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We investigate the particle content of parity-preserving Weyl gauge theories of gravity (WGTþ) about a
Minkowski background. Within a subset of the full theory, we use a systematic method previously
presented by Lin et al. [Phys. Rev. D 99, 064001 (2019)] to determine 862 critical cases for which the
parameter values in the action lead to changes of particle contents or additional gauge invariances. We find
that 168 of these cases are free of ghosts and tachyons, provided the parameters satisfy certain conditions
that we also determine. We further identify 40 of these cases that are also propagating power-counting
renormalizable and determine the corresponding conditions on the parameters. Of these theories, 11 have
only massless tordion propagating particles, 23 have only a massive tordion propagating mode, and 6 have
both. We also repeat our analysis for WGTþ with vanishing torsion or curvature, respectively. We compare
our findings with the very few previous results in the literature.
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I. INTRODUCTION

In recent papers [1,2], we presented a systematic method
for identifying the ghost-and-tachyon-free critical cases of
parity-preserving gauge theories of gravity and applied it to
parity-preserving Poincaré gauge theory (PGTþ). We found
450 critical cases (some of which possess additional gauge
invariances) that are free of ghosts and tachyons. We also
considered the superficial renormalizability by power
counting of a subset of these unitary theories for which
there are no terms in the gauge-fixed Lagrangian that mix
different fields. While not stated explicitly in Ref. [2], four
of the theories in that paper (cases 9, 10, 11, and 13, which
have only massless modes) satisfy the original criterion
used by Sezgin and van Nieuwenhuizen in Ref. [3] to be
power-counting renormalizable (PCR). Moreover, we
found a further 54 theories that satisfy a less restrictive
criterion, which in addition permits the presence of modes
that are nonpropagating at large momenta (for which the
propagator decays no faster than a constant), since these
should then completely decouple from the rest of the
theory; this is termed “the alternative PCR criterion” in
Ref. [2], but here (and henceforth), we shall instead refer to
it as “propagating power-counting renormalizable” (PPCR)
to avoid confusion with the well-established notion in the
literature of PCR. The relationship between these two
approaches is discussed at length in Ref. [2] and also briefly
in Sec. IV C below. In Ref. [2], we also analyzed the

simpler cases of PGTþ with vanishing torsion or curvature,
which are not merely special cases of the full PGTþ
Lagrangian, because additional constraints are placed not
only on Lagrangian coefficients but also on the fields.
Although a number of unitary critical cases were identified,
no case was found that is also PPCR.
In seeking gravitational gauge theories that are renor-

malizable, one promising route is to demand local scale
invariance a priori, since such theories contain no dimen-
sionful parameters, and hence no absolute energy scale.
Thus, rather than gauging the Poincaré group, one may
instead gauge the Weyl group so that the action is also
invariant under local dilations. The resulting Weyl gauge
theories (WGTs) were first discussed in Refs. [4–6]. In this
article, we apply our systematic method for identifying
ghost-and-tachyon-free critical cases to parity-preserving
Weyl gauge theory (WGTþ), the ground-state particle
spectrum of which has rarely been discussed in the
literature before.
This paper is arranged as follows. In Sec. II, we give a

brief introduction to WGTþ, and in Sect. III, we consider
the unitarity of the “root” theory, where none of the critical
conditions is satisfied. In Sec. IV, we apply our systematic
approach to investigating its critical cases and accommo-
dating the associated additional source constraints as well
as identifying some unitary critical cases that are also
propagating power-counting renormalizable. We repeat our
analysis for WGTþ with vanishing torsion in Sec. Vand for
WGTþ with vanishing curvature in Sec. VI. We conclude in
Sec. VII.
We use the Landau-Lifshitz “mostly minus” metric

signature ðþ;−;−;−Þ throughout this paper.
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II. WEYL GAUGE THEORIES

The action of an infinitesimal element of the Weyl group
Wð1; 3Þ on Cartesian coordinates in Minkowski spacetime
has the form

xμ → x0μ ¼ xμ þ ϵμ þ ωμ
νxν þ ρxμ; ð1Þ

where ϵμ denotes a translation, ωμ
ν denotes a Lorentz

rotation, and ρ denotes a dilation. The corresponding form
variation δ0φðxÞ≡ φ0ðxÞ − φðxÞ of a field φ (belonging to
an irreducible representation of the Lorentz group) is
δ0φ ¼ δP0φþ wρφ, where δP0 means the variation under a
Poincaré transformation and w is a dimensionless constant
known as the (Weyl) weight of the field.
One gauges the Weyl group Wð1; 3Þ by demanding that

the action be invariant with respect to (infinitesimal,
passively interpreted) general coordinate transformations
(GCTs) and the local action of the subgroup Hð1; 3Þ (the
homogeneous Weyl group), obtained by setting the trans-
lation parameters ϵμ of Wð1; 3Þ to zero (which leaves
the origin xμ ¼ 0 invariant) and allowing the remaining
group parameters to become independent arbitrary func-
tions of position. In this way, one is led to the introduction
of the gravitational gauge fields hAμ, AAB

μ, and Bμ,
corresponding to the translational, rotational, and dilational
parts of the Weyl group, respectively, which transform
under the gauged Weyl group as δ0hAμ ¼ δP0hA

μ − ρhAμ,
δ0AAB

μ ¼ δP0A
AB

μ, and δ0Bμ ¼ −∂μρ.
The gauge fields are used to assemble the WGT

covariant derivative [7,8]

D�
Aφ ¼ hAμD�

μφ ¼ hAμ
�
∂μ þ

1

2
AAB

μΣAB þ wBμ

�
φ; ð2Þ

where w is the weight of φ and ΣAB ¼ −ΣBA are the
generator matrices of the SLð2; CÞ representation to which
φ belongs. The asterisk on the derivative operators is a
common notation used in WGT to distinguish these
operators from their PGT counterparts (to which they
reduce if w or Bμ vanishes). The corresponding commu-
tators become

½D�
μ;D�

ν�φ ¼ 1

2
RAB

μνΣABφþHμνwφ; ð3Þ

½D�
A;D

�
B�φ ¼ 1

2
RCD

ABΣCDφ − T �C
ABD�

CφþHABwφ;

ð4Þ

where the field strengths have the forms

RAB
μν ¼ 2ð∂ ½μAAB

ν� þ AA
E½μAEB

ν�Þ; ð5Þ

Hμν ¼ 2∂ ½μBν�; ð6Þ

T �C
AB ¼ T C

AB þ 2B½AδCB� ð7Þ

and T C
μν ¼ 2D½μbCν� is the usual expression for the

translational gauge field strength in PGT. In the above
expressions, latin and greek indices are related by hAν and
its inverse bAν, with the relation

gμνhAμhBμ ¼ ηAB; ηABbAμbBμ ¼ gμν: ð8Þ

One may show that the weights of the translational and
rotational gauge fields are wðhAμÞ ¼ −1 and wðAAB

μÞ ¼ 0

so that wðbAμÞ ¼ 1 and the weight of its determinant
is wðbÞ ¼ 4, but the dilatational gauge field Bμ itself
transforms inhomogeneously under dilations, as expected.
The weights of the corresponding field strengths are
wðRCD

ABÞ ¼ wðHABÞ ¼ −2 and wðT �C
ABÞ ¼ −1.

In the action S ¼ R bLd4x, the Lagrangian L is the sum
of terms corresponding to the free gravitational fields and
terms containing the matter fields, and has the general
form1

L ¼ LGðRCD
AB; T �C

AB;HABÞ þ LMðφ;D�
AφÞ: ð9Þ

For S to be scale invariant (i.e., of weight 0), the weights of
both LG and LM must be −4. Restricting our attention to
terms in LG that are at most quadratic in the field strengths,
these may thus be quadratic in RCD

AB and HAB, or consist
of the product of the two, but may not include terms linear
in RCD

AB or quadratic in T �C
AB.

One can, however, include further terms in the
Lagrangian by introducing an additional massless scalar
field (or fields) ϕ with Weyl weight wðϕÞ ¼ −1, often
termed the compensator(s) [7], which is usually nonmini-
mally (conformally) coupled to the field strength tensors of
the gravitational gauge fields. For example, terms propor-
tional to ϕ2R or ϕ2LT �2, where LT �2 consists of terms
quadratic in T �C

AB, have weight w ¼ −4 and so may be
added to the total Lagrangian [9–12]. One should also
include a free kinetic term ðD�ϕÞ2 for the scalar field and
may also add a self-interaction term ϕ4, but we shall not
consider the latter here. Thus, also requiring parity invari-
ance, the Lagrangian for free WGTþ has the form

1Note that in Refs. [1,2], the definition of L sometimes
included b.
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LG ¼ −λϕ2Rþ 1

6
ð2r1 þ r2ÞRABCDRABCD þ 2

3
ðr1 − r2ÞRABCDRACBD þ 1

6
ð2r1 þ r2 − 6r3ÞRABCDRCDAB

þ ðr4 þ r5ÞRABRAB þ ðr4 − r5ÞRABRBA − c1RABHAB þ ξHABHAB þ 1

2
νD�

AϕD
�Aϕ

þ 1

12
ð4t1 þ t2 þ 3λÞϕ2T �ABCT �

ABC −
1

6
ð2t1 − t2 þ 3λÞϕ2T �ABCT �

BCA −
1

3
ðt1 − 2t3 þ 3λÞϕ2T �

B
ABT �

CA
C; ð10Þ

whereRA
B ¼ RAC

BC, R ¼ RA
A, and D�

Aϕ ¼ ∂Aϕ − BAϕ.
The parameters in the Lagrangian are dimensionless and set
in combinations that enable a straightforward comparison
with our previous studies of PGTþ [1,2]. Note that the
Gauss-Bonnet identity has been used to remove the term
proportional to R2.
Provided ϕðxÞ does not vanish anywhere, one can use

local scale invariance to set the field to a constant value
ϕ0, which is known as the Einstein gauge and is usually
interpreted as breaking the scale symmetry. This inter-
pretation is questioned in Ref. [8]; however, since it is
shown that if one rewrites the Lagrangian in terms of a
set of scale-invariant variables [6], then the resulting
equations of motion are the same as those of Einstein
gauge, yet this approach involves no breaking of the
scale symmetry. In any case, we will adopt the Einstein
gauge ϕ ¼ ϕ0 here, the most significant effect of which is
that the term 1

2
νD�

AϕD
�Aϕ in the Lagrangian becomes

1
2
νϕ2

0BABA. We then absorb the ϕ2
0 factor into the

now dimensionful parameters λ, ν, t1, t2, and t3, without
loss of generality. Note that a ϕ4 potential term for the
compensator scalar field was not included in the
Lagrangian, since it becomes a constant in the Einstein
gauge, acting like an effective cosmological constant,
which would be inconsistent with considering a
Minkowski background.
WGT is most naturally interpreted as a field theory in

