PHYSICAL REVIEW D 104, 024032 (2021)

Spherically symmetric perturbations of a Schwarzschild black hole
in torsion bigravity

Vasilisa Nikiforova
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

® (Received 20 March 2021; accepted 2 June 2021; published 13 July 2021)

Time-dependent spherically symmetric perturbations of Schwarzschild black holes are studied within
torsion bigravity, i.e., within generalized Einstein-Cartan theories where the dynamical torsion carries
massive spin-2 excitation. We reduce linearized perturbations to a Zerilli-like equation. The structure of the
potential entering the latter Zerilli-like equation has two important consequences. First, in order to avoid the
presence of singularities in generic perturbations, one must restrict the range (or inverse mass) of the spin-2
excitation to be (essentially) smaller than the radius of the considered black hole. Second, we then show
that the Schwarzschild black hole is linearly stable against spherically symmetric perturbations.

DOI: 10.1103/PhysRevD.104.024032

I. INTRODUCTION

The standard model of relativistic gravity, namely,
general relativity (GR), has been found to be in agreement
with all experimental and observational data, on a very
wide range of scales from a micron to cosmological scales.
It is, however, important to be able to contrast GR
predictions to predictions coming from alternative theories
of gravity. Among alternative theories of gravity, two of
them are distinguished by having, as spectrum, a massive
spin-2 excitation in addition to the Einstein-like massless
spin-2 one. The first such theory is (ghost-free) bimetric
gravity [1], which features two coupled space-time metrics,
9w and f,,. The second one is forsion bigravity [2], which
is a generalized version of the Einstein-Cartan theory [3-5]
comprising both a dynamical space-time metric g,,, and a
dynamical torsion T‘W. General classes of dynamical
torsion theories have been introduced at the end of the
1970s [6-11] and revived, within a cosmological context,
in Refs. [12-18].

The study of the physical properties of torsion bigravity
has been recently initiated [2,19-21]. Static starlike torsion-
hairy solutions were constructed [2]. Furthermore, it was
found [19] that, contrary to the case of bimetric gravity, in
torsion bigravity, there exists a smooth infinite-range limit
which allows to consider small masses « of the spin-2
excitation without appealing to any Vainshtein-type mecha-
nism. Then, following a path initiated in ghost-free bimetric
gravity [22-25], black hole solutions were investigated in
Refs. [20,21]. Torsionless Einstein black-hole space-times
are exact solution of torsion bigravity [12,13]. A no-hair
theorem for time-independent linearized perturbations of a
Schwarzschild black hole was proven, and nonasymptoti-
cally flat torsion-hairy black holes were constructed [20]. In
addition, it was shown that, in the infinite range limit,
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torsion bigravity admits torsion-hairy asymptotically flat
black hole solutions [21].

The discovery (in the infinite range limit) of the latter
torsion-hairy asymptotically flat black holes poses the
question whether they can be realized in Nature. In order
to answer this question, we must investigate the stability of
black hole solutions within torsion bigravity. In bimetric
gravity, it was found [23,25] that, when the mass of the
spin-2 fluctuation' is small enough, «r;, < 0.86, where ry,
denotes the radius of the horizon, the Schwarzschild
solution was unstable. The unstable mode was found to
be spherically symmetric (being related to the Gregory-
Laflamme instability [26]). This leads us, in the present
paper, to study the dynamical stability of Schwarzschild
black hole against spherically symmetric perturbations
within torsion bigravity. We leave the study of nonspheri-
cally symmetric perturbations to future work.

II. REMINDER OF TORSION
BIGRAVITY FORMALISM

The fundamental fields of torsion bigravity are a space-
time metric g, (with mostly plus signature) and a metric-
compatible (V) g = 0) affine connection A* w With torsion
T* ] The Lagrangian density of torsion bigravity reads

L = cgRg] + cpFlg, A
+cp (F(W) [A]JF#)[A] - %FZ (g, A])

+ c34F ) [AJFHAA]. (2.1)

"n this paper, the mass of the spin-2 excitation, i.e., the inverse
of its range, will be denoted by «.
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Here, R[g] denotes the scalar curvature of g,,, F,[A] =
F*,,,[A] denotes the Ricci tensor of the connection A%,
while F[g,A] = ¢"*F,,[A] denotes the corresponding Ricci
scalar. The coupling constants cg, cr and cp2 can be
written as

A ni n
Crp =", CF2:—2,

2.2
1+7 K (22)

where 1= cp+cp = measures the gravitational

676
coupling of the massless spin-2 fluctuation; n = cg/cg
is the ratio between the couplings of the massive and the
massless spin-2 fluctuations, and « is the mass of the
massive spin-2 fluctuation. [The massive spin-2 fluctuation
is contained within the dynamical torsion T* -] The
coupling constant ¢34, multiplying the last contribution to
the Lagrangian density (2.1) will enter intermediate equa-
tions of our analysis, but will drop out of our final results.

