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Nonlinear electrodynamic (NLED) theories are well motivated for their extensions to classical
electrodynamics in the strong field regime, and have been extensively investigated in the search for
regular black hole solutions. In this paper, we focus on two spherically symmetric and static black hole
solutions based on two types of NLED—the Euler-Heisenberg NLED model and the Bronnikov NLED
model—and calculate the weak deflection angle of light and charged particles by these two black holes with
the help of the Gauss-Bonnet theorem. We investigate the effects of the one-loop corrections to quantum
electrodynamics on the deflection angle and analyze the behavior of the deflection angle by a regular
magnetically charged black hole. It is found that both the electric and magnetic charges of the black hole
reduce the weak deflection angle, and the one-loop corrections make a positive contribution to the
deflection angle, but their influence is deeply suppressed by the impact parameter. For the charged
particles, due to electrostatic interaction, the weak deflection angle changes noticeably and the influence of
the one-loop corrections is enhanced. We find that the regular magnetically charged black hole based on the
Bronnikov NLED model has a smaller deflection angle than the singular one. We also calculate the
deflection angle of light by the geodesic method for verification. In addition, we discuss the effects of a cold
nonmagnetized plasma on the deflection angle and find that the deflection angle increases with the plasma
parameter.
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I. INTRODUCTION

To solve the divergence of the self energy of a point-like
charge, Born and Infeld generalized Maxwell’s theory and
proposed the Born-Infeld electrodynamics theory [1].
However, this theory did not attract much attention until
its re-emergence at the low energy scale of some string
theories. Afterwards, Heisenberg and Euler introduced a
new extension to standard electromagnetic theory (known
as Euler-Heisenberg (EH) electrodynamics) [2], which
takes into account the one-loop corrections to quantum
electrodynamics (QED) and can explain the vacuum
polarization in QED. As extensions to Born-Infeld and
EH electrodynamics, nonlinear electrodynamic (NLED)
models have been studied in different aspects since then.
For instance, NLED models can be used to explain the
inflation of the universe in the early times [3,4]. Some types
of NLED models can depict the accelerated expansion of

the Universe instead of dark energy and remove the big
bang singularity [5–8].
Additionally, in recent years, NLED models attracted

much more attention for their ability in seeking regular
black hole solutions. The first regular black hole model was
proposed by Bardeen [9]. However, this regular black hole
was obtained without a specified source associated to its
line element. Remarkably, in 1998, Ayón-Beato and García
found that the NLED model minimally coupled to general
relativity (GR) can be a possible source generating such a
regular black hole solution [10]. In Ref. [11], Bronnikov
found a class of magnetically charged regular black holes in
the framework of GR coupled with a specific NLED model
(known as the Bronnikov NLED model). Subsequently,
Hayward proposed a concrete model which can describe
both the collapse and evaporation of black holes [12]. One
can see Refs. [13–26] for more regular black holes based
on NLED models. In this paper, we mainly focus on two
black hole models based on two particular above-men-
tioned NLED models, i.e., the EH NLED model and the
Bronnikov NLED model, and investigate the weak deflec-
tion angle of light by these two black hole models.
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It is well known that light rays will be bent when
traveling through a massive object, known as the gravita-
tional lensing effect, which is one of the key predictions of
GR. At present, gravitational lensing is one of the most
powerful tools in astronomy and cosmology for measuring
the mass of galaxies and clusters [27–29], and detecting
dark energy and dark matter [30–37]. Since the first mea-
surements of the gravitational bending of light by the Sun,
the gravitational lensing effects have been extensively
investigated for black holes, wormholes, cosmic strings
and other objects by the lens equation [38–52]. In 2008,
Gibbons and Werner introduced an alternative method
to calculate the weak deflection angle of light in static
asymptotically flat spacetimes by using the Gauss-Bonnet
theorem and the optical geometry of the spacetime, where
the light source and receiver are located at infinity [53].
Later, this method was extended to stationary spacetimes
by Werner [54]. In Ref. [55], the authors investigated the
weak deflection of light for the light source and receiver
located at a finite distance. The weak deflection for the
massive particles by this method was investigated in
Refs. [56–58]. Additionally, the weak deflection of light
by a black hole immersed in a plasma medium was
discussed in Ref. [56]. One can see Refs. [59–74] for
more recent works.
According to the no-hair theorem, black holes can be

described by just three observable parameters: mass, spin,
and electric charge. For an astrophysical black hole in
nature, electric charge is usually ignored because of the
presence of the plasma which is a very good conductor
prompting discharging. However, this viewpoint has been
questioned by several researchers [75–77]. Some authors
have found that a charged black hole can be formed during
the collapse of a charged stellar [78,79] or the accretion of a
neutral black bole [80,81]. Also, a rotating black hole
immersed within a magnetic field will induce an electric
field [82–84]. There is some convincing evidence that a
magnetic field may exist around astrophysical black holes,
such as, in the vicinity of SgrA� and M87 [85,86]. Thus, it
is plausible for a black hole with nonzero charge to exist.
In addition, recent discoveries show that the ultra-high

energy cosmic rays, consisting of charged particles, may
originate in supermassive black holes [87]. However, the
reason why the energy of the cosmic rays is so high
still remains mysterious. In Ref. [84], the authors proposed
that the energy of the charged particles in cosmic rays
may be extracted from the charged supermassive black
holes through the acceleration of the electromagnetic
interaction. Therefore, the research on the possible obser-
vational signatures of charged black holes presents par-
ticular interest.
Although the black holes based on the Einstein-Euler-

