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Nonlinear electrodynamic (NLED) theories are well motivated for their extensions to classical
electrodynamics in the strong field regime, and have been extensively investigated in the search for
regular black hole solutions. In this paper, we focus on two spherically symmetric and static black hole
solutions based on two types of NLED—the Euler-Heisenberg NLED model and the Bronnikov NLED
model—and calculate the weak deflection angle of light and charged particles by these two black holes with
the help of the Gauss-Bonnet theorem. We investigate the effects of the one-loop corrections to quantum
electrodynamics on the deflection angle and analyze the behavior of the deflection angle by a regular
magnetically charged black hole. It is found that both the electric and magnetic charges of the black hole
reduce the weak deflection angle, and the one-loop corrections make a positive contribution to the
deflection angle, but their influence is deeply suppressed by the impact parameter. For the charged
particles, due to electrostatic interaction, the weak deflection angle changes noticeably and the influence of
the one-loop corrections is enhanced. We find that the regular magnetically charged black hole based on the
Bronnikov NLED model has a smaller deflection angle than the singular one. We also calculate the
deflection angle of light by the geodesic method for verification. In addition, we discuss the effects of a cold
nonmagnetized plasma on the deflection angle and find that the deflection angle increases with the plasma

parameter.
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I. INTRODUCTION

To solve the divergence of the self energy of a point-like
charge, Born and Infeld generalized Maxwell’s theory and
proposed the Born-Infeld electrodynamics theory [1].
However, this theory did not attract much attention until
its re-emergence at the low energy scale of some string
theories. Afterwards, Heisenberg and Euler introduced a
new extension to standard electromagnetic theory (known
as Euler-Heisenberg (EH) electrodynamics) [2], which
takes into account the one-loop corrections to quantum
electrodynamics (QED) and can explain the vacuum
polarization in QED. As extensions to Born-Infeld and
EH electrodynamics, nonlinear electrodynamic (NLED)
models have been studied in different aspects since then.
For instance, NLED models can be used to explain the
inflation of the universe in the early times [3,4]. Some types
of NLED models can depict the accelerated expansion of
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the Universe instead of dark energy and remove the big
bang singularity [5-8].

Additionally, in recent years, NLED models attracted
much more attention for their ability in seeking regular
black hole solutions. The first regular black hole model was
proposed by Bardeen [9]. However, this regular black hole
was obtained without a specified source associated to its
line element. Remarkably, in 1998, Ay6n-Beato and Garcia
found that the NLED model minimally coupled to general
relativity (GR) can be a possible source generating such a
regular black hole solution [10]. In Ref. [11], Bronnikov
found a class of magnetically charged regular black holes in
the framework of GR coupled with a specific NLED model
(known as the Bronnikov NLED model). Subsequently,
Hayward proposed a concrete model which can describe
both the collapse and evaporation of black holes [12]. One
can see Refs. [13-26] for more regular black holes based
on NLED models. In this paper, we mainly focus on two
black hole models based on two particular above-men-
tioned NLED models, i.e., the EH NLED model and the
Bronnikov NLED model, and investigate the weak deflec-
tion angle of light by these two black hole models.

© 2021 American Physical Society
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It is well known that light rays will be bent when
traveling through a massive object, known as the gravita-
tional lensing effect, which is one of the key predictions of
GR. At present, gravitational lensing is one of the most
powerful tools in astronomy and cosmology for measuring
the mass of galaxies and clusters [27-29], and detecting
dark energy and dark matter [30—37]. Since the first mea-
surements of the gravitational bending of light by the Sun,
the gravitational lensing effects have been extensively
investigated for black holes, wormholes, cosmic strings
and other objects by the lens equation [38—52]. In 2008,
Gibbons and Werner introduced an alternative method
to calculate the weak deflection angle of light in static
asymptotically flat spacetimes by using the Gauss-Bonnet
theorem and the optical geometry of the spacetime, where
the light source and receiver are located at infinity [53].
Later, this method was extended to stationary spacetimes
by Werner [54]. In Ref. [55], the authors investigated the
weak deflection of light for the light source and receiver
located at a finite distance. The weak deflection for the
massive particles by this method was investigated in
Refs. [56-58]. Additionally, the weak deflection of light
by a black hole immersed in a plasma medium was
discussed in Ref. [56]. One can see Refs. [59-74] for
more recent works.

