
 

Quasibound states of Schwarzschild acoustic black holes

H. S. Vieira * and Kostas D. Kokkotas †

Theoretical Astrophysics, Institute for Astronomy and Astrophysics, University of Tübingen,
72076 Tübingen, Germany

(Received 9 April 2021; accepted 22 June 2021; published 13 July 2021)

In this paper, we study the recently proposed Schwarzschild acoustic black hole spacetime, in which we
investigate some physical phenomena related to the effective geometry of this background, including the
analogous Hawking radiation and the quasibound states. We calculate the spectrum of quasibound state
frequencies and the wave functions on the Schwarzschild acoustic background by using the polynomial
condition of the general Heun function, and then we discuss the stability of the system.We also compare the
resonant frequencies of the Schwarzschild acoustic black hole with the ones by the standard Schwarzschild
black hole. Our results may shed some light on the physics of black holes and their analog models in
condensedmatter.Moreover, these studies could provide the possibility, in principle, for laboratory testing of
effects whose nature is unquestionably associated with purely quantum effects in gravity.
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I. INTRODUCTION

In the last 5 years, gravitational physics took a significant
boost with the detections of gravitational waves from
neutron stars and black holes collisions and the measure-
ments of the properties of the central black hole in M87
[1,2]. This progress was based in the advance technology
developed for the specific observations. Still this tremen-
dous technological advance does not apply to all phenom-
ena associated to gravitational physics and especially the
ones related to the interaction between quantum particles
and the gravitational field generated by astrophysical
objects. From the theoretical point of view, one needs a
very accurate theory to compare and describe such events.
This calls for a more systematic search on these objects,
which will be carried out in the next decades [3,4], while at
the same time wherever possible, especially for quantum
phenomena, the analog gravity can provide a useful testing
tool [5–10].
In order to best understand and analyze some important

quantum gravity phenomena in the vicinity of black holes,
Unruh [11] proposed that several condensate matter sys-
tems, which present an effective geometry, could mimic
some astrophysical scenarios. This is possible, in principle,
by modeling the behavior of quantum particles in a
classical gravitational field as the motion of sound waves
in a convergent fluid flow. Thus, in the analog models of
gravity, the sound waves are propagating on a hydro-
dynamic background, generated by acoustic black holes.

This interaction is described for an equation of motion
which is formally identical to the covariant massless Klein-
Gordon equation. Along this line of research, many differ-
ent physical phenomena were examined in the past on
backgrounds with such an effective geometry [12–24].
Among these studies, we can mention two in particular,

namely, the one where the Hawking-Unruh effect is probed
[25] and the work where an analytic solution for the
massless Klein-Gordon equation in the canonical acoustic
black hole spacetime was obtained in terms of the general
Heun functions [26]. In these works, some analog gravity
phenomena were proposed and studied, which can, in
principle, lead to the realization of accurate experiments
trying to probe some features of the quantum field theory in
curved spacetime. More specifically, if a physical phe-
nomenon occurs in an astrophysical scenario, it will also
occur in an analog gravity model which presents an
effective geometry.
In this work, we focus on two physical phenomena that

occur in analog black holes, namely, the computation of
(i) the Hawking radiation and (ii) the quasibound state
frequencies of massless scalars in the Schwarzschild
acoustic black hole spacetime. The Hawking radiation is
a thermal spectrum related to the quantum mechanical
effects on the exterior event horizon of a black hole [27],
and the quasibound states are solutions to the equation of
motion which tend to zero at infinity [28], whose resonant
frequency spectrum is related to the decay of the perturba-
tion; that is, they correspond to damped oscillations. Here,
the results depend on a single parameter, namely, the tuning
parameter ξ associated with the fluid velocity. The
Hawking radiation spectrum and the resonant frequencies
will be obtained by imposing the appropriated boundary

*Corresponding author.
horacio.santana.vieira@hotmail.com
horacio.santana-vieira@tat.uni-tuebingen.de

†kostas.kokkotas@uni-tuebingen.de

PHYSICAL REVIEW D 104, 024035 (2021)

2470-0010=2021=104(2)=024035(10) 024035-1 © 2021 American Physical Society

https://orcid.org/0000-0003-0909-2717
https://orcid.org/0000-0001-6048-2919
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.024035&domain=pdf&date_stamp=2021-07-13
https://doi.org/10.1103/PhysRevD.104.024035
https://doi.org/10.1103/PhysRevD.104.024035
https://doi.org/10.1103/PhysRevD.104.024035
https://doi.org/10.1103/PhysRevD.104.024035


conditions on the radial equation. The solution of the radial
equation will be given in terms of the general Heun
functions, which are special functions of mathematical
physics applied in various problems associated to wavelike
equations on science in general (in particular, for applica-
tions in physics, see Ref. [29] and references therein).
Actually, it is worth mentioning some physical systems