Heisenberg (EEH) theory have been extensively studied in
the literature [88–93], the weak deflection of light by these
black holes have not been investigated yet. As a powerful

tool to study the characteristics of black holes, it is
interesting to investigate the weak deflection angle by
the electrically charged EEH black hole and know what the
effects are of the one-loop corrections to QED on the
deflection angle. Compared with the neutral particles, the
orbit of a charged particle around a charged black hole is no
longer a geodesic due to the electromagnetic interaction. It
is interesting to investigate the weak deflection angle of a
charged particle by the electrically charged EEH black
hole. Although there are many investigations on the NLED-
based regular black holes, the weak deflection angle of light
by such regular black holes are rarely investigated. In this
paper, we take the Bronnikov NLED black hole with mag-
netic charge as an example and investigate the character-
istics of this regular black hole by calculating its deflection
angle. Most astrophysical objects including black holes are
surrounded by a plasma medium, thus, it is interesting to
investigate the effects of the plasma medium on the
deflection angle of light by these black holes.
This paper is organized as follows. In Sec. II, we first

give a brief review of the EEH black hole and then calculate
the weak deflection angle of light by this black hole via two
different methods, i.e., the method by using the Gauss-
Bonnet theorem and the traditional geodesic method. Then,
the effects of the plasma on the weak deflection angle are
studied. We also investigate the weak deflection angle of a
charged particle by this black hole. In Sec. III, we perform
the same procedures for the Bronnikov NLED black hole,
analyze the characteristics of the weak deflection angle of
light by this regular magnetically charged black hole, and
make a brief analysis of the motion of the charged particle.
Section IV contains the conclusion.

II. WEAK DEFLECTION ANGLE OF LIGHT
BY THE EINSTEIN-EULER-HEISENBERG

BLACK HOLES

In this section, we first give a brief review of EEH theory
and present the spherically symmetric and static solution to
this theory. Then, we will use these results to calculate the
weak deflection angle of light for this black hole using the
Gauss-Bonnet theorem. Additionally, the weak deflection
angle of light is also calculated with the null geodesic
method as a verification to the former results. Finally, we
will investigate the deflection angle of light for this black
hole immersed in a cold nonmagnetized plasma medium.

A. Einstein-Euler-Heisenberg theory

The action for the EEH theory is given by [91,92]

S ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

4
R − LðF;GÞ

�
; ð1Þ

where LðF;GÞ is the functional of the electromag-
netic invariants, F ¼ 1

4
FμνFμν and G ¼ 1

4
FμνF�

μν with
Fμν ¼ ∂μAν − ∂νAμ the electromagnetic field strength
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and F�
μν ¼ 1

2
ϵμνσρFσρ its dual. The Levi-Civita tensor

satisfies ϵμνσρϵ
μνσρ ¼ −4!. As one-loop corrections to

QED, the Euler-Heisenberg Lagrangian is

LðF;GÞ ¼ −F þ a
2
F2 þ 7a

8
G2; ð2Þ

where a is the Euler-Heisenberg parameter, which is
positive. For a ¼ 0, the standard Maxwell electrodynamics
is recovered. There are two frameworks in nonlinear
electrodynamics. One is the F framework constructed by
the electromagnetic field tensor Fμν and the other is the P
framework constructed by the tensor Pμν, defined by

Pμν ¼ −ðLFFμν þ F�
μνLGÞ; ð3Þ

where LX ¼ ∂L
∂X. Then, the Pμν in the Euler-Heisenberg

theory can be calculated as

Pμν ¼ ð1 − aFÞFμν −
7a
4
F�
μνG: ð4Þ

In the P framework, one can define two independent
invariants P and O,

P ¼ −
1

4
PμνPμν; O ¼ −

1

4
PμνP�

μν; ð5Þ

where P�
μν ¼ 1

2
ϵμνσρPσρ.

The equations of motion can be derived as

Rμν −
1

2
gμνR ¼ 8πTμν; ð6Þ

∇μPμν ¼ 0; ð7Þ

where the energy momentum tensor in the P framework is
given by

Tμν ¼
1

4π

�
ð1 − aPÞPσ

μPνσ þ gμν

�
P −

3

2
aP2 −

7a
8
O2

��
:

ð8Þ

B. Spherically symmetric solution in the
Einstein-Euler-Heisenberg theory

The line element for a spherically symmetric and static
black hole can be assumed as

ds2 ¼ gμνdxμdxν ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð9Þ

where μ and ν run from 0 to 3, and dΩ2 ¼ dθ2 þ sin2 θdϕ2.
According to the symmetry of the spacetime and restricting
to the electric charge Q, the Pμν can be calculated as

Pμν ¼
Q
r2
δ0½μδ

1
ν�; ð10Þ

and the independent electromagnetic invariants are

P ¼ Q2

2r4
; O ¼ 0: ð11Þ

Then the function in the metric can be solved as [91,92]

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
aQ4

20r6
; ð12Þ

where M is the mass of the black hole. The nonvanishing
component of the electromagnetic potential Aμ is