According to the no-hair theorem, black holes can be
described by just three observable parameters: mass, spin,
and electric charge. For an astrophysical black hole in
nature, electric charge is usually ignored because of the
presence of the plasma which is a very good conductor
prompting discharging. However, this viewpoint has been
questioned by several researchers [75—77]. Some authors
have found that a charged black hole can be formed during
the collapse of a charged stellar [78,79] or the accretion of a
neutral black bole [80,81]. Also, a rotating black hole
immersed within a magnetic field will induce an electric
field [82—84]. There is some convincing evidence that a
magnetic field may exist around astrophysical black holes,
such as, in the vicinity of SgrA* and M87 [85,86]. Thus, it
is plausible for a black hole with nonzero charge to exist.

In addition, recent discoveries show that the ultra-high
energy cosmic rays, consisting of charged particles, may
originate in supermassive black holes [87]. However, the
reason why the energy of the cosmic rays is so high
still remains mysterious. In Ref. [84], the authors proposed
that the energy of the charged particles in cosmic rays
may be extracted from the charged supermassive black
holes through the acceleration of the electromagnetic
interaction. Therefore, the research on the possible obser-
vational signatures of charged black holes presents par-
ticular interest.

Although the black holes based on the Einstein-Euler-
Heisenberg (EEH) theory have been extensively studied in
the literature [88—93], the weak deflection of light by these
black holes have not been investigated yet. As a powerful

tool to study the characteristics of black holes, it is
interesting to investigate the weak deflection angle by
the electrically charged EEH black hole and know what the
effects are of the one-loop corrections to QED on the
deflection angle. Compared with the neutral particles, the
orbit of a charged particle around a charged black hole is no
longer a geodesic due to the electromagnetic interaction. It
is interesting to investigate the weak deflection angle of a
charged particle by the electrically charged EEH black
hole. Although there are many investigations on the NLED-
based regular black holes, the weak deflection angle of light
by such regular black holes are rarely investigated. In this
paper, we take the Bronnikov NLED black hole with mag-
netic charge as an example and investigate the character-
istics of this regular black hole by calculating its deflection
angle. Most astrophysical objects including black holes are
surrounded by a plasma medium, thus, it is interesting to
investigate the effects of the plasma medium on the
deflection angle of light by these black holes.

This paper is organized as follows. In Sec. II, we first
give a brief review of the EEH black hole and then calculate
the weak deflection angle of light by this black hole via two
different methods, i.e., the method by using the Gauss-
Bonnet theorem and the traditional geodesic method. Then,
the effects of the plasma on the weak deflection angle are
studied. We also investigate the weak deflection angle of a
charged particle by this black hole. In Sec. III, we perform
the same procedures for the Bronnikov NLED black hole,
analyze the characteristics of the weak deflection angle of
light by this regular magnetically charged black hole, and
make a brief analysis of the motion of the charged particle.
Section IV contains the conclusion.

II. WEAK DEFLECTION ANGLE OF LIGHT
BY THE EINSTEIN-EULER-HEISENBERG
BLACK HOLES

In this section, we first give a brief review of EEH theory
and present the spherically symmetric and static solution to
this theory. Then, we will use these results to calculate the
weak deflection angle of light for this black hole using the
Gauss-Bonnet theorem. Additionally, the weak deflection
angle of light is also calculated with the null geodesic
method as a verification to the former results. Finally, we
will investigate the deflection angle of light for this black
hole immersed in a cold nonmagnetized plasma medium.

A. Einstein-Euler-Heisenberg theory
The action for the EEH theory is given by [91,92]

S—i/d“x\/—_g[%R—E(F,G)], (1)

where L(F,G) is the functional of the electromag-

. . . _ l _ l .
netic invariants, F = F,F*" and G = ;F"F,, with

F,=0,A,-0,A, the electromagnetic field strength
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and F), —2 €uwopt® its dual. The Levi-Civita tensor
satlsﬁes €wop€’” = —41. As one-loop corrections to

QED, the Euler-Heisenberg Lagrangian is

7
L(F.G)=~F+3 2F 8“ G2, (2)

where a is the Euler-Heisenberg parameter, which is
positive. For a = 0, the standard Maxwell electrodynamics
is recovered. There are two frameworks in nonlinear
electrodynamics. One is the F' framework constructed by
the electromagnetic field tensor F,, and the other is the P
framework constructed by the tensor P,,, defined by

P;w = _(‘CFF;w + F;v‘CG)’ (3)

where Ly = ax Then, the P,
theory can be calculated as

in the Euler-Heisenberg

7
| — aF)F,, — —F:,G. (4)

