geodesic R-models), the metric is
necessarily a FLRW model.
The generalized Friedmann equation for the classical

ideals gas FLRW models has been presented in [25]. These

models have a specific barotropic equation of state
p ¼ pðρÞ that follows by imposing an isentropic evolution.
The study of the KCKS solutions that model similar
physical properties is an ongoing work that will be
presented elsewhere.
Note that the constraints on the kinematics of a classical

ideal gas studied in [25] are a consequence of the sole
hydrodynamic equations and they do not depend on the
field equations. This means that there are also no test
solutions modeling a classical ideal gas that is comoving
with the prefect fluid flow of the nonhomogeneous sol-
utions quoted above.

C. Work in progress

The study of the thermodynamic T-models presented
here further our understanding of the physical meaning of
this solutions but it also suggests new open questions that
should be answered. The first one poses the possible
thermodynamic interpretation of the homogenous limit
of the T-models, the KCKS metrics. The results in
Sec. III C show that an isentropic evolution of each
thermodynamic T-model leads to QðrÞ ¼ constant, that
is, to a KCKS solution defined by a specific barotropic
relation p ¼ pðρÞ. Moreover, as commented in the sub-
section above, we will study the KCKS models that
represent the isentropic evolution of a classical ideal gas,
but these solutions are not the homogeneous limit of
classical ideal gas inhomogeneous T-models.
On the other hand, very few explicit solutions of the

T-model equation (14) are known. A deeper analysis
of this equation is underway to find new physically
reasonable solutions, and, particularly, spherically sym-
metric ones.
Further research will address a similar analysis for the

R-models. A general study of their thermodynamic inter-
pretation has yet to be done. Only partial results are known
at present. The classical ideal gases in geodesic motion
have been considered in [25], and the ideal gas Stephani
universes were examined in [24].
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