Minkowski spacetime [8,13,14], in the same way as the
gauge field theories describing the other fundamental
interactions. It is more common, however, to reinterpret
it geometrically in terms of a Weyl-Cartan spacetime (W4),
which generalises the Riemann-Cartan spacetime (U4)
underlying the geometric interpretation of PGT by incor-
porating local scale invariance [7].
Weyl-Cartan spacetime is a manifold with linear con-

nection (Γ) and metric (gμν), which satisfy

D�
ρðΓÞgμν ¼ 0; ð11Þ

where the covariant derivative of a field φ with weight w is
defined by

D�
μðΓÞφ≡ ðDμðΓÞ þ wBμÞφ; ð12Þ

in whichDμðΓÞ ¼ ∂μ þ Γσ
ρμXρ

σ is theU4 covariant deriva-
tive andXρ

σ are theGLð4; RÞ generatormatrices appropriate

to theGCT tensor character of the field towhich the operator
is applied. The semimetricity condition (11) replaces the
metricity condition in U4. Since wðgμνÞ ¼ 2, the semi-
metricity condition can also be written as DρðΓÞgμν ¼
−2Bρgμν, fromwhich one finds that the infinitesimal change
of length of a parallel transported vector is proportional to
the length itself, DρðΓÞV2 ¼ −2BρV2. One may solve for
the connection Γ, which is given by

Γμ
νρ ¼

n μ

νρ

o
þ δμνBρ þ δμρBν − gνρBμ þ Kμ

νρ; ð13Þ

where f μ
νρg is the ordinaryChristoffel symbol andKμ

νρ is the
contorsion tensor (discussed further below).
A local Lorentz frame at each point on the manifold

describes the tangent space and is determined by the tetrad
basis hAμ with its inverse bAμ; these quantities may be used
to convert between coordinate and local Lorentz indices.
The Minkowski metric ηAB is invariant under Weyl trans-
formation, so wðηABÞ ¼ 0 and wðhAμÞ ¼ −1. The local
frame has a connection AAB

μ, and the covariant derivative
D�

AðAÞ has properties similar to (12), where

D�
ρðAÞηAB ¼ 0; ð14Þ

D�
ρðAÞφ≡ ðDρðAÞ þ wBρÞφ; ð15Þ

and DρðAÞ is the covariant derivative in U4. One may also
define the “total covariant derivative” D�

ρðΓþ AÞ to act on
quantities with both coordinate and local Lorentz indices

D�
ρðΓþ AÞφ ¼ ðDρðΓÞ þDρðAÞ − ∂ρ − wBρÞφ: ð16Þ

Since the total covariant derivative D�
ρðΓþ AÞVA of the

local Lorentz components of a vector is a coordinate tensor
in Weyl-Cartan spacetime, the relation D�

ρðΓþ AÞVA ¼
bAμD�

ρðΓþ AÞVμ should hold, from which one obtains the
so-called tetrad postulate

D�
μðΓþ AÞbAν ≡ ∂�

μbAν þ AA
BμbBν − Γσ

νμbAσ ¼ 0; ð17Þ

where ∂�
μ ≡ ∂μ þ wBμ. One can therefore express the

affine connection in the quantities corresponding to gauge
fields as
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Γλ
νμ ¼ hAλð∂�

μbAν þ AA
BμbBνÞ ð18Þ

and hence show that the translational gauge field strength is
equivalent to (minus) the geometric torsion tensor

T �ρ
μν ¼ Γρ

νμ − Γρ
μν; ð19Þ

in terms of which the contorsion is given by

Kμλν ¼ −
1

2
ðT μλν − T νμλ þ T λνμÞ: ð20Þ

From (18), (19), and (20), one also obtains

AABμ ¼ Δ�
ABμ þ KABμ; ð21Þ

where we define the quantities

Δ�
ABμ ≡ ΔABμj∂→∂� ¼ ΔABμ − BAbBμ þ BBbAμ; ð22Þ

ΔABμ ≡ 1

2
ðcABC − cCAB þ cBCAÞbCμ; ð23Þ

cAμν ≡ ∂μbAν − ∂νbAμ: ð24Þ

One then finds that, in contrast to the torsion, the geometric
(Riemann) curvature tensor differs from the rotational
gauge field strength Rρ

σμν, so we denote the former by

R̃ρ
σμν ¼ Rρ

σμν þHμνδ
ρ
σ;

¼ ∂μΓρ
σν − ∂νΓρ

σμ þ Γρ
λμΓλ

σν − Γρ
λνΓλ

σμ: ð25Þ

Unlike Rρσμν, the curvature tensor R̃ρσμν is not antisym-
metric in ðρ; σÞ, while both are antisymmetric in ðμ; νÞ

[7,8]. Indeed, one may take advantage of these symmetry
properties by usingRρσμν to perform calculations instead of
R̃ρσμν. One should note, however, that, unlike the curvature
tensor in Riemann spacetime V4 familiar from general
relativity, neitherRρσμν nor R̃ρσμν is symmetric in ðρσ; μνÞ.

III. ROOT THEORY

We now apply the method described in Ref. [1] to the
“root” theory (10), where none of the critical conditions is
satisfied. We first linearize the Lagrangian around the
Minkowski background using AABC ∼OðtÞ, BA ∼OðtÞ,
hAμ ¼ δA

μ þ fAμ, and fAB ¼ sAB − aAB ∼OðtÞ, where s
and a denote the symmetric and antisymmetric parts of f,
respectively. Note that we cannot perturb ϕ as ϕ0 þ ϵ, for
some excitation ϵ, because we have already fixed the gauge
on ϕ. The Lagrangian then becomes

bLG ¼ 2λ∂AABA
B þOðt2Þ; ð26Þ

where the linear term is just a total derivative. We then
decompose the quadratic part into

bLG ¼
X
J;P;i;j

aðJPÞijζ̂† · P̂ðJPÞij · ζ̂; ð27Þ

using the spin projection operators (SPOs) P̂ðJPÞij [15–17].
Section II of Ref. [1] contains a description of our notation
(note that Eq. (52) in Ref. [1] contains a typographical error
and should read fAB ¼ sAB − aAB, as here, but this does not
affect the remaining contents in Refs. [1,2]). The SPOs for
WGTþ are given in the Appendix A. One then obtains the a
matrices:

að0−Þ ¼
A

A�
2ðk2r2 þ t2Þ

� ; ð28Þ

að0þÞ ¼
A

s

s

B

A s s B0
BBBBB@

2ð2k2ðr1 − r3 þ 2r4Þ þ t3Þ 2i
ffiffiffi
2

p
kt3 0 −2 ffiffiffi

6
p ðt3 − λÞ

−2i ffiffiffi
2

p
kt3 4k2ðt3 − λÞ 0 4i

ffiffiffi
3

p
kðt3 − λÞ

0 0 0 0

−2 ffiffiffi
6

p ðt3 − λÞ −4i
ffiffiffi
3

p
kðt3 − λÞ 0 4ð3t3 − 3λþ ν

4
Þ

1
CCCCCA

; ð29Þ

að1−Þ¼

A

A

s

a

B

A A s a B0
BBBBBBBBB@

2½k2ðr1þ r4þ r5Þþ 1
6
ðt1þ4t3Þ� −

ffiffi
2

p
3
ðt1−2t3Þ − ffiffi

2
p
3
ikðt1−2t3Þ

ffiffi
2

p
3
ikðt1−2t3Þ −c1k2þ4t3−4λ

−
ffiffi
2

p
3
ðt1−2t3Þ 2

3
ðt1þ t3Þ 2

3
ikðt1þ t3Þ −2

3
ikðt1þ t3Þ 2

ffiffiffi
2

p ðt3−λÞffiffi
2

p
3
ikðt1−2t3Þ −2

3
ikðt1þ t3Þ 2

3
k2ðt1þ t3Þ −2

3
k2ðt1þ t3Þ −2i

ffiffiffi
2

p
kðt3−λÞ

− ffiffi
2

p
3
ikðt1−2t3Þ 2

3
ikðt1þ t3Þ −2

3
k2ðt1þ t3Þ 2

3
k2ðt1þ t3Þ 2i

ffiffiffi
2

p
kðt3−λÞ

−c1k2þ4t3−4λ 2
ffiffiffi
2

p ðt3− λÞ 2i
ffiffiffi
2

p
kðt3−λÞ −2i

ffiffiffi
2

p
kðt3−λÞ 4ð3t3−3λþ ν

4
þk2ξÞ

1
CCCCCCCCCA

;

ð30Þ
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að1þÞ ¼
A

A

a

A A a0
BB@

1
3
ð6k2ð2r3 þ r5Þ þ t1 þ 4t2Þ 1

3

ffiffiffi
2

p ðt1 − 2t2Þ − 1
3
i
ffiffiffi
2

p
kðt1 − 2t2Þ

1
3

ffiffiffi
2

p ðt1 − 2t2Þ 2
3
ðt1 þ t2Þ − 2

3
ikðt1 þ t2Þ

1
3
i
ffiffiffi
2

p
kðt1 − 2t2Þ 2

3
ikðt1 þ t2Þ 2

3
k2ðt1 þ t2Þ

1
CCA ; ð31Þ

að2−Þ ¼
A

A

ð2ðk2r1 þ t1
2
ÞÞ ; ð32Þ

að2þÞ ¼ A

s

A s 
2ðk2ð2r1 − 2r3 þ r4Þ þ t1

2
Þ i

ffiffiffi
2

p
kt1

−i ffiffiffi
2

p
kt1 2k2ðt1 þ λÞ

!
: ð33Þ

In general, if any of the matrices aðJPÞ in the decom-
position (27) are singular, then the theory possesses gauge
invariances. One may fix these gauges by deleting rows and
columns of the a matrices such that they become non-
singular. The elements of the resulting matrices are usually
denoted bybijðJPÞ. ForWGTþ, some of theamatrices given
above are indeed singular. In particular, one may delete the
third row/column of að0þÞ, the third and fourth row/column
of að1−Þ, and the third row/column of að1þÞ to obtain the
corresponding nonsingular b matrices. The singular nature
of these three a matrices results in them having both null
right and left eigenvectors, which give us gauge invariance
and source constraints, respectively. For each spin-parity
sector, the null left eigenvectors are given by

0þ∶ ð0; 0; 1; 0Þ ð34Þ

1−∶ ð0;−ik; 0; 1; 0Þ; ð0; ik; 1; 0; 0Þ ð35Þ

1þ∶ ð0;−ik; 1Þ; ð36Þ

where one should note that the B field is not involved, since
the corresponding vector component is always zero, and the
remaining components are the same as those found for
PGTþ. This is no surprise, since the dilation gauge invari-
ance has been fixed by adopting the Einstein gauge, and
the remaining symmetry should indeed be local Poincaré
invariance.
The null eigenvectors may be used to derive the form of

the associated gauge invariances and the corresponding
source constraints for WGTþ, which are found to be the
same as those in PGTþ, as expected. The gauge invariances
are given by

δhAB ¼ u½AB� þ ikBvA ð37Þ

δAABC ¼ ikCu½AB�; ð38Þ

where u½AB� and vA are some arbitrary fields, and the source
constraints have the form

kAσAB ¼ 0 ð39Þ

ikAτABC − σ½AB� ¼ 0; ð40Þ

where σAB is the source current of fAB and τABC is the
source current of AABC.
The requirement that a theory is free from ghosts and

tachyons places conditions on the b matrices, and one must
consider the massless and massive particle sectors sepa-
rately. For the massless modes, one requires only that there
be no ghosts. As discussed in Ref. [1], this is determined
by considering the coefficient matrices Q2n in a Laurent
series expansion of the saturated propagator about the
origin in momentum space. For WGTþ, one finds that all of
the entries Q2n vanish identically for n > 1, and so the
saturated propagator does not have a higher pole at k2 ¼ 0.
The nonzero eigenvalues of Q2 are found to be