P
4

w =

In the P framework, one can define two independent
invariants P and O,

1 1
P=—--P, P", 0O =—--P"P;

4 172 4 Hvs (5 )
where P, = 2 €uwopP -
The equatlons of motion can be derived as

R = 8T, (6)

1
v = Egm/
V, P =0, (7)

where the energy momentum tensor in the P framework is
given by

1
T, = e (1=aP)PjP,, + g, (P

gaP2 —7—002>}
3

2 8
(8)

B. Spherically symmetric solution in the
Einstein-Euler-Heisenberg theory

The line element for a spherically symmetric and static
black hole can be assumed as

ds* = g, dxtdx’ = —f(r)de* + f(r)~'dr* + rPdQ*, (9)
where y and v run from 0 to 3, and dQ? = d@> + sin® Od¢?.

According to the symmetry of the spacetime and restricting
to the electric charge Q, the P,, can be calculated as

Q g
P, = ﬁé[fl&v]’ (10)
and the independent electromagnetic invariants are
2
_2 oo (11)
2r

Then the function in the metric can be solved as [91,92]

) =1-"24 5 =25 (12)

where M is the mass of the black hole. The nonvanishing
component of the electromagnetic potential A, is

0 aQ?
AO__7(1 10r> (13)

C. Calculation of deflection angle with
the Gauss-Bonnet theorem

The null geodesic satisfies ds? =0, which can be
rearranged as

o 2
it = ydxidy) = Fd# + a2, (14)

f

where i and j run from 1 to 3, and y;; is the so-called optical

metric. After a coordinate transformation dr* = %dr, the
above expression can be rewritten as
di* = dr* + f2(r*)d¢?, (15)

where f(r*) = \/% and @ = 7. The Gaussian curvature of

the optical spacetime can be calculated as

et plae () - (o)

oM 0>/ M
S R I
r3( 2r>+r4< r)

+Q_4 5 2la N 19aM 9aQ°® 3a*Q°®
o 2007 107° 1019 ° 100/14°

(16)

where y = det(y;;).

Let the domain D be a compact oriented nonsingular
two-dimensional Riemannian surface with Euler character-
istic (D) and Gaussian curvature K, bounded by a
piecewise smooth curve with geodesic curvature k. Then
the Gauss-Bonnet theorem gives the relation between the
deflection angle of light and the Gaussian curvature via
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//D fds+ f{m kdt+) p;=2my(D).  (17)

i=1

where dS is the surface element, x stands for the geodesic
curvature of the boundary defined as x = |VCC |, and p;
denotes the i exterior angles. For a specific D bounded by
a geodesic C; from the source S to the observer O and a
circular curve Cy, intersecting Cy in S and O at right angles,
Eq. (17) reduces to

/LJICdS+/CR k(Cg)dt = x, (18)

where we have used «(C,) = 0 and the Euler characteristic
x(D) = 1. For the circular curve Cg = r(¢p) = R = const,
the nonzero part of the geodesic curvature can be calculated
as

k(Cr) = (V,Cr)" = CR(94CR) + T, (CR% (19)

where C r denotes the tangent vector of the circular curve
Cr, and I}, is the Christoffel symbol related to the optical
metric (14). In the last equation it is obvious that the first
term vanishes, and I}, = —7(r*) f'(r"), (Ch)?2 = ﬁ in
the second term. In the limit R — oo, one can obtain
I;im [x(Cg)dt]
= lim [F'(r*)]dg
~lim < 10R*(R(R — 3M) + 2Q?) — 2aQ* )

k= \R3/100R*(R(R — 2M) + Q?) — 5aQ"
= dg. (20)

Inserting Eq. (20) into Eq. (18), one has

/~ ICdS+/ﬂ+ad¢:7r. (21)
Dp_.o 0

Then the weak deflection angle of light can be calculated as

2 _ 2 2 _ 2
_4M | 3a(MP- Q%) | SM(M - %)

T 457 3b3
N 1572(5M* — 6M?Q? + Q%)
64b*
AMQ*(10M? —3Q?)  TmaQ*
— .. 22
5b° 128h° oo (22)

where we have used the zero-order particle trajectory
r=>b/sing, 0<¢p <n at the weak deflection limit.
Obviously, the first five terms are the deflection angle of
light by an electrically charged black hole based on the
standard electrodynamics [59] and the charge of the black

hole will reduce the deflection angles no matter whether the
charge is positive or negative. The last term comes from the
influence of the one-loop corrections to QED on the
spacetime of the black hole. Obviously, the one-loop
corrections make a positive contribution to the deflection
angle, but their influence is largely suppressed by the
impact parameter.

