PHYSICAL REVIEW D 104, 024034 (2021)
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We investigate the particle content of parity-preserving Weyl gauge theories of gravity (WGT™) about a
Minkowski background. Within a subset of the full theory, we use a systematic method previously
presented by Lin et al. [Phys. Rev. D 99, 064001 (2019)] to determine 862 critical cases for which the
parameter values in the action lead to changes of particle contents or additional gauge invariances. We find
that 168 of these cases are free of ghosts and tachyons, provided the parameters satisfy certain conditions
that we also determine. We further identify 40 of these cases that are also propagating power-counting
renormalizable and determine the corresponding conditions on the parameters. Of these theories, 11 have
only massless tordion propagating particles, 23 have only a massive tordion propagating mode, and 6 have
both. We also repeat our analysis for WGT* with vanishing torsion or curvature, respectively. We compare
our findings with the very few previous results in the literature.
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I. INTRODUCTION

In recent papers [1,2], we presented a systematic method
for identifying the ghost-and-tachyon-free critical cases of
parity-preserving gauge theories of gravity and applied it to
parity-preserving Poincaré gauge theory (PGT™). We found
450 critical cases (some of which possess additional gauge
invariances) that are free of ghosts and tachyons. We also
considered the superficial renormalizability by power
counting of a subset of these unitary theories for which
there are no terms in the gauge-fixed Lagrangian that mix
different fields. While not stated explicitly in Ref. [2], four
of the theories in that paper (cases 9, 10, 11, and 13, which
have only massless modes) satisfy the original criterion
used by Sezgin and van Nieuwenhuizen in Ref. [3] to be
power-counting renormalizable (PCR). Moreover, we
found a further 54 theories that satisfy a less restrictive
criterion, which in addition permits the presence of modes
that are nonpropagating at large momenta (for which the
propagator decays no faster than a constant), since these
should then completely decouple from the rest of the
theory; this is termed “the alternative PCR criterion” in
Ref. [2], but here (and henceforth), we shall instead refer to
it as “propagating power-counting renormalizable” (PPCR)
to avoid confusion with the well-established notion in the
literature of PCR. The relationship between these two
approaches is discussed at length in Ref. [2] and also briefly
in Sec. IVC below. In Ref. [2], we also analyzed the
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simpler cases of PGT™" with vanishing torsion or curvature,
which are not merely special cases of the full PGT™
Lagrangian, because additional constraints are placed not
only on Lagrangian coefficients but also on the fields.
Although a number of unitary critical cases were identified,
no case was found that is also PPCR.

In seeking gravitational gauge theories that are renor-
malizable, one promising route is to demand local scale
invariance a priori, since such theories contain no dimen-
sionful parameters, and hence no absolute energy scale.
Thus, rather than gauging the Poincaré group, one may
instead gauge the Weyl group so that the action is also
invariant under local dilations. The resulting Weyl gauge
theories (WGTSs) were first discussed in Refs. [4—6]. In this
article, we apply our systematic method for identifying
ghost-and-tachyon-free critical cases to parity-preserving
Weyl gauge theory (WGT"), the ground-state particle
spectrum of which has rarely been discussed in the
literature before.

This paper is arranged as follows. In Sec. II, we give a
brief introduction to WGT™, and in Sect. III, we consider
the unitarity of the “root” theory, where none of the critical
conditions is satisfied. In Sec. IV, we apply our systematic
approach to investigating its critical cases and accommo-
dating the associated additional source constraints as well
as identifying some unitary critical cases that are also
propagating power-counting renormalizable. We repeat our
analysis for WGT™ with vanishing torsion in Sec. V and for
WGT™ with vanishing curvature in Sec. VI. We conclude in
Sec. VIL

We use the Landau-Lifshitz “mostly minus” metric
signature (+, —, —, —) throughout this paper.

© 2021 American Physical Society
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II. WEYL GAUGE THEORIES

The action of an infinitesimal element of the Weyl group
W(1,3) on Cartesian coordinates in Minkowski spacetime
has the form

X = X = x4 et + o X+ pxt, (1)

where ¢ denotes a translation, w*, denotes a Lorentz
rotation, and p denotes a dilation. The corresponding form
variation Sy (x) = ¢'(x) — @(x) of a field ¢ (belonging to
an irreducible representation of the Lorentz group) is
Sop = 86 + wpg, where 55 means the variation under a
Poincaré transformation and w is a dimensionless constant
known as the (Weyl) weight of the field.

One gauges the Weyl group W(1,3) by demanding that
the action be invariant with respect to (infinitesimal,
passively interpreted) general coordinate transformations
(GCTs) and the local action of the subgroup H(1,3) (the
homogeneous Weyl group), obtained by setting the trans-
lation parameters ¢# of W(1,3) to zero (which leaves
the origin x* = 0 invariant) and allowing the remaining
group parameters to become independent arbitrary func-
tions of position. In this way, one is led to the introduction
of the gravitational gauge fields h,*, A%, and B,,
corresponding to the translational, rotational, and dilational
parts of the Weyl group, respectively, which transform
under the gauged Weyl group as Syhy¥ = S5hs* — phyt,
50A*E, = 5(A%E  and 8B, = —0,p.

The gauge fields are used to assemble the WGT
covariant derivative [7,8]

1
D;:(p = hA”D;(p = ]’lA'u (3” + EAABﬂZAB + WB”>(ﬂ, (2)

where w is the weight of ¢ and X,z = —Xp, are the
generator matrices of the SL(2, C) representation to which
@ belongs. The asterisk on the derivative operators is a
common notation used in WGT to distinguish these
operators from their PGT counterparts (to which they
reduce if w or B, vanishes). The corresponding commu-
tators become

1
[D;7 Dﬁ]ﬁ” = ERABﬂUZABw + H;u/W(p? (3)
1
[Dy. Dilep = 3 RP 45Zcpp — T 45 Dep + Hapwop.

4)

where the field strengths have the forms

RAB”U = Z(QUIAABD] + AAEMAEBD]), (5)
H,, =20,,B,, (6)
T*CAB = TCAB + 2B[A5g] (7)

and 7€, =2Dj,b¢, is the usual expression for the
translational gauge field strength in PGT. In the above
expressions, latin and greek indices are related by A" and
its inverse b, with the relation

g,whA”hB” = NaB>» ﬂABbAﬂbBﬂ = G- (8)
One may show that the weights of the translational and
rotational gauge fields are w(hy*) = —1 and w(A*8,) =0
so that w(b*,) =1 and the weight of its determinant
is w(b) =4, but the dilatational gauge field B, itself
transforms inhomogeneously under dilations, as expected.
The weights of the corresponding field strengths are
w(RP ap) = w(Hap) = =2 and w(T*p) = 1.

In the action S = [ bLd*x, the Lagrangian £ is the sum
of terms corresponding to the free gravitational fields and
terms1 containing the matter fields, and has the general
form

L=L;(RPyp. T ap. Hag) + Lni(9. Dip).  (9)

For S to be scale invariant (i.e., of weight 0), the weights of
both L5 and £y must be —4. Restricting our attention to
terms in L that are at most quadratic in the field strengths,
these may thus be quadratic in RP 45 and H,, or consist
of the product of the two, but may not include terms linear
in REP,p or quadratic in 7*C 5.

One can, however, include further terms in the
Lagrangian by introducing an additional massless scalar
field (or fields) ¢ with Weyl weight w(¢) = —1, often
termed the compensator(s) [7], which is usually nonmini-
mally (conformally) coupled to the field strength tensors of
the gravitational gauge fields. For example, terms propor-
tional to ¢>R or ¢>Lr.~, where L. consists of terms
quadratic in 7*C 45, have weight w = —4 and so may be
added to the total Lagrangian [9—-12]. One should also
include a free kinetic term (D*¢)? for the scalar field and
may also add a self-interaction term ¢*, but we shall not
consider the latter here. Thus, also requiring parity invari-
ance, the Lagrangian for free WGT" has the form

"Note that in Refs. [1,2], the definition of £ sometimes
included b.
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1 2 1
Lg=-ApR+ 3 (2r) + r)RA¥PRypep + 3 (r) = r) RY¥PPRycpp + G (2r) + 1y = 6r3)RY¥PPRpap

+ (rg + r5)R¥Ryp + (ry — rs) R Rpy — /R Hup + EHAPH,p +

T

where RAB = RAcgc, R = RAA, and Dj&d) = 8A¢ - BA¢
The parameters in the Lagrangian are dimensionless and set
in combinations that enable a straightforward comparison
with our previous studies of PGT™ [1,2]. Note that the
Gauss-Bonnet identity has been used to remove the term
proportional to R?.

Provided ¢(x) does not vanish anywhere, one can use
local scale invariance to set the field to a constant value
¢o, which is known as the Einstein gauge and is usually
interpreted as breaking the scale symmetry. This inter-
pretation is questioned in Ref. [8]; however, since it is
shown that if one rewrites the Lagrangian in terms of a
set of scale-invariant variables [6], then the resulting
equations of motion are the same as those of Einstein
gauge, yet this approach involves no breaking of the
scale symmetry. In any case, we will adopt the Einstein
gauge ¢ = ¢, here, the most significant effect of which is
that the term %VDZ¢D*A¢ in the Lagrangian becomes
TupiBoB*. We then absorb the ¢3 factor into the
now dimensionful parameters 4, v, t, t,, and 3, without
loss of generality. Note that a ¢* potential term for the
compensator scalar field was not included in the
Lagrangian, since it becomes a constant in the Einstein
gauge, acting like an effective cosmological constant,
which would be inconsistent with considering a
Minkowski background.