1þ 6jk⃗j2
λ

;
1þ 8jk⃗j2

2λ
; ð41Þ

and so there are 2 degrees of freedom in the propagating
massless particle sector.2 The massless no-ghost condition
is that all eigenvalues of Q2n are non-negative, and so one
requires simply that

λ > 0: ð42Þ
Turning to the massive particle sector, one must first

determine the particle masses by calculating the determi-
nants of the b matrices,

2Note that the expression for the eigenvalues is not unique but
depends on the form chosen for the source constraints. To be
precise, one can obtain another set of the null vectors ni in
Eq. (30) of Ref. [1] by linear combination.
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det ½bð0−Þ� ¼ 2k2r2 þ 2t2; ð43Þ

det ½bð0þÞ� ¼ 16ðr1 − r3 þ 2r4Þðt3 − λÞνk4
− 8λ½12ðt3 − λÞλþ t3ν�k2; ð44Þ

det½bð1−Þ� ¼ −
2

3
ðt1 þ t3Þ½c21 − 8ðr1 þ r4 þ r5Þξ�k4

þ 4

3
f6c1t1ðt3 − λÞ þ ðr1 þ r4 þ r5Þ

× ½12ðt3 − λÞðt1 þ λÞ þ ðt1 þ t3Þν�
þ 6t1t3ξgk2 þ 2t1½12λðt3 − λÞ þ t3ν�; ð45Þ

det ½bð1þÞ� ¼ 4

3
ð2r3 þ r5Þðt1 þ t2Þk2 þ 2t1t2; ð46Þ

det ½bð2−Þ� ¼ 2r1k2 þ t1; ð47Þ

det ½bð2þÞ� ¼ 4ð2r1 − 2r3 þ r4Þðt1 þ λÞk4 þ 2t1λk2; ð48Þ

from which one finds that there is no massive mode in the
0þ sector, and the particle masses in the other sectors are
given by

m2ð0−Þ ¼ −
t2
r2
; ð49Þ

m2ð0þÞ ¼ 12λ2ðt3 − λÞ þ t3λ
2ðr1 − r3 þ 2r4Þðt3 − λÞν ; ð50Þ

m2ð1−Þ ¼ ðthe two roots of det ½bð1−Þ�Þ; ð51Þ

m2ð1þÞ ¼ −
3t1t2

2ð2r3 þ r5Þðt1 þ t2Þ
; ð52Þ

m2ð2−Þ ¼ −
t1
2r1

; ð53Þ

m2ð2þÞ ¼ −
t1λ

2ð2r1 − 2r3 þ r4Þðt1 þ λÞ : ð54Þ

The no-tachyon conditions are then simply m2ðJPÞ > 0.
We give the conditions for the 1− sector in Appendix B
because of the length of the expressions involved. Note also
for the 1− sector that one requires the two roots of (45) to be
distinct in order to avoid a dipole ghost. Hence, in each
sector, the masses are distinct, and so one can apply
Eq. (45) in Ref. [1] directly to obtain the massive no-ghost
conditions,

0−∶ r2 < 0; ð55Þ

0þ∶ ðr1 − r3 þ 2r4Þðt3 − λÞλν2f24ðt3 − λÞλ3
þ 12ðr1 − r3 þ 2r4Þðt3 − λÞλν
þ ½ðr1 − r3 þ 2r4Þt3 þ t3λ − λ2�ν2g > 0; ð56Þ

1þ∶ ð2r3 þ r5Þ > 0; ð57Þ

2−∶ r1 < 0; ð58Þ

2þ∶ λð2r1 − 2r3 þ r4Þðλþ t1Þ
× ½ð2r1 − 2r3 þ r4Þt1 − λ2 − λt1� < 0; ð59Þ

where again we do not write out the condition for 1−

because of its length but instead give the relevant expres-
sion in Appendix B.
The combined no-ghost-and-tachyon conditions for each

sector other than 1− are then

0−∶ t2 > 0; r2 < 0 ð60Þ

0þ∶ r1þ2r4 >r3;ðt3−λÞλν½12λðt3−λÞþ t3ν�> 0 ð61Þ

1þ∶ 2r3 þ r5 > 0; t1t2ðt1 þ t2Þ < 0 ð62Þ

2−∶ t1 > 0; r1 < 0 ð63Þ

2þ∶ 2r1 þ r4 > 2r3; λt1ðλþ t1Þ < 0: ð64Þ

For the 1− sector, we give the combined condition in
Appendix B and show that it does allow some ranges of the
parameters, but we are unable to obtain a simplified
expression for it. Note that, except for the 0þ and 1−

sectors, the combined condition in each of the other spin-
parity sectors is exactly the same as originally found in
Ref. [3] for PGTþ.
Finally, if we consider all the no-tachyon and no-ghost

conditions from all the massive sectors, we find that they
cannot be satisfied simultaneously. Thus, the root theory
must contain a massive ghost or tachyon.

IV. CRITICAL CASES

If the parameters in the action satisfy certain “critical
conditions,” the particle masses (49)–(54) can become zero
or infinite, and the resulting critical cases may possess
additional gauge invariances, so one may have to re-
evaluate the no-tachyon and no-ghost conditions for both
the massless and massive sectors.

A. Unitarity

In attempting to apply the method in Ref. [1] to obtain all
the critical cases of the root WGTþ theory, one finds that
some of the coefficients in Eqs. (44) and (45) cannot be
factorized into linear combinations of the parameters.
Consequently, the method in Ref. [1] cannot be applied
straightforwardly to obtain all the critical cases, and one
must check carefully where it is applicable. For example,
one of the factors in the coefficient of the k2 term in (44) is
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12ðt3 − λÞλþ t3ν; ð65Þ

which cannot be written as the product of factors that are
linear in the Lagrangian parameters. Indeed, for (65) to
equal zero, one has the two solutions:

ν ¼ −
12ðt3 − λÞλ

t3
with t3 ≠ 0; ð66Þ

t3 ¼ λ ¼ 0: ð67Þ

It is therefore not as straightforward to apply the condition
12ðt3 − λÞλþ t3ν ¼ 0 by substitution. Moreover, the sec-
ond solution (67) requires one to eliminate 2 degrees of
freedom in the parameters simultaneously and thus breaks
the hierarchy of the “tree” of critical cases discussed
in Ref. [1].
In general, one finds that allowing any of the Lagrangian

parameters ν, ξ, or c1 in (10) to be nonzero introduces
similar problems. It requires further improvement of our
systematic method to accommodate such cases, and so here
we set ν ¼ ξ ¼ c1 ¼ 0 to avoid these difficulties. Thus, for
the remainder of this section, the “root theory” refers to (10)
with ν ¼ ξ ¼ c1 ¼ 0. As we will show below, however,
one may nevertheless construct a theory with ν ≠ 0 and/or
ξ ≠ 0 from a theory with ν ¼ ξ ¼ 0, provided its amatrices
are “nonmixing.”
Starting from the root theory, we systematically

identify 862 critical cases (excluding the “vanishing”
Lagrangian, for which all parameters are zero). Of these
critical cases, we find 168 are free of ghosts and
tachyons, provided the parameters in each case satisfy
some additional conditions that preclude them from
generating another critical case; this general issue is
discussed in detail in Appendix C.

B. Comparison with previous results

We now compare our results with the only other example
of a unitary WGTþ theory of which we are aware in the
literature [18]. This has the Lagrangian

L ¼ −λϕ2Rþ aR2 −
1

4
HμνHμν þ

1

2
D�

μϕD�μϕ; ð68Þ

which on adopting the Einstein gauge becomes

L ¼ −λϕ2
0Rþ aR2 −

1

4
HμνHμν þ

1

2
ϕ2
0BμBμ: ð69Þ

Thus, the B field is decoupled from the other gauge
fields, and so the theory can be viewed as the combina-
tion of PGTþ with L ¼ −λϕ2

0Rþ aR2 and Proca theory
LPr ¼ − 1

4
HμνHμν þ 1

2
ϕ2
0BμBμ for a massive vector field.

The Proca part is well known to be unitary. Using
the Gauss-Bonnet identity, the PGTþ part may be shown

to correspond to the critical case r1¼ r2¼2r3−r4¼
2r3þr5¼ t1þ t2¼ t1þ t3¼ t1þλ¼0;r3≠0;λ≠0. This a
type C critical case of the root PGTþ theory with no
massive mode and massless modes with 2 degrees of
freedom; the no-ghost-and-tachyon condition is simply
λ > 0. Therefore, provided this condition is satisfied, the
theory (68) is indeed unitary.
One should note that the presence of the kinetic terms for

the B and ϕ fields means that (68) is not a critical case of
our redefined WGTþ with ν ¼ ξ ¼ c1 ¼ 0 in (10) but is a
critical case of the “full” WGTþ root theory without this
constraint on the Lagrangian parameters. In particular,
Eq. (68) belongs to an extended set of theories with ν ≠
0 and ξ ≠ 0 that can be separated into a PGTþ part and a
dilaton part, which we discuss below in the context of
propagating power-counting renormalizability. We note,
however, that the PGTþ part of (68) is not listed in Ref. [2]
because one cannot obtain nonmixing b matrices by
deleting rows and columns from its a matrices.

C. Propagating power-counting renormalizability

In addition to possessing no ghosts or tachyons, a healthy
physical theory should also be renormalizable. The first step
in assessing whether this is possible is to determine whether
the theory is power-counting renormalizable.
As discussed in Refs. [1,2], the key quantity for

determining whether a theory is PCR is the propagator

D̂ ¼
X
J;P;i;j

b−1ij P̂ðJPÞij: ð70Þ

In particular, if the bmatrices are block diagonal, with each
block containing only one of the fields A, s, a, and B, then
there are no mixing terms in the (gauge-fixed) Lagrangian,
and it is straightforward to obtain the propagators for these
fields separately from D̂. Extending the original PCR
criterion used by Sezgin and van Nieuwenhuizen in
Ref. [3] would require the propagator of the A and B
fields to decay at least as quickly as k−2 at high energy, and
those of the s and a fields to fall off at least as k−4 (see
Appendix D). By contrast, we proposed an alternative
criterion in Refs. [1,2], which we now term propagating
power-counting renormalizability, that in addition allows
the presence of nonpropagating fields at high momenta (for
which the propagator decays no faster than a constant).
Since the physical basis of power-counting renormaliz-
ability relates to the divergence at large momenta of
integrals describing the propagation of particles around
closed loops in Feynman diagrams, it seems physically
reasonable to allow for the presence of modes that do not
propagate at large momenta, since these should be inte-
grated out and not contribute to the loop integrals. PPCR is
less restrictive than PCR, and it may therefore retain some
theories that are eliminated by PCR erroneously. The
ultimate consistency of these two approaches in identifying
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particular theories as PCR and PPCR is discussed at length
in Ref. [2], although the second approach is preferred since
it identifies further critical cases that reduce to those
identified by Sezgin and van Nieuwenhuizen’s criterion
at linear level after integrating out any nonpropagating
modes. We therefore again adopt the latter method here,
which is consistent with our previous work.
On performing this analysis, one finds that most of the

critical cases identified as PPCR are identical to those listed
in Table I, III, or V in Ref. [2] or are a PGTþ without any
propagating mode (which were not listed in Ref. [2]) but
with an additional propagating dilaton. One may under-
stand the reason for this by first expanding the T �2 terms in
(10) to obtain