D. Calculation of deflection angle
by the geodesic method

The Lagrangian of the null geodesics of the EEH black
hole is given by

2L, = —f(r)P+ f(r)7'i? + (0 +sin? 07),  (23)

where x = % and 7 is the affine parameter along the
geodesics. Since the Lagrangian is independent on ¢ and ¢,

one can obtain two conserved constants:

oL,

Pt = oL =—f(r)t = -E, (24)
Py = a@i; = r2psin20 = L. (25)

Then the null geodesic equation at the equatorial plane can
be obtained as

(- Grm)”

where the impact parameter is defined as b = ry/+/f(rg)
with r( the radius of the circular orbit.

The weak bending angle of the light coming from
infinity and deflected by a black hole before arriving at
infinity is given by

(26)

a(rg) = Ag(ro) — 7. (27)
where A¢(ry) can be solved from Eq. (26) as
w [ -4
A(ro) = 2/r <%— rzf(r)) dr. (28

It is convenient to define the dimensionless line
element as

ds? = (2M)2ds*> = —f(x)dT? + f(x)"dx?

+ x%(d6? + sin” 0d¢?), (29)
where we have defined
r t @) a
- bl T - < b — 9 a - 9 30
T om i T e GO
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and the function f(r) in the metric (9) can be re-
expressed as

1 ¢ aq*
=l-—-+5-—. 31
&) T T 2000 G31)
Then Eq. (28) can be rewritten as
d(x0) —2/ V20x2x8 (ag* (x8 — x®)
+ 20g%x*x3 (x* = x3)
+ 20053 (23 (xg = 1) = xx) +x3))2dx,  (32)

and the impact parameter can be expressed as
|

a<x0>=A¢<xo>—n:x—20+(Z(§-3 ) 1)1 (%ﬂ@q_@ 7qz+f;>

N 37(304¢* — 22004> + 1155)
1024

7
<@7mq —@(2856041 — 5983242 4 21397) —

o(5).

To obtain the deflection angle in terms of the impact
parameter b, one needs the relation between b and x, which
can be solved from Eq. (33) in the weak deflection limit as

1_2m 1My
xo b 2\0b

o0 -(E))

7 7 2M\ 3

(oo ol ).

Inserting Eq. (36) into Eq. (35), the weak deflection
angle is found to be

4M  3z(M?*— Q%) 8M(M?*— Q?)
=t T T
15z(5M* — 6M?Q? + Q%)  4MQ?*(10M?* — 30?)
64b* 5b°
TraQ*
37
s T (37)

It is obvious that the above result is in agreement with the
result calculated by using the Gauss-Bonnet theorem.

1 7
>_4+ ( (632 = 1057)¢" + 7 (1357 — 536)¢"
X

= . (33)

After defining a new variable z = =2,

can be rewritten as

the above integral

Ag(xp) = 241 V2003 (ag* (28 = 1) = 20¢2x3(z* = 1)
—20x3(x0(z2 = 1) = 2 + 1)) 72dz. (34)

Considering the weak gravitational lensing limit x> 1
and expanding the above integrand about %, the above

integral can be integrated out term by term as follows:

(§ (204% — 13)
8
L7783 346571) 1

320 512

1057
16384

1
(192¢° — 48164* + 86764% — 2959)) —
X0

(35)

|
However, it should be noted that this agreement only holds

for the first-order terms and breaks down for the higher-
order corrections.

E. Weak deflection angle in the presence of plasma

In this subsection, we investigate the effects of a cold
nonmagnetized plasma on the deflection angle for the EEH
black hole. The refractive index for this black hole is given
by [94],

(38)

where w, and @, denote the electron plasma frequency and
the photon frequency measured by a static observer at
infinity, respectively. The corresponding optical line
element can be defined as

2
n . .
= - —gi/-dx’dxj
Joo

(2d’ +fd"’2>

which is conformally related to the induced metric on the
spatial section with @ = 7. Then the Gaussian curvature can
be calculated as

do* = y;;dx'dx/

(39)
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K= 402734 (3aQ* + 20r*(Mr — Q%))?

3 4
+&7! (2%% + r(Mr - Q2)>

x (aQ* = 20r*(r(r — 2M) + Q?))