where the framework of Schwarzschild acoustic black
holes has been implemented. There are two experiments
reporting realizations of acoustic black holes; the first was
in a Bose-Einstein condensate [30], and the second was
reported in an optical medium [31]. Moreover, the oscil-
latory part of the quasinormal modes was detected for the
first time in an analog black hole experiment by Torres
et al. [32], in which they set up a vortex flow out of
equilibrium to observe its quasinormal oscillations.
Therefore, we hope that, in a near future, the Hawking
radiation and the quasibound states of Schwarzschild
acoustic black holes could be detected in some hydro-
dynamic or/and condensate matter systems, or even in a
true astrophysical system.
This paper is organized as follows. In Sec. II, we

introduce the metric corresponding to the Schwarzschild
acoustic black hole spacetime. In Sec. III, we solve the
covariant massless Klein-Gordon equation in the back-
ground under consideration. In Sec. IV, we obtain the
Hawking radiation spectrum. In Sec. V, we compute the
resonant frequency spectrum related to the quasibound
states. In Sec. VI, we provide the eigenfunctions by using
some properties of the general Heun functions. Finally, in
Sec. VII, the conclusions are given. Here, we adopt the
natural units where G≡ c≡ ℏ≡ 1.

II. SCHWARZSCHILD ACOUSTIC
BLACK HOLE SPACETIME

In a recent paper, Ge et al. [33] obtained a class of
solutions for analog gravity models by considering the
relativistic Gross-Pitaevskii [34,35] and Yang-Mills [36]
theories. The constructed metrics correspond to acoustic
black holes. Among these metrics, we are interested in a
particular one, namely, the one describing the Schwarzschild
acoustic black hole spacetime. In what follows, we will
review the properties of this acoustic black hole solution, on
which we want to investigate the behavior of scalar fields
following Ref. [33].
The action of the Gross-Pitaevskii theory describing a

nonlinear scalar field is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂μφj2 þm2jφj2 − b

2
jφj4

�
; ð1Þ

where φ is a complex scalar field as order parameter;
m2ð∼T − TcÞ is a temperature(-dependent) parameter, with
Tc being the critical temperature value; and bð¼2cs=ρ0Þ is
a coupling constant related to the speed of sound cs and to

the background fluid density ρ0. An acoustic black hole
metric can be obtained by considering perturbations (fluc-
tuations of the complex scalar field) around the background
in the Madelung representation φ ¼ eiθðx;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞp

, which
after some algebra (for details, refer to Ref. [33] and
references therein) gives rise to a relativistic wave equation
(similar to the massless Klein-Gordon equation) that
governs the propagation of the phase fluctuations (weak
excitations in a homogeneous stationary condensate).
Thus, the line element describing static dumb black

holes, the so-called Schwarzschild acoustic black holes,
can be written as

ds2 ¼ gμνdxμdxν

¼
ffiffiffi
3

p
c2s

�
−fðrÞdt2 þ 1

fðrÞdr
2 þ r2dθ2 þ r2sin2θdϕ2

�
;

ð2Þ

where the function fðrÞ has the form

fðrÞ ¼
�
1 −

2M
r

��
1 − ξ

2M
r

�
1 −

2M
r

��
: ð3Þ

Here, M is the total mass centered at the origin of the
system of coordinates, and ξ is the tuning parameter related
to the radial component of the background fluid 4-velocity,
vr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mξ=r

p
. For the velocity to be real, ξ > 0 (see

Ref. [33] for a review, and references therein). It is obvious
that at the limit ξ → 0 the well-known Schwarzschild black
hole is recovered, with an event horizon of radius rs ¼ 2M.
On the other hand, ξ → ∞ implies that the escape velocity
vr goes to infinity and hence an acoustic black hole covers
the whole spacetime. For this reason, ξ > 0 is defined as the
tuning parameter, for this type of acoustic black holes.
The horizons of the Schwarzschild acoustic black hole

(SABH) are given by the zeros of fðrÞ ¼ 0, that is,

fðrÞ ¼ 0 ¼ ðr − rsÞðr − rac−Þðr − racþÞ: ð4Þ

The solutions of this equation are as follows. The “optical”
event horizon is rs ¼ 2M, while the “interior” and “exterior”

acoustic event horizons are rac− ¼ Mðξ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4ξ

p
Þ and

racþ ¼ Mðξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 4ξ

p
Þ, respectively. Note that when

ξ ¼ 4, we get an extreme Schwarzschild acoustic black
hole; that is, the interior and exterior horizons coincide at
re ¼ 4M. This observation leads to the necessary condition
for the existence of acoustic event horizons, that is ξ ≥ 4.
The exterior event horizon racþ is the outermost marginally
trapped surface for the outgoing phonons. Indeed, that is
the last surface from which both light and sound waves
could still escape from the acoustic black hole. Thus, it is
meaningful to study quantum particles that propagate
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outside the exterior event horizon, whose equation of
motion is discussed in the next section.