T �
ABCT

�ABC ¼ T ABCT ABC þ 4BAT CA
C þ 6BABA; ð71Þ

T �
ABCT

�BCA ¼ T ABCT BCA − 2BAT CA
C − 3BABA; ð72Þ

T �B
BAT �C

C
A ¼ T B

BAT C
C
A þ 6BAT CA

C þ 9BABA: ð73Þ

The BT terms are the only possible origin for mixing terms
containing the B field after linearization, and so there will
be no mixing terms in the a matrices if these terms vanish,
for which the condition on the Lagrangian parameters is

t3 ¼ λ: ð74Þ

Moreover, the same condition ensures that the B2 terms
from T �2 also vanish. Hence, if t3 ¼ λ, the RþR2 þ T �2

part of the WGTþ Lagrangian is identical to its PGTþ
counterpart with the replacement T � → T .
The PGTþ critical cases identified as PPCR in Ref. [2]

and having t3 ¼ λ are:

(1) PGTþ with 2 massless degrees of freedom and a
massive mode: cases 1, 3, 4, 6, and 7 in Table I
of Ref. [2];

(2) PGTþ with only 2 massless degrees of freedom:
cases 9–13, 17, and 19 in Table III of Ref. [2]3;

(3) PGTþ with only massive mode(s): cases 26–28, 30–
36, 38–40, 55, and 58 in Table V of Ref. [2] (these
cases all have 1 massive mode, either 0− or 2−).

If the PGTþ part of a WGTþ satisfying t3 ¼ λ has no
propagating mode, then the corresponding WGTþ can at
most have a propagating B field. There are 37 critical cases
of PGTþ satisfying t3 ¼ λ and containing no propagating
mode (these are not listed in Refs. [1,2]). Requiring ξ ≠ 0
in the corresponding WGTþ Lagrangian (10) ensures that
they contain a propagating dilaton. The dilaton part of
WGTþ Lagrangians satisfying t3 ¼ λ is simply

LB ¼ ξHABHAB; ð75Þ
which is that of a massless 1− vector.
For all cases for which the a matrices are nonmixing,

there are no cross-terms of B and the other fields, and so
adding a mass term for B in the Lagrangian does not affect
the other fields. Hence, if one adds the term 1

2
νD�

AϕD
�Aϕ to

such a case, the only effect is either to make an already
propagating B field massive or to add a nonpropagating B
field. In the former (and more interesting) case, the
corresponding dilaton Lagrangian is a Proca theory in
the Einstein gauge (ϕ0 ¼ 1)

LB ¼ ξHABHAB þ 1

2
νBμBμ; ð76Þ

and the corresponding no-ghost-and-tachyon condition is
ξ < 0 and ν > 0. With these extensions, one can thus

TABLE I. Parameter conditions for the PPCR critical cases that are ghost- and tachyon-free and cannot be constructed directly from
PGT. The parameters listed in “Additional conditions” must be nonzero to prevent the theory becoming a different critical case.

No. Critical condition Additional conditions No-ghost-and-tachyon condition

1 r1;
r3
2
− r4; t1; λ ¼ 0 r2; r3; 2r3 þ r5; r3 þ 2r5; t2; t3 t2 > 0; r2 < 0; r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

2 r2; r1 − r3; r4; t1; t2; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t3 r1ðr1 þ r5Þð2r1 þ r5Þ < 0
3 r1; r2;

r3
2
− r4; t1; t2; λ ¼ 0 r3; 2r3 þ r5; r3 þ 2r5; t3 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

4 r1;
r3
2
− r4; t1; t2; λ ¼ 0 r2; r3; 2r3 þ r5; r3 þ 2r5; t3 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

5 r1; r2;
r3
2
− r4; t1; λ ¼ 0 r3; 2r3 þ r5; r3 þ 2r5; t2; t3 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

6 r1; r3; r4; r5; λ ¼ 0 r2; t1; t2; t1 þ t2; t3 t2 > 0; r2 < 0
7 r1; r3; r4; r5; t1 þ t2; λ ¼ 0 r2, t1, t3 r2 < 0, t1 < 0
8 r2; r1 − r3; r4; r1 þ r5; t1 þ t2; λ ¼ 0 r1, t1, t3 t1 > 0; r1 < 0
9 r1; r3; r4; r5; t1; λ ¼ 0 r2, t2, t3 t2 > 0; r2 < 0
10 r1; r3; r4; t1; λ ¼ 0 r2, r5, t2, t3 t2 > 0; r2 < 0
11 r1 − r3; r4; 2r1 þ r5; t1; λ ¼ 0 r1, r2, t2, t3 t2 > 0; r2 < 0
12 r1;

r3
2
− r4; 2r3 þ r5; t1; λ ¼ 0 r2, r3, t2, t3 t2 > 0; r2 < 0

13 r1;
r3
2
− r4;

r3
2
þ r5; t1; λ ¼ 0 r2, r3, t2, t3 t2 > 0; r2 < 0

3We note that cases 9, 10, 11, and 13 in Ref. [2] satisfy the
original criterion used by Sezgin and van Nieuwenhuizen in
Ref. [3] to be PCR and are discussed further in Appendix E
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construct more tachyon-and-ghost-free and PPCR cases for
WGTþ from the PGTþ cases with t3 ¼ λ.
There are, however, some PPCR critical cases of WGTþ

that cannot be constructed directly from PGTþ in the
manner described above. These cases have nonmixing b
matrices, but their a matrices contain mixing terms. In
particular, this occurs when there are BA mixing terms in
the linearized Lagrangian. Since the B field can be fixed
using the additional gauge invariance of the critical case,
there are no BA terms in the bmatrices. We list these further
PPCR critical cases in Tables I and II. Note that none of
these cases is PCR.

V. TORSION-FREE WGT+

In addition to the general case of WGTþ, one may also
consider the simpler cases with vanishing torsion or
curvature, which are notmerely special cases of the general

WGTþ action, because additional constraints are placed not
only the coefficients but also on the fields. In this section,
we consider the case of vanishing torsion.
If one sets the torsion T �ρ

μν to zero, then one sees from
(21) that the gauge fields AAB

μ, haμ, and Bμ are no longer
independent. Indeed, Eq. (21) gives an explicit expression
for the A field in terms of the B and b fields. On making this
substitution in the Lagrangian, one may then apply the
same method as in the previous section to investigate
torsion-free WGTþ and its critical cases. In this simpler
theory, one need not set ν ¼ ξ ¼ c1 ¼ 0, since one does not
encounter critical conditions that are nonlinear in the
Lagrangian parameters. Hence, we do not adopt this
restriction in this section.

A. Root theory

In this case, the a matrices of the root theory (10) are

að0þÞ ¼ s

s

B

s s B0
B@

8ðr1 − r3 þ 2r4Þk4 − 4λk2 0 8i
ffiffiffi
3

p ðr1 − r3 þ 2r4Þk3
0 0 0

−8i
ffiffiffi
3

p ðr1 − r3 þ 2r4Þk3 0 24k2ðr1 − r3 þ 2r4Þ þ 12λþ ν

1
CA ; ð77Þ

TABLE II. Particle content of the PPCR critical cases that are ghost- and tachyon-free and cannot be constructed directly from PGT.
The column “b sectors” describes the diagonal elements in the b−1 matrix of each spin-parity sector in the sequence
f0−; 0þ; 1−; 1þ; 2−; 2þg. Here, it is notated as φn

v or φn
l , where φ is the field, −n is the power of k in the element in the b−1

matrix when k goes to infinity, vmeans a massive pole, and lmeans a massless pole. If n ¼ ∞, it represents that the diagonal element is
zero. If n ≤ 0, the field is not propagating. The “j” notation denotes the different form of the elements of the b−1 matrices in different
choices of gauge fixing, and the “&” connects the diagonal elements in the same b−1 matrix. The superscript “N” represents that there is
nonzero off-diagonal term in the b−1 matrix.

No.

Massless
mode degrees
of freedom

Massive
mode b sectors

1 2 0− fA2
v; A0js2l jB0; ðA2

l & A0
l ÞNjðA2

l & s2l ÞNjðA2
l & a2l ÞNjðA2

l & B0
l ÞN; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×; A2
l g

2 2 × f×; A0js2l jB0; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞNjðA2
l & B0

l ÞN; A2
l ; A

2
l ;×g

3 2 × f×; A0js2l jB0; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞNjðA2
l & B0

l ÞN; A2
l ;×; A

2
l g

4 2 × fA2
l ; A

0js2l jB0; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞNjðA2
l & B0

l ÞN; A2
l ;×; A

2
l g

5 2 × fA0; A0js2l jB0; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞNjðA2
l & B0

l ÞN; ðA2
l & A0

l ÞNjðA2
l & a2l ÞN;×; A2

l g
6 0 0− fA2

v; A0js2l jB0; ðA0 & A0ÞNjðA0 & s2l ÞNjðA0 & a2l ÞNjðA0 & B0ÞNjðs2l & B0ÞNjða2l & B0ÞN;
ðA0 & A0ÞNjðA0 & a2l ÞN; A0; A0js2l g

7 0 0− fA2
v; A0js2l jB0; ðA0 & A0ÞNjðA0 & s2l ÞNjðA0 & a2l ÞNjðA0 & B0ÞNjðs2l & B0ÞNjða2l & B0ÞN;
ðA∞ & A0ÞNjðA∞ & a2l ÞN; A0; A0js2l g

8 0 2− fA0; A0js2l jB0; ðA0 & A0ÞNjðA0 & s2l ÞNjðA0 & a2l ÞNjðA0 & B0ÞNjðs2l & B0ÞNjða2l & B0ÞN;
ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2

v; A0js2l g
9 0 0− fA2

v; A0js2l jB0; A0js2l ja2l jB0; A0ja2l ;×;×g
10 0 0− fA2

v; A0js2l jB0; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞNjðA2
l & B0

l ÞN; ðA2
l & A0

l ÞNjðA2
l & a2l ÞN;×;×g

11 0 0− fA2
v; A0js2l jB0; ðA2

l & A0
l ÞNjðA2

l & s2l ÞNjðA2
l & a2l ÞNjðA2

l & B0
l ÞN; A0ja2l ; A2

l ;×g
12 0 0− fA2

v; A0js2l jB0; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞNjðA2
l & B0

l ÞN; A0ja2l ;×; A2
l g

13 0 0− fA2
v; A0js2l jB0; A0js2l ja2l jB0; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×; A2
l g
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að1−Þ ¼
s

a

B

s a B0
B@

0 0 0

0 0 0

0 0 4k2ðc1 þ 2r1 þ 2r4 þ 2r5 þ ξÞ þ 12λþ ν

1
CA ; ð78Þ

að1þÞ ¼
a

a

ð0Þ ; ð79Þ

að2þÞ ¼
s

s�
4ð2r1 − 2r3 þ r4Þk4 þ 2λk2

� ; ð80Þ

where the SPOs are obtained from those listed in
Appendix A by simply deleting the rows and columns
corresponding to the A field. The a matrices for 0− and 2−

sectors have no element, so we do not list them. One can fix
the gauge simply by removing the rows and columns whose
elements are all zeros from the a matrices, to obtain the
corresponding b matrices. These may then be inverted to
obtain the saturated propagator.
Considering first the massless sector, the nonzero eigen-

values of the Laurent series coefficient matrix Q2 are

1

λ
;