WGT is most naturally interpreted as a field theory in
Minkowski spacetime [8,13,14], in the same way as the
gauge field theories describing the other fundamental
interactions. It is more common, however, to reinterpret
it geometrically in terms of a Weyl-Cartan spacetime (W),
which generalises the Riemann-Cartan spacetime (U,)
underlying the geometric interpretation of PGT by incor-
porating local scale invariance [7].

Weyl-Cartan spacetime is a manifold with linear con-
nection (I') and metric (g,,), which satisfy

Dy (0) g = 0, (11)

where the covariant derivative of a field ¢ with weight w is
defined by

D, (D) = (D,(I') + wB,)g. (12)

in which D, (T") = 0, +17,,X? is the U4 covariant deriva-
tive and X”,, are the GL(4, R) generator matrices appropriate

1

> vD gD

1 1 1
(41, + ty + 3N P*T BT o — E(Ztl — 1y + 3PP TABCT ) — g(l‘] =263+ 30)P*T g BT, €, (10)

|

to the GCT tensor character of the field to which the operator
is applied. The semimetricity condition (11) replaces the
metricity condition in U,. Since w(g,,) = 2, the semi-
metricity condition can also be written as D,(I")g,, =
—2B,g,,, from which one finds that the infinitesimal change
of length of a parallel transported vector is proportional to
the length itself, D,(I')V? = —2B,V?*. One may solve for
the connection I', which is given by

7
™, = {yp} + 8B, + 8B, — g,,B" + K*,,,  (13)

where {/ } is the ordinary Christoffel symbol and K*, , is the
contorsion tensor (discussed further below).

A local Lorentz frame at each point on the manifold
describes the tangent space and is determined by the tetrad
basis 1, with its inverse b* ,; these quantities may be used
to convert between coordinate and local Lorentz indices.
The Minkowski metric 745 is invariant under Weyl trans-
formation, so w(nup) =0 and w(hy*) = —1. The local
frame has a connection A4B u» and the covariant derivative
D, (A) has properties similar to (12), where

D;(A)nap =0, (14)
D;(A)p = (D,(A) +wB,)p, (15)

and D, (A) is the covariant derivative in U4. One may also
define the “total covariant derivative” Dj(I" 4+ A) to act on
quantities with both coordinate and local Lorentz indices

Dy(T'+A)p = (D,(I') +D,(A) =0, —wB,)p. (16)
Since the total covariant derivative Dj(I"+ A)V4 of the
local Lorentz components of a vector is a coordinate tensor
in Weyl-Cartan spacetime, the relation Dj(I' 4+ A)VA =
b*,D;5(I" + A)V* should hold, from which one obtains the
so-called tetrad postulate

D; (I +A)b*, = 0;b", + Atp b®, —T°,,b*, =0, (17)
where 0, =0, +wB,. One can therefore express the

affine connection in the quantities corresponding to gauge
fields as
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I_%I/}l = hA/I(ajiju + AABbeI/> (18)

and hence show that the translational gauge field strength is
equivalent to (minus) the geometric torsion tensor

T, =17,-17,, (19)

in terms of which the contorsion is given by

1

K;Mu = 5 (T/ML/ - Tu;t/l + T/lu,u)' (20)

From (18), (19), and (20), one also obtains
Angu = Ay + Ky, (21)

where we define the quantities
Alp, = Dugulosor = Dapy — Babp, + Bgba,,  (22)
1

Ayp, = 5 (capc — ccap + cpea) b, (23)
ety =0,b%, - 9,04, (24)

One then finds that, in contrast to the torsion, the geometric
(Riemann) curvature tensor differs from the rotational
gauge field strength R”,,,, so we denote the former by

oy

7:\)“/}0;41/ = Rpa;u/ + H;wéﬁv

= ayrpm/ - aurpay + Fp/lﬂl—%m/ - Fp/lvr% (25)

op

Unlike R, the curvature tensor 7?/,6”,, is not antisym-
metric in (p, o), while both are antisymmetric in (u,v)

[7,8]. Indeed, one may take advantage of these symmetry
properties by using R, to perform calculations instead of
7~2p(,m,. One should note, however, that, unlike the curvature
tensor in Riemann spacetime V, familiar from general
relativity, neither R, nor R, is symmetric in (po, uv).

III. ROOT THEORY

We now apply the method described in Ref. [1] to the
“root” theory (10), where none of the critical conditions is
satisfied. We first linearize the Lagrangian around the
Minkowski background using Aypc ~ O(t), By ~ O(1),
hat = 6,7 + fa¥, and fup = 845 — agp ~ O(t), where 8
and a denote the symmetric and antisymmetric parts of f,
respectively. Note that we cannot perturb ¢ as ¢, + ¢, for
some excitation €, because we have already fixed the gauge

on ¢. The Lagrangian then becomes
bLg = 200,AB4 5 + O(1?), (26)

where the linear term is just a total derivative. We then
decompose the quadratic part into

bLg = Z a(']P)ing : IS(JP)ij : 5’

J.P.ij

(27)

using the spin projection operators (SPOs) P(J"), ; [15-17].
Section IT of Ref. [1] contains a description of our notation
(note that Eq. (52) in Ref. [1] contains a typographical error
and should read f 45 = 845 — aup, as here, but this does not
affect the remaining contents in Refs. [1,2]). The SPOs for
WGT™ are given in the Appendix A. One then obtains the a
matrices:

A
al07)= 4 (262r, + 1)) " 28)
A 3 3 B
A 2(2k3(ry — r3 +2r4) + 13) 2iv/ 2kt 0 —2v6(t;—4)
a(0*) = 8 —2i\/2kts 41> (t5 — A) 0 4iV3k(tz=1) | . (29)
3 0 0 0 0
B —2/6(t; — 1) —4i\3k(t; —24) 0 4(3t3-31+%)
A A 3 a B
A 20k (ry + ry+rs) + (1 +413)] —‘/Ti(tl—2t3) —‘/Tiik(t1—2t3) @ik(rl—zm —c K>+ 413 —42
) : —Y2(1) = 213) Uty+1)  Lik(ty+13)  —2ik(ty +13) 2v2(t5— 1) |
Y2ik(t) —213) —2ik(ty+13)  2E(t+13) =3 +13)  —2iV2k(t-2)
® —2ik(t; —213) Zik(ty+13) =23 (t4+1)  3KE(h+13) 2iv/2k(t3 = 4)
B —c k? 44t — 4 2V2(t5—2)  2iV2k(t;—1) —2iV2k(t3—1) 4(3t3—3A+L+K%)

(30)
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A A a
1+ A $(6k2(2r3 + 15) + 1) + 415) %\/i(tl —21) _%i\/ik(tl = 21) (31)
a = ’
$V2(1 —21) 3t +1) —3ik(t, + 1)
a Liv2k(t, - 21y) 2ik(t) + 1) 213 (1) + 1)
A
a(27) = s (32)
A (2K +3)
3
a2t) = A 2(k2(2r) = 2rs + 1) +4)  iV2ke . (33)
3 —iv/2kt, 2k%(t; +4)

In general, if any of the matrices a(J¥) in the decom-
position (27) are singular, then the theory possesses gauge
invariances. One may fix these gauges by deleting rows and
columns of the a matrices such that they become non-
singular. The elements of the resulting matrices are usually
denoted by b;;(J"). For WGT™, some of the a matrices given
above are indeed singular. In particular, one may delete the
third row/column of a(0"), the third and fourth row/column
of a(17), and the third row/column of a(1") to obtain the
corresponding nonsingular » matrices. The singular nature
of these three a matrices results in them having both null
right and left eigenvectors, which give us gauge invariance
and source constraints, respectively. For each spin-parity
sector, the null left eigenvectors are given by

0*: (0,0,1,0) (34)
1= (0, —ik,0,1,0). (0, ik. 1,0,0) (35)
1+: (0,—ik, 1), (36)

where one should note that the B field is not involved, since
the corresponding vector component is always zero, and the
remaining components are the same as those found for
PGT". This is no surprise, since the dilation gauge invari-
ance has been fixed by adopting the Einstein gauge, and
the remaining symmetry should indeed be local Poincaré
invariance.

The null eigenvectors may be used to derive the form of
the associated gauge invariances and the corresponding
source constraints for WGT™, which are found to be the
same as those in PGT™, as expected. The gauge invariances
are given by

6hAB = u[AB] + ikBUA (37)

0Appc = ikcujap, (38)

I
where uj,p) and v, are some arbitrary fields, and the source
constraints have the form

Aoup =0 (39)
ikATABC - G[AB] = 0, (40)

where 0,5 is the source current of f,p and z4pc is the
source current of Aypc.