208
_go (9“er +20aQ* P (r(18r — 19M) + 20°)
+400r°(=Q*r(M +2r) + Mr*(M + r) + Q4)> :
(40)

where E = (a8Q* + 20r*(r* = 6(r(r — 2M) + Q?))) and

do r
—_— =n -, 41
which results in
L do
l;l—l;rolo K'(CR) d_ . ~ 1. (42)

By taking the zero-order particle trajectory r = and

b
sin ¢
for the limit R — oo, the Gauss-Bonnet theorem can be
written as

the plasma parameter is defined by 6 = ”“)’—22 For a photon to / e dp = 7 — / g / * kds. (43)
propagate in the plasma, one should require o, > @,, thus 0 0 Jig
0 < 6 < 1. For more details about the plasma, one can refer
to Ref. [95]. It follows from Eq. (39) that Then the deflection angle can be calculated as
a=- / i / " Kas
2M 1 7 2—-66 2 2M 3—1068 + 158°
2 (1+— )+ [M?| 1 -0 1+— M1+
(i) (i) e ()| e ()
3-95 3 20 — 845 + 1408* — 1405° 12 — 525 + 1008> — 605°
-0*1 M*(5 -2M?Q?( 3
01+ 20| o [ (o CUrTTT oy
4-126 2M Q? 5-216+356% — 355° 5(3 — 108 + 158%)
41 - 10M?( 1 -0*3
+ 01+ | - 1o (142 i S (s
arQ* 6
1 cee 44
Jr128bé<+1—6>+ (44)
|
It can be easily seen that Eq. (44) reduces to Eq. (37) The conjugate momenta can be obtained as
when 6 — 0, and the deflection angle increases with the
plasma parameter 6, which suggests that the lower the oL . g0 aQ?
photon frequency measured by a static observer at infinity Pe="57 = —gt = P - 1074 )° (46)
is, the larger the deflection angle of it will be for a fixed
electron plasma frequency. or i
i
=—=-, 47
1. Weak deflection angle of the charged massive particles
In this subsection, we investigate the weak deflection B oL _ 29 43
angle of a charged massive particle (CMP) by the EEH Po = 90 o (48)
black hole. The motion of a charged particle is governed by
— Ly i o
L=3 A + qA”.x . For the EEH black hole, the _ oL _ s 0 (49)
Lagrangian is explicitly Py ) ¢ r :

2

2
_g (1 — aQ4> ‘.
r 107

1 . i . .
L== <—gt2 + T + r2(6* + sin? 9¢2)>
g

Then, from the Lagrangian (45) and Eq. (48), the equation
of motion for @ can be expressed as

dpy _ d

. |
i (r260) = 3 r2¢* sin(20).

(50)
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Obviously, the motion of a charged particle in the equa-
torial plane of the EEH black hole must lie in this plane.
Without loss of generality, we restrict ourselves to inves-
tigating the weak deflection angle of a charged particle in
the equatorial plane, i.e., @ = 7. The Jacobi metric for a
CMP in this background is [96,97]

dlZ = ]/ijdxidxj

~ [+ g =)y + d¢2) (51)

f? f

where E, g and m stand for the energy, charge and mass
of the particle, respectively. By axial symmetry, one can
obtain the conserved angular momentum of the motion

R G RES

From Egs. (51) and (52) and introducing a new variable
u(¢p) = 1/r, the geodesic equation for the CMP moving at
the equatorial plane is

du\?

d¢
The energy and angular momentum of the particle mea-
sured by an asymptotic observer at infinity are

1 M 1
’C:<1‘v4)mzr3+(vz‘

— B+ gA? = (o + 212, (53)

3/2 qQ
1
> m3riv * (

u(g)

3zMqQOV'1 —v? 3

b mu?

2\ 70?
(1= _
( + v2> 4p?

<21 143 3 1 ) aM?Q?

6 87 2t 5) 2

which indicates that the deflection angle of the charged
particle results from two kinds of interactions, i.e., the
gravitational and electrostatic interactions. To be explicit,
the terms including ¢ originate from the electrostatic
interaction, and the other terms come from the gravitational
interaction. The effect of the gravitational interaction on the
deflection angle has been analyzed in the above subsection.
In this subsection, we focus on the electrostatic interaction.