As in previous works on dynamical torsion [6-21], we
introduce a vierbein e;*, where the hatted latin indices
;} ... =0,1,2,3 denote frame indices. In the following,
we will use as basic field variables, the coframe compo-
nents efﬂ, and the frame components A;}.,A( of the connec-

tion. Let us also recall that the frame components
Ty = r];gT% ; of the torsion tensor are related to the

frame components K3+ = ;K $ 51 of the contorsion tensor,
) — AA A ; —

K, =A% =T, 9] via Ty = Ko — Kigse
The explicit form of the field equations of torsion

bigravity in terms of these variables can be found in
[18] (see Egs. (3.2) and (3.7) there).

III. PERTURBATIONS OF BLACK HOLES
IN TORSION BIGRAVITY

Vacuum (Ricci-flat) solutions of Einstein’s equations are
exact solutions of the field equations of torsion bigravity
[13]. In particular, stationary Einsteinian black hole sol-
utions (Schwarzschild and Kerr) are torsionless solutions of
torsion bigravity. Here we shall consider linearized pertur-
bations of the Schwarzschild solution. The perturbations of
Schwarzschild black holes in torsion bigravity are
described by two tensor fields, the perturbation of the
metric, h,,, and the perturbation of the frame components
of the connection, a?}. i

9u(t.1.0.¢) = g, (r.0.¢) + ehy, (1.7.0.¢) + O(e?),
AL (1.7.0.0) = ABS31(r.0.9) + ea’s(1.7.0. ) + O(e?).
(3.1)
Here the superscript S denotes Schwarzschild background

values. We can decompose the perturbations both in
frequency space and in tensorial harmonics:

I (8 7.0.¢) = / " dwe @ B (o, 7,0, )

Im Y~

+ Wy (@, 1,0, ), (3.2)

aii(t,r,0,¢) = Z/_m da)e""‘”[a";‘;fn’lm(a), r.0,¢)

+ a;;(]j}d‘lm (w,7,0,9)).

(3.3)
Here, we decomposed the perturbations in even-parity
ones and odd-parity ones. For the reasons explained in
the Introduction, we shall only consider here spherically
symmetric perturbations: (/,m) = (0,0).

Exact time-dependent spherically symmetric solutions of
torsion bigravity are described by fen variables. First, there
are two metric variables, ®(z, r) and A(z, r), such that
ds? = —e*®dt* + e*Ndr? + r*(d0? + sin® 0d¢?).  (3.4)
As is always possible [27] for generic time-dependent
spherically symmetric metrics, we used here a
Schwarzschild-type coordinate system with g, =0 and
Joo = 9gy/ sin> @ = r*. The connection components will

then refer to the orthonormal (co-)frame 0 = efﬂdx"
(1=0,1,2,3, or2,70,¢) with

00 = ¢®dt, ol = erar,

0> = rdo,  6° = rsin0dg. (3.5)
Besides the two metric variables ®(z, ) and A(t, r), there
are four even-parity connection variables, V(z,r), W(t,r),

X(t,r) and Y(z,r),

and four odd-parity connection variables, C,(z, r), C,(t, r),
C3<t, r) and C4(t, r),

. 1 .
Ci(r.)=A%5=—-A%;=T%; ETOﬁé’
R A
Co(r.1) =A% =—A%; —TZHJFET 23
A A A . 1
C3(r1) = =A% =A% = =A% =A%, = =314,
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In Eqs. (3.6) and (3.7), T';; = —T';; denote the frame
components of the torsion tensor. The definitions of the
four connection variables Cy,...,C4 all depend on the
choice of an orientation within the 2-sphere (2,3) = (8, ¢),
hence their odd-parity character.

The background (i.e., Schwarzschild) values of the odd-
parity variables all vanish: 0 = C{ = C5 = C§ = C3. The
odd-parity spherically symmetric perturbations are studied
in Appendix B and shown there to be trivial. In the
following, we focus on even-parity perturbations.