A0 ¼ −
Q
r

�
1 −

aQ2

10r4

�
: ð13Þ

C. Calculation of deflection angle with
the Gauss-Bonnet theorem

The null geodesic satisfies ds2 ¼ 0, which can be
rearranged as

dt2 ¼ γijdxidxj ¼
1

f2
dr2 þ r2

f
dΩ2; ð14Þ

where i and j run from 1 to 3, and γij is the so-called optical
metric. After a coordinate transformation dr� ¼ 1

f dr, the
above expression can be rewritten as

dt2 ¼ dr�2 þ f̃2ðr�Þdϕ2; ð15Þ

where f̃ðr�Þ≡
ffiffiffi
r2
f

q
and θ ¼ π

2
. The Gaussian curvature of

the optical spacetime can be calculated as

K ¼ Rrϕrϕ

γ
¼ 1ffiffiffi

γ
p

� ∂
∂ϕ

� ffiffiffi
γ

p
γrr

Γϕ
rr

�
−

∂
∂r

� ffiffiffi
γ

p
γrr

Γϕ
rϕ

��

¼ −
2M
r3

�
1 −

3M
2r

�
þQ2

r4

�
3 −

6M
r

�

þQ4

r6

�
2 −

21a
20r2

þ 19aM
10r3

�
−
9aQ6

10r10
þ 3a2Q8

100r14
; ð16Þ

where γ ≡ detðγijÞ.
Let the domain D be a compact oriented nonsingular

two-dimensional Riemannian surface with Euler character-
istic χðDÞ and Gaussian curvature K, bounded by a
piecewise smooth curve with geodesic curvature κ. Then
the Gauss-Bonnet theorem gives the relation between the
deflection angle of light and the Gaussian curvature via
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Z Z
D
KdSþ

I
∂D

κdtþ
X
i¼1

βi ¼ 2πχðDÞ; ð17Þ

where dS is the surface element, κ stands for the geodesic
curvature of the boundary defined as κ ¼ j∇ _C

_Cj, and βi
denotes the ith exterior angles. For a specific D̃ bounded by
a geodesic C1 from the source S to the observer O and a
circular curve CR intersecting C1 in S andO at right angles,
Eq. (17) reduces toZ Z

D̃
KdSþ

Z
CR

κðCRÞdt ¼ π; ð18Þ

where we have used κðC1Þ ¼ 0 and the Euler characteristic
χðD̃Þ ¼ 1. For the circular curve CR ≔ rðϕÞ ¼ R ¼ const,
the nonzero part of the geodesic curvature can be calculated
as

κðCRÞ ¼ ð∇ _CR
_CRÞr ¼ _Cϕ

Rð∂ϕ
_Cr
RÞ þ Γr

ϕϕð _Cϕ
RÞ2; ð19Þ

where _CR denotes the tangent vector of the circular curve
CR, and Γr

ϕϕ is the Christoffel symbol related to the optical
metric (14). In the last equation it is obvious that the first
term vanishes, and Γr

ϕϕ ¼ −f̃ðr�Þf̃0ðr�Þ, ð _Cϕ
RÞ2 ¼ 1

f̃2ðr�Þ in
the second term. In the limit R → ∞, one can obtain

lim
R→∞

½κðCRÞdt�
¼ lim

R→∞
½−f̃0ðr�Þ�dϕ

¼ lim
R→∞

�
10R4ðRðR − 3MÞ þ 2Q2Þ − 2aQ4

R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100R4ðRðR − 2MÞ þQ2Þ − 5aQ4

p �
dϕ

¼ dϕ: ð20Þ

Inserting Eq. (20) into Eq. (18), one hasZ Z
D̃R→∞

KdSþ
Z

πþα

0

dϕ ¼ π: ð21Þ

Then the weak deflection angle of light can be calculated as

α ¼ 4M
b

þ 3πðM2 −Q2Þ
4b2

þ 8MðM2 −Q2Þ
3b3

þ 15πð5M4 − 6M2Q2 þQ4Þ
64b4

−
4MQ2ð10M2 − 3Q2Þ

5b5
þ 7πaQ4

128b6
þ � � � ; ð22Þ

where we have used the zero-order particle trajectory
r ¼ b= sinϕ, 0 ≤ ϕ ≤ π at the weak deflection limit.
Obviously, the first five terms are the deflection angle of
light by an electrically charged black hole based on the
standard electrodynamics [59] and the charge of the black

hole will reduce the deflection angles no matter whether the
charge is positive or negative. The last term comes from the
influence of the one-loop corrections to QED on the
spacetime of the black hole. Obviously, the one-loop
corrections make a positive contribution to the deflection
angle, but their influence is largely suppressed by the
impact parameter.

D. Calculation of deflection angle
by the geodesic method

The Lagrangian of the null geodesics of the EEH black
hole is given by

2L� ¼ −fðrÞ_t2 þ fðrÞ−1 _r2 þ r2ð_θ2 þ sin2 θ _ϕ2Þ; ð23Þ

where _x ¼ dx
dτ, and τ is the affine parameter along the

geodesics. Since the Lagrangian is independent on t and ϕ,
one can obtain two conserved constants:

pt ¼
∂L�
∂_t ¼ −fðrÞ_t ¼ −E; ð24Þ

pϕ ¼ ∂L�
∂ _ϕ ¼ r2 _ϕ sin2 θ ¼ L: ð25Þ

Then the null geodesic equation at the equatorial plane can
be obtained as

�
dϕ
dr

�
2

¼
�
r4

b2
− r2fðrÞ

�−1
; ð26Þ

where the impact parameter is defined as b ¼ r0=
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
with r0 the radius of the circular orbit.
The weak bending angle of the light coming from