49 5 1\ zMqQ’V1—1?
ERRT

m I— muvb

-2 V-2

(54)

where v is the velocity of the particle and b is identified
with the impact parameter, defined by

b=—. (55)

Then the orbit equation (53) can be expressed as

du\* _ 1 [, VI-vq4 2
(@) =l 50%)

— =0+ b%%ﬂ)] : (56)

which can be solved by iterative method as follows:

i 1 V1-1?
u(g) = Sln;§¢) + (—2 + cos” ¢> % B QQWTZU
+O(M?*, Q> MQ). (57)

The Gaussian curvature of the Jacobi metric (51) can be
calculated as

3IM?

3 1 3 4
4_112+1>m2r4112+< 1) <1_U2)
3IM 2
X 3q4Q—|— ——1 1—|——2 +24*( 1
mor*v v? v

The weak deflection angle for the CMP can be calculated as

e [ v () BT

7\ 4MQ? 1 1)\ 8M2q0oV1 -2
(1+p p- L L) Mo

4 3 0? 1 350903
_F+F>>W_(?_l> e (58)

4\ 3zM>
l+—= | —
 bm? vr ) 4b?

33 \7 P mv?

8aqQ*V'1 — v?

1565 mwv?

b*mv? o (59)

|
It is obvious that the deflection angle of the charged particle
by the charged black hole will be changed noticeably
because of the electrostatic interaction. To be explicit,
the deflection angle increases if the charges of the black
hole and the particle have the opposite signs since the
electrostatic interaction is attraction now, and vice versa.
Additionally, the effect of the one-loop corrections to QED
on the deflection angle is strengthened because of the
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electrostatic interaction, which can be concluded by com-
paring the a terms suppressed by b~ in Eq. (37) and
suppressed by 7% in Eq. (59).

III. WEAK DEFLECTION ANGLE OF LIGHT BY
EINSTEIN-BRONNIKOV BLACK HOLES

In this section we will perform the same procedures of
the previous section in the case of Einstein-Bronnikov
theory, which is a particular NLED theory which only
consists of the relativistic invariant F', and wherein one can
obtain regular black holes.

A. The Einstein-Bronnikov theory

The action for the Einstein-Bronnikov theory is given
by [11]

= o [ dwER-LE)L ()
where

L(F) = Fcosh™2[a(F/2)'4], (61)

and the parameter a is related to the black hole mass M

and magnetic charge Q,, via a = 32 /(2M). The standard
Einstein-Maxwell Lagrangian can be recovered with
a—0.

The equations of motion can be derived as

1
R, —=9uR=28xT,, =8r (2£FFW

1
B Fu - Eg/w£> ’ (62)

oM, (0,
IC——r3 <1 tanh(ZM ))

V, (LpF™) = 0. (63)

Considering the spherically symmetric and static space-
time and restricting to the magnetic charge Q,,, the relevant
function in the metric, analogous to Eq. (9), can be obtained

as [11]
2M A
g(r) =1 —T <1 —tanh(m>>,

and the gauge field is given by A, = —Q,, cos 95;’3 as an
ansatz [91]. It can be straightforwardly shown that the
metric function (64) reduces to the Schwarzschild black
hole solution with Q,, — 0 and is regular as r — 0, which
suggests a regular black hole.

(64)

B. Calculation of deflection angle
by the Gauss-Bonnet theorem

The null geodesics satisfying ds®> = 0 can be rearran-
ged as

S 1 2

it = yydxidy = —dr* + = dQ?. (65)
g g

After a coordinate transformation dr* = édr, the above

line element can be rewritten as

= dr +

A(rt)de?. (66)

where §(r*) = \/% and 0 =

this optical spacetime can be calculated as

5. The Gaussian curvature of

2 2
7 {.%M2 ( — tanh <§4 >>2 + 202 sech? (%)]

2 2 2
—%sech <2%/[ > {6M2 +(Q2% - 6M2)tanh< %rﬂ

ﬁ‘l 3’1 Qm Qm
—a6 sech? <M> (1 — tanh (ZMr)) (1 — 3tanh <2Mr> > )

Following the same procedures as the previous section,
the weak deflection angle of light by this black hole can be

obtained as
—/deS:—/ﬂ/OOICdS
D 0 J-L

u(p)
aM  15zM? 3zQ2, 16MQ?, N
b 4p? 4b* b’ '

(68)

where u(¢) is given in Eq. (72). It is obvious that the
first two terms are the same with the weak deflection

(67)

|
angle of light by the Reissner-Nordstrom black hole [59]
except the electric charge is replaced by the magnetic
charge, and the minus sign in front of the third term
indicates that the weak deflection angle of this regular
magnetically charged black hole is smaller than the
singular one.