The unperturbed components of the metric and (even-
parity) connection variables describing a Schwarzschild
black hole are

1 1
<I)S(r):—|-§1n <1—Q>, As(}’):—iln <1_Z>,

r

Ir rp\ "2 1 rp\ /2
Vs(r)=2r'§<1—h> : WS(”):—<1—:> .

r
Xs(r) :0,

where r;, denotes the Schwarzschild radius.
We will use the following specific notation for the
frequency-space linearized Schwarzschild perturbations,

bo(@, 1), Ay (@,7), Vo(@,7), Wo(w, 1), X, (@, 1), Yo (@, ),
(3.9)

where, for instance,

<I>(t,r):(DS(r)—i—e/ooda)e‘ia”q’)o(a),r)—1—0(82). (3.10)

—00

In what follows, we use a/ = 0, to denote the r-derivative,
and = 0, to denote the derivative with respect to .

IV. REDUCTION OF THE LINEARIZED
FIELD EQUATIONS TO A SYSTEM OF TWO
FIRST-ORDER RADIAL EQUATIONS

There are fourteen exact field equations describing time-
dependent spherically symmetric torsion bigravity configu-
rations (®(t,r), A(t,r), V(t,r),...). They have been
written down by Rauch and Nieh [28]. See (4.3a)—(4.3f),
(4.5a)—(4.5d) and (4.6a)—(4.6d) there. [Beware that, con-
trary to the latter equations, the rewritten Eqs. (4.4a)—(4.4f)
and (6.2a)—(6.2e) contain some misprints. See Appendix A
for details.] Nine of these exact field equations contain the
odd-parity variables Cy,...,C4 only quadratically, while

five of them are linear in the odd-parity variables. The
former nine even-parity equations are given in Appendix A
(neglecting to write contributions quadratic in Cy,...,Cy
which do not enter the linearized level). The corresponding
nine (even-parity) linearized perturbed equations [using
Eq. (3.10)] for the frequency-space variables (3.9) can be
found in the Supplemental Material [29].

Among the linearized even-parity equations, several of
them contain second-order radial derivatives of the field
variables. Namely, the linearized version of Eq. (A6)
contains ¢/ (r), the linearized Egs. (A9) and (A12) contain

u(r), Vi(r) and W/)(r), and the linearized Eq. (All)
contains Y} (r). Actually, V/(r) and W/, (r) always appear
in the single combination V) + W/. In addition, ¢,
never appears undifferentiated. [This is linked to the
residual gauge invariance ®@(z,r) - ®(z,r) + f(t) of the
Schwarzschild coordinate gauge used in Eq. (3.4)]. As a
consequence of these properties, one can transform the set
of nine linearized field equations Eqs. (A4)—-(A12) into an
equivalent set of eleven first-order differential equations by
introducing the three auxiliary variables

polw, r) =V (w,r)+ W, (w,7). (4.1)
More precisely, one finds that the eight variables
[yi(a)ﬂr)]izl ..... 8E{FO’A(J’V()’Wo’XmYmZmpo}v (42)

must satisfy a set of eleven first-order linear differential
equations with respect to r, of the form
Agi(@.7)Yi(@. 1) + Boj(w,1)Yi(w.7) = 0. (4.3)
Here the index o = 1, ..., 11 labels the eleven linearized
field equations, while the index i = 1, ..., 8 labels the eight
frequency-space perturbed field variables (4.2). We use
Einstein’s summation convention on all repeated indices

(here: i =1,...,8). Two of these equations are conse-
quences of Egs. (4.1), namely,

Y (w,r)=Z,(w,r) =0,

Vi(o,r)+ W, (w,r) = p,(w,r) =0. (4.4)

Let us display here, for concreteness, another equation in
the system (4.3):
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e

a3 (r—ry) —rin(1+1n)

22 Vo(w, r) + Wi (w, r)] +

22 (1 + 1)

F,(w,r)

43 (r—ry) — (2r — 1 2k (2r — 6r —Tr,)(1
R n) = @)ty ) 280 )+ O =Ty
22972 fr=r(1 + 1) 262192 =1, (1 + 1)
] X, (o, jon(=2k>r3 4?r* + 3r2n(1
_l(;)rshz 0((0 r)_la);](s 21('" +rh+rh”>ya(w7r)_ KT ;'—6"11’7( —H?)Ao(w,r):O. (45)
P =T, KPRy r=r,(1+n) 22r5(1 + )
The coefficients A,;(w, r) entering Egs. (4.3) are, gen- Cpu 2l + Dy 2, =0. (4.11)
erally speaking, first-order polynomials in @, while the
coefficients B,,;(w, r) are second-order polynomials in @.  Here the index a =1, ..., 11 takes eleven values, while

This property comes from the fact that the original field
equations were second-order in time derivatives.

In the following, we will think of the system (4.3) in
matrix form. Namely,

AY +BY =0, (4.6)

where A and B are 11 x 8 matrices, and ) is an
8-dimensional column vector.