The requirement that a theory is free from ghosts and
tachyons places conditions on the b matrices, and one must
consider the massless and massive particle sectors sepa-
rately. For the massless modes, one requires only that there
be no ghosts. As discussed in Ref. [1], this is determined
by considering the coefficient matrices Q,, in a Laurent
series expansion of the saturated propagator about the
origin in momentum space. For WGT™, one finds that all of
the entries Q,, vanish identically for n > 1, and so the
saturated propagator does not have a higher pole at k> = 0.
The nonzero eigenvalues of Q, are found to be

1+ 6k 1 4 8|k
P 21

(41)

and so there are 2 degrees of freedom in the propagating
massless particle sector.” The massless no-ghost condition
is that all eigenvalues of Q,, are non-negative, and so one
requires simply that

A>0. (42)

Turning to the massive particle sector, one must first
determine the particle masses by calculating the determi-
nants of the b matrices,

Note that the expression for the eigenvalues is not unique but
depends on the form chosen for the source constraints. To be
precise, one can obtain another set of the null vectors n; in
Eq. (30) of Ref. [1] by linear combination.
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det [b(07)] = 2k%ry + 215, (43)
det [b(0T)] = 16(r; — r3 + 2r4)(t3 — A)vk?
— 8A[12(t5 — A)A + t3u]k?, (44)
detlb(17)] = =3 (11 +15)[6} = 801 + ra + ro) e

4
+§{6C1f1<f3 —/1) + (rl +r4+r5)

X [12(t; = A)(t; + A) + (1) + t3)v]
+ 61,138 k> + 21, [124(13 — A) + 131, (45)

det [b(17)] = = (2r3 + r5)(t) + 1) k* + 21115, (46)

Wl &~

det [b(27)] = 2r k> + 14, (47)
det[p(27)] = 4(2r) = 2r3 + 14) (1) + A)k* + 21,4k%, (48)

from which one finds that there is no massive mode in the
0™ sector, and the particle masses in the other sectors are
given by

m(07) = —%, (49)

1222(t3 — A) + t34

2(0T) = ,
" ( ) Z(rl—r3+2r4)(t3—/1)u

(50)

m?(17) = (the two roots of det [b(17)]),  (51)

o 3t
() = e ) (52)
m(2) = -5k (53)
m2(2) = - o (54)

2(2}’1 —2}"3 + r4)(t1 +/1) ’

The no-tachyon conditions are then simply m?(J”) > 0.
We give the conditions for the 1~ sector in Appendix B
because of the length of the expressions involved. Note also
for the 17 sector that one requires the two roots of (45) to be
distinct in order to avoid a dipole ghost. Hence, in each
sector, the masses are distinct, and so one can apply
Eq. (45) in Ref. [1] directly to obtain the massive no-ghost
conditions,

07: r, <0, (55)
0+: (r1 —r3 + 27’4)(13 — /1)/11/2{24(2‘3 — 1)13
+ 12(7’1 — I3 + 2r4)(l‘3 —A)/IIJ
+ [(rl — I3 + 2r4)t3 + t3ﬂ - /12]U2} > 0, (56)

1+: (2r3—|—r5) >0, (57)
21y <0, (58)

270 A2r = 2r3 4+ 1) (A4 1)
X[(2r1—2r3—|—r4)t1—/12—/1t1] <0, (59)

where again we do not write out the condition for 1~
because of its length but instead give the relevant expres-
sion in Appendix B.

The combined no-ghost-and-tachyon conditions for each
sector other than 1~ are then

0 : t2>0, 7"2<O (60)

0+: r1—|—2r4>r3,(t3—i)/lv[lZ/I(t3—ﬂ)—|—t3u]>0 (61)

1+: 2)’3 + rs > 0, t1t2(t1 + tz) <0 (62)

2_:t1>0, r1<0 (63)

2+: 2r1—|—r4>2r3, /Ul(l—'—tl) < 0. (64)
For the 1~ sector, we give the combined condition in
Appendix B and show that it does allow some ranges of the
parameters, but we are unable to obtain a simplified
expression for it. Note that, except for the 0" and 1~
sectors, the combined condition in each of the other spin-
parity sectors is exactly the same as originally found in
Ref. [3] for PGT™.

Finally, if we consider all the no-tachyon and no-ghost
conditions from all the massive sectors, we find that they
cannot be satisfied simultaneously. Thus, the root theory
must contain a massive ghost or tachyon.

IV. CRITICAL CASES

If the parameters in the action satisfy certain “critical
conditions,” the particle masses (49)—(54) can become zero
or infinite, and the resulting critical cases may possess
additional gauge invariances, so one may have to re-
evaluate the no-tachyon and no-ghost conditions for both
the massless and massive sectors.

A. Unitarity

In attempting to apply the method in Ref. [1] to obtain all
the critical cases of the root WGT™ theory, one finds that
some of the coefficients in Egs. (44) and (45) cannot be
factorized into linear combinations of the parameters.
Consequently, the method in Ref. [1] cannot be applied
straightforwardly to obtain all the critical cases, and one
must check carefully where it is applicable. For example,
one of the factors in the coefficient of the k% term in (44) is

024034-6



GHOST- AND TACHYON-FREE WEYL GAUGE THEORIES: A ...

PHYS. REV. D 104, 024034 (2021)

12([3 - l)l,{ + 1y, (65)

which cannot be written as the product of factors that are
linear in the Lagrangian parameters. Indeed, for (65) to
equal zero, one has the two solutions:

12(t; = A)A
I3

with 73 #0, (66)

f=4=0. (67)

It is therefore not as straightforward to apply the condition
12(#3 — )4 + ts3v = O by substitution. Moreover, the sec-
ond solution (67) requires one to eliminate 2 degrees of
freedom in the parameters simultaneously and thus breaks
the hierarchy of the “tree” of critical cases discussed
in Ref. [1].

In general, one finds that allowing any of the Lagrangian
parameters v, &, or ¢; in (10) to be nonzero introduces
similar problems. It requires further improvement of our
systematic method to accommodate such cases, and so here
we set v = £ = ¢; = 0 to avoid these difficulties. Thus, for
the remainder of this section, the “root theory” refers to (10)
with v =& =¢; = 0. As we will show below, however,
one may nevertheless construct a theory with v # 0 and/or
& # 0 from a theory with v = £ = 0, provided its a matrices
are ‘“‘nonmixing.”

Starting from the root theory, we systematically
identify 862 critical cases (excluding the “vanishing”
Lagrangian, for which all parameters are zero). Of these
critical cases, we find 168 are free of ghosts and
tachyons, provided the parameters in each case satisfy
some additional conditions that preclude them from
generating another critical case; this general issue is
discussed in detail in Appendix C.

B. Comparison with previous results

We now compare our results with the only other example
of a unitary WGT™" theory of which we are aware in the
literature [18]. This has the Lagrangian

1 1
L=—-1¢*R+ aR? - 1B Hu +5D9D"p. (68)
which on adopting the Einstein gauge becomes
L= iR +aR? — mm, + L gap, B 69
__¢0 +a _Z ;w+§¢0 u . ( )

Thus, the B field is decoupled from the other gauge
fields, and so the theory can be viewed as the combina-
tion of PGT" with £ = —A¢3R + aR* and Proca theory
Lp, = —1H"H,, +3¢}B,B* for a massive vector field.
The Proca part is well known to be unitary. Using
the Gauss-Bonnet identity, the PGT™ part may be shown

to correspond to the critical case ri=r,=2r3—rs;=
2r3+rs=t;+t,=t;+t3=t;+4=0,r3#0,4#0. This a
type C critical case of the root PGT™ theory with no
massive mode and massless modes with 2 degrees of
freedom; the no-ghost-and-tachyon condition is simply
A > 0. Therefore, provided this condition is satisfied, the
theory (68) is indeed unitary.

One should note that the presence of the kinetic terms for
the B and ¢ fields means that (68) is not a critical case of
our redefined WGT' withv = é = ¢; =0 in (10) but is a
critical case of the “full” WGT™ root theory without this
constraint on the Lagrangian parameters. In particular,
Eq. (68) belongs to an extended set of theories with v #
0 and & # O that can be separated into a PGT™ part and a
dilaton part, which we discuss below in the context of
propagating power-counting renormalizability. We note,
however, that the PGT™ part of (68) is not listed in Ref. [2]
because one cannot obtain nonmixing b matrices by
deleting rows and columns from its @ matrices.

C. Propagating power-counting renormalizability

In addition to possessing no ghosts or tachyons, a healthy
physical theory should also be renormalizable. The first step
in assessing whether this is possible is to determine whether
the theory is power-counting renormalizable.

As discussed in Refs. [1,2], the key quantity for
determining whether a theory is PCR is the propagator

D="Y"bjP("),;. (70)
J,Pi,j

In particular, if the b matrices are block diagonal, with each
block containing only one of the fields A, 3, a, and B, then
there are no mixing terms in the (gauge-fixed) Lagrangian,
and it is straightforward to obtain the propagators for these
fields separately from D. Extending the original PCR
criterion used by Sezgin and van Nieuwenhuizen in
Ref. [3] would require the propagator of the A and B
fields to decay at least as quickly as k=2 at high energy, and
those of the 8 and a fields to fall off at least as k™* (see
Appendix D). By contrast, we proposed an alternative
criterion in Refs. [1,2], which we now term propagating
power-counting renormalizability, that in addition allows
the presence of nonpropagating fields at high momenta (for
which the propagator decays no faster than a constant).
Since the physical basis of power-counting renormaliz-
ability relates to the divergence at large momenta of
integrals describing the propagation of particles around
closed loops in Feynman diagrams, it seems physically
reasonable to allow for the presence of modes that do not
propagate at large momenta, since these should be inte-
grated out and not contribute to the loop integrals. PPCR is
less restrictive than PCR, and it may therefore retain some
theories that are eliminated by PCR erroneously. The
ultimate consistency of these two approaches in identifying
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TABLE 1.

Parameter conditions for the PPCR critical cases that are ghost- and tachyon-free and cannot be constructed directly from

PGT. The parameters listed in “Additional conditions” must be nonzero to prevent the theory becoming a different critical case.