C. Calculation of deflection angle
by the geodesic method

The Lagrangian of the null geodesics of the Einstein-
Bronnikov black hole is given by
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_ 2 132 2002 4 i A2 -
2L, = =g(r)e 4 g(r)7i" +r7(0" +sin"0¢7),  (69)  where the impact parameter is defined as b = /%5 with
ro the radius of the circular orbit.
dx

where x =<7, and 7 is the affine parameter along the After introducing a new variable u(¢) = %, the above

geodesic. Then the null geodesic equation at the equatorial ~ geodesic equation can be rewritten as

plane can be obtained as )
du\? 1 5 Qi

=—- 2Mu? |1 —tanh =2~ )|, (71

(ag) = e mem(G7)] o0

_ de b2
2 4 1
() = (52-ratn) (70)
dr b which can be solved by iterative methods as follows:

u(o) (30¢ + 3sin(2¢) —20tan ) —

b b? 8h3 2 4
+O(M3,03). (72)

_sing M(COSZ¢+1)_M2005¢ %(—%—Flsin@fﬁ)—i—tanfﬁ)

The bending angle of light can be expressed as

a(rg) = Ap(ry) — , (73)

where A¢(ry) can be obtained from Eq. (70) as

o [ 4 02 -1
Ag(ry) = 2[0 (?— r +2Mr{1 —tanh<2Jr>]> dr. (74)
Defining the new dimensionless spacetime coordinates x = 57; and T = 57; and the dimensionless magnetic charge

qm = 2Q—A',"I, Eq. (74) can be reexpressed as

3
2

Ag(x0) =2 [ T AA1 4 ) a1 =) = o anh (g3/) + 5 anh (3 /-50) (75)

and the impact parameter is given by

b XO
—= . (76)
M vV g(xo)
After defining a new variable 7 = x;(’ the above integral becomes
1
Ag(xg) = 2/ V(=14 (1 = 22)x0 + 2> + tanh (g3, /xo) — 2° tanh (g3,2/x,)) dz. (77)
0

Then, the weak deflection angle can be integrated out term by term as follows:

2 7z (15 1 3 61\ 1 5
:A —_ = — — _—3 2 _] J— J— 4 2 _5 _7 2 - 20 2 _13
a(x(J) ¢(X0) T X0 + (4 <4 qm) > .X% + (1677:( dm ) I + 12) xa + <8( dm )

N 7(32045, + 9124% — 660042, + 3465)

1 1 1
) —+ (— (472 = 757)q5, + 35 (632 1057) 47,
Xo

1024 120
7 7783 34657\ 1 (Tnql® 4975, S 35
L (1357 = 536) g%, + o _ 27T m m_ 22 6~ 22 (2] 4
+ 64( 357 —536)q%, + 320~ 5D ) 3 < 18 < 96( 08 + 637)gy, ]024( 76 4+ 9037)g,
9 21397 3106957 1 1
(70912 + 253057) %, — - —+0(=). 78
* 2006 { +25305m)4m ~ =51~ 6384 )x8+ (xg) (78)
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The relation between b and x, can be obtained from Eq. (76) as
1 2M 1 /2M\?2 1 2M\3 (343 2MN\4 (¢ Tq% 6343
= [ Z==) —Z(4g?2 =)= ) () == dm oy Am o Am
%o b+2<b) g (4am )<b> (2 )<b>+(6+8 16

231\ [2M\5 (248 ., , T\ (2M\© 2M\7
+@> <7> +<T+5qm—10qm+§ 7 +O 7 . (79)

Inserting Eq. (79) into Eq. (78), the weak deflection angle is found to be

o~

aM  15zM? 3zQ2, 16MQ>

i - mo_ my, 80
b + 4b? 4p? b? + (80)

which is in agreement with the result calculated by using the Gauss-Bonnet theorem.