1

2λ
: ð81Þ

Thus, the theory has two massless degrees of freedom, and
the no-ghost condition for the massless sector is simply

λ > 0: ð82Þ

Turning to the massive sector, the determinants of the b
matrices are

det ½bð0þÞ� ¼ 8ðr1 − r3 þ 2r4Þνk4 − 4λð12λþ νÞk2; ð83Þ

det ½bð1−Þ�¼4ðc1þ2r1þ2r4þ2r5þξÞk2þ12λþν; ð84Þ

det ½bð2þÞ� ¼ 4ð2r1 − 2r3 þ r4Þk4 þ 2λk2; ð85Þ

from which one obtains the masses

m2ð0þÞ ¼ λð12λþ νÞ
2ðr1 − r3 þ 2r4Þν

; ð86Þ

m2ð1−Þ ¼ −12λ − ν

4ðc1 þ 2r1 þ 2r4 þ 2r5 þ ξÞ ; ð87Þ

m2ð2þÞ ¼ −
λ

2ð2r1 − 2r3 þ r4Þ
: ð88Þ

The no-tachyon conditions m2ðJPÞ > 0 may then be read
off from the above expressions. In each sector, the masses

are distinct, and so one can again apply Eq. (45) in Ref. [1]
directly to obtain the massive no-ghost conditions

0þ∶
1

4λ
þ 6λ2

ðr1 − r3 þ 2r4Þν2
þ 3

ν
> 0; ð89Þ

1−∶ c1 þ 2ðr1 þ r4 þ r5Þ þ ξ < 0; ð90Þ
2þ∶ λ < 0: ð91Þ

One thus finds that the combined no-ghost-and-tachyon
conditions for the massive sector are

0þ∶r1 þ 2r4 > r3; λνð12λþ νÞ > 0; ð92Þ
1−∶12λþ ν > 0; c1 þ 2ðr1 þ r4 þ r5Þ þ ξ < 0; ð93Þ

2þ∶2r1 þ r4 > 2r3; λ < 0: ð94Þ

Since the conditions in the massive 2þ sector contradict
the condition (82) in the massless sector, the theory must
have a ghost or tachyon.

B. Critical cases

We now consider the critical cases of torsion-free
WGTþ. As discussed in detail in Ref. [1], one finds all
conditions that cause a theory to be a critical case. While
some conditions may cause criticality in more than one
way, one can still divide all the critical conditions into three
categories, which we called type A, B, and C conditions.
Considering first the root theory, it becomes critical and

thereby loses 1 degree of freedom in the Lagrangian para-
meter space if any of the following expressions vanishes:

type B∶ λ; 12λþ ν; ð95Þ

type C∶ 2r1 − 2r3 þ r4; r1 − r3 þ 2r4; ν;

c1 þ ξþ 2r1 þ 2r4 þ 2r5: ð96Þ

The two critical cases resulting from the type B conditions
(95) of the root theory contain ghosts or tachyons, but some
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of their descendant critical cases, all ofwhich result from type
A or C conditions, are free from ghosts and tachyons. The
critical cases resulting from type A and type B conditions
of torsion-free WGTþ are shown in Fig. 1, whereas those

arising from type C critical conditions are listed in
Table III; those cases that are ghost- and tachyon-free
are indicated, as described in the captions. One sees that
four cases in Fig. 1 are free from ghosts and tachyons,
and nine critical cases in Table III share this property.
We also note that there are 15 critical cases of the root
theory in total that result from type C conditions, which
correspond to self-consistent combinations of those in
(96). As is clear from (88), those critical cases resulting
from type C conditions and for which 2r1 − 2r3 þ r4 ¼ 0
are free from ghosts and tachyons because the 2þ massive
mode is not propagating.

C. Comparison with previous results

The particle spectrum of a subset of torsion-free Weyl-
invariant higher-curvature gravity theories has been studied

FIG. 1. Critical cases of torsionless WGTþ resulting from type
A or type B conditions. Each node represents a critical case,
except the top and bottom nodes, which represent the root theory
and the zero Lagrangian, respectively. Each arrow points from a
node to one of its critical cases. A solid arrow represents type A
critical condition, and a dashed arrow represents type B. The
labels on the arrows are the critical parameters; for brevity, the
variables r01 ¼ r1 − r3 and c01 ¼ c1 þ 2r1 þ 2r5 þ ξ have been
defined. The critical condition of a node can be obtained by
setting all the critical parameters to zero in the path from the root
theory to that node, and the conditions are path independent. In
each node, the first line is in the format “degree of freedom of
massless mode or ‘dip.G’ if there are massless dipole ghosts/
massive mode,” and the second line is “number of child critical
cases resulting form type C conditions (number of no-ghost-and-
tachyon cases among them),” which are not shown but are listed
in Table III. The dashed/solid frames indicate those cases that
contain any/no ghost or tachyon. The thick frames indicate PPCR
cases, and the thin frames indicate those that are non-PPCR or
have mixing bmatrices. The M symbols under the numbers at the
left of the nodes indicate that those nodes must have mixing b
matrices.

TABLE III. Critical cases of torsion-free WGTþ resulting from
type C conditions. The first numbers in the column “No.”
correspond to the numbers in Fig. 1, and the corresponding
nodes are the parent critical cases of the rows. The “Critical
condition” column indicates the critical condition with respect to
the parent case. For example, “1-3” is the third critical case
resulting from type C conditions of case 1. The symbols ∘=×
indicate whether it is possible for the theory to be free of ghosts
and tachyons. The − symbols denote that there is no propagating
mode, and the M symbols indicate the cases with mixing b
matrices.

No.
Critical
condition

Massive
mode

No
ghost nor
tachyon PPCR

1–1 ν 1−; 2þ × M
1–2 r01 þ 2r4 1−; 2þ × ×
1–3 r01 þ 2r4; ν 1−; 2þ × ×
1–4 c01 þ 2r4 0þ; 2þ × M
1–5 ν; c01 þ 2r4 2þ × M
1–6 r01 þ 2r4; c01 þ 2r4 2þ × ×
1–7 r01þ2r4;ν;c01þ2r4 2þ × ×
1–8 2r01 þ r4 0þ; 1− ∘ M
1–9 2r01 þ r4; ν 1− ∘ M
1–10 2r01 þ r4; r01 þ 2r4 1− ∘ ×
1–11 2r01 þ r4; r01 þ 2r4; ν 1− ∘ ×
1–12 2r01 þ r4; c01 þ 2r4 0þ ∘ M
1–13 2r01 þ r4; ν; c01 þ 2r4 × ∘ M
1–14 2r01þr4;r01þ2r4;

c01þ2r4
× ∘ ×

1–15 2r01þr4;r01þ2r4;
ν;c01þ2r4

× ∘ ×

2–1 c01 þ 2r4 × × M
3–1 2r01 þ r4 × × M
4–1 c01 − 4r01 × − −
5–1 c01 − r01 × × ∘
7–1 r01 × ∘ ×
8–1 2r01 þ r4 × ∘ M
9–1 c01 × − −
13–1 r01 × ∘ ×
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previously by Ref. [19], both in (anti-)de Sitter and
Minkowski backgrounds (to our knowledge, this is the
only other investigation of a torsionless WGT ground state
in the literature). For n ¼ 4 spacetime dimensions, the
coefficients ðα; β; γ; ϵ; σÞ in their Lagrangian (see Eqs. (1),
(7), and (14) in Ref. [19]) are related to those in our
notation used in (10) by

α ¼ −
1

2
r1 þ r3 ¼

1

4
ðr4 − r5Þ;

β ¼ r4 þ r5 ¼ −
1

2
c1;

γ ¼ 1

2
r1;

ϵ ¼ ξ − ðr4 þ r5 þ 2r1Þ;
σ ¼ λ; ð97Þ

together with the conditions

r1 ¼ r2; ν ¼ −1: ð98Þ

In particular, one should note that the Lagrangian in
Ref. [19] is written in terms of the curvature tensor
R̃μνρσ. As discussed in Sec. II, this has even fewer
symmetry properties than the rotational gauge field strength
tensor Rμνρσ used in (10). Consequently, there are further
quadratic combinations of R̃μνρσ that could appear in the
Lagrangian in Ref. [19], but only three such terms are
included. Consequently, there are fewer degrees of freedom
in the parameters of their Lagrangian, as compared with
our Lagrangian in (10), as is evident from the above
parameter identifications. Moreover, since R̃μνρσ has many
fewer symmetries than the standard curvature tensor in
Riemannian spacetime V4, the appropriate form of the
Gauss-Bonnet identity differs from the usual formula that is
assumed in Eq. (34) of Ref. [19] (see, for example,
Refs. [8,20]); fortunately, most of the conclusions pre-
sented in Ref. [19] do not depend on this expression.
The constraints on our parameters in (97)–(98) do not

coincide with any of the critical conditions in any critical
case, so the structure of our “criticality tree” of torsion-free
WGT is not affected. In Ref. [19], it is found that about a
four-dimensional Minkowski background the WGTs con-
sidered are unitary, provided (in terms of our parameters)

2ðr1 − r3Þ þ r4 ¼ 0; ð99Þ

r1 − r3 þ 2r4 ¼ 0; ð100Þ

λ > 0: ð101Þ

Both equalities coincide with our type C critical conditions,
and they eliminate 2þ and 0þ massive modes, leaving a 1−

massive mode. The condition on λ also matches ours, so

their result is consistent with our critical case 1–10 of the
root theory, listed in Table III.
It is concluded in Ref. [19], however, that the theory has

a massless spin-2 field and a massless spin-0 field, and so
the massless sector has 3 degrees of freedom, whereas we
find just 2. This difference may result from the fact that they
employ a gauge fixing condition D�

μBμ ¼ 0 on the Bμ field
(their Aμ field), described in their Eq. (30), but then treat
this field as if it is unconstrained when reading off the
particle content from their Eq. (59). This situation is
analogous to that in Stueckelberg theory, as discussed in
Appendix B in Ref. [2]. If one fixes the gauge by setting
∂ · B ¼ 0, then the Lagrangian appears to describe a
massive vector B and a massless scalar ϕ without inter-
action. Conversely, if one instead sets ϕ ¼ 0, the
Lagrangian contains only a massive vector without con-
straint. Thus, one should interpret the theory as containing
either a massive vector or a massive vector with a
Stueckelberg ghost and a Faddeev-Popov ghost.
Also, it is claimed in Ref. [19] that unitarity requires both

(99) and (100) to hold, whereas we require only the former
condition, if no type A or B critical condition is satisfied.
The condition (100) is necessary in Ref. [19] because the
authors do not adopt the Einstein gauge and so require the
higher-derivative Pais-Uhlenbeck term ð□̄ΦLÞ2 to vanish,
where ΦL is the linearized ϕ. By contrast, all the higher-
order poles in our saturated propagator vanish due to the
source constraints, and so the condition (100) is not
necessary in our case. This difference may be worthy of
further investigation.