No. Critical condition Additional conditions No-ghost-and-tachyon condition
1 FL 53—yt A=0 ry 13,213 + rs, r3 +2rs, 1, 13 ty > 0,1, <0,r3(2r3 4+ r5)(r3 + 2r5) <0
2 ra,ry =13, ra ity A=0 rir s 2r + s, 13 ri(ry+rs)(2r; +r5) <0

3 1,125 = Tyt 1, A =0 r3,2r3 4 rs,r3 + 2rs, 13 r3(2r3 +rs5)(r3 +2rs5) <0
4 13 = It 1, A=0 ra, r3,2r3 +rs,r3 4+ 2rs, 13 r3(2rs 4+ rs)(r; +2rs) <0
5 r],rz,%—m,tl,ﬂ:() r3,2r3+r5,r3+2r5,tz,l3 r3(2r3+r5)(r3 +2r5) <0
6 rl,r3,r4,r5,/1=() r2,t1,t2,tl+t2,t3 12>0,r2<0

7 T, F3, 14, rs,t +1,A=0 s, 1y, 13 r, <0,1 <0

8 Ty, 71 — 13,14, 7] + 15,1 +1,A=0 T, ts 13 t; >0,r; <0

9 T1, 73,74, 75,1,A =0 7, by, 13 t,>0,r, <0

10 r,,r3,r4,tl,/1:0 I, I's, 1, I3 t,>0,r, <0

11 rl—r3,r4,2r1+r5,t1,/1:0 ry, rp, [2,[3 12>0,r2<0

12 r,,%—r4,2r3+r5,t|,i:0 ry, I3, tz, t3 12>0,r2<0

13 rLE =T 5+ s, A=0 Ty, 13, by, I3 t,>0,7,<0

particular theories as PCR and PPCR is discussed at length
in Ref. [2], although the second approach is preferred since
it identifies further critical cases that reduce to those
identified by Sezgin and van Nieuwenhuizen’s criterion
at linear level after integrating out any nonpropagating
modes. We therefore again adopt the latter method here,
which is consistent with our previous work.

On performing this analysis, one finds that most of the
critical cases identified as PPCR are identical to those listed
in Table I, III, or V in Ref. [2] or are a PGT" without any
propagating mode (which were not listed in Ref. [2]) but
with an additional propagating dilaton. One may under-
stand the reason for this by first expanding the 72 terms in
(10) to obtain

TZBCT*ABC — TABCTABC + 4BATCAC + 6BABA, (71)
TipcT PN =T ppc TP = 2B, T = 3B*B,,  (72)
TEp T CA =TEp T+ 6B, T +9B"B,. (73)

The BT terms are the only possible origin for mixing terms
containing the B field after linearization, and so there will
be no mixing terms in the a matrices if these terms vanish,
for which the condition on the Lagrangian parameters is
Moreover, the same condition ensures that the B? terms
from 7*? also vanish. Hence, if t; = 4, the R + R> + T*2
part of the WGT™' Lagrangian is identical to its PGT™
counterpart with the replacement 7* — 7.

The PGT™ critical cases identified as PPCR in Ref. [2]
and having t; = 1 are:

(1) PGT* with 2 massless degrees of freedom and a
massive mode: cases 1, 3, 4, 6, and 7 in Table I
of Ref. [2];
PGT* with only 2 massless degrees of freedom:
cases 9-13, 17, and 19 in Table III of Ref. [2]3;
PGT™ with only massive mode(s): cases 26-28, 30—
36, 3840, 55, and 58 in Table V of Ref. [2] (these
cases all have 1 massive mode, either 0~ or 27).
If the PGT" part of a WGT™ satisfying 73 = A has no
propagating mode, then the corresponding WGT™" can at
most have a propagating B field. There are 37 critical cases
of PGT" satisfying #; = A and containing no propagating
mode (these are not listed in Refs. [1,2]). Requiring & # 0
in the corresponding WGT™" Lagrangian (10) ensures that
they contain a propagating dilaton. The dilaton part of
WGT™ Lagrangians satisfying 73 = 4 is simply

2
3

ﬁB = iHABHAB’ (75)

which is that of a massless 1~ vector.

For all cases for which the a matrices are nonmixing,
there are no cross-terms of B and the other fields, and so
adding a mass term for B in the Lagrangian does not affect
the other fields. Hence, if one adds the term D} ¢y D*4¢) to
such a case, the only effect is either to make an already
propagating B field massive or to add a nonpropagating B
field. In the former (and more interesting) case, the
corresponding dilaton Lagrangian is a Proca theory in
the Einstein gauge (¢ = 1)

Lp = EHABH —1—%1/3”3”, (76)
and the corresponding no-ghost-and-tachyon condition is
£ <0 and v > 0. With these extensions, one can thus

3We note that cases 9, 10, 11, and 13 in Ref. [2] satisfy the
original criterion used by Sezgin and van Nieuwenhuizen in
Ref. [3] to be PCR and are discussed further in Appendix E
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TABLE II.  Particle content of the PPCR critical cases that are ghost- and tachyon-free and cannot be constructed directly from PGT.
The column “b sectors” describes the diagonal elements in the b~' matrix of each spin-parity sector in the sequence
{07,0%,17,17,27,2"}. Here, it is notated as @" or ¢, where ¢ is the field, —n is the power of k in the element in the b~
matrix when k goes to infinity, » means a massive pole, and / means a massless pole. If n = oo, it represents that the diagonal element is

zero. If n < 0, the field is not propagating. The *

” notation denotes the different form of the elements of the »~! matrices in different

choices of gauge fixing, and the “&” connects the diagonal elements in the same »~! matrix. The superscript “N” represents that there is

nonzero off-diagonal term in the »~! matrix.

Massless
mode degrees Massive
No. of freedom mode b sectors
1 2 0~ {A% A7 |B°, (A7 & A)N|(A7 & 87)N| (A7 & af )V |(A} & BY)N, (A} & AP)N|(A? & af )N, x, AT}
2 2 [ AYGFIBY, (47 & AY)N|(A7 & 8)N](A7 & a?N|(A7 & BY)Y. 42 42, x}
3 2 [ AVJ82[BY. (47 & AD)N| (A7 & 89)V] (A7 & 7)Y (A7 & BY)N. A2, x. A7)
4 2 {42, 0182 |BY, (A7 & AD)N|(A? & 82N (47 & a?)¥|(A? & BO)M. A7, x. A7)
5 2 {AD, AV[22|B". (A2 & A)N|(A7 & 82)N](A7 & a})N|(A7 & BY)N. (A7 & A)N|(A7 & a)N, x, A7}
6 0 07 {AZAV[7[BO, (A" & A")N|(A” & 87)N|(A0 & a?)N|(A” & BO)N| (8} & B)|(af & BO)N,
(4° & AON|(A° & a?). 4°. A°]8})
7 0 07 A3 AYE|BY, (A° & A%)N|(A° & 87)N|(A® & a)N|(A° & BO)N| (8} & BO)N|(af & BO)Y,
(A® & AON|(A® & a?)N, A0, A0|82}
8 0 2- {A°,A%87|B°, (A° & A%)N|(A” & 87)N|(A° & af )N|(A” & B°)N|(8} & BO)N|(af & BT,
(A & AZ)N|(A® & af )N, A7, A%|87}
9 0 0" {A2.A"8}|B". A°|87|a?|B". A%fa?. x. x}
10 0 07 {ARAVJSRIBY, (A7 & AD)N|(AP & 82N (47 & o[ (A7 & BN, (A & AV (A2 & a?)N. ., x)
1 0 07 (AL AV (A} & AD)N|(A? & 87)N|(A7 & a?)N|(A7 & BY)N, A%]a?. A7 X}
12 0 07 {A2AV[SFIB. (A7 & AV)N|(A7 & 82)N[(A7 & 0PN (47 & BY)Y. AV)a?, x. A}
13 0 0" {A2.A°8|B°.A°|87|aF[B". (A} & AD)N|(A} & a2)N. x. AT}

construct more tachyon-and-ghost-free and PPCR cases for
WGT™ from the PGT* cases with #; = A.

There are, however, some PPCR critical cases of WGT™
that cannot be constructed directly from PGT* in the
manner described above. These cases have nonmixing b
matrices, but their @ matrices contain mixing terms. In
particular, this occurs when there are BA mixing terms in
the linearized Lagrangian. Since the B field can be fixed
using the additional gauge invariance of the critical case,
there are no BA terms in the b matrices. We list these further
PPCR critical cases in Tables I and II. Note that none of
these cases is PCR.

V. TORSION-FREE WGT*

In addition to the general case of WGT™, one may also
consider the simpler cases with vanishing torsion or
curvature, which are not merely special cases of the general
|

3
4 2
2(0%) = 8(ry — 13+ 2r4)k* — 42k
3 0
B —81\/§(r1 —r3 —|—2r4)k3

WGTT action, because additional constraints are placed not
only the coefficients but also on the fields. In this section,
we consider the case of vanishing torsion.

If one sets the torsion 7 *° L to zero, then one sees from
(21) that the gauge fields A*®,, h,*, and B, are no longer
independent. Indeed, Eq. (21) gives an explicit expression
for the A field in terms of the B and b fields. On making this
substitution in the Lagrangian, one may then apply the
same method as in the previous section to investigate
torsion-free WGT™ and its critical cases. In this simpler
theory, one need not setv = £ = ¢; = 0, since one does not
encounter critical conditions that are nonlinear in the
Lagrangian parameters. Hence, we do not adopt this
restriction in this section.

A. Root theory

In this case, the a matrices of the root theory (10) are

3 B

0 81\/?(1’1 - r3 + 27‘4)/(3 ’ (77)
0 0

0 24k*(ry—r3+2ry) + 124+ v
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3 a B
=" (0 . %)
T 1o oo 0 ’
B 0 0 4k%(cy+2r +2r+2rs+& + 124 +v
a
1) = , 79
a(1™) = | 0) (79)
3
+ pu—
a(2%) 3 (4(2r1 —2r3+r4)k4+2/1k2) ’ (80)

where the SPOs are obtained from those listed in
Appendix A by simply deleting the rows and columns
corresponding to the A field. The a matrices for 0~ and 2~
sectors have no element, so we do not list them. One can fix
the gauge simply by removing the rows and columns whose
elements are all zeros from the a matrices, to obtain the
corresponding b matrices. These may then be inverted to
obtain the saturated propagator.