III. KLEIN-GORDON EQUATION

It was also shown by Ge et al. [33] that the metric (2)
describing SABHs obeys the covariant massless Klein-
Gordon equation, which is given by

�
1ffiffiffiffiffiffi−gp ∂μðgμν

ffiffiffiffiffiffi
−g

p ∂νÞ
�
Ψ ¼ 0; ð5Þ

where Ψ ¼ Ψðt; r; θ;ϕÞ is the scalar wave function, and
g≡ detðgμνÞ. Note that the scalar wave function will not

depend on the speed of sound, since the term
ffiffiffi
3

p
c2s is a kind

of “conformal factor” on the metric given by Eq. (2), which
means that we can choose c2s ¼ 1=

ffiffiffi
3

p
without loss of

generality.
The equations of motion (5) for the metric (2) lead in a

system of two separated ordinary differential equations for
the angular and radial parts of the scalar wave function,
which due to the spherical symmetry can be written as
Ψðt; r; θ;ϕÞ ¼ e−iωtRðrÞYlmðθ;ϕÞ. They are given by

1

sin2θ
∂2Ylmðθ;ϕÞ

∂ϕ2
þ 1

sin θ
∂
∂θ

�
sin θ

∂Ylmðθ;ϕÞ
∂θ

�
¼ 0 ð6Þ

and

d2RðrÞ
dr2

þ 1

FðrÞ
dFðrÞ
dr

dRðrÞ
dr

þ
�

r4ω2

½FðrÞ�2 −
λ

FðrÞ
�
RðrÞ ¼ 0;

ð7Þ

where λ ¼ lðlþ 1Þ is a separation constant, ω is the
frequency (energy) of the scalar particle, Ylmðθ;ϕÞ are
the spherical harmonic functions, RðrÞ is the radial func-
tion, and FðrÞ ¼ r2fðrÞ.

A. Effective potential

Next, we would like to show the behavior of the effective
potential, VeffðrÞ. By defining a new radial function
uðrÞ ¼ RðrÞ=r, Eq. (7) will be written as

d2uðrÞ
dr2�

þ ½ω2 − VeffðrÞ�uðrÞ ¼ 0; ð8Þ

with

VeffðrÞ ¼ fðrÞ
�
λ

r2
þ 1

r
dfðrÞ
dr

�
; ð9Þ

where we have introduced the “tortoise coordinate” r�,
which is defined by the relation dr� ¼ dr=fðrÞ.

Equation (8) looks like a one-dimensional Schrödinger
equation, with an effective potential VeffðrÞ given by
Eq. (9). The behavior of VeffðrÞ is shown in Fig. 1, for
different values of the azimuthal quantum number and the
tuning parameter.
From Eq. (9) and Fig. 1, we see that the width of the

potential barrier increases with the azimuthal quantum
number l, while decreasing with the tuning parameter ξ.
For the chosen values, the exterior acoustic event horizon
racþ is at r ¼ 4.0, r ¼ 7.2361, and r ¼ 9.4641 for ξ ¼ 4,
ξ ¼ 5 and ξ ¼ 6, respectively.

B. Radial equation

Here, we will provide an analytic, general solution for
the radial part of the covariant massless Klein-Gordon
equation in the SABH spacetime.
First, we use Eq. (4), which provides the values for the

horizons, in order to transform the radial equation (7) as

d2R
dr2

þ
�

1

r − r1
þ 1

r − r2
þ 1

r − r3

�
dR
dr

þ
�
r4ω2 − λðr − r1Þðr − r2Þðr − r3Þ

ðr − r1Þ2ðr − r2Þ2ðr − r3Þ2
�
R ¼ 0; ð10Þ

where, for convenience, we have renamed racþ , rac− , and rs
as r1, r2, and r3, respectively.
The new form of the radial equation (10) indicates the

existence of three finite regular singularities associated with
the three horizons r1, r2, and r3 and a regular singularity at
infinity, which implies that (10) is a Heun-type equation.
Therefore, we can transform this radial equation to a more
suitable form, by defining a new radial coordinate x related
to r1, r2, and r3 as

x ¼ r − r1
r2 − r1

; ð11Þ
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FIG. 1. The effective potentials for M ¼ 1, and different values
of the azimuthal quantum number lð¼ 0; 1Þ and the tuning
parameter ξð¼ 4; 5; 6Þ.
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and we set a new parameter a associated with the three
finite regular singularities as

a ¼ r3 − r1
r2 − r1

: ð12Þ

Thus, by substituting Eqs. (11) and (12) into Eq. (10), we
obtain

d2RðxÞ
dx2

þ
�
1

x
þ 1

x − 1
þ 1

x − a

�
dRðxÞ
dx

þ
�X2
j¼0

Lj

x − xj
þ
X2
j¼0

Qj

ðx − xjÞ2
�
RðxÞ ¼ 0; ð13Þ

where j ¼ 0, 1, 2 labels the (now shifted) singularities
xj ¼ ð0; 1; aÞ and the coefficients Lj and Qj are given by