D. Propagating power-counting renormalizability

We determine whether each critical case is PPCR using
the same method as discussed in Sec. IV C. The results are
presented in Fig. 1 and Table III. In particular, we find three
critical cases in Fig. 1 that are both PPCR and contain no
ghost nor tachyon; these are indicated by nodes with thick,
solid frames. We note that each of these theories can be
gauge fixed to contain only the B gauge field. It is also
worth highlighting that, perhaps as a consequence of this,
there is no simultaneously unitary and PPCR case in
torsion-free PGTþ [1], and so these three theories may
be worthy of further investigation. No critical case in
Table III is both PPCR and unitary.

VI. CURVATURE-FREE WGT+

In this section, we consider WGTþ with vanishing cur-
vature. This is a more subtle condition than the equivalent
case in PGTþ, which was discussed in Ref. [1].4 As
mentioned in Sec. II, the geometric (Riemann) curvature

4There is a typographical error in Fig. 2 in Ref. [1]. The node
t1 þ t2 ¼ 0 has 3 massless degrees of freedom rather than 2. The
correction does not affect the remaining contents in Ref. [1].
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tensor R̃ρ
σμν in Weyl-Cartan spacetime differs from the

rotational gauge field strengthRρ
σμν, so it is unclear which

should be set to zero. Here, we consider only the case in
which the latter vanishes, since this may imposed in the
same way as in PGT by simply setting AABμ ¼ 0, since the
expression for the rotational gauge field strength in terms of
the rotational gauge field are identical in PGT and WGT. In
this simpler theory, one sees from (10) that one requires
only the Lagrangian parameters ξ, ν, t1, t2, and t3, since one
can set λ ¼ 0 without loss of generality.

A. Root theory

In this case, the a matrices of the root theory are

að0þÞ ¼ s

s

B

s s B0
B@

4k2t3 0 4i
ffiffiffi
3

p
kt3

0 0 0

−4i
ffiffiffi
3

p
kt3 0 12t3 þ ν

1
CA ; ð102Þ

að1−Þ ¼ s

a

B

s a B0
BB@

2
3
k2ðt1 þ t3Þ − 2

3
k2ðt1 þ t3Þ −2i

ffiffiffi
2

p
kt3

− 2
3
k2ðt1 þ t3Þ 2

3
k2ðt1 þ t3Þ 2i

ffiffiffi
2

p
kt3

2i
ffiffiffi
2

p
kt3 −2i

ffiffiffi
2

p
kt3 12t3 þ νþ 4k2ξ

1
CCA ; ð103Þ

að1þÞ ¼
a

a�
2
3
k2ðt1 þ t2Þ

� ; ð104Þ

að2þÞ ¼
s

s

ð2k2t1Þ
: ð105Þ

As in the torsion-free theory, the SPOs are obtained from
those listed in Appendix A by deleting the rows and
columns corresponding to the A field, and the a matrices
for the 0− and 2− sectors contain no elements. After fixing
the gauge by deleting rows and columns, one obtains the
nonsingular b matrices, which may be inverted to obtain
saturated propagator.
Considering first the massless sector, one finds that the

Laurent series coefficient matrixQ4 is nonzero in this case,
and the condition for it to vanish is

ν ¼ −
12t1ðt1 − 2t2Þt3

t21 − 2t1t2 þ 4t1t3 þ t2t3
: ð106Þ

One further finds that the Laurent coefficient matrix Q2

cannot be positive definite and contains eight nonzero
eigenvalues, which are too complicated to give here.
Consequently, the root theory must contain ghosts in the
massless sector.
One can, however, continue to analyze the massive

sector. The determinants of the b matrices are

det ½bð0þÞ� ¼ 4t3νk2; ð107Þ

det ½bð1−Þ� ¼ 2

3
½t3νþ t1ð12t3 þ νÞ�k2 ð108Þ

þ 8

3
ðt1 þ t3Þξk4; ð109Þ

det ½bð1þÞ� ¼ 2

3
ðt1 þ t2Þk2; ð110Þ

det ½bð2þÞ� ¼ 2t1k2: ð111Þ

Only the 1− sector contains a massive mode, with mass

m2ð1−Þ ¼ −12t1t3 − ðt1 þ t3Þν
4ðt1 þ t3Þξ

; ð112Þ

and the no-tachyon condition is m2ð1−Þ > 0. Applying
Eq. (45) in Ref. [1] directly, in this case, the no-ghost
condition is

1−∶ ðt1 þ t3Þ½12t1t3 þ ðt1 þ t3Þν�ξfðt1 þ t3Þ
× ½12t1t3 þ ðt1 þ t3Þν� − 72t23ξg < 0: ð113Þ

The combined no-ghost-nor-tachyon conditions for the
massive sector are thus

ξ < 0; ν > −
12t1t3
t1 þ t3

; ð114Þ

but one should recall that the massless sector always
contains a ghost.

B. Critical cases

The critical cases of the root theory occur when any of
the following expressions vanish:

typeA∶ t1; t1 þ t2; t3; ν; ð115Þ

type B∶ 12t1t3 þ t1νþ t3ν; ð116Þ

type C∶ t1 þ t3; ξ: ð117Þ
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However, since 12t1t3 þ t1νþ t3ν cannot be factorized into
a linear combination of the parameters, one cannot apply
our algorithm to find all the critical cases directly. Below,
we therefore consider the critical case ν ¼ 0, which
removes the kinetic term of the scalar field ϕ, as the
simplified root theory and instead find its critical cases.
Before turning to these, we note that the massless sector of
this simplified root theory requires t1 − 2t2 ¼ 0 to make its
Laurent series coefficient matrix Q4 vanish, and thus
prevent the presence of dipole ghosts, but in any case,
the matrixQ2 has seven nonzero eigenvalues and cannot be
made be positive definite. Therefore, the massless sector
must contain a ghost. The conditions for the massive sector
of the simplified root theory to be ghost- and tachyon-free
may be obtained from (112)–(114) by setting ν ¼ 0.
Turning now to the critical cases of the simplified root

theory, the critical conditions are given by (115)–(117) with
ν ¼ 0. One should note that this results in the simplified
root theory containing no type B critical condition, since
the resulting condition that t1t3 should vanish is trivially
factorized and the separate requirements that t1 or t3 should
vanish are already included in the type A critical con-
ditions, and it turns out that there is no type B critical
condition in the descendants. The critical cases resulting
from type A and type C conditions are summarized in Fig. 2
and Table IV, respectively. Cases that are ghost- and
tachyon-free are indicated, as described in the captions.

In particular, we note that there are nine critical cases in
Fig. 2 that are free from ghosts and tachyons and three such
critical cases in Table IV.

C. Propagating power-counting renormalizability

We determine whether each critical case is PPCR using
the same method as discussed in Sec. IV C. The results are
presented in Fig. 2 and Table IV. In particular, we find that
there is just a single critical case in Fig. 2, which is just the
pure dilaton Lagrangian L ∼H2, that is both PPCR and
unitary; this is indicated by the node with a thick, solid
frame. No such critical case is found in Table IV.

VII. CONCLUSIONS

We have used the systematic method in Ref. [1] to
determine the no-ghost-nor-tachyon conditions for the most
general WGTþ (the root theory) and found it must contain a
ghost or tachyon. For a subset of the theory, with the
restriction ν ¼ ξ ¼ c1 ¼ 0 on the parameters in the
Lagrangian (10), which removes the kinetic terms for
the scalar field ϕ and dilational gauge field B, and the
only “cross-term” RABHAB between gauge field strengths,
we found and categorized all 862 critical cases and
identified 168 that are free from ghosts and tachyons.
We compared our findings with the only other example of a
unitary WGTþ of which we are aware in the literature [18]
and found the results to be consistent. We further identified
those critical cases of WGTþ that are also PPCR and
introduce a method to construct more PPCR cases outside
the 862 critical cases. Most of these are identical to or can
be constructed from those in PGTþ listed in Ref. [2] or a
PGTþ without any propagating mode (which were not
listed in Ref. [2]). Nonetheless, we also identified a further
13 PPCR and ghost-and-tachyon-free critical cases of
WGTþ that cannot be constructed directly from PGTþ.
We repeated our analysis for the simpler cases of torsion-

free and curvature-free WGTþ, which are not merely
special cases of the general WGTþ action, because addi-
tional constraints are placed not only on the coefficients but
also on the fields. For the torsion-free case, we found that
the root theory (without any further conditions on the
Lagrangian parameters) must contain a ghost or tachyon.

FIG. 2. Critical cases resulting from type A critical conditions
of curvature-free WGTþ. The notation follows that of Fig. 2.

TABLE IV. Critical cases resulting from type C critical con-
ditions of curvature-free WGTþ. The notation follows that of
Table III.

No.
Critical
condition

Massive
mode

No ghost
nor tachyon PPCR

1–1 ξ × × M
1–2 t1 þ t3 × × M
1–3 t1 þ t3; ξ × × M
3–1 ξ × ∘ M
3–2 t1 þ t3 × ∘ M
3–3 t1 þ t3; ξ × ∘ M
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Nonetheless, we identify 13 critical cases that are free from
ghosts and tachyons. We also compare our results with the
only other investigation of the ground state of a torsionless
WGTþ of which we are aware in the literature. We find our
results to be consistent, apart from a minor issue related to
the number of propagating degrees of freedom in the
massless sector, most probably resulting from the different
approaches to gauge fixing used in the two analyses. Of our
13 ghost-and-tachyon-free critical cases, we further iden-
tified three that are also PPCR, each of which can be gauge
fixed to contain only the B gauge field. This may explain
the sharp contrast with torsion-free PGTþ, for which there
is no unitary and PPCR critical case, and suggests that these
three theories may be worthy of further investigation.
For curvature-free WGTþ, we find that the massless

sector of the root theory (again with no further conditions
on the Lagrangian parameters) must contain a ghost. For
the simplified root theory with ν ¼ 0, which has no kinetic
term for the scalar field ϕ in the Lagrangian and is itself
found to have a ghost in the massless sector, we find 13
critical cases that are free from ghosts and tachyons, of
which just a single case is found also to be PPCR, which
corresponds to the pure dilaton Lagrangian L ∼H2.
All the restrictions on Lagrangian parameters mentioned

above are necessary to avoid critical conditions that cannot
be written as the product of real linear terms, which is
required by the systematic method in Ref. [1]. We plan to
improve our approach to accommodate such cases in future
work and also apply the method to more general gauge
theories, such as metric affine gravities, whose unitarity
was recently investigated by Ref. [21] using SPOs.
Finally, we point out that gauge theories of gravity can

yield interesting phenomenology. In particular, in a cos-
mological context, recent investigations of some of the
PGTþ cases that were identified in Refs. [1,2] as being
unitary and PPCR have been carried out in Ref. [22] and are

found to have rich background solutions that support the
concordance ΛCDM background cosmology up to an
optional, effective dark radiation, which shows consider-
able promise in alleviating the Hubble tension. These
theories have been shown to map to a noncanonical
biscalar-tensor theory in the Jordan frame, which provides
a unified framework for future investigation by the broader
community, and for many parameter choices, the nonca-
nonical term reduces to a Cuscuton field [23]. Moreover,
one of the cases yields two dark energy solutions: accel-
erated expansion from a negative bare cosmological con-
stant whose magnitude is screened and emergent dark
energy to replace vanishing bare cosmological constant in
ΛCDM. Further investigation of the unitary and PPCR
cases of PGTþ and WGTþ is ongoing.