This radial evolution system implies a certain number of
algebraic constraints on the variables ). First, one obtains
primary constraints (in the sense of Dirac). These con-
straints are linked to the rank of the matrix A. We find that
the rank of A is six. This implies, in particular, that the left
null-space of the 11 x 8 matrix A is five-dimensional.
Indeed, any left null eigenvector v, of A, namely, any
solution of the equation

VeAyi = 0, (4.7)
implies [by contracting v, with the field equations (4.3)]
the corresponding algebraic constraint
CPimary () = v, B, YV; = 0. (4.8)
There are five such primary constraints corresponding to
the five-dimensional nature of the left null-space of the
matrix A, or equivalently, to the right null-space of the
transpose matrix AT, Explicit computation of the right null-
space of AT shows that the five corresponding primary
constraints Cprim‘mf(v), Eq. (4.8), are independent. Indeed,
we find that the five constraints CP"™¥Y () on the eight
variables ) can be solved for ', A,,Y,, Z,, p, in terms of
the three residual variables,

(Za)a=1.2,3 = {Vov WonO}' (49)
After substituting the solutions
Fo(22).Mo(20) Y 0(24).Z0(Z40). po(Za)  (4.10)

of the five primary constraints in the eleven original
equations (4.3), we obtain a system of the form

a=1,2,3.

Following the Dirac approach, we must now study the
rank of the matrix C appearing in (4.11) to know how many
equations are independent, and how many secondary
constraints they imply. By explicit computation one finds
that the rank of the 11 x 3 matrix C is equal to two. This
means that the left null-space of C is nine-dimensional.
Denoting by w any left null-eigenvector of the matrix C, we
thereby get nine secondary constraints,

cseeondary (v = w, Doy Z, = 0, (4.12)
on the three variables (Z,) ={V,,W,,X,}. Explicit
computation shows that these nine constraints are propor-
tional to each other. Thus, there is only one independent
secondary constraint among the three variables, V,, W,
X,. We then solve this single secondary constraint for X,
say,

X, = X?)O](V(HWO)' (413)

Inserting this relation in the previous solutions (4.10) yields
six solutions:

F, = FZOI(VO’ Wa>’
Y, =YV, W,),
Po = p?)OI(Vo’ Wo)’

N = APV, W),
Zy =Z3(Vo W,),

Xo = XZOI(V()?WU)' (414)

Substituting this solution in the original set of equations,
one finds that the full set of perturbed equations is
equivalent to a system of two first-order differential
equations for the two variables, V, and W,. Say,

Vi(@,r) = Cyy(o,r)V,(@,r) + Cyy (o, r)W, (o, r),

Wi (@, r) = Cyy(w,r)V,(0, 1) + Cyy (o, r)W,(w,r).
(4.15)

The coefficients Cyy(@,r), Cyw(®,r),... entering

Eqgs. (4.15) are rational functions of w?. More precisely,
Cyy, Cyy and Cyyy are of the form
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ao(r) + a2(r)w2 (4 16)
bo(r) + by(r)w?’ '
while Cyyy is of the form

bo(r) + by (r)w?

The various coefficients a,(r), b,(r) are algebraic func-
tions of r (involving /7 —7,) and polynomials in x> and 7.
The explicit expressions of these coefficients are given in
the Supplemental Material [29].

The reduction of the full set of perturbed equations to a
system of two first-order differential equations (whose
general solution is parametrized by two initial data) does
correspond to the expected degrees of freedom for time-
dependent spherically symmetric solutions of the field
content of torsion bigravity, namely a massless spin-2
and a massive spin-2 one. Indeed, by Birkhoff’s theorem,
the massless spin-2 time-dependent spherically symmetric
sector is trivial, and it is easily seen that time-dependent
spherically symmetric massive spin-2 excitations must
involve two initial data. Let us note in passing that this
is a further confirmation of the absence of Boulware-Deser
sixth degree of freedom [30]. A complementary side of this
result is that the odd-parity time-dependent spherically
symmetric perturbed sector is expected to be trivial. This is
indeed explicitly checked in Appendix B.

V. REDUCTION TO A ZERILLI-LIKE EQUATION

The nonpolynomial dependence on @ of the frequency-
domain system (4.15) does not allow one to easily analyze
the behavior of the perturbations if we wanted to analyze
them in the time domain. The question then arises whether
it is possible to transform our system (4.15) into a Zerilli-
type equation, i.e., an equation of the form

82
S 0u(r) = (VIr(r)] = ) (r.)

(5.1)
with a frequency-independent potential V[r(r,)]. Here, as
usual, r, denotes the tortoise radial coordinate,

dr, r
r.=r+r,In(r/r,—1), dr:r—hrh'

(5.2)

Let us recall indeed that, after transforming to the time
domain, namely,

+o0 .
p(t,r.) = / dwe ¢, (r,),

(o]

(5.3)

Eq. (5.1) reads

2 2

) = gl ) = VI el ). (54

The latter equation exhibits the fact that the (front) velocity
of the black hole perturbations is equal to the speed of light.