infinity and deflected by a black hole before arriving at
infinity is given by

αðr0Þ ¼ Δϕðr0Þ − π; ð27Þ

where Δϕðr0Þ can be solved from Eq. (26) as

Δϕðr0Þ ¼ 2

Z
∞

r0

�
r4

b2
− r2fðrÞ

�−1
2

dr: ð28Þ

It is convenient to define the dimensionless line
element as

dS2 ¼ ð2MÞ−2ds2 ¼ −fðxÞdT2 þ fðxÞ−1dx2
þ x2ðdθ2 þ sin2 θdϕ2Þ; ð29Þ

where we have defined

x ¼ r
2M

; T ¼ t
2M

; q ¼ Q
2M

; α̂ ¼ a
ð2MÞ2 ; ð30Þ
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and the function fðrÞ in the metric (9) can be re-
expressed as

fðxÞ ¼ 1 −
1

x
þ q2

x2
−

α̂q4

20x6
: ð31Þ

Then Eq. (28) can be rewritten as

Δϕðx0Þ ¼ 2

Z
∞

x0

ffiffiffiffiffi
20

p
x2x40ðα̂q4ðx80 − x8Þ

þ 20q2x4x40ðx4 − x40Þ
þ 20x5x50ðx3ðx0 − 1Þ − xx30 þ x30ÞÞ−

1
2dx; ð32Þ

and the impact parameter can be expressed as

b
2M

¼ x0ffiffiffiffiffiffiffiffiffiffiffi
fðx0Þ

p : ð33Þ

After defining a new variable z ¼ x0
x , the above integral

can be rewritten as

Δϕðx0Þ ¼ 2

Z
1

0

ffiffiffiffiffi
20

p
x30ðα̂q4ðz8 − 1Þ − 20q2x40ðz4 − 1Þ

− 20x50ðx0ðz2 − 1Þ − z3 þ 1ÞÞ−1
2dz: ð34Þ

Considering the weak gravitational lensing limit x0 ≫ 1

and expanding the above integrand about 1
x0
, the above

integral can be integrated out term by term as follows:

αðx0Þ ¼ Δϕðx0Þ − π ¼ 2

x0
þ
�
π

4

�
15

4
− 3q2

�
− 1

�
1

x20
þ
�
3

16
πð4q2 − 5Þ − 7q2 þ 61

12

�
1

x30
þ
�
5

8
ð20q2 − 13Þ

þ 3πð304q4 − 2200q2 þ 1155Þ
1024

�
1

x40
þ
�
1

32
ð632 − 105πÞq4 þ 7

64
ð135π − 536Þq2 þ 7783

320
−
3465π

512

�
1

x50

þ
�

7

128
παq4 −

1

384
ð28560q4 − 59832q2 þ 21397Þ − 105π

16384
ð192q6 − 4816q4 þ 8676q2 − 2959Þ

�
1

x60

þO
�
1

x70

�
: ð35Þ

To obtain the deflection angle in terms of the impact
parameter b, one needs the relation between b and x0 which
can be solved from Eq. (33) in the weak deflection limit as

1

x0
¼ 2M

b
þ 1

2

�
2M
b

�
2

−
1

8
ð4q2− 5Þ

�
2M
b

�
3

−
�
3q2

2
− 1

��
2M
b

�
4

þ 7

128
ð16q4 − 72q2þ 33Þ

�
2M
b

�
5

þ
�
5q4− 10q2þ 7

2

��
2M
b

�
6

þO
��

2M
b

�
7
�
: ð36Þ

Inserting Eq. (36) into Eq. (35), the weak deflection
angle is found to be

α ¼ 4M
b

þ 3πðM2 −Q2Þ
4b2

þ 8MðM2 −Q2Þ
3b3

þ 15πð5M4 − 6M2Q2 þQ4Þ
64b4

−
4MQ2ð10M2 − 3Q2Þ

5b5

þ 7πaQ4

128b6
þ � � � : ð37Þ

It is obvious that the above result is in agreement with the
result calculated by using the Gauss-Bonnet theorem.

However, it should be noted that this agreement only holds
for the first-order terms and breaks down for the higher-
order corrections.

E. Weak deflection angle in the presence of plasma

In this subsection, we investigate the effects of a cold
nonmagnetized plasma on the deflection angle for the EEH
black hole. The refractive index for this black hole is given
by [94],

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
e

ω2
∞
fðrÞ

s
; ð38Þ

where ωe and ω∞ denote the electron plasma frequency and
the photon frequency measured by a static observer at
infinity, respectively. The corresponding optical line
element can be defined as

dσ2 ¼ γijdxidxj ¼ −
n2

g00
gijdxidxj

¼ n2
�
1

f2
dr2 þ r2

f
dϕ2

�
; ð39Þ

which is conformally related to the induced metric on the
spatial section with θ ¼ π

2
. Then the Gaussian curvature can

be calculated as
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K̃ ¼ 40Ξ−3r4ð3aQ4 þ 20r4ðMr −Q2ÞÞ2

þ Ξ−1
�
3aQ4

20r8
þ r−4ðMr −Q2Þ

�
× ðaQ4 − 20r4ðrðr − 2MÞ þQ2ÞÞ

− Ξ−2
�
9a2Q8

r2
þ 20aQ4r2ðrð18r − 19MÞ þ 2Q2Þ

þ 400r6ð−Q2rðM þ 2rÞ þMr2ðM þ rÞ þQ4Þ
�
;