Considering first the massless sector, the nonzero eigen-
values of the Laurent series coefficient matrix Q, are

1

o (81)

1
ﬂl ’
Thus, the theory has two massless degrees of freedom, and
the no-ghost condition for the massless sector is simply
A>0. (82)

Turning to the massive sector, the determinants of the b
matrices are

det [H(07)] = 8(ry — r3 + 2rvk* —4A(122 4+ 1)K, (83)

det[b(17)] =4(cy +2r +2r4+2rs+ K>+ 124+ v, (84)

det[b(27)] = 4(2r; —2r; + r4)k4 + 20K2, (85)

from which one obtains the masses
m2(0+) B (124 4+ v) (86)

S 2(ry =y 2r)]
—12A—v

2(17) = , 87
m( ) 4(C1+2V1+27’4+2r5+§) ( )

A
m2(2+) = - (88)

22r; =2r3+ry)°

The no-tachyon conditions m?(J¥) > 0 may then be read
off from the above expressions. In each sector, the masses

are distinct, and so one can again apply Eq. (45) in Ref. [1]
directly to obtain the massive no-ghost conditions

1 642 3
0r: — ->0, 8
42 (ry —rs3 +2ry)1? T (89)
1':c1—|—2(r1—|-r4—|—r5)+§<0, (90)
2T 1< 0. (91)

One thus finds that the combined no-ghost-and-tachyon
conditions for the massive sector are

0F:ry +2ry > r3, (124 +v) > 0, (92)
1711244 v>0,¢; +2(r +rs+715) +E<0,  (93)
2+22r1+r4>2r3, A <0. (94)

Since the conditions in the massive 27 sector contradict
the condition (82) in the massless sector, the theory must
have a ghost or tachyon.

B. Critical cases

We now consider the critical cases of torsion-free
WGT*. As discussed in detail in Ref. [1], one finds all
conditions that cause a theory to be a critical case. While
some conditions may cause criticality in more than one
way, one can still divide all the critical conditions into three
categories, which we called type A, B, and C conditions.

Considering first the root theory, it becomes critical and
thereby loses 1 degree of freedom in the Lagrangian para-
meter space if any of the following expressions vanishes:

typeB: 4,121+ v, (95)

type C: 2ry = 2r3 + 1y, 1| — 13 + 21y, v,

¢+ E42r + 214 + 2rs. (96)

The two critical cases resulting from the type B conditions
(95) of the root theory contain ghosts or tachyons, but some
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#1 |2/0+ 17,24
ML 215(8)_i
AT 12 A+v
i G #5"
M1 _21(0) M {1(0)
2r’1+r4\ /%1+2f4
\ ri+2r4 A ri+2ry
v
#4 1] piriagpie R ety "/#7 """"""
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M |>1(0) 12108 120(0)1 '.:’Jﬁl)_' M IST(1);
| rs v ‘ c'q-r'1
r ri+2r r1+2r4
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FIG. 1. Critical cases of torsionless WGT™ resulting from type

A or type B conditions. Each node represents a critical case,
except the top and bottom nodes, which represent the root theory
and the zero Lagrangian, respectively. Each arrow points from a
node to one of its critical cases. A solid arrow represents type A
critical condition, and a dashed arrow represents type B. The
labels on the arrows are the critical parameters; for brevity, the
variables | = r; —ry and ¢} = ¢; + 2r; + 2rs + £ have been
defined. The critical condition of a node can be obtained by
setting all the critical parameters to zero in the path from the root
theory to that node, and the conditions are path independent. In
each node, the first line is in the format “degree of freedom of
massless mode or ‘dip.G’ if there are massless dipole ghosts/
massive mode,” and the second line is “number of child critical
cases resulting form type C conditions (number of no-ghost-and-
tachyon cases among them),” which are not shown but are listed
in Table III. The dashed/solid frames indicate those cases that
contain any/no ghost or tachyon. The thick frames indicate PPCR
cases, and the thin frames indicate those that are non-PPCR or
have mixing b matrices. The M symbols under the numbers at the
left of the nodes indicate that those nodes must have mixing b
matrices.

of their descendant critical cases, all of which result from type
A or C conditions, are free from ghosts and tachyons. The
critical cases resulting from type A and type B conditions
of torsion-free WGT™ are shown in Fig. 1, whereas those

TABLE III.  Critical cases of torsion-free WGT™ resulting from
type C conditions. The first numbers in the column “No.”
correspond to the numbers in Fig. 1, and the corresponding
nodes are the parent critical cases of the rows. The “Critical
condition” column indicates the critical condition with respect to
the parent case. For example, “1-3” is the third critical case
resulting from type C conditions of case 1. The symbols o/x
indicate whether it is possible for the theory to be free of ghosts
and tachyons. The — symbols denote that there is no propagating
mode, and the M symbols indicate the cases with mixing b
matrices.

No
Critical Massive ghost nor
No. condition mode tachyon PPCR
1-1 v 1-,2F X M
1-2 ry 42y 1-,2F X X
1-3 ry 4 2ry,v 1-,2F X X
1—4 ¢l +2r, 0,2+ x M
1-5 v, ¢ +2ry 2% X M
1-6 ry 4 2ry, ¢+ 2ry 2+ X X
1-7 ri+2ryv,c 21y 2+ X X
1-8 26+ 1y 0%, 1° o M
1—9 27’1 + Fq, U 1~ o M
1-10  2F + 1y 1) + 214 1- o X
I-11 2F 4+ ry, Py + 2r4,v 1~ o X
=12 2r 4+ ry, ¢} + 2y 0" o M
1-13 2r) + rq,v, ¢ +2r4 X ° M
1-14 28+ ry P 21y, X o X
¢ +2ry
1-15 28 g7 21y, X o X
v,c+2ry
2-1 ch +2ry X X M
3-1 2r + 1y X X M
4-1 c| —4r} X - -
5-1 )= X X o
7-1 r X o X
8-1 26, + 1y x o M
9-1 ) X - -
13-1 r X o X

arising from type C critical conditions are listed in
Table III; those cases that are ghost- and tachyon-free
are indicated, as described in the captions. One sees that
four cases in Fig. 1 are free from ghosts and tachyons,
and nine critical cases in Table III share this property.
We also note that there are 15 critical cases of the root
theory in total that result from type C conditions, which
correspond to self-consistent combinations of those in
(96). As is clear from (88), those critical cases resulting
from type C conditions and for which 2r; —2r; +r, =0
are free from ghosts and tachyons because the 2% massive
mode is not propagating.

C. Comparison with previous results

The particle spectrum of a subset of torsion-free Weyl-
invariant higher-curvature gravity theories has been studied

024034-11



LIN, HOBSON, and LASENBY

PHYS. REV. D 104, 024034 (2021)

previously by Ref. [19], both in (anti-)de Sitter and
Minkowski backgrounds (to our knowledge, this is the
only other investigation of a torsionless WGT ground state
in the literature). For n = 4 spacetime dimensions, the
coefficients (a, 3,7, €, 0) in their Lagrangian (see Egs. (1),
(7), and (14) in Ref. [19]) are related to those in our
notation used in (10) by

1 1
a==5rtrs :Z(M—rs)’

ﬁ:”4+r5:—501,
1

725”1,

€=¢&—(rq +r5+2r),

c=1, (97)

together with the conditions

rio=ry, v=-—L (98)
In particular, one should note that the Lagrangian in
Ref. [19] is written in terms of the curvature tensor
7?”,,,,,;. As discussed in Sec. II, this has even fewer
symmetry properties than the rotational gauge field strength
tensor R,,,, used in (10). Consequently, there are further

quadratic combinations of 7?”,,/,(, that could appear in the
Lagrangian in Ref. [19], but only three such terms are
included. Consequently, there are fewer degrees of freedom
in the parameters of their Lagrangian, as compared with
our Lagrangian in (10), as is evident from the above
parameter identifications. Moreover, since 7~€M,,pg has many
fewer symmetries than the standard curvature tensor in
Riemannian spacetime V,, the appropriate form of the
Gauss-Bonnet identity differs from the usual formula that is
assumed in Eq. (34) of Ref. [19] (see, for example,
Refs. [8,20]); fortunately, most of the conclusions pre-
sented in Ref. [19] do not depend on this expression.
The constraints on our parameters in (97)—(98) do not
coincide with any of the critical conditions in any critical
case, so the structure of our “criticality tree” of torsion-free
WGT is not affected. In Ref. [19], it is found that about a
four-dimensional Minkowski background the WGTSs con-
sidered are unitary, provided (in terms of our parameters)

2(ry = r3) +ry =0, (99)

ry—ry+2ry, =0, (100)
A>0. (101)
Both equalities coincide with our type C critical conditions,

and they eliminate 2" and 0 massive modes, leaving a 1~
massive mode. The condition on A also matches ours, so

their result is consistent with our critical case 1-10 of the
root theory, listed in Table III.

It is concluded in Ref. [19], however, that the theory has
a massless spin-2 field and a massless spin-0 field, and so
the massless sector has 3 degrees of freedom, whereas we
find just 2. This difference may result from the fact that they
employ a gauge fixing condition D;,B* = 0 on the B* field
(their A field), described in their Eq. (30), but then treat
this field as if it is unconstrained when reading off the
particle content from their Eq. (59). This situation is
analogous to that in Stueckelberg theory, as discussed in
Appendix B in Ref. [2]. If one fixes the gauge by setting
0-B =0, then the Lagrangian appears to describe a
massive vector B and a massless scalar ¢p without inter-
action. Conversely, if one instead sets ¢ =0, the
Lagrangian contains only a massive vector without con-
straint. Thus, one should interpret the theory as containing
either a massive vector or a massive vector with a
Stueckelberg ghost and a Faddeev-Popov ghost.