The transformation from the system (4.15) to an equation
of the type (5.1) comprises two steps. To motivate the first
step, let us recall a result of Refs. [13,14] concerning
perturbations of Einstein spaces in torsion gravity. If one

denotes the following (symmetrized) combination of the
frame components F;; of the Ricci tensor of the connection

A 5 as

1
its perturbed value around Einstein spaces, namely,
wr=Ul =fFl) _ lF(1>,7M (5.6)
A N o '

satisfies a generalized Fierz-Pauli equation comprising both
a mass term and an additional coupling to the Weyl tensor
of the background, namely

K (w5 = unyz) + (1) Wiyt (5.7)
This result indicates that it will be useful to replace the two
basic (connection-related) variables V,, W, entering the
system (4.15) by two other variables more directly con-
nected with the auxiliary Fierz-Pauli-like variables u;;. An

analog approach has been used when considering perturbed
black holes within bimetric gravity [25]. The latter refer-

ence used the combination hfff) x Mof,, — CM6g,, of
the perturbations of the two metric tensors g, f,, that
satisfies a Fierz-Pauli-like equation as a starting point to
construct a variable ¢(z,r,) satisfying a Zerilli-like
equation (5.1).

Our first step will therefore be to derive the explicit
expressions of the torsion-bigravity variables u;; in terms
of our two basic variables V,, W,. In a generic time-
dependent spherically symmetric situation, the nonzero
components of u;; are uyg, gy, Ui, and uss = 3.
Within the usual Regge-Wheeler-Zerilli [31,32] setting,
these frame components of a generic metric perturbation
are respectively denoted as H,, H|, H, and K. Within our
perturbed torsion-bigravity setting, the results obtained in
the previous sections has shown that any perturbed variable
can be finally expressed [by using the algebraic constraints
(4.14), together with the differential constraints (4.15)] as a
linear combination of V, and W,. This fact shows in
particular that the four metriclike variables ugg, uq¢), Uj 4,
and us5 (or equivalently H,, H,, H, and K) satisfy two
algebraic constraints. It is therefore enough to chose two

024032-5
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independent components of u;; and to express them in

terms of our basic (connection-related) variables V, and
W,. Inspired by the results of Zerilli [32] (and their
bimetric-gravity analogs [25]), we chose to work with
the two variables u ;5 = H, and u 35 = K. These are the

perturbed values of the exact Ricci components U;; =
Fiy = Fm; for ij= 01 and 77 =22. An explicit
calculation yields

—0,Y(t,r)e~ ) 1 9,W(t, r)e~®tr)

—A(t,r)

Uig(t.r) =

e

—W(t,r)X(t,r)+ [— +V(t,r)|Y(t,r),

1
Ups) = 3 [8,\/(1‘, r)e NED 19, W (e, r)e= M)

2
r J—
45

—2W(t,r)? +2Y(1,r)?

-9,X(t,r)e~®) +0,Y(t,r)e®

+ F(t,r)e M1V (¢, r)

+ <6_AM +V(, r)) W(r,r)

r

+X(1,7)(=0,Ae=®) 1 Y(1, r))} : (5.8)

2iw
VI= P = (1)

+ [rn(1 4+ n)?Q2rr, — r1 + 4r*e?) —

le—

{=2(r=ru)

+ kO (=ri (4 4+ Tn) + 4r(ry + 2r4n) + 4r*ne?))

[r,(1 4+ n)(=10rr, + 9;%

K :72' i {2(r = rp)[c*r + r%n(l + 1) =21+ 2)]V, (r) + [—4x*r®

Ay
+ (L +n)(=2rr, + r,zl — 4r*w?

{ry(1 + 11)(9r% —10rr, — 4r*@?) + 13 (4rr,,

Differentiating the latter expressions for H; and K yields
the values of A and K’ in terms of V,,, W,,, V/,, W/,. Then,
using the differential system (4.15) and the inverse relations
V,=V,(H,K), W, =W,(H,,K) obtained by solving
the system (5.10), one obtains a linear system of two
differential equations for H; and K. Rewriting this system
in terms of K and H = H,w™" leads to a system of the form

K/ = CKK(C(), r)K + CKH(C(), r)H,

gl = CHK(a)’ r)K+ CHH(CU, r)FI (511)

A crucial feature of the coefficients entering this differential
system is that each of them is now found to have a simple

linear dependence on w2, namely

)+ 2r3r%(2+17) + K23

Linearizing these exact expressions and passing to fre-
quency-space yields the following primary expressions for
ugig) (@, r) = H(w,r)and uss(o, r) = K(o, r) in terms of
F,,A\,,V,,W,, X,, Y, and their radial derivatives:

H\(w,r)=[=2irroW,(r)+2(r—r;)X,(r) -
F30Y,(r) =20 (r=r) Yo (r))/ (2¢/ P (r= 1) ).