ð40Þ

where Ξ ¼ ðaδQ4 þ 20r4ðr2 − δðrðr − 2MÞ þQ2ÞÞÞ and

the plasma parameter is defined by δ≡ ω2
e

ω2
∞
. For a photon to

propagate in the plasma, one should require ω∞ ≥ ωe, thus
0 ≤ δ ≤ 1. For more details about the plasma, one can refer
to Ref. [95]. It follows from Eq. (39) that

dσ
dϕ

����
γR

¼ n

ffiffiffiffiffi
r2

f

s
; ð41Þ

which results in

lim
R→∞

κ̃ðCRÞ
dσ
dϕ

����
γR

≈ 1: ð42Þ

By taking the zero-order particle trajectory r ¼ b
sinϕ, and

for the limit R → ∞, the Gauss-Bonnet theorem can be
written as

Z
πþα

0

dϕ ¼ π −
Z

π

0

Z
∞

b
sinϕ

K̃dS: ð43Þ

Then the deflection angle can be calculated as

α ¼ −
Z

π

0

Z
∞

b
sinϕ

K̃dS

≃
2M
b

�
1þ 1

1 − δ

�
þ π

4b2

�
M2

�
1þ 2 − 6δ

ð1 − δÞ2
�
−Q2

�
1þ 2

1 − δ

��
þ 2M
3b3

�
M2

�
1þ 3 − 10δþ 15δ2

ð1 − δÞ3
�

−Q2

�
1þ 3 − 9δ

ð1 − δÞ2
��

þ 3π

64b4

�
M4

�
5þ 20 − 84δþ 140δ2 − 140δ3

ð1 − δÞ4
�
− 2M2Q2

�
3þ 12 − 52δþ 100δ2 − 60δ3

ð1 − δÞ4
�

þQ4

�
1þ 4 − 12δ

ð1 − δÞ2
��

−
2MQ2

15b5

�
10M2

�
1þ 5 − 21δþ 35δ2 − 35δ3

ð1 − δÞ4
�
−Q2

�
3þ 5ð3 − 10δþ 15δ2Þ

ð1 − δÞ3
��

þ aπQ4

128b6

�
1þ 6

1 − δ

�
þ � � � : ð44Þ

It can be easily seen that Eq. (44) reduces to Eq. (37)
when δ → 0, and the deflection angle increases with the
plasma parameter δ, which suggests that the lower the
photon frequency measured by a static observer at infinity
is, the larger the deflection angle of it will be for a fixed
electron plasma frequency.

1. Weak deflection angle of the charged massive particles

In this subsection, we investigate the weak deflection
angle of a charged massive particle (CMP) by the EEH
black hole. The motion of a charged particle is governed by
L ¼ 1

2
gμν _xμ _xν þ qAμ _xμ. For the EEH black hole, the

Lagrangian is explicitly

L ¼ 1

2

�
−g_t2 þ _r2

g
þ r2ð_θ2 þ sin2 θ _ϕ2Þ

�

−
qQ
r

�
1 −

aQ2

10r4

�
_t: ð45Þ

The conjugate momenta can be obtained as

pt ¼
∂L
∂_t ¼ −g_t −

qQ
r

�
1 −

aQ2

10r4

�
; ð46Þ

pr ¼
∂L
∂ _r ¼ _r

g
; ð47Þ

pθ ¼
∂L
∂ _θ ¼ r2 _θ; ð48Þ

pϕ ¼ ∂L
∂ _ϕ ¼ r2 sin2 θ _ϕ: ð49Þ

Then, from the Lagrangian (45) and Eq. (48), the equation
of motion for θ can be expressed as

dpθ

dτ
¼ d

dτ
ðr2 _θÞ ¼ 1

2
r2 _ϕ2 sinð2θÞ: ð50Þ

QI-MING FU, LI ZHAO, and YU-XIAO LIU PHYS. REV. D 104, 024033 (2021)

024033-6



Obviously, the motion of a charged particle in the equa-
torial plane of the EEH black hole must lie in this plane.
Without loss of generality, we restrict ourselves to inves-
tigating the weak deflection angle of a charged particle in
the equatorial plane, i.e., θ ¼ π

2
. The Jacobi metric for a

CMP in this background is [96,97]

dl2 ¼ γijdxidxj

¼ ½ðEþ qA0Þ2 −m2f�
�
1

f2
dr2 þ r2

f
dϕ2

�
; ð51Þ

where E, q and m stand for the energy, charge and mass
of the particle, respectively. By axial symmetry, one can
obtain the conserved angular momentum of the motion

L ¼ ½ðEþ qA0Þ2 −m2f� r
2

f

�
dϕ
dl

�
: ð52Þ

From Eqs. (51) and (52) and introducing a new variable
uðϕÞ ¼ 1=r, the geodesic equation for the CMP moving at
the equatorial plane is�

du
dϕ

�
2

¼ 1

L2
½ðEþ qA0Þ2 − fðm2 þ u2L2Þ�: ð53Þ

The energy and angular momentum of the particle mea-
sured by an asymptotic observer at infinity are

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; L ¼ mvbffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð54Þ

where v is the velocity of the particle and b is identified
with the impact parameter, defined by

b ¼ L
vE

: ð55Þ

Then the orbit equation (53) can be expressed as

�
du
dϕ

�
2

¼ 1

v2b2

��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
qA0

m

�2

− fð1 − v2 þ b2v2u2Þ
�
; ð56Þ

which can be solved by iterative method as follows:

uðϕÞ ¼ sinðϕÞ
b

þ
�
1

v2
þ cos2 ϕ

�
M
b2

−
qQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

b2mv2

þOðM2; Q2;MQÞ: ð57Þ

The Gaussian curvature of the Jacobi metric (51) can be
calculated as

K ¼
�
1 −

1

v4

�
M

m2r3
þ
�
1

v2
− 1

�
3=2 qQ

m3r3v
þ
�
2

v4
−

3

v2
þ 1

�
3M2

m2r4v2
þ
�
1

v2
− 1

�3
2

�
1 −

4

v2

�

×
3MqQ
m3r4v

þ
�
1

v2
− 1

��
m2

�
1þ 2

v2

�
þ 2q2

�
1 −

4

v2
þ 3

v4

��
Q2

m4r4
−
�
1

v2
− 1

�3
2 5aqQ3

2m3r7v
þ � � � : ð58Þ

The weak deflection angle for the CMP can be calculated as

α ¼ −
Z Z

D̃
KdS ¼ −

Z
π

0

Z
∞

1
uðϕÞ

KdS ≃
�
1þ 1

v2

�
2M
b

−
2qQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

bmv2
þ
�
1þ 4

v2

�
3πM2

4b2

−
�
1þ 2

v2

�
πQ2

4b2
−
3πMqQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

b2mv2
−
�
1þ 7

v2

�
4MQ2

3b3
−
�
2 −

1

v2
−

1

v4

�
8M2qQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

b3mv2

−
�
21

16
þ 143

8v2
−

3

4v4
−

1

v6

�
πM2Q2

2b4
þ
�
49

8
þ 5

4v2
−

1

v4

�
πMqQ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

b4mv2
þ 8aqQ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

15b5mv2
þ � � � ; ð59Þ

which indicates that the deflection angle of the charged
particle results from two kinds of interactions, i.e., the
gravitational and electrostatic interactions. To be explicit,
the terms including q originate from the electrostatic
interaction, and the other terms come from the gravitational
interaction. The effect of the gravitational interaction on the
deflection angle has been analyzed in the above subsection.
In this subsection, we focus on the electrostatic interaction.

It is obvious that the deflection angle of the charged particle
by the charged black hole will be changed noticeably
because of the electrostatic interaction. To be explicit,
the deflection angle increases if the charges of the black
hole and the particle have the opposite signs since the
electrostatic interaction is attraction now, and vice versa.
Additionally, the effect of the one-loop corrections to QED
on the deflection angle is strengthened because of the
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electrostatic interaction, which can be concluded by com-
paring the a terms suppressed by b−5 in Eq. (37) and
suppressed by b−6 in Eq. (59).

III. WEAK DEFLECTION ANGLE OF LIGHT BY
EINSTEIN-BRONNIKOV BLACK HOLES

In this section we will perform the same procedures of
the previous section in the case of Einstein-Bronnikov
theory, which is a particular NLED theory which only
consists of the relativistic invariant F, and wherein one can
obtain regular black holes.

A. The Einstein-Bronnikov theory

The action for the Einstein-Bronnikov theory is given
by [11]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − LðFÞ�; ð60Þ

where

LðFÞ ¼ F cosh−2 ½âðF=2Þ1=4�; ð61Þ

and the parameter â is related to the black hole mass M
and magnetic chargeQm via â ¼ Q3=2

m =ð2MÞ. The standard
Einstein-Maxwell Lagrangian can be recovered with
â → 0.
The equations of motion can be derived as

Rμν −
1

2
gμνR ¼ 8πTμν ¼ 8π

�
2LFFρμF

ρ
ν −

1

2
gμνL

�
; ð62Þ

∇μðLFFμνÞ ¼ 0: ð63Þ

Considering the spherically symmetric and static space-
time and restricting to the magnetic chargeQm, the relevant
function in the metric, analogous to Eq. (9), can be obtained
as [11]

gðrÞ ¼ 1 −
2M
r

�
1 − tanh

�
Q2

m

2Mr

��
; ð64Þ

and the gauge field is given by Aμ ¼ −Qm cos θδϕμ as an
ansatz [91]. It can be straightforwardly shown that the
metric function (64) reduces to the Schwarzschild black
hole solution with Qm → 0 and is regular as r → 0, which
suggests a regular black hole.

B. Calculation of deflection angle
by the Gauss-Bonnet theorem

The null geodesics satisfying ds2 ¼ 0 can be rearran-
ged as

dt2 ¼ γijdxidxj ¼
1

g2
dr2 þ r2

g
dΩ2: ð65Þ

After a coordinate transformation dr� ¼ 1
g dr, the above

line element can be rewritten as

dt2 ¼ dr�2 þ g̃2ðr�Þdϕ2; ð66Þ

where g̃ðr�Þ ¼
ffiffiffi
r2
g

q
and θ ¼ π

2
. The Gaussian curvature of

this optical spacetime can be calculated as

K ¼ −
2M
r3

�
1 − tanh

�
Qm

2Mr

��
þ 1

r4

�
3M2

�
1 − tanh

�
Q2

m

2Mr

��
2

þ 2Q2
msech2

�
Q2

m

2Mr

��

−
Q2

m

2Mr5
sech2

�
Q2

m

2Mr

��
6M2 þ ðQ2

m − 6M2Þ tanh
�
Q2

m

2Mr

��

−
Q4

m

4r6
sech2

�
Q2

m

2Mr

��
1 − tanh

�
Qm

2Mr

���
1 − 3 tanh

�
Qm

2Mr

��
: ð67Þ

Following the same procedures as the previous section,
the weak deflection angle of light by this black hole can be
obtained as

α ¼ −
Z Z

D̃
KdS ¼ −

Z
π

0

Z
∞

1
uðϕÞ

KdS

≃
4M
b

þ 15πM2

4b2
−
3πQ2

m

4b2
−
16MQ2

m

b3
þ � � � ; ð68Þ

where uðϕÞ is given in Eq. (72). It is obvious that the
first two terms are the same with the weak deflection

angle of light by the Reissner-Nordström black hole [59]
except the electric charge is replaced by the magnetic
charge, and the minus sign in front of the third term
indicates that the weak deflection angle of this regular
magnetically charged black hole is smaller than the
singular one.