The full set of results, displayed in an interactive form,
can be found at http://www.mrao.cam.ac.uk/projects/gtg/
wgt/.
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APPENDIX A: SPIN PROJECTION OPERATORS
FOR WGT+

The block matrices PðJPÞ containing the spin projection
operators for WGTþ used in this paper are as follows:

Pð0−Þ¼
A�
IJK

AABC�
2
3
ΘICΘJAΘKBþ 1

3
ΘIAΘJBΘKC

� ; ðA1Þ

Pð0þÞ ¼

A�
IJK

s�IJ

s�IJ

B�
K

AABC sAB sAB BC0
BBBBBBBB@

2
3
ΘCBΘKJΩIA

ffiffi
2

p
3
k̃JΘABΘKI

ffiffi
2
3

q
k̃JΘKIΩBA −

ffiffi
2
3

q
ΘKJΩICffiffi

2
p
3
k̃BΘCAΘIJ

1
3
ΘABΘIJ

1ffiffi
3

p ΘIJΩAB
1ffiffi
3

p k̃CΘIJffiffi
2
3

q
k̃BΘCAΩJI

1ffiffi
3

p ΘABΩIJ ΩABΩIJ k̃CΩIJ

−
ffiffi
2
3

q
ΘCBΩAK

1ffiffi
3

p k̃KΘAB k̃KΩAB ΩKC

1
CCCCCCCCA

; ðA2Þ

Pð1−Þ ¼

A�
IJK

A�
IJK

s�IJ
a�IJ
B�
K

AABC AABC sAB aAB BC0
BBBBBB@

ΘCBΘIAΘKJ

ffiffiffi
2

p
ΘIAΘKJΘCB

ffiffiffi
2

p
k̃BΘIAΘKJ

ffiffiffi
2

p
k̃BΘIAΘKJ ΘICΘKJffiffiffi

2
p

ΘAIΘCBΩKJ 2ΘIAΩCBΩKJ 2k̃JΘIAΩKB 2k̃JΘIAΩKB

ffiffiffi
2

p
ΘICΩKJffiffiffi

2
p

k̃JΘAIΘCB 2k̃BΘAIΩCJ 2ΘIAΩJB 2ΘIAΩJB

ffiffiffi
2

p
k̃JΘICffiffiffi

2
p

k̃JΘAIΘCB 2k̃BΘIAΩCJ 2ΘIAΩJB 2ΘIAΩJB

ffiffiffi
2

p
k̃JΘIC

ΘAKΘCB

ffiffiffi
2

p
ΘAKΩCB

ffiffiffi
2

p
k̃BΘAK

ffiffiffi
2

p
k̃BΘAK ΘKC

1
CCCCCCA

; ðA3Þ
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Pð1þÞ ¼
A�
IJK

A�
IJK

a�IJ

AABC AABC aAB0
BB@

ΘICΘKBΩJA þ ΘIAΘKCΩJB −
ffiffiffi
2

p
ΘJAΘKBΩIC

ffiffiffi
2

p
k̃JΘIAΘKB

−
ffiffiffi
2

p
ΘBIΘCJΩAK ΘIAΘJBΩKC k̃KΘIAΘJBffiffiffi
2

p
k̃BΘAIΘCJ k̃CΘAIΘBJ ΘAIΘBJ

1
CCA ; ðA4Þ

Pð2−Þ ¼
A�
IJK

AABC�
2
3
ΘICΘJBΘKA þ 2

3
ΘIAΘJBΘKC − ΘCBΘIAΘKJ

� ; ðA5Þ

Pð2þÞ ¼ A�
IJK

s�IJ

AABC sAB 
− 2

3
ΘCBΘKJΩIA þ ΘICΘKAΩJB þ ΘIAΘKCΩJB

ffiffiffi
2

p
k̃JðΘIAΘKB − 1

3
ΘABΘKIÞffiffiffi

2
p

k̃BðΘCJΘIA − 1
3
ΘCAΘIJÞ − 1

3
ΘABΘIJ þ ΘIAΘJB

!
: ðA6Þ

These SPOs differ from those used in Ref. [1] for PGTþ by having one additional row/column in both the 0þ and 1− sectors,
which are related to the extra vector gauge field BA present in WGTþ. For more details about SPOs in general, please refer
to Ref. [1].

APPENDIX B: NO-TACHYON AND NO-GHOST CONDITIONS FOR THE 1− SECTOR

First, to avoid tachyons and a dipole ghost, one requires the roots of (45) to be real and distinct, such that

f6c1t1ðt3 − λÞ þ ðr1 þ r4 þ r5Þ½12ðt3 − λÞðt1 þ λÞ þ ðt1 þ t3Þν� þ 6t1t3ξg2
þ 3t1ðt1 þ t3Þ½12ðt3 − λÞλþ t3ν�½c21 − 8ðr1 þ r4 þ r5Þξ� > 0: ðB1Þ

The no-tachyons conditions that both of the roots are positive then read

ðt1 þ t3Þ½c21 − 8ðr1 þ r4 þ r5Þξ�f6c1t1ðt3 − λÞ þ ðr1 þ r4 þ r5Þ½12ðt3 − λÞðt1 þ λÞ þ ðt1 þ t3Þν� þ 6t1t3ξg > 0; ðB2Þ
t1ðt1 þ t3Þð12ðt3 − λÞλþ t3νÞðc21 − 8ðr1 þ r4 þ r5ÞξÞ < 0: ðB3Þ

The no-ghost condition is

½c21 − 8ðr1 þ r4 þ r5Þξ�½3c1ðt1 − 2t3Þðt3 − λÞ − r5ðt21 þ 2t1t3 þ 19t23 − 36t3λþ 18λ2Þ
− r1ðt21 þ 2t1t3 þ 19t23 − 36t3λþ 18λ2Þ − r4ðt21 þ 2t1t3 þ 19t23 − 36t3λþ 18λ2Þ − 3ðt21 þ 2t23Þξ� < 0; ðB4Þ

ðt1 þ t3Þ½c21 − 8ðr1 þ r4 þ r5Þξ�f9ðt1 þ t3Þf2t1ð7t23 − 12t3λþ 6λ2Þ þ t21ð14t3 − 12λþ νÞ þ 2t3½12ðt3 − λÞλþ t3ν�g2
× ½c21 − 8ðr1 þ r4 þ r5Þξ� − 48t1½12ðt3 − λÞλþ t3ν�½r5t21 − 3c1t1t3 þ 2r5t1t3 þ 6c1t23 þ 19r5t23

þ 3c1t1λ − 6c1t3λ − 36r5t3λþ 18r5λ2 þ r1ðt21 þ 2t1t3 þ 19t23 − 36t3λþ 18λ2Þ þ r4ðt21 þ 2t1t3 þ 19t23

− 36t3λþ 18λ2Þ þ 3t21ξþ 6t23ξ�2 þ 16f2t1ð7t23 − 12t3λþ 6λ2Þ þ t21ð14t3 − 12λþ νÞ þ 2t3½12ðt3 − λÞλþ t3ν�g

× f9c1t1ð−t3 þ λÞ þ 3

2
ðr1 þ r4 þ r5Þ½−12ðt3 − λÞðt1 þ λÞ − ðt1 þ t3Þν� − 9t1t3ξg½−r5t21 þ 3c1t1t3 − 2r5t1t3

− 6c1t23 − 19r5t23 − 3c1t1λþ 6c1t3λþ 36r5t3λ − 18r5λ2 − r1ðt21 þ 2t1t3 þ 19t23 − 36t3λþ 18λ2Þ − r4ðt21 þ 2t1t3

þ 19t23 − 36t3λþ 18λ2Þ − 3ðt21 þ 2t23Þξ�g < 0: ðB5Þ

Combining the requirements for no tachyons and no ghosts, there exists at least one parameter set satisfying all five
conditions above, for example,

c1 ¼−9; r1 ¼−1; r4¼ 0; r5¼ 0; t1¼
1

2
; t3 ¼−1; λ¼−4; ν¼−142; ξ¼−18; ðB6Þ

where the other parameters may take arbitrary values, provided they do not make the theory a critical case.
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APPENDIX C: COMPLETENESS OF THE
CRITICAL CASES

An “additional condition” is defined as the condition(s)
to prevent a theory from being critical. In our previous
paper [1], the additional condition was the requirement that
the “sibling critical conditions” should not be satisfied, and
we will call this the “sibling additional condition.” For
example, consider a theory that has the critical conditions
that the (linear) parameter combinations X, Y, and Z should
vanish; we will call X, Y, and Z the “critical parameters” of
the theory. In the case, the sibling critical parameters for the
critical case X ¼ 0 are Y and Z. To prevent a theory from
being critical, one can require the critical parameters not
equal to zero. We will call this kind of condition a “child
additional condition.” In PGT, as discussed in Ref. [1], the
sibling additional condition is identical to the child addi-
tional condition, except for the root case. This occurs
because we add only one linear condition at a time for cases
resulting from type A or B critical conditions, but we
attempt to use all possible combinations of conditions
simultaneously for type C critical parameters (which we
term “combining” the conditions). We then recursively find
the child critical cases of cases resulting from type A and B
critical conditions (the “uncombined” cases) but stop doing
that for those from type C critical conditions (the combined
cases). If type C critical conditions are treated in the same
way as type A and type B, then the statement is not valid
for PGT.
There are two situations in which the statement is invalid.