L0 ¼
2r31ω

2½r1ðr2 þ r3Þ − 2r2r3�
ðr1 − r2Þ2ðr1 − r3Þ3

þ λ

r1 − r3
; ð14Þ

L1 ¼ −
2r32ω

2½r1ðr2 − 2r3Þ þ r2r3�
ðr1 − r2Þ2ðr2 − r3Þ3

−
λ

r2 − r3
; ð15Þ

L2 ¼ −
ðr1 − r2Þf2r33ω2½r3ðr1 þ r2Þ − 2r1r2� þ λðr1 − r3Þ2ðr2 − r3Þ2g

ðr1 − r3Þ3ðr3 − r2Þ3
; ð16Þ

Q0 ¼
r41ω

2

ðr1 − r2Þ2ðr1 − r3Þ2
; ð17Þ

Q1 ¼
r42ω

2

ðr1 − r2Þ2ðr2 − r3Þ2
; ð18Þ

Q2 ¼
r43ω

2

ðr3 − r1Þ2ðr3 − r2Þ2
: ð19Þ

Now, Eq. (13) is almost similar to the general Heun
equation, where we just need to reduce the power of
the terms 1=ðx − xjÞ2. To do this, finally, we perform a
F-homotopic transformation of the dependent function,
RðxÞ ↦ UðxÞ, such that

RðxÞ ¼ xA0ðx − 1ÞA1ðx − aÞA2UðxÞ; ð20Þ

where the coefficients Aj are the exponents of the three
singular points xj in Eq. (13). They obey to the following
indicial equation:

GðzÞ ¼ zðz − 1Þ þ zþQj ¼ z2 þQj ¼ 0: ð21Þ

Their roots are given by

zx¼0
1;2 ¼ � ir21ω

ðr1 − r2Þðr1 − r3Þ
≡ A0; ð22Þ

zx¼1
1;2 ¼ � ir22ω

ðr1 − r2Þðr2 − r3Þ
≡ A1; ð23Þ

zx¼a
1;2 ¼ � ir23ω

ðr3 − r1Þðr3 − r2Þ
≡ A2: ð24Þ

Then, by substituting Eqs. (20)–(24) into Eq. (13), we
derive a new equation for the radial function UðxÞ,

d2UðxÞ
dx2

þ
�
1þ 2A0

x
þ 1þ 2A1

x − 1
þ 1þ 2A2

x − a

�
dUðxÞ
dx

þ A3x − A4

xðx − 1Þðx − aÞUðxÞ ¼ 0; ð25Þ

with

A3 ¼ −aðL0 þ L1Þ þ 2A0ðA1 þ A2 þ 1Þ þ 2A1ðA2 þ 1Þ
þ 2A2 − L0 − L2; ð26Þ

A4 ¼ A0ð2aA1 þ aþ 2A2 þ 1Þ þ aðA1 − L0Þ þ A2: ð27Þ

By these substitutions, the three singularities r1, r2, and r3
were moved to the points x ¼ 0, 1, and a, respectively, and
we can conclude that Eq. (25) has the form of a general
Heun equation [37], whose canonical form is given by

d2UðxÞ
dx2

þ
�
γ

x
þ δ

x − 1
þ ϵ

x − a

�
dUðxÞ
dx

þ αβx − q
xðx − 1Þðx − aÞUðxÞ ¼ 0: ð28Þ

Now, the radial function UðxÞ becomes the general Heun
function UðxÞ≡ HeunGða; q; α; β; γ; δ; xÞ, which is simul-
taneously a Frobenius solution around two singularities s1
and s2, where s1; s2 ∈ f0; 1; ag and is analytic in some
domain including both these singularities.
The parameters on which the Heun function depends

are in general complex and play different roles. Namely,
að≠0; 1Þ is the singularity parameter; q is the accessory
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parameter; and α, β, γ, δ, and ϵ are the exponent
parameters, which are related by γ þ δþ ϵ ¼ αþ β þ 1.
Therefore, an analytical, general solution for the radial

part of the covariant massless Klein-Gordon equation, in
the SABH spacetime, can be written as

RðxÞ ¼ xA0ðx − 1ÞA1ðx − aÞA2

× ½C1HeunGða; q; α; β; γ; δ; xÞ
þ C2x1−γHeunGða; q2; α2; β2; γ2; δ; xÞ�; ð29Þ

where C1 and C2 are constants to be determined. These are
two linearly independent solutions of the general Heun
equation since γ ≠ 0;−1;−2;… (in the first solution) and
γ ≠ 1; 2;… (in the second solution), corresponding to the
exponents 0 and 1 − γ at x ¼ 0. The parameters α and
β are the roots yþ and y−, respectively, of the equation
y2 þ ð1 − γ − δ − ϵÞyþ A3 ¼ 0 [37], given by

α¼ 1þA0 þA1 þA2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðL0 þL1Þ þA2

0 þA2
1 þA2

2 þL0 þL2 þ 1

q
; ð30Þ

β ¼ 1þA0 þA1 þA2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðL0 þL1Þ þA2

0 þA2
1 þA2

2 þL0 þL2 þ 1

q
: ð31Þ

The other parameters, namely, γ, δ, ϵ, and q are given by

γ ¼ 1þ 2A0; ð32Þ

δ ¼ 1þ 2A1; ð33Þ

ϵ ¼ 1þ 2A2; ð34Þ

q ¼ A4: ð35Þ

Furthermore, for the second solution, the parameters α2, β2,
γ2, and q2 are given by

α2 ¼ αþ 1 − γ; ð36Þ

β2 ¼ β þ 1 − γ; ð37Þ

γ2 ¼ 2 − γ; ð38Þ

q2 ¼ qþ ðαδþ ϵÞð1 − γÞ: ð39Þ

Note that the final expressions for these parameters will
depend on the signs to be chosen for the coefficients Aj

given by Eqs. (22)–(24). In this work, the negative sign is
the correct choice, which will be justified, confirmed in the
discussion of the quasibound states.
In what follows, we will use this analytical solution of

the radial equation, in the SABH spacetime, and the

properties of the general Heun functions to discuss the
Hawking radiation, the quasibound state frequencies and its
corresponding wave functions.