C. Calculation of deflection angle
by the geodesic method

The Lagrangian of the null geodesics of the Einstein-
Bronnikov black hole is given by
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2L� ¼ −gðrÞ_t2 þ gðrÞ−1 _r2 þ r2ð_θ2 þ sin2 θ _ϕ2Þ; ð69Þ

where _x ¼ dx
dτ, and τ is the affine parameter along the

geodesic. Then the null geodesic equation at the equatorial
plane can be obtained as

�
dϕ
dr

�
2

¼
�
r4

b2
− r2gðrÞ

�−1
; ð70Þ

where the impact parameter is defined as b ¼
ffiffiffiffiffiffiffiffi
r2
0

gðr0Þ

q
with

r0 the radius of the circular orbit.
After introducing a new variable uðϕÞ ¼ 1

r, the above
geodesic equation can be rewritten as

�
du
dϕ

�
2

¼ 1

b2
− u2 þ 2Mu3

�
1 − tanh

�
Q2

mu
2M

��
; ð71Þ

which can be solved by iterative methods as follows:

uðϕÞ ¼ sinϕ
b

þMðcos2 ϕþ 1Þ
b2

−
M2 cosϕ

8b3
ð30ϕþ 3 sinð2ϕÞ − 20 tanϕÞ −Q2

m cosϕ
2b3

�
−
3ϕ

2
þ 1

4
sinð2ϕÞ þ tanϕ

�
þOðM3; Q3

mÞ: ð72Þ

The bending angle of light can be expressed as

α̂ðr0Þ ¼ Δϕðr0Þ − π; ð73Þ

where Δϕðr0Þ can be obtained from Eq. (70) as

Δϕðr0Þ ¼ 2

Z
∞

r0

�
r4

b2
− r2 þ 2Mr

�
1 − tanh

�
Q2

m

2Mr

���
−1
2

dr: ð74Þ

Defining the new dimensionless spacetime coordinates x ¼ r
2M and T ¼ t

2M and the dimensionless magnetic charge

qm ¼ Qm
2M, Eq. (74) can be reexpressed as

Δϕðx0Þ ¼ 2

Z
∞

x0

x
3
2

0ðx4ð−1þ x0Þ þ xx30ð1 − xÞ − xx30 tanh ðq2m=xÞ þ x4 tanh ðq2m=x0ÞÞ−1
2dx; ð75Þ

and the impact parameter is given by

b
2M

¼ x0ffiffiffiffiffiffiffiffiffiffiffi
gðx0Þ

p : ð76Þ

After defining a new variable z ¼ x0
x , the above integral becomes

Δϕðx0Þ ¼ 2

Z
1

0

ffiffiffiffiffi
x0

p ð−1þ ð1 − z2Þx0 þ z3 þ tanh ðq2m=x0Þ − z3 tanh ðq2mz=x0ÞÞ−1
2dz: ð77Þ

Then, the weak deflection angle can be integrated out term by term as follows:

αðx0Þ ¼ Δϕðx0Þ − π ¼ 2

x0
þ
�
π

4

�
15

4
− 3q2m

�
− 1

�
1

x20
þ
�
3

16
πð4q2m − 5Þ − 7q2m þ 61

12

�
1

x30
þ
�
5

8
ð20q2m − 13Þ

þ πð320q6m þ 912q4m − 6600q2m þ 3465Þ
1024

�
1

x40
þ
�

1

120
ð472 − 75πÞq6m þ 1

32
ð632 − 105πÞq4m

þ 7

64
ð135π − 536Þq2m þ 7783

320
−
3465π

512

�
1

x50
þ
�
7πq10m
48

þ 49πq8m
64

−
5

96
ð208þ 63πÞq6m −

35

1024
ð2176þ 903πÞq4m

þ 9

4096
ð70912þ 25305πÞq2m −

21397

384
−
310695π

16384

�
1

x60
þO

�
1

x70

�
: ð78Þ
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The relation between b and x0 can be obtained from Eq. (76) as

1

x0
¼ 2M

b
þ 1

2

�
2M
b

�
2

−
1

8
ð4q2m − 5Þ

�
2M
b

�
3

−
�
3q2m
2

− 1

��
2M
b

�
4

þ
�
q6m
6

þ 7q4m
8

−
63q2m
16

þ 231

128

��
2M
b

�
5

þ
�
2q6m
3

þ 5q4m − 10q2m þ 7

2

��
2M
b

�
6

þO
��

2M
b

�
7
�
: ð79Þ

Inserting Eq. (79) into Eq. (78), the weak deflection angle is found to be

α̂ ≃
4M
b

þ 15πM2

4b2
−
3πQ2

m

4b2
−
16MQ2

m

b3
þ � � � ; ð80Þ

which is in agreement with the result calculated by using the Gauss-Bonnet theorem.