The first is the occurence of “hidden” critical parameters.
Consider a theory with only a 1 × 1 b matrix ðXY þ Zk2Þ.
The theory has type B critical parameters, X and Y, and a
type C one, Z. For the critical case X ¼ 0, the b matrix

becomes (Zk2), so there is only one critical parameter Z. To
prevent the theory being critical (child additional condi-
tion), one requires Z ≠ 0. However, its sibling critical
parameters are Y and Z, which are different. The critical
parameter Y is hidden in this case. If there are hidden
parameters and one is requiring only child additional
conditions, then a point in the parameter space may belong
to more than one critical case. For example, the critical case
X ¼ 0, Z ≠ 0 and the case Y ¼ 0, Z ≠ 0 have the overlap
X ¼ Y ¼ 0; Z ≠ 0, and they actually have the same b
matrix ðZk2Þ and represent the same theory. If we use
the sibling additional condition instead, the two cases
become X ¼ 0; Y ≠ 0; Z ≠ 0 and Y ¼ 0; X ≠ 0; Z ≠ 0,
and there is no overlap. Hidden parameters do not
occur in PGT or any of the critical cases discussed in
this paper, if we combine all the type C critical cases as in
Ref. [1]. While the overlapping and redundancy do no real
harm to the correctness of our results, it may be worth
modifying our algorithm to accommodate the situation for
simplicity.
The second reason is the occurrence of “emergent”

critical parameters. Some critical parameters appear after
a b matrix becomes singular and a new b matrix forms,
which may happen in critical cases resulting from a type A
critical parameter (it is worth noting that critical parameters
of the root theory are always emergent because it has no
parent or sibling critical cases). In PGTþ and torsion-free or
simplified curvature-free WGTþ, either the new b matrix is
0 × 0 or its critical parameters are already included in the
sibling critical parameters, and so there is no emergent
critical parameter. However, in simplified full WGTþ, this
is not the case. For example, the bð0þÞ matrix of the
simplified root WGTþ is

0
BB@

2½2k2ðr1 − r3 þ 2r4Þ þ t3� 2i
ffiffiffi
2

p
kt3 −2 ffiffiffi

6
p ðt3 − λÞ

−2i ffiffiffi
2

p
kt3 4k2ðt3 − λÞ 4i

ffiffiffi
3

p
kðt3 − λÞ

−2 ffiffiffi
6

p ðt3 − λÞ −4i
ffiffiffi
3

p
kðt3 − λÞ 12ðt3 − λÞ

1
CCA; ðC1Þ

which has det ½bð0þÞ� ¼ −96ðt3 − λÞλ2k2. Its critical case
λ ¼ 0 has

 
2½2k2ðr1 − r3 þ 2r4Þ þ t3� 2i

ffiffiffi
2

p
kt3

−2i ffiffiffi
2

p
kt3 4k2t3

!
ðC2Þ

with det ½bð0þÞ� ¼ 16ðr1 − r3 þ 2r4Þt3k4. The critical
parameter ðr1 − r3 þ 2r4Þ is neither a critical parameter
of the root theory nor among the sibling critical parameters
of case λ ¼ 0. However, the emergent parameters will not
affect our algorithm if we apply the child additional
condition, which already includes the emergent parameters.

In conclusion, as long as there is no hidden critical
parameter in critical cases resulting from type A and B
critical parameters, and the cases resulting from type C
critical parameters are combined, then we can apply the
child additional conditions for the uncombined cases and
the sibling additional conditions for the combined cases as
the “(extended) additional condition” (this is also equiv-
alent to combining the sibling and child additional con-
ditions as the additional condition for all cases). This is
what the term “additional condition” actually means in this
paper. Our algorithm then holds, and each parameter set
corresponds to one critical case. We have also checked that
all the critical cases in Ref. [1] and this paper cover the
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entire parameter space and the critical cases have no
overlap.

APPENDIX D: POWER-COUNTING
RENORMALIZABILITY

Since the PCR criterion for PGTþ is merely stated by
Sezgin and van Nieuwenhuizen [3], rather than derived,
and we also wish to extend the criterion to WGTþ, we give
a brief outline derivation here. Before doing so, however,
we note that power-counting is not the ultimate criterion for
renormalizability. Some PCR theories may be nonrenor-
malizable because of some deeper problems such as
anomalies, and non-PCR theories may turn out to be
renormalizable (for example, see Ref. [24]).
We consider a quantum field theory in d-dimensional

spacetime with some fields labeled by i and assume for

each field the propagator → k−li as k → ∞. We also
define the canonical dimension [25] of the field φi as
½φi�≡ ðd − liÞ=2, which only sometimes coincides with the
mass dimension of the field in natural units. The latter can
be inferred from the fact that each term in the Lagrangian
density has mass dimension d. One may always ensure that
the two dimensions coincide by making a field redefinition
in which the original field is multiplied by a constant. If the
interactions are labeled by a, with coupling constants λa,
then the general criterion for a theory to be PCR is that there
is no coupling constant with negative canonical dimension
[25], so that ½λa� ≥ 0∀ a.
For WGTþ, in terms of the linearized fields introduced in

Sec. III, the most general Lagrangian in the Einstein gauge
with ϕ0 absorbed into the coefficients is given schemati-
cally by

bLG ∼ bðλRþ rR2 þ tT �2 þ ξH2 þ c1RHþ νB2Þ
∼ ð1þ f þ f2 þ � � �Þfλð1þ fÞ2ð∂Aþ A2Þ þ rð1þ fÞ4ð∂Aþ A2Þ2
þ tð1þ fÞ2½∂ðf þ f2 þ � � �Þ þ ð1þ f þ f2 þ � � �ÞðAþ BÞ�2
þ ξð1þ fÞ4ð∂BÞ2þc1ð1þ f þ f2 þ � � �Þð∂Aþ A2Þ∂Bþ νð1þ fÞ2B2g; ðD1Þ

where we do not show the detailed structures of the indices
and coefficients. The mass dimensions of the parameters
and fields are ½λ�M ¼ 2, ½r�M ¼ 0, ½t�M ¼ 2, ½ξ�M ¼ 0,
½c1�M ¼ 0, ½A�M ¼ 1, ½f�M ¼ 0, and ½B�M ¼ 1. Assuming
the propagators of h, A, and B behave as k−lh , k−lA ,
and k−lB , respectively, we need to redefine the fields as
h̃ ¼ M2−lh=2

h h, Ã ¼ M1−lA=2
A A, and B̃ ¼ M2−lB=2

B B. There-
fore, we require lh ≥ 4, lA ≥ 2, and lB ≥ 2 for the theory to
be PCR.5 The original PCR criterion in Ref. [3] for PGTþ is
obtained immediately by setting B ¼ 0.

APPENDIX E: PCR CRITICAL CASES

There exists a “folk theorem” dating back to the 1970s, a
version of which is presented in the introduction of Sezgin
and van Nieuwenhuizen’s paper [3], that suggests that any
gravity theory that is unitary cannot also be PCR. The
argument is not based on any rigorous no-go theorem but
instead on the following simple observation: as shown in
Appendix D, for a PGTþ to be PCR, the propagator of the A
field must decay at least as quickly as k−2 at high energy, and
those of the s and a fields must fall off at least as k−4, but the
resulting total propagator, in general, contains terms of
opposite sign when expressed in partial fractions, and so

the theory is not unitary. This viewpoint has never sub-
sequently been seriously challenged, and so our claim to
have found counterexamples is in conflict with the accepted
wisdom. We therefore take the opportunity here to elucidate
the four unitary critical cases that also satisfy the original
criterion used by Sezgin and van Nieuwenhuizen in Ref. [3]
to be PCR. These cases coincide with the PGTþ cases 9, 10,
11, and 13, first identified in Ref. [1] and listed in Table III of
Ref. [2]. In particular, we explain how these theories, each of
which contains only 2 massless degrees of freedom, evade
the argument in Ref. [3].
The key relevant property of these theories, at least in the

linearized approximation considered here, is that they
contain no “graviton” (degree of freedom associated with
the s and a fields), but only “tordions” (degrees of freedom
associated with the A field), as originally discussed in
Ref. [1] (and no dilaton degree of freedom associated with
the B field, since we are considering only PGTþ here).
In other words, for these four theories, the a matrices
(28)–(33) contain nonzero entries only in the rows/columns
corresponding to the A field. As a result, the propagator in
each case needs only to decay at least as quickly as k−2 at
high energy, and so the partial fractions argument outlined
above does not necessarily apply.
One may verify directly by explicit calculation of their

propagators that this indeed occurs for cases 9, 10, 11, and
13. We consider each case in turn, where the a matrices for
each case may be found by substituting its critical condition
into (28)–(33):

5If r ¼ 0, then the interaction terms with the highest degree of
A are A2 with coefficients of dimension 2. Hence, in this case, we
may have a looser condition lA ≥ 0. However, there is no
dynamical term for A if r ¼ 0, so we consider A not propagating.
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(1) For case 9, the critical condition is r2¼r1−r3¼r4¼
t1¼t2¼t3¼λ¼0, the resulting propagator of the A
field is

D̂A ¼
1

2ðr1þ r5Þk2
P̂11ð1−Þþ

1

2ð2r1þ r5Þk2
P̂11ð1þÞ

þ 1

2r1k2
P̂11ð2−Þ; ðE1Þ

and the condition for no ghost nor tachyon
is r1ðr1 þ r5Þð2r1 þ r5Þ < 0.

(2) For case 10, the critical condition is r2 ¼ r1 ¼
r3=2 − r4 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0, the propagator is

D̂A ¼
1

ðr3þ2r5Þk2
P̂11ð1−Þþ

1

2ð2r3þ r5Þk2
P̂11ð1þÞ

−
1

3r3k2
P̂11ð2þÞ; ðE2Þ

and the condition for no ghost nor tachyon
is r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0.

(3) For case 11, the critical condition is r1 ¼ r3=2− r4¼
t1 ¼ t2¼ t3¼ λ¼ 0, the propagator is

D̂A ¼ 1

2r2k2
P̂11ð0−Þ þ

1

ðr3 þ 2r5Þk2
P̂11ð1−Þ

þ 1

2ð2r3 þ r5Þk2
P̂11ð1þÞ −

1

3r3k2
P̂11ð2þÞ;

ðE3Þ

and the condition for no ghost nor tachyon
is r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0.

(4) For case 13, the critical condition is r2 ¼ 2r1−
2r3 þ r4 ¼ t1 ¼ t2 ¼ t3 ¼ λ ¼ 0, the propagator is

D̂A ¼ 1

−12ðr1 − r3Þk2
P̂11ð0þÞ

þ 1

2ð−r1 þ 2r3 þ r5Þk2
P̂11ð1−Þ

þ 1

2ð2r3 þ r5Þk2
P̂11ð1þÞ þ

1

2r1k2
P̂11ð2−Þ;

ðE4Þ

and the condition for no ghost nor tachyon
is r1ðr1 − 2r3 − r5Þð2r3 þ r5Þ > 0.

Since ΘAB ¼ ηAB − kAkB
k2 and ΩAB ¼ kAkB

k2 , all the SPOs
behave as constants at high k2. Therefore, in each case,
the propagator of the A field goes as k−2 at high energy, and
so the theory is PCR. We also note that, for each case, the
additional conditions that prevent the theory from becom-
ing a different critical case are that none of the denomi-
nators of the coefficients of the SPOs may vanish.
The absence of a graviton does not, however, preclude the

possibility that the 2 tordionmassless degrees of freedomare
in the spin-2þ sector, and indeed this may occur for cases 10
and 11, although not for cases 9 and 13, as discussed in
Ref. [1]; this is also apparent from the above propagator for
each theory. Thus, in cases 10 and 11, aspects of the
gravitational interaction may still be mediated by a massless
spin-2þ particle, despite it corresponding to degrees of
freedom of the A field rather than of the s and a fields. As
mentioned in Ref. [1], it is worth pointing out again here that
the actions of cases 10 and 11 both reduce in the absence of
torsion to that of conformal gravity, which is well known to
be PCRbut not unitary; it is claimed that one can nonetheless
construct a unitary quantum theory of conformal gravity by
redefining its Fock space [26], although this suggestion is
controversial [27].
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ories, Phys. Rev. D 101, 064038 (2020).

[3] E. Sezgin and P. van Nieuwenhuizen, New ghost-free
gravity Lagrangians with propagating torsion, Phys. Rev.
D 21, 3269 (1980).

[4] A. Bregman, Weyl transformations and Poincaré gauge
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