IV. HAWKING RADIATION

In this section, we will obtain the Hawking radiation
spectrum for massless scalar particles near the exterior
event horizon of a SABH spacetime.
In the limit r → r1, which leads to x → 0, we can

calculate the corresponding Heun function. Thus, for
γ ≠ 0;−1;−2;…, which corresponds to the first solution
of our case, the general Heun functions are analytic in the
disk jxj < 1, and the following Maclaurin expansion
applies [38],

HeunGða; q; α; β; γ; δ; xÞ ¼
X∞
ν¼0

cνxν; ð40Þ

where

−qc0 þ aγc1 ¼ 0;

Pνcν−1 − ðQν þ qÞcν þ Xνcνþ1 ¼ 0ðν ≥ 1Þ; ð41Þ

with c0 ¼ 1 and

Pν ¼ ðν − 1þ αÞðν − 1þ βÞ;
Qν ¼ ν½ðν − 1þ γÞð1þ aÞ þ aδþ ϵ�;
Xν ¼ ðνþ 1Þðνþ γÞa: ð42Þ

This expansion leads to HeunGða; q; α; β; γ; δ; 0Þ ∼ 1.
Similarly, for γ ≠ 1; 2;…, it is easy to verify [38] that
we get the same behavior for the second solution. In this
limit, the radial solution (29) has the following asymptotic
behavior at the exterior event horizon,

RðrÞ ∼ C1ðr − r1ÞA0 þ C2ðr − r1Þ−A0 ; ð43Þ

where all remaining constants have been included inC1 and
C2. Note that we recovered the original radial coordinate r.
Thus, by including the time dependence, the solution can
be written as

Ψðr; tÞ ∼ C1Ψin þ C2Ψout; ð44Þ

where the ingoing and outgoing scalar wave solutions are
given, respectively, by

Ψinðr > r1Þ ¼ e−iωtðr − r1Þ−
iω
2κ1 ð45Þ

and

Ψoutðr > r1Þ ¼ e−iωtðr − r1Þþ
iω
2κ1 : ð46Þ

QUASIBOUND STATES OF SCHWARZSCHILD ACOUSTIC BLACK … PHYS. REV. D 104, 024035 (2021)

024035-5



Here, κ1 is the gravitational acceleration on the exterior
horizon r1 and is given by

κ1 ≡ 1

2r21

dFðrÞ
dr

				
r¼r1

¼ ðr1 − r2Þðr1 − r3Þ
2r21

ð47Þ

such that, from Eq. (22) with negative sign, we get

A0 ¼ −
iω
2κ1

: ð48Þ

Finally, by following Vieira et al. [39], we can obtain the
relative scattering probability, Γ1, and the Hawking radi-
ation spectra, N̄ω, which are given, respectively, by

Γ1 ¼
				Ψoutðr > r1Þ
Ψoutðr < r1Þ

				
2

¼ e−
2πω
κ1 ð49Þ

and

N̄ω ¼ Γ1

1 − Γ1

¼ 1

eℏω=kBT1 − 1
: ð50Þ

This means that the resulting radiation spectrum, for
massless scalar particles in the background under consid-
eration, has a thermal character, which is analogous to the
blackbody spectrum. Note that here we have used the
definition of the Hawking-Unruh temperature, namely,
kBT1 ¼ ℏκ1=2π, where kB is the Boltzmann constant.

V. QUASIBOUND STATES

In order to investigate the quasibound states, which are
solutions to the equation of motion that tend to zero at
infinity, we will calculate the spectrum of resonant frequen-
cies on the background under consideration.
The quasibound states, also referred to in the literature as

resonance spectra or quasistationary levels, are localized in
the black hole potential well and tend to zero at spatial
infinity. This means that there exist two boundary con-
ditions associated to the spectrum of quasibound states.
Since the flux of particles crosses into the exterior horizon
surface, the spectrum of quasibound states has complex
frequencies, so that it can be expressed as ωn ¼ ωR þ iωI ,
where ωR ¼ Re½ωn� and ωI ¼ Im½ωn� are the real and
imaginary parts, respectively, and n is the overtone number.
The sign of the imaginary part shows whether the wave
solution decays (Im½ωn� < 0) or grows (Im½ωn� > 0) with
the time.
Then, it is possible, in principle, to derive the character-

istic resonance equation by solving the radial equation in
two different asymptotic regions and using a standard
matching procedure for these two radial solutions in their
common overlap region. These ideas have been explored
by many authors in the last years [40–42]. Here, we will
obtain the spectrum of quasibound states by extending the

method developed by Vieira and Bezerra [43] to find the
resonant frequencies and then impose two boundary con-
ditions to the radial solution.
First, we demand that the radial solution should describe

an ingoing wave at the exterior event horizon. In order to
fully satisfy this boundary condition, we must impose that
C2 ¼ 0 in Eq. (44), and in (29) as well.
Second, it is necessary that the radial solution should

tend to zero far from the black hole at asymptotic infinity.
In this limit, we will use the two linearly independent
solutions of the general Heun equation at x ¼ ∞, which
correspond to the exponents α and β, to write the radial
solution (29) as