D. Weak deflection angle in the presence of plasma

In this subsection, we investigate the effects of a cold nonmagnetized plasma on the deflection angle of the black hole in
Einstein-Bronnikov theory. The refractive index for this black hole is given by [94],

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2gðrÞ

q
: ð81Þ

The corresponding optical metric is

dσ2 ¼ γijdxidxj ¼ −
n2

g00
gijdxidxj

¼ n2
�
1

g2
dr2 þ r2

g
dϕ2

�
: ð82Þ

Then the Gaussian curvature is calculated as

K̃ ¼ 1

4r4δ2

�
−3r2 þ 4Mδr − 2δsech2

�
Q2

m

2Mr

��
Q2

m þMr sinh

�
Q2

m

Mr

���

þ 6ðδ − 1ÞMr3 − 2Q2
mδsech2ðQ

2
m

2MrÞðMrþQ2
m tanhðQ2

m
MrÞÞ

4Mr4δ2ðrð1 − δÞ þ 2Mδð1 − tanhðQ2
m

2MrÞÞÞ

þ 1

4Mr4δ2ðrð1 − δÞ þ 2Mδð1 − tanhðQ2
m

2MrÞÞÞ
2

�
Mr4ð−5þ ð8 − 3δÞδÞ

þ 2MQ2
mr2δð3δ − 2Þsech2

�
Q2

m

2Mr

�
−Q4

mδsech4
�
Q2

m

2Mr

��
3Mδþ r sinh

�
Q2

m

Mr

���

þ 2rðr2ðδ − 1Þ −Q2
mδsech4ðQ

2
m

2MrÞÞ
2

4Mr4δ2ðrð1 − δÞ þ 2Mδð1 − tanhðQ2
m

2MrÞÞÞ
3
; ð83Þ

and the deflection angle can be obtained as

α ¼ −
Z

π

0

Z
∞

b
sinϕ

K̃dS

≃
2M
b

�
1þ 1

1 − δ

�
þ πM2

4b2

�
1þ 2

1 − δ

��
7 −

2

1 − δ

�
−
πQ2

m

4b2

�
1þ 2

1 − δ

�

þ 2MQ2
m

b3

�
3δ

1 − δ
−
8 − 10δ

ð1 − δÞ2
�
þ � � � : ð84Þ
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It is obvious that Eq. (84) reduces to Eq. (68) when δ → 0,
and the deflection angle increases with the plasma param-
eter δ, which suggests that the lower the photon frequency
measured by a static observer at infinity is, the larger the
deflection angle of it will be for a fixed electron plasma
frequency.

1. Motion of a charged particle around
the Einstein-Bronnikov black hole

In this subsection, we give a brief analysis about motion
of a charged particle around the Einstein-Bronnikov black
hole. The Lagrangian for a charged particle moving
around the Einstein-Bronnikov black hole can be explicitly
expressed as

L ¼ 1

2

�
−g_t2 þ _r2

g
þ r2ð_θ2 þ sin2 θ _ϕ2Þ

�
− qQm cos θ _ϕ:

ð85Þ

The conjugate momenta can be obtained as

pt ¼
∂L
∂_t ¼ −g_t; ð86Þ

pr ¼
∂L
∂ _r ¼ _r

g
; ð87Þ

pθ ¼
∂L
∂ _θ ¼ r2 _θ; ð88Þ

pϕ ¼ ∂L
∂ _ϕ ¼ r2 sin2 θ _ϕ − qQm cos θ: ð89Þ

Then, from the Lagrangian (85) and Eq. (88), the equation
of motion for θ is

dpθ

dτ
¼ d

dτ
ðr2 _θÞ ¼ 1

2
r2 _ϕ2 sinð2θÞ þ qQm sin θ _ϕ: ð90Þ

It is obvious that the motion of a charged particle around
the Einstein-Bronnikov black hole is no longer constrained
on a plane. Thus, we can not calculate the deflection angle
of a charged particle by the Einstein-Bronnikov black hole
with the Gauss-Bonnet theorem, which is suitable for a
two-dimensional Riemannian surface. This is left for our
future work.

IV. CONCLUSION

As two well-known nonlinear electrodynamic theories,
the Euler-Heisenberg NLED model and the Bronnikov
NLED model were extensively studied in the literature. In
this paper, we considered the spherically symmetric and
static black hole solutions based on these NLED models
and calculated the weak deflection angle of light and
charged particles by these two black holes with the help
of the Gauss-Bonnet theorem.
To be specific, in the Einstein-Euler-Heisenberg black

hole, we investigated the effect of the one-loop corrections
to quantum electrodynamics on the deflection angle of
light, and found that this correction makes a positive
contribution to the weak deflection angle but its influence
is depressed. For a charged particle, the deflection angle
increases if the charges of the black hole and the particle
have the opposite signs since the electrostatic interaction is
attraction now, and vice versa. The effect of the one-loop
corrections to QED on the deflection angle is strengthened
with the presence of the electrostatic interaction.
In the Einstein-Bronnikov black hole, we calculated the

weak deflection angle by this regular magnetically charged
black hole and found that the deflection angle by this black
hole is smaller than the singular one. We also studied the
motion of a charged particle around this magnetically
charged black hole, and found that the orbit of the charged
particle is no longer confined to a plane. Thus, we can not
calculate the deflection angle of the charged particle by this
regular magnetically charged black hole with the Gauss-
Bonnet theorem. This is left for our future work.
The weak deflection angles of both black holes were also

calculated via the geodesic method, which was confirmed to
agree with the method by using the Gauss-Bonnet theorem
(at least at low order). In addition, the effect of a cold
nonmagnetized plasmaon theweak deflection anglewas also
discussed and it was found that the deflection angle increases
with the plasma parameter for both black holes, which
indicates that the lower the photon frequency measured by
a static observer at infinity is, the larger the deflection angle
of it will be for a fixed electron plasma frequency.
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