Also, it is claimed in Ref. [19] that unitarity requires both
(99) and (100) to hold, whereas we require only the former
condition, if no type A or B critical condition is satisfied.
The condition (100) is necessary in Ref. [19] because the
authors do not adopt the Einstein gauge and so require the
higher-derivative Pais-Uhlenbeck term (CJ®,)? to vanish,
where @; is the linearized ¢. By contrast, all the higher-
order poles in our saturated propagator vanish due to the
source constraints, and so the condition (100) is not
necessary in our case. This difference may be worthy of
further investigation.

D. Propagating power-counting renormalizability

We determine whether each critical case is PPCR using
the same method as discussed in Sec. IV C. The results are
presented in Fig. 1 and Table III. In particular, we find three
critical cases in Fig. 1 that are both PPCR and contain no
ghost nor tachyon; these are indicated by nodes with thick,
solid frames. We note that each of these theories can be
gauge fixed to contain only the B gauge field. It is also
worth highlighting that, perhaps as a consequence of this,
there is no simultaneously unitary and PPCR case in
torsion-free PGT™ [1], and so these three theories may
be worthy of further investigation. No critical case in
Table III is both PPCR and unitary.

VI. CURVATURE-FREE WGT*

In this section, we consider WGT™ with vanishing cur-
vature. This is a more subtle condition than the equivalent
case in PGT', which was discussed in Ref. [1].4 As
mentioned in Sec. II, the geometric (Riemann) curvature

“There is a typographical error in Fig. 2 in Ref. [1]. The node
t; + t, = 0 has 3 massless degrees of freedom rather than 2. The
correction does not affect the remaining contents in Ref. [1].
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tensor 7~2f’(w in Weyl-Cartan spacetime differs from the
rotational gauge field strength R”,,,,, so it is unclear which
should be set to zero. Here, we consider only the case in
which the latter vanishes, since this may imposed in the
same way as in PGT by simply setting A4, = 0, since the
expression for the rotational gauge field strength in terms of
the rotational gauge field are identical in PGT and WGT. In
this simpler theory, one sees from (10) that one requires
only the Lagrangian parameters &, v, ¢4, t,, and t3, since one
can set 4 = 0 without loss of generality.

3
.8 SR (1) + 13)
a(l”) = a —2k2(t) + 13)
B 2i\/2kty
. a
W= @ewrw) 0%
3
a(2+):§ aier) (105)

As in the torsion-free theory, the SPOs are obtained from
those listed in Appendix A by deleting the rows and
columns corresponding to the A field, and the a matrices
for the 0~ and 2~ sectors contain no elements. After fixing
the gauge by deleting rows and columns, one obtains the
nonsingular » matrices, which may be inverted to obtain
saturated propagator.

Considering first the massless sector, one finds that the
Laurent series coefficient matrix Q, is nonzero in this case,
and the condition for it to vanish is

12t (t; — 2t5)t
I/:_z 1(] 2)3 ) (106)
2 =21ty + 415 + bty

One further finds that the Laurent coefficient matrix Q,
cannot be positive definite and contains eight nonzero
eigenvalues, which are too complicated to give here.
Consequently, the root theory must contain ghosts in the
massless sector.

One can, however, continue to analyze the massive
sector. The determinants of the » matrices are

det [b(0)] = 41502, (107)
det [b(1°)] :%[t3l/+t1(12t3 Lol (108)
F2 0+ ek, (109)

A. Root theory

In this case, the a matrices of the root theory are

3 3 B
3 4kt 0 4i\/3kt
a(0%) = 3 i3kt . (102)
3 0 0 0
B —4i\/3kty; 0 12t; +v
a B
2k2(t) + 13) —2i\/2kty
) , (103)
gk (l] +t3) 2l\/§k[3
—2iV2kty; 1213 + v+ 4k%E
[
2 2
det [b(1+)] = g(ll + tz)k R (110)
det [b(21)] = 21, k2. (111)

Only the 17 sector contains a massive mode, with mass

mz(l_) _ —12t1t3 - (tl + t3)IJ’
4(t +13)¢

(112)

and the no-tachyon condition is m?(17) > 0. Applying
Eq. (45) in Ref. [1] directly, in this case, the no-ghost
condition is

170 (1 + B)[120185 + (1) + t3)v)E{ (1) + 13)

X [12t113 + (t; + t3)v] — 7263E} < 0. (113)

The combined no-ghost-nor-tachyon conditions for the
massive sector are thus

121t
]

<0, )
5 H+ 13

(114)

but one should recall that the massless sector always
contains a ghost.

B. Critical cases

The critical cases of the root theory occur when any of
the following expressions vanish:

type A: £, 1 + b, 13, U, (115)
typeBZ 12t1[3 +t11/+t31/, (116)
typeC: t; + 13, &. (117)

024034-13



LIN, HOBSON, and LASENBY

PHYS. REV. D 104, 024034 (2021)

M| 3/x M| 2017 #41 9/x 1
-0(0) -3(3) 1-0(0);
/N / N\ /N
¢ 3 H 3 i I3
/ to /& )&Hﬂz \
#6 ‘ N
#511/x M| 2/ #T1 3/x 81 4/x #} 7/x 1
-0(0) -0(0) -0(0) -0(0) 150(0)i

5"
v
~
=
+
[

#10] 0/x 1 #11] 2/x #12[ 1/x #13[ 2/x

FIG. 2. Critical cases resulting from type A critical conditions
of curvature-free WGT™. The notation follows that of Fig. 2.

However, since 12,13 + ;v + t3v cannot be factorized into
a linear combination of the parameters, one cannot apply
our algorithm to find all the critical cases directly. Below,
we therefore consider the critical case v = 0, which
removes the kinetic term of the scalar field ¢, as the
simplified root theory and instead find its critical cases.
Before turning to these, we note that the massless sector of
this simplified root theory requires #; — 2¢, = 0 to make its
Laurent series coefficient matrix Q, vanish, and thus
prevent the presence of dipole ghosts, but in any case,
the matrix Q, has seven nonzero eigenvalues and cannot be
made be positive definite. Therefore, the massless sector
must contain a ghost. The conditions for the massive sector
of the simplified root theory to be ghost- and tachyon-free
may be obtained from (112)-(114) by setting v = 0.
Turning now to the critical cases of the simplified root
theory, the critical conditions are given by (115)—(117) with
v = 0. One should note that this results in the simplified
root theory containing no type B critical condition, since
the resulting condition that #,#; should vanish is trivially
factorized and the separate requirements that #; or #3 should
vanish are already included in the type A critical con-
ditions, and it turns out that there is no type B critical
condition in the descendants. The critical cases resulting
from type A and type C conditions are summarized in Fig. 2
and Table IV, respectively. Cases that are ghost- and
tachyon-free are indicated, as described in the captions.

TABLE IV. Critical cases resulting from type C critical con-
ditions of curvature-free WGT™'. The notation follows that of
Table III.

Critical Massive No ghost
No. condition mode nor tachyon PPCR
1-1 & X X M
1-2 t+ 13 X X M
1-3 t +13,¢ X X M
3-1 13 X o M
3-2 t+13 X o M
3-3 t+13,¢ X o M

In particular, we note that there are nine critical cases in
Fig. 2 that are free from ghosts and tachyons and three such
critical cases in Table IV.

C. Propagating power-counting renormalizability

We determine whether each critical case is PPCR using
the same method as discussed in Sec. IV C. The results are
presented in Fig. 2 and Table IV. In particular, we find that
there is just a single critical case in Fig. 2, which is just the
pure dilaton Lagrangian £ ~ 2, that is both PPCR and
unitary; this is indicated by the node with a thick, solid
frame. No such critical case is found in Table IV.

VII. CONCLUSIONS

We have used the systematic method in Ref. [1] to
determine the no-ghost-nor-tachyon conditions for the most
general WGT™ (the root theory) and found it must contain a
ghost or tachyon. For a subset of the theory, with the
restricion v =¢=c¢; =0 on the parameters in the
Lagrangian (10), which removes the kinetic terms for
the scalar field ¢ and dilational gauge field B, and the
only “cross-term” RA8H 45 between gauge field strengths,
we found and categorized all 862 critical cases and
identified 168 that are free from ghosts and tachyons.
We compared our findings with the only other example of a
unitary WGT™ of which we are aware in the literature [18]
and found the results to be consistent. We further identified
those critical cases of WGT™ that are also PPCR and
introduce a method to construct more PPCR cases outside
the 862 critical cases. Most of these are identical to or can
be constructed from those in PGT™ listed in Ref. [2] or a
PGT*" without any propagating mode (which were not
listed in Ref. [2]). Nonetheless, we also identified a further
13 PPCR and ghost-and-tachyon-free critical cases of
WGTT that cannot be constructed directly from PGT™.

We repeated our analysis for the simpler cases of torsion-
free and curvature-free WGT™, which are not merely
special cases of the general WGT™ action, because addi-
tional constraints are placed not only on the coefficients but
also on the fields. For the torsion-free case, we found that
the root theory (without any further conditions on the
Lagrangian parameters) must contain a ghost or tachyon.
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Nonetheless, we identify 13 critical cases that are free from
ghosts and tachyons. We also compare our results with the
only other investigation of the ground state of a torsionless
WGT™ of which we are aware in the literature. We find our
results to be consistent, apart from a minor issue related to
the number of propagating degrees of freedom in the
massless sector, most probably resulting from the different
approaches to gauge fixing used in the two analyses. Of our
13 ghost-and-tachyon-free critical cases, we further iden-
tified three that are also PPCR, each of which can be gauge
fixed to contain only the B gauge field. This may explain
the sharp contrast with torsion-free PGT™, for which there
is no unitary and PPCR critical case, and suggests that these
three theories may be worthy of further investigation.