K(w,r)=[\/r(r=rp)ryF,(r)+r(3r,=2r)V,(r)
+1072W ,(r) = 9rr, W, (r) +2ir*wX ,(r)

- 2ir3a)Y0(r) +3r,4/1 —QAU(r)
\ r

F2R(r =)V} (1)

+2r2(r=ry)Wh(r)]/ (6 P (r— rh)).

2rY,(r)

(5.9)

Substituting the algebraic relations (4.14) of Sec. IV into
these expressions, and using the differential conditions
(4.15), finally yields the following explicit algebraic
expressions for H; and K in terms of V, and W :

ra(1+n) [ + rin(1 +n) = K2 r, (1 +21)]V,(R)

223 r (1 + ) (ra(1 = 4n) + rr,(5n = 1) + 4r'*ne?)

W,(r)}/
—4r4@?) + K23 (drry, = 312 + 4rtw?)),

(r=rp)
(4r*na® = 2rry)|W,(r)}/
=3 +4r*a?)}. (5.10)
Cxx(w,7) = agg(r) + @*bgg(r), etc.  (5.12)

The latter linear dependence on @? allows us to apply the
procedure introduced by Zerilli [32] in the general relativity
setting. This procedure consist in looking for a 2 x 2 matrix
M(r) (depending only on r), say

(I ). o
such that the transformation
(5) :M@)(Z’i) (5.14)

024032-6
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maps the system (5.11) on a first-order system of the form

r=ry

{r_fhrﬂ’ =0, 9=w,
Sy’ =0,y = (V(r) —0?)g

[this system is equivalent to Eq. (5.4)]. Writing the conditions following from this procedure we found an explicit solution
given by the expressions

k
flr) = 72;/‘[()”)(1”) i(r—rp) (43 + k10715 4 215,107, — 6k 1121y, — K(’r9r%Z +4kr %, = 3372y
f

— 181('4}"7?‘]217’] — K6r9r%n + 41<2r4r277 + 191(4}’6?'2}’] — 5K2r3r2;1 - 181<4r7r%112 + 21<6r9r,21;12

+ 12K2r4r2172 + 21K4r6r27]2 + 2rr2172 - 171<2r3r‘,‘l;72 — er’]z + 81<2r4r2113 + 2K4r6r2;73 + 4rr2113

= 15253 = rnd + 2l = 32 P it et + ), (5.15)
i(r = rp)k(r)
glr) == (5.16)
k(r) 8 .13 6,10 8 .12 6,92 6,10 4.7.2 6,92 2.4.3
h(r) :W()(mc 2+ 201y, = Sk, — KOy, 4K P — 18k r v — 2k° 7 rn + 4krtgn
r f r
+ 181<4r6r2;1 — 5K2r3r277 — 18K4r7r%li72 + 12](‘2}"4}”2?72 + 18K4r6rf,772 + 2rr2772 - 15K2r3ri;72 — rznz
+ 8K2r4rzn3 + 4rr27]3 — 10k%73 r‘,‘ln3 — 2r2113+2rrﬁ114 - rZr/“), (5.17)
where
Dy(r) = (r) = rn) 2> = ry (1 +n)] [k = ran(1 + )], (5.18)
and
.23
k(r) = e (5.19)

(r =)\ = (1 + )73
The most important result of using this Zerilli procedure is the value of the potential V(r). We find the explicit expression

(r = ra)N(r; )

V(r) - r4[1<2r3 —rp(1+ ﬂ)]z(K2r3 — rhﬂ)z[K4r6 - r%n(l + ’7)]2 ’

(5.20)