RðxÞ ¼ xA0ðx − 1ÞA1ðx − aÞA2

×

�
C1x−α HeunG

�
1

a
; αðβ − ϵÞ þ α

a
ðβ − δÞ

−
q
a
; α; α − γ þ 1; α − β þ 1; δ;

1

x

�

þ C2x−β HeunG

�
1

a
; βðα − ϵÞ þ β

a
ðα − δÞ

−
q
a
; β; β − γ þ 1; β − αþ 1; δ;

1

x

��
; ð51Þ

Thus, in the limit when r → ∞, which implies that x → ∞,
by choosing the negative sign in Eqs. (22)–(24), the radial
solution (51) has the following asymptotic behavior,

RðrÞ ∼ C1

1

riBωþα þ C2

1

riBωþβ ð52Þ

where the coefficient B is given by

B ¼ 1þ 2ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðξ − 4Þp : ð53Þ

However, since C2 ¼ 0, we get

RðrÞ ∼ C1

1

rσ
: ð54Þ

where σ ¼ iBωþ α. Note that, since ξ > 4 (nonextreme
case), the coefficient B is such that B > 1. The sign of the
real part of σ determines the behavior of the wave function
as r → ∞. If Re½σ� > 0, the solution tends to zero, whereas
if Re½σ� < 0, the solution diverges; by definition, the
quasibound state solutions are ingoing at the horizon,
and tend to zero at infinity (Re½σ� > 0). The final behavior
of the scalar wave function will be determined when we
know the values of the frequency ω and the parameter α,
which will be obtained in the next.
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A. Polynomial condition

Now, we will show that the quasibound states of
massless scalar fields in the SABHs can be found by
imposing a polynomial condition, which gives rise to the
general Heun polynomials.
It is known that a Heun polynomial is the solution of the

Heun’s differential equations which is valid at three
singularities, in the sense of being simultaneously a
Frobenius solution at each one of them [37]. Therefore,
in order to satisfy the second boundary condition, it is
necessary that the radial solution must be written in terms
of the Heun polynomials, which means that we need to
derive a form of the Heun’s functions that present a
polynomial behavior; it will be done in the next section.
In fact, that is a kind of standard matching procedure.
In this sense, we will use the fact that the general Heun

functions become polynomials of degree n if they satisfy
the so-called α-condition [37], which is given by

α ¼ −n; ð55Þ

where n ¼ 0; 1; 2;… is now the principal quantum number.
Such polynomial solutions are denoted by HpnðxÞ ¼
HeunGða; q;−n; β; γ; δ; xÞ, and their properties will be
discussed in the next section.
In our case, from Eqs. (22)–(24) (with the negative sign)

and (30), the parameter α can be simply written as

α ¼ 1 − iBωþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
: ð56Þ

Then, by imposing the polynomial condition given by
Eq. (55), we obtain the following expressions for the
massless scalar resonant frequencies:

ωð�Þ
n ¼ −i

ðnþ 1ÞB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2Þ þ B2

p
B2 − 1

: ð57Þ

In fact, these eigenvalues are the solutions of a second order
equation for ω; from now on, we will refer to them as the
“plus” and “minus” solution. Note that the obtained
quasispectrum is purely imaginary and always negative,

as the tuning parameter ξ and the principal quantum
number n grow. This corresponds to a trajectory that
decays without oscillating, and therefore we are dealing
with an overdamped motion.
Some characteristic values of the coefficients B and σ, as

well as the corresponding massless scalar resonant frequen-
cies, are shown in Table I, as functions of the tuning
parameter ξ.
In Table I, we cannot determine the value of the

coefficient B nor the resonant frequencies, for the extreme
case when ξ ¼ 4, since there exists a discontinuity in that
point, which is due to the fact that, when we set r1 ¼ r2, the
singularity parameter a, given by Eq. (12), goes to infinity
and hence the radial solution must be recalculated in this
new scenario; in this limit, the coefficient A3, which
corresponds to the term αβ in the general Heun equation,
goes to zero.
From Table I, we conclude that the minus solution for the

massless scalar resonant frequencies, ωð−Þ
n , is not a physi-

cally acceptable solution, since Re½σð−Þn � ≤ 0 and thus it
does not allow solutions tending to zero at infinity.
Therefore, the unique physically admissible resonant

frequencies is the plus solution, ωðþÞ
n , which represent

the quasibound state energies for massless scalar particles
in the SABH spacetime. In this case, the radial solution (29)
tends to zero far from the SABHs at asymptotic infinity,

since Re½σðþÞ
n � > 0, as required by the conditions for

quasibound states.
The behavior of the massless scalar resonant frequencies

ωðþÞ
n is shown in Fig. 2, as functions of the tuning

parameter ξ.
In Fig. 2, we see that the imaginary part of the massless

scalar resonant frequencies increases with the tuning
parameter ξ, for fixed values of the principal quantum
number n, but it reaches a limiting value when ξ → ∞, as
displayed in Table I.
In what concerns to the stability of the system, from

Table I and Fig. 2, we may conclude that the SABHs are
stable, since the imaginary part of the massless scalar
resonant frequencies is always negative.