For curvature-free WGT™, we find that the massless
sector of the root theory (again with no further conditions
on the Lagrangian parameters) must contain a ghost. For
the simplified root theory with v = 0, which has no kinetic
term for the scalar field ¢ in the Lagrangian and is itself
found to have a ghost in the massless sector, we find 13
critical cases that are free from ghosts and tachyons, of
which just a single case is found also to be PPCR, which
corresponds to the pure dilaton Lagrangian £ ~ H>.

All the restrictions on Lagrangian parameters mentioned
above are necessary to avoid critical conditions that cannot
be written as the product of real linear terms, which is
required by the systematic method in Ref. [1]. We plan to
improve our approach to accommodate such cases in future
work and also apply the method to more general gauge
theories, such as metric affine gravities, whose unitarity
was recently investigated by Ref. [21] using SPOs.

Finally, we point out that gauge theories of gravity can
yield interesting phenomenology. In particular, in a cos-
mological context, recent investigations of some of the

found to have rich background solutions that support the
concordance ACDM background cosmology up to an
optional, effective dark radiation, which shows consider-
able promise in alleviating the Hubble tension. These
theories have been shown to map to a noncanonical
biscalar-tensor theory in the Jordan frame, which provides
a unified framework for future investigation by the broader
community, and for many parameter choices, the nonca-
nonical term reduces to a Cuscuton field [23]. Moreover,
one of the cases yields two dark energy solutions: accel-
erated expansion from a negative bare cosmological con-
stant whose magnitude is screened and emergent dark
energy to replace vanishing bare cosmological constant in
ACDM. Further investigation of the unitary and PPCR
cases of PGT™ and WGT™ is ongoing.

The full set of results, displayed in an interactive form,
can be found at http://www.mrao.cam.ac.uk/projects/gtg/
wgt/.
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APPENDIX A: SPIN PROJECTION OPERATORS
FOR WGT*

The block matrices P(J”) containing the spin projection
operators for WGT* used in this paper are as follows:

AABC

PGT" cases that were identified in Refs. [1,2] as being P(07) = Alx (%G)ICGJA@KB +%®1A®JB®KC> ’ (A1)
unitary and PPCR have been carried out in Ref. [22] and are ’
|
Aupc SAB SAB B¢
A;FJK %QCB@KJQM @’;J@AB@IG \/%IEJQKIQBA _\/%®KJ'QIC
P(0T) = Sty @ 7<B®CA®IJ % ©450;, % O s % 7<c®11 (A2)
STy %];B®CAQJI %QABQIJ Q0 ]}CQIJ
By —1/30c5Quk \/%IEK@AB kxQup Qc
Aupc Aapc SAB aap Be
ALk Ocp014Oky \/§®1A OksOcp \/5763 NS \/§]~<B 0140k, OOy
P (1 - Alk \/EG)AIG)CBQKJ 207420k 2k;©14Q2kp 2k;©14 k5 \/EG)ICQKJ ( A3)
Sty V2k0,0cp  2kp®,Qc; 20,,Q5 20,Q  V2k©c |
ary \/ﬁj@m@w 27‘391/4901 201425 20/4Qp \/ETCJGIC
By OuxOcp \/EGAK‘QCB \/§I~CB®AK \/§/~€B®Ak Okc
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Anpc Appc asp
A -
PO+ = AiJK O1cOxpQa + OpOkcQyp  —v20,,0k5Qc  V2k;0,,0p
I*JK —v205/00,Qk 07405k kx®40,p
a ~ -
7 V2kp®,4,0¢; kc©®4Op; ©4/Opy
P(2-) Appc
27)= .. ,
Al (% 0;c0,50k4 + %®1A®JB®KC - ®CB®1A®KJ)
Apgc SaB
P(2*) = Atk <_%®CB®KJQIA +01cOxaQyp + OOk Qs V2k;(0,Oxp — %®AB®K1) > .
ST =
1 V2kp(0c/0p4 — %GCAQU) —%®AB®IJ +01,0,p

(AS)

(A6)

These SPOs differ from those used in Ref. [1] for PGT* by having one additional row/column in both the 0" and 1~ sectors,
which are related to the extra vector gauge field B, present in WGT". For more details about SPOs in general, please refer

to Ref. [1].
APPENDIX B: NO-TACHYON AND NO-GHOST CONDITIONS FOR THE 1- SECTOR
First, to avoid tachyons and a dipole ghost, one requires the roots of (45) to be real and distinct, such that
{6c11,(t3 = 2) + (r1 + rq +r5)[12(t5 = 2) (1) + 2) + (t; + 13)0] + 61,136}
+ 311 (t; + 13)[12(15 — )4 + t30][c? = 8(r) + 1y + 75)E] > 0.

The no-tachyons conditions that both of the roots are positive then read

(t1 + 13)[c] = 8(ry + 14 +15)E{6ci 11 (13 = A) + (11 + 14 +75)[12(13 = A) (11 + 2) + (11 + 13)v] + 61,13} > 0,

t(t; +13)(12(15 = DA + t30) (3 = 8(ry + 14 + 15)E) < O.
The no-ghost condition is

[C% —_ 8(}’1 + r4 + 75)5][36'1 (tl —_ 2t3><t3 —ﬂ) - r5<t% + 2t1t3 + 19t§ - 36t3ﬂ + 18/12)
— (83 + 2113 + 1965 — 36134 + 182%) — 1y (13 + 21113 + 1955 — 36134 + 182%) — 3(13 +213)¢] < 0,

(tl + t3)[C% - 8(}’1 + ryq + rs)f]{9(t1 + t3){2t1 (7t§ - 12t3/1 + 6&2) + t%(14t3 - 12/1 + IJ) + 2t3[12(t3 - l)/l + t31/}}2

X [C% —_ 8(}"1 + }"4 + rj)ﬂ —48t1[12(t3 —/I)ﬂ + t3v][r5t% - 3C1t1t3 + 2r5t1t3 + 6C1t§ + 19r5t§

+3c11A = 61134 — 36rst3A4 + 18r5A> + ri (13 + 21,13 + 1913 — 36134 + 1822) + ry(£3 + 21,13 + 1953

— 36034 + 182%) 4 317 + 61387 + 16{2t, (713 — 12634 + 64%) + 1} (1413 — 124+ v) + 213[12(t3 — A)A + t30]}
3

x{9¢iti(~t3 + A) +§("1 + 1y +15)[—12(55 = A) (1) + 4) — (t; + 13)0] — 911138} [—rst] + ey 11ty — 2rsty 1y

- 6C1t§ - 19r5t§ - 36‘1t1)v + 6C1t3/1 + 361"51‘3/{ - 181"5/12 - rl(t% + 2t1t3 + 19t% - 36t3/1 + 18/12) - r4(t% + 2t1t3
+ 192 = 36154 + 1822) — 3(2 + 22)8} < 0.

(BS)

Combining the requirements for no tachyons and no ghosts, there exists at least one parameter set satisfying all five

conditions above, for example,
c=-9, rn=-1, =0, rs=0, 1= tz=—1, A=-4, v=-142, £=—18,

where the other parameters may take arbitrary values, provided they do not make the theory a critical case.
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APPENDIX C: COMPLETENESS OF THE
CRITICAL CASES

An “additional condition” is defined as the condition(s)
to prevent a theory from being critical. In our previous
paper [1], the additional condition was the requirement that
the ““sibling critical conditions” should not be satisfied, and
we will call this the “sibling additional condition.” For
example, consider a theory that has the critical conditions
that the (linear) parameter combinations X, Y, and Z should
vanish; we will call X, Y, and Z the “critical parameters” of
the theory. In the case, the sibling critical parameters for the
critical case X = 0 are Y and Z. To prevent a theory from
being critical, one can require the critical parameters not
equal to zero. We will call this kind of condition a “child
additional condition.” In PGT, as discussed in Ref. [1], the
sibling additional condition is identical to the child addi-
tional condition, except for the root case. This occurs
because we add only one linear condition at a time for cases
resulting from type A or B critical conditions, but we
attempt to use all possible combinations of conditions
simultaneously for type C critical parameters (which we
term “combining” the conditions). We then recursively find
the child critical cases of cases resulting from type A and B
critical conditions (the “uncombined” cases) but stop doing
that for those from type C critical conditions (the combined
cases). If type C critical conditions are treated in the same
way as type A and type B, then the statement is not valid
for PGT.

There are two situations in which the statement is invalid.
The first is the occurence of “hidden” critical parameters.
Consider a theory with only a 1 x 1 b matrix (XY + Zk?).
The theory has type B critical parameters, X and Y, and a
type C one, Z. For the critical case X = 0, the b matrix
|

2[2k*(ry — r3 + 2ry4) + 13]
—2i\/2kts
—26(13 — 1)

which has det[p(0")] = —=96(t; — 1)A%k>. Its critical case
A =0 has

(2[2k2(r1 —r3+2ry) + 1]

2iv2kt, ) )
—2i\/2kty

4kt

with det[p(07)] = 16(r; — r3 + 2r4)t:k*. The critical
parameter (r; — r3 + 2r4) is neither a critical parameter
of the root theory nor among the sibling critical parameters
of case 4 = 0. However, the emergent parameters will not
affect our algorithm if we apply the child additional
condition, which already includes the emergent parameters.