N(rix,n) = (6677 + 18727 + 1247227, = 1261974 r, — 56142 g = 3627187 + k107157
+ 24K14r22rh;1 - 3K16r24rh11 - 99K12r19r%r] — 15K14r21r%;7 + 301(‘107'16!'211 + 110]('12}"187'27] — 15K8r13ri11
— 491075 b + 2163 r12m — k57180 — 99k 2P0 2 — kM4 g 4 90k K16 i + 127k 218
+ 458 rBrin? = 16105 rin? — 18710 2 — 17k3r 2?4 6k 7 ron? + 26K ron? — 9kt rrln?
+ 60K10r16r,31773 + 13K127’18}"27’]3 + 1201(8}"]3?‘2113 - 1261(10;"15;’2173 - 721(61"10}"27’]3 - 821(87‘127’2713
- 27K4r7r2773 + 1261(61"9r2113 + 121<2r4r21773 - 71<4r6rZ,113 - 9K2r3r2173 + 601('8}"137‘2174 - 151<]0r15r2174
- 901(6}’10}’2114 — 451<8r12r2774 - 111K4r7r2114 + 1831('6}’9}’2774 + 60K2r4rzll14 + 16K4r6r2174 - 45K2r3r2114
+ gt = 36510 — kB2 — 11T S + 976828 + 108k r*rl g + 8k o] — 1962 P i
+ 4r2175 - 39K4r7r2;16 + 13K6r9r2176 + 84K2r4rzln6 - 15K4r6r2176 - 57K2r3r2176 + 6r2176

+24K2r4r21117 - 9K4r6r2177 - 12K2r3r§ln7 + 4r2117 + 223 rﬁn8 + anS). (5.21)
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As already announced, the coupling constant ¢34 does not
enter the potential V(r) [nor the system (4.15) and the
algebraic constraints (4.14)].

One can rewrite this potential in the following form,

V(rsry.n.k) = <1 —r—h> |:r—§+l<2

r)|r
L 6ry(ry, = 2r) + 61 (r — 2r;,)x?

(rp + r’x?)?

+(n+ 1)KV yqq(r; rh,’%’()]’ (5.22)

where V qq(7; 71, 17, ) is a rational function of its arguments
that possesses the following properties: (i) it has a finite
limit when r — ry,; (ii) it goes to zero ~r~ when r — co;
(iii) it has a finite limit as x — 0 and (iv) it has a finite limit
as n — —1.

One can then deduce a few conclusions from the
rewriting (5.22). First, V(r) — k> when r — co. This is
related to the fact that, far away from a black hole, the wave
equation describing the massive excitations of torsion
bigravity satisfies a Fierz-Pauli (massive spin-2) equation
[13]. Second, V(r) — 0 when r — r;,. This is related to the
fact that, very near the horizon, a massive spin-2 perturba-
tion (having a finite frequency seen from infinity) prop-
agates as if it was a massless spin-2 one. This property
holds also in bimetric gravity [25].

The third observation concerns the formal limit n — —1.
In this limit, the last term in (5.22) [ex(57 + 1)k*V 34q] equals
to zero. The remaining terms yield the potential of the
massive spin-2 field in the bimetric gravity exhibited in
[25], namely,

T\ (Th )
Vimetric gravity — (1 - _> |:ﬁ +K

6rh(rh —2r) +6r3(r—2rh)K2
(rp+1r3K?)? '

(5.23)

This property of the formal limit # — —1 follows from the
fact exhibited in Eq. (5.7) that, in torsion bigravity, the
massive spin-2 excitation has (compared to bimetric grav-
ity) an additional coupling to the Weyl curvature propor-
tional to (1 + 7). Considering the limit 7 — —1 is useful for
giving checks of our results. In particular, it is easy to check
that the # — —1 limit of the matrix entries f(r), g(r), h(r),
k(r) of the Zerilli transformation (5.14) coincides with the
corresponding bimetric gravity result, as given above
Eq. (30) in Ref. [25].

In addition, the first line in Eq. (5.22) gives the Zerilli-like
potential describing the spherically symmetric fluctuations
of a massive scalar field in a Schwarzschild background,
namely,

(5.24)

Fn\ | Th )
V massive scalar = l-— 3 + K.
r r

Finally, the massless limit of Eq. (5.22), x — 0, namely,

Fn\ Tn
VK:O - <1 ——> —3,
r r

coincides with the massless limit of the scalar potential
(5.24). The same feature holds for the bimetric gravity case
[25] [as one can easily see in Eq. (5.23)].