D. Weak deflection angle in the presence of plasma

In this subsection, we investigate the effects of a cold nonmagnetized plasma on the deflection angle of the black hole in
Einstein-Bronnikov theory. The refractive index for this black hole is given by [94],

n(r) =4/1==58g(r). (81)

The corresponding optical metric is

2
do® =y;dx'dx) = —n—gijdxidxj
900

215 r 2
=n?(—adr + = dp?). (82)
g g

Then the Gaussian curvature is calculated as

1 2 Q2
—3;2 — 2 =m 2 i =m
15 3r° 4+ 4Mor — 26sech (2Mr> (Qm + M sinh (Mr) )]

6(6 — 1)Mr* — 202 ssech?(Fe) (Mr + OF tanh(§2))
AMr*8*(r(1 = 8) + 2M5(1 — tanh(22))
1

+
4AMr*82(r(1 = 5) + 2M5(1 — tanh (22

QZ Q2 ) 2
2.2 _ of Em \ _ 4 4 Em m
+2M Q;,r*5(36 — 2)sech <2Mr> Q;,0sech <2Mr 3Mé + rsinh My

2r(r2(6—1) — 3,15$ech4(2%4’2"r))2
02

+ b
AMP*3*(r(1 = ) + 2M5(1 — tanh(L2)))?

K:

Mr*(=5 8 —36)6
)))2[ (=5 + (8- 38)9)

(83)

and the deflection angle can be obtained as

a:—/”/medS
0 _b_

sing

2M 1 aM? 2 2 nQ? 2
~— |14+ —— — (1 +— 7= -—2(1

b < +1—6)—i_4b2< +1—5>< 1—5> 4b2( +1—5>
2MQ2m< 36 8—105)

B \1-5 (1-6)7

(84)
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It is obvious that Eq. (84) reduces to Eq. (68) when 6 — 0,
and the deflection angle increases with the plasma param-
eter o, which suggests that the lower the photon frequency
measured by a static observer at infinity is, the larger the
deflection angle of it will be for a fixed electron plasma
frequency.

1. Motion of a charged particle around
the Einstein-Bronnikov black hole

In this subsection, we give a brief analysis about motion
of a charged particle around the Einstein-Bronnikov black
hole. The Lagrangian for a charged particle moving
around the Einstein-Bronnikov black hole can be explicitly
expressed as

1 . 72 . . .
L= 3 (—gtz +oy (6% + sin? 9¢2)> —qQ,, cos 0.
9

(85)
The conjugate momenta can be obtained as
oL .
P =g = gt (86)
oL r
== 87
oc .
=—=7r 9, 88
Do o0 (88)
Py = % = r2sin?0¢ — qQ,, cos 6. (89)

Then, from the Lagrangian (85) and Eq. (88), the equation
of motion for @ is

d d . 1 .. .

% = (P0) = 52§ sin(26) + g0, sin6p. (90)
It is obvious that the motion of a charged particle around
the Einstein-Bronnikov black hole is no longer constrained
on a plane. Thus, we can not calculate the deflection angle
of a charged particle by the Einstein-Bronnikov black hole
with the Gauss-Bonnet theorem, which is suitable for a
two-dimensional Riemannian surface. This is left for our
future work.

IV. CONCLUSION

As two well-known nonlinear electrodynamic theories,
the Euler-Heisenberg NLED model and the Bronnikov
NLED model were extensively studied in the literature. In
this paper, we considered the spherically symmetric and
static black hole solutions based on these NLED models
and calculated the weak deflection angle of light and
charged particles by these two black holes with the help
of the Gauss-Bonnet theorem.

To be specific, in the Einstein-Euler-Heisenberg black
hole, we investigated the effect of the one-loop corrections
to quantum electrodynamics on the deflection angle of
light, and found that this correction makes a positive
contribution to the weak deflection angle but its influence
is depressed. For a charged particle, the deflection angle
increases if the charges of the black hole and the particle
have the opposite signs since the electrostatic interaction is
attraction now, and vice versa. The effect of the one-loop
corrections to QED on the deflection angle is strengthened
with the presence of the electrostatic interaction.

In the Einstein-Bronnikov black hole, we calculated the
weak deflection angle by this regular magnetically charged
black hole and found that the deflection angle by this black
hole is smaller than the singular one. We also studied the
motion of a charged particle around this magnetically
charged black hole, and found that the orbit of the charged
particle is no longer confined to a plane. Thus, we can not
calculate the deflection angle of the charged particle by this
regular magnetically charged black hole with the Gauss-
Bonnet theorem. This is left for our future work.

The weak deflection angles of both black holes were also
calculated via the geodesic method, which was confirmed to
agree with the method by using the Gauss-Bonnet theorem
(at least at low order). In addition, the effect of a cold
nonmagnetized plasma on the weak deflection angle was also
discussed and it was found that the deflection angle increases
with the plasma parameter for both black holes, which
indicates that the lower the photon frequency measured by
a static observer at infinity is, the larger the deflection angle
of it will be for a fixed electron plasma frequency.
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