2i/2kts
4 (13— 2)
—4i\/3k(t3 = A)

becomes (Zk?), so there is only one critical parameter Z. To
prevent the theory being critical (child additional condi-
tion), one requires Z # 0. However, its sibling critical
parameters are Y and Z, which are different. The critical
parameter Y is hidden in this case. If there are hidden
parameters and one is requiring only child additional
conditions, then a point in the parameter space may belong
to more than one critical case. For example, the critical case
X =0, Z # 0 and the case Y = 0, Z # 0 have the overlap
X=Y=0,Z+#0, and they actually have the same b
matrix (Zk?) and represent the same theory. If we use
the sibling additional condition instead, the two cases
become X =0,Y#0,Z#0 and Y=0,X#0,Z #0,
and there is no overlap. Hidden parameters do not
occur in PGT or any of the critical cases discussed in
this paper, if we combine all the type C critical cases as in
Ref. [1]. While the overlapping and redundancy do no real
harm to the correctness of our results, it may be worth
modifying our algorithm to accommodate the situation for
simplicity.

The second reason is the occurrence of “emergent”
critical parameters. Some critical parameters appear after
a b matrix becomes singular and a new » matrix forms,
which may happen in critical cases resulting from a type A
critical parameter (it is worth noting that critical parameters
of the root theory are always emergent because it has no
parent or sibling critical cases). In PGT* and torsion-free or
simplified curvature-free WGT™, either the new b matrix is
0 x 0 or its critical parameters are already included in the
sibling critical parameters, and so there is no emergent
critical parameter. However, in simplified full WGT™, this
is not the case. For example, the b(0") matrix of the
simplified root WGT™ is

—2v/6(13 - 2)
4i/3k(ts = 2) |,
12(t5 — A)

In conclusion, as long as there is no hidden critical
parameter in critical cases resulting from type A and B
critical parameters, and the cases resulting from type C
critical parameters are combined, then we can apply the
child additional conditions for the uncombined cases and
the sibling additional conditions for the combined cases as
the “(extended) additional condition™ (this is also equiv-
alent to combining the sibling and child additional con-
ditions as the additional condition for all cases). This is
what the term “additional condition” actually means in this
paper. Our algorithm then holds, and each parameter set
corresponds to one critical case. We have also checked that
all the critical cases in Ref. [1] and this paper cover the
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entire parameter space and the critical cases have no
overlap.

APPENDIX D: POWER-COUNTING
RENORMALIZABILITY

Since the PCR criterion for PGT™ is merely stated by
Sezgin and van Nieuwenhuizen [3], rather than derived,
and we also wish to extend the criterion to WGT™, we give
a brief outline derivation here. Before doing so, however,
we note that power-counting is not the ultimate criterion for
renormalizability. Some PCR theories may be nonrenor-
malizable because of some deeper problems such as
anomalies, and non-PCR theories may turn out to be
renormalizable (for example, see Ref. [24]).

We consider a quantum field theory in d-dimensional
spacetime with some fields labeled by i and assume for
|

each field the propagator — k™% as k — co. We also
define the canonical dimension [25] of the field ¢; as
[p:] = (d — [;)/2, which only sometimes coincides with the
mass dimension of the field in natural units. The latter can
be inferred from the fact that each term in the Lagrangian
density has mass dimension d. One may always ensure that
the two dimensions coincide by making a field redefinition
in which the original field is multiplied by a constant. If the
interactions are labeled by a, with coupling constants 4,
then the general criterion for a theory to be PCR is that there
is no coupling constant with negative canonical dimension
[25], so that [1,] >0V a.

For WGTT™, in terms of the linearized fields introduced in
Sec. III, the most general Lagrangian in the Einstein gauge
with ¢, absorbed into the coefficients is given schemati-
cally by

bLs ~b(AR + rR? +tT*2 + EH? + ¢, RH + vB?)
~(LH+ 424 )AL+ )2 (0A+ A%) + r(1 + £)*(0A + A%)?
+ 11+ f)Of+ 2+ )+ +f+f+-)(A+B)?

+E1+ ¥ OB e (1 +f+ f2+--)(0A + A*)OB + v(1 + f)*B?},

where we do not show the detailed structures of the indices
and coefficients. The mass dimensions of the parameters
and fields are [y =2, [rly=0, [ty =2, [Ely =0,
[cily =0, [Alyy =1, [fly =0, and [B]; = 1. Assuming
the propagators of h, A, and B behave as k', k/a,
and k75, respectively, we need to redefine the fields as
h=M""7h A =M""A, and B = M3 '*/*B. There-
fore, we require [, > 4, [, > 2, and Iz > 2 for the theory to
be PCR.® The original PCR criterion in Ref. [3] for PGT™ is
obtained immediately by setting B = 0.

APPENDIX E: PCR CRITICAL CASES

There exists a “folk theorem” dating back to the 1970s, a
version of which is presented in the introduction of Sezgin
and van Nieuwenhuizen’s paper [3], that suggests that any
gravity theory that is unitary cannot also be PCR. The
argument is not based on any rigorous no-go theorem but
instead on the following simple observation: as shown in
Appendix D, for a PGT™ to be PCR, the propagator of the A
field must decay at least as quickly as k=2 at high energy, and
those of the 8 and a fields must fall off at least as k~*, but the
resulting total propagator, in general, contains terms of
opposite sign when expressed in partial fractions, and so

’If r = 0, then the interaction terms with the highest degree of
A are A% with coefficients of dimension 2. Hence, in this case, we
may have a looser condition [, > 0. However, there is no
dynamical term for A if r = 0, so we consider A not propagating.

(D1)

|

the theory is not unitary. This viewpoint has never sub-
sequently been seriously challenged, and so our claim to
have found counterexamples is in conflict with the accepted
wisdom. We therefore take the opportunity here to elucidate
the four unitary critical cases that also satisfy the original
criterion used by Sezgin and van Nieuwenhuizen in Ref. [3]
to be PCR. These cases coincide with the PGTT cases 9, 10,
11, and 13, first identified in Ref. [1] and listed in Table IIT of
Ref. [2]. In particular, we explain how these theories, each of
which contains only 2 massless degrees of freedom, evade
the argument in Ref. [3].

The key relevant property of these theories, at least in the
linearized approximation considered here, is that they
contain no “graviton” (degree of freedom associated with
the 8 and a fields), but only “tordions” (degrees of freedom
associated with the A field), as originally discussed in
Ref. [1] (and no dilaton degree of freedom associated with
the B field, since we are considering only PGT" here).
In other words, for these four theories, the a matrices
(28)—(33) contain nonzero entries only in the rows/columns
corresponding to the A field. As a result, the propagator in
each case needs only to decay at least as quickly as k2 at
high energy, and so the partial fractions argument outlined
above does not necessarily apply.

One may verify directly by explicit calculation of their
propagators that this indeed occurs for cases 9, 10, 11, and
13. We consider each case in turn, where the a matrices for
each case may be found by substituting its critical condition
into (28)—(33):
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(1) For case 9, the critical condition is ry=r|—r;=r ;=
t) =t =t3=21=0, the resulting propagator of the A

field is
Prme— () 4B (17)
A72(r1+r5)k2 1 2(2r1—|—r5)k2 1
— P, (27 El
+2r1k2 11( )7 ( )

and the condition for no ghost nor tachyon
is ri(ry +rs)(2r  +rs5) <O.

(2) For case 10, the critical condition is r, = r; =
r3/2—ry =1t =1, =t3 = 1 =0, the propagator is

N 1 - 1

Dyj=—— P (1) +— P (1"

AT+ 2r) K2 n( )+2(2r3+r5)k2 u(17)
1 .

- P (24, E2

3}"3](2 11( ) ( )

and the condition for no ghost nor tachyon
is r3(2r3 + rs)(r3 + 2rs5) < 0.

(3) For case 11, the critical conditionis r{ =r3/2—r,; =
t) =t, =13 =4 =0, the propagator is

N 1 . 1 N
- PO+ ——— P (1"
e 1 ( )+(r3+2r5)k2 n(17)
1 N 1 .
+ = Pu(17) P (2%),

2(2r; + rs)k  3r3k?

(E3)

and the condition for no ghost nor tachyon
is r3(2r3 4+ r5)(r3 + 2rs5) < 0.

(4) For case 13, the critical condition is r, = 2r|—
2ry+ry =t =1, = t3 = A = 0, the propagator is

. 1

Dy=——+——5P,(0"
AT C12(r - n)kR u(07)
1 .
P (1"
+2(—r1+2r3+r5)k2 n(17)
1 . 1
E—— P (27),
+2(2r3+r5)k2 i )+2r1k2 1(27)

and the condition for no ghost nor tachyon

is ri(ry —=2r3 —rs)(2r; + r5) > 0.
Since ©,p = nup — 452 and Q,p =12 all the SPOs
behave as constants at high k?. Therefore, in each case,
the propagator of the A field goes as k=2 at high energy, and
so the theory is PCR. We also note that, for each case, the
additional conditions that prevent the theory from becom-
ing a different critical case are that none of the denomi-
nators of the coefficients of the SPOs may vanish.

The absence of a graviton does not, however, preclude the
possibility that the 2 tordion massless degrees of freedom are
in the spin-27 sector, and indeed this may occur for cases 10
and 11, although not for cases 9 and 13, as discussed in
Ref. [1]; this is also apparent from the above propagator for
each theory. Thus, in cases 10 and 11, aspects of the
gravitational interaction may still be mediated by a massless
spin-2" particle, despite it corresponding to degrees of
freedom of the A field rather than of the 8 and a fields. As
mentioned in Ref. [1], it is worth pointing out again here that
the actions of cases 10 and 11 both reduce in the absence of
torsion to that of conformal gravity, which is well known to
be PCR but not unitary; it is claimed that one can nonetheless
construct a unitary quantum theory of conformal gravity by
redefining its Fock space [26], although this suggestion is
controversial [27].
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