TABLE I. Values of the coefficients B and σð�Þ
n ¼ iBωð�Þ

n − n, and the corresponding resonant frequencies ωð�Þ
n .

ξ B ωðþÞ
0 σðþÞ

0 ωðþÞ
1 σðþÞ

1 ωð−Þ
0 σð−Þ0 ωð−Þ

1 σð−Þ1

4.01 41.05000 −0.048750i 2.001190 −0.073146i 2.002670 0 0 −0.024353i −0.000296
5 5.472140 −0.378115i 2.069100 −0.576417i 2.154230 0 0 −0.179813i −0.016038
6 4.464100 −0.471688i 2.105660 −0.724662i 2.234960 0 0 −0.218714i −0.023639
7 4.055050 −0.525149i 2.129500 −0.810673i 2.287320 0 0 −0.239625i −0.028309
8 3.828430 −0.560660i 2.146450 −0.868345i 2.324400 0 0 −0.252975i −0.031502
9 3.683280 −0.586203i 2.159150 −0.910095i 2.352140 0 0 −0.262312i −0.033831
10 3.581990 −0.605544i 2.169050 −0.941855i 2.373710 0 0 −0.269233i −0.035609
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

∞ 3.000000 −0.750000i 2.250000 −1.183010i 2.549040 0 0 −0.316987i −0.049038
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It is worth pointing out that the resonant frequencies
were obtained directly from the general form of Heun
functions by using a polynomial condition, and, to our
knowledge, there is no similar result in the literature for the
background under consideration.

B. Schwarzschild black hole

Now, we can compare these results with the ones known
in the literature for the particular case of a standard
Schwarzschild black hole.
In fact, the standard Schwarzschild black hole space-

time is recovered when ξ ¼ 0 and c2s ¼ 1=
ffiffiffi
3

p
. Thus, it is

possible, in principle, to obtain the massless scalar
resonant frequencies for such a background by taking
the limit ξ → 0. However, that is not true. It is compli-
cated, from the mathematical point of view, to manage the
solution given in terms of the general Heun functions
when some of their parameters go to zero (or infinity); a
confluence process may be involved and hence the
parameters of the new solution will be slightly different
from the ones obtained by considering the original back-
ground from the beginning. Furthermore, from Eq. (53), it
is clear that the coefficient B as well as the obtained
resonant frequencies are not determined in the limit ξ → 0.
Therefore, in order to compare our results with the

ones concerning the Schwarzschild black hole, we will use
the analytical solution of the Klein-Gordon equation
and the expression for the field energies that was obtained
by Muniz at al. [44], which concerns to the standard
Schwarzschild black hole.
Thus, in a standard Schwarzschild black hole, the

quasibound state frequencies of massless scalar particles
are given by [44]

ωn ¼ −
i

4M
ðnþ 1Þ; ð58Þ

where n ¼ 0; 1; 2;…. This quasispectrum is also purely
imaginary and depends on the total mass M; it scales
merely with mass, while for the SABHs, we do not have
such scaling.
We may compare these results as follows. Let us

consider, for example, the fundamental mode n ¼ 0. An
emitted signal, related to the massless scalar resonant
frequencies, from a standard Schwarzschild black hole
will be weaker (in intensity) than the one emitted by a
SABH (for any value of the tuning parameter in this mode),

that is, ω0 < ωðþÞ
0 ∀ ξ ≥ 5.

VI. WAVE FUNCTIONS

In this section, we will derive the eigenfunctions related
to massless scalar particles propagating in the SABH
background. This is possible if one uses some properties
of the general Heun functions and then obtains their
polynomial expressions.
The polynomial solutions of the general Heun equa-

tion (28) are denoted by HpnðxÞ and can be written as

HpnðxÞ ¼
X∞
ν¼0

cνxν; ð59Þ

where the coefficients cν are given by the following set of
equations,

S0c0 þ X0c1 ¼ 0;

Pνcν−1 þ Sνcν þ Xνcνþ1 ¼ 0 ðν ¼ 1; 2;…; n − 1Þ;
Pncn−1 þ Sncn ¼ 0; ð60Þ

with Sν ¼ −Qν − q, and the expressions for Pν,Qν, and Xν

are as given in (42). These equations are consistent if and
only if the accessory parameter q was chosen properly,
which means that it is calculated via a polynomial equation
of degree nþ 1, namely, cnþ1 ¼ 0. We will use for these
eigenvalues the notation qn;m, where m runs from 0 to n.
Then, the corresponding general Heun polynomials will be
denoted as Hpn;mðxÞ.
In our case, the explicit form of the first two general

Heun polynomials is obtained as follows. For n ¼ 0, we
have

Hp0;mðxÞ ¼ c0 ¼ 1: ð61Þ

The eigenvalues q0;m must obey

c1 ¼ 0; ð62Þ

where

−qc0 þ aγc1 ¼ 0; ð63Þ

0 10 20 30 40 50
2.0

1.5

1.0

0.5

0.0

0.5

ξ

Im
ω

n

n 2

n 1

n 0

FIG. 2. The imaginary part of the massless scalar resonant
frequencies ωðþÞ

n .
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which implies

c1 ¼
q
aγ

; ð64Þ

and then we have that

q0;0 ¼ 0: ð65Þ

Thus, the general Heun polynomial for the fundamental
mode is given by

Hp0;0ðxÞ ¼ 1: ð66Þ

Now, for n ¼ 1, we have

Hp1;mðxÞ ¼ c0 þ c1x ¼ 1þ q1;m
aγ

x: ð67Þ

Next, the eigenvalues q1;m must obey

c2 ¼ 0; ð68Þ

where

P1c0 − ðQ1 þ qÞc1 þ X1c2 ¼ 0; ð69Þ

implying that

c2 ¼
½γð1þ aÞ þ aδþ ϵþ q�q − aαβγ

2a2γð1þ γÞ ; ð70Þ

and then we have that

q1;m ¼ −½γð1þ aÞ þ aδþ ϵ� � ffiffiffiffi
Δ

p

2
; ð71Þ

with Δ ¼ ½γð1þ aÞ þ aδþ ϵ�2 þ 4aαβγ. Here, the signs
−;þ stand for m ¼ 0, 1. Thus, the general Heun poly-
nomials for the first excited mode are given by

Hp1;0ðxÞ ¼ 1þ −½γð1þ aÞ þ aδþ ϵ� − ffiffiffiffi
Δ

p

2aγ
x; ð72Þ

Hp1;1ðxÞ ¼ 1þ −½γð1þ aÞ þ aδþ ϵ� þ ffiffiffiffi
Δ

p

2aγ
x: ð73Þ

Then, the radial eigenfunctions, for massless scalar
particles propagating in a SABH spacetime, can be
written as

Rn;mðxÞ ¼ Cn;mxA0ðx − 1ÞA1ðx − aÞA2Hpn;mðxÞ; ð74Þ

where Cn;m is a constant to be determined by using some
additional boundary condition, as, for example, that the
wave function should be appropriately normalized in the

range between the exterior event horizon and the infinity. It
is worth emphasizing that these eigenfunctions are degen-
erate, due to the fact that the accessory parameter qn;m must
be properly determined for each value of n.
Therefore, by using Eqs. (66), (72), and (73), we can plot

the first three squared wave functions, which are presented
in Fig. 3.
From Fig. 3, we conclude that the massless scalar

resonant frequencies ωðþÞ
n are quasibound states, since

their wave functions present the desired behavior, that is,
the radial solution tends to zero at infinity and diverges at
the exterior event horizon; it (mathematically reaches a
maximum value and then) crosses into the black hole.

VII. CONCLUSIONS

In this work, we obtained an analytical, general solution
for the covariant massless Klein-Gordon equation in the
Schwarzschild acoustic black hole spacetime. The angular
part of the solution is given in terms of the spherical
harmonic functions, while the radial part of the solution is
given in terms of the general Heun functions. The study of
the radial solution led to some interesting physics.
We got the Hawking radiation spectrum for massless

scalar particles in the vicinity to the exterior event horizon.
We showed that this spectrum resembles the one describing
a blackbody. It is worth emphasizing that the thermal
Hawking-Unruh radiation was recently observed in an
analog black hole [45–47]. Therefore, we present some
analytical results that could be compared with detected data
in a near future.
We obtained the quasispectrum of resonant fre-

quencies for massless scalar particles propagating in the
Schwarzschild acoustic black hole spacetime. This became
possible by imposing two boundary conditions, and then
we used a polynomial condition for the general Heun
functions. We examined the behavior of the (polynomial)
wave functions and showed that the massless scalar
resonant frequencies ωðþÞ

n describe quasistationary levels,

0 10 20 30 40 50
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R0, 0

10 20 30 40 50
10 4

0.1

100

105

108

FIG. 3. The first three squared eigenfunctions related to ωðþÞ
n ,

for M ¼ 1. The units are in multiples of Cn;m.
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and therefore they are quasibound states. We may conclude
that the Schwarzschild acoustic black hole is stable, since
the imaginary part of the massless scalar resonant frequen-

cies ωðþÞ
n is always negative.

Finally, the wave phenomena studied in this work are due
to the interaction between quantum fields, in particular the
scalar one, and the effective geometry of acoustic black
holes in the Schwarzschild spacetime. Therefore, they are
interesting semiclassical phenomena, which can give us
some insights in the physics of black holes and for this
reason should be investigated.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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