(5.25)

VI. PROPERTIES OF THE ZERILLI-LIKE
POTENTIAL V(r) FOR TORSION BIGRAVITY

A. Denominators and singularities

The denominator of the potential for torsion bigravity,
V(r), reads

P = (1P (R = )[40 = (1 + ).
(6.1)
This denominator has double zeroes for three values of

r > 0. Namely, the first bracket in Eq. (6.1) has a double
zero at

r=ry= {”’(17;’7)} L (6.2)

K

the second bracket has a double zero at

rar] /3
' = T33dd = {Lz} 5 (6-3)
K
and the third bracket has a double zero at
2,01 1/6
r=rg= [Lf—n)] ) (6.4)
K

When 7 > 0 (which is a necessary condition for the
physical consistency of torsion bigravity [7]) the values
of r3, r3,qq and rg are such that r3,4q4 < r¢ < r3. Each one of
these three values (or, equivalently, the three corresponding
points 73,44 < . < i3 On the r.-axis) can potentially
induce a singular behavior in the generic solution ¢,,(r, ) of
Eq. (5.1). Let us study the behavior of the generic solution
@y, (r,) of Eq. (5.1) near these three potentially singular
points.

Let us start with the outermost value 3. When r — r3 or,
equivalently, when r, — r,3, the asymptotic behavior of
the potential V[r(r,)] near r, = r.3 is of the form

CP(ry. 1. K)

(r* - r*3)2 (65)

V(r(r.)srp.n.x) =
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dr* _ r
dr — r=ry’

of the coefficient CP'®(r,, 7, k) as being

Taking into account that

one computes the value

CP(ry 1. %)

= |V(rirp.n.k)(r—r3)? (,_rr)z] —
_o. 3 (6.6)

Following the usual Fuchsian analysis, one looks for
asymptotic solutions of Eq. (5.1) of the form
Po(r2) ~ (1o —13)°. (6.7)
Inserting the latter power-law ansatz in Eq. (5.1), taking
into account the singular behavior (6.6), one finds the
following indicial equation for s:
s(s—1) = C**%(ry,n,x). (6.8)
In the specific case of the r; double pole, the value
CP"le(rh,n,K) = 2, Eq. (6.6). This leads to the two expo-
nents, s, =2 and s_ = —1. In other words, the generic
solution ¢,,(r,) near r, = r,5 has the following form

(p(u(r*) = CZ(r* - r*3)2 + C—l(r* - 7*3)_1, (69)

Fe—=ry3

where the last term exhibits a singular behavior. To be more
precise, the singular solution proportional to C_; has an
expansion near r, = r,3 of the form

C—l[(r* - r*B)_l + Cl(r* - r*3)

+eop (re = r3)?log (r, = ry3) +...],  (6.10)
inwhichlog (r, — r,3) enters starting at the (r, — r,3)?-level.
At this stage, we should recall that, in view of the linear
vanishing of the potential V(r) « (r — r,) near the horizon,
corresponding to an exponential vanishing V[r(r,)]x
exp(r,/ry) as r,——oo, the generic solution of Eq. (5.1)
near the horizon is of the form
C(w)e®™ + C_(w)e™".

Pulr.) = (6.11)

r,—>—00
It is easily seen that, when completing this result by the
factor e~™, the C,-term represents a wave which is
outgoing from the horizon. We should therefore impose
the usual no-outgoing-wave black hole boundary condi-
tion C, (w) = 0. The latter boundary condition is sufficient
for determining the solution ¢, (r,) modulo an irrel-
evant overall factor (at least, in the scattering regime
@? > V(+00) = k?). We therefore cannot impose one more
boundary condition at r,; to cancel the singular term
C_i(r. —r;3)"'. The only way to avoid the generic

presence of a singularity at r,53 in the torsion bigravity
master field ¢(r,, ) is to restrict the value of the spin-2
mass k so that r3(r,, 7, k) lies under the horizon: r; < r;,. In
view of Eq. (6.2), this means constraining « to satisfy the
inequality

1+n
ry )

K >

(6.12)

We have also analyzed the singular behaviors near the

points r.s and r,s,qq. The corresponding values of the

coefficient CP'® entering the double pole are C2*° = —1

and C%F =2, respectively. The corresponding generic
solutions are both singular. However, since we have (when
n > 0) the inequalities r3,qq < rg < r3, the satisfaction of
the condition (6.12) is enough for ensuring that all the
singular points are hidden under the horizon, so that the
generic solution ¢,,(r, ) will be regular outside a black hole.

In addition, when computing [by using the inverse of
Eq. (5.14)] the linear perturbations in K and H in terms of ¢
and its derivative, we have found that, near the singular point
r3, H(r) and, therefore, H,(r), have a singular behavior of

the type H(r) ~ (r — r3)~', while K (r) is finite at r5 butd{(i—gr)

is logarithmically infinite. As H; = F Eé)f) is an invariantly
defined linear perturbation of the Ricci tensor of the
torsionful connection A, this shows that the singularity at
r3 has a gauge-invariant meaning. As another way to see
the gauge-invariant meaning of this singular behavior,
we have checked that the (invariantly defined) torsion
component Téi() has also singular behavior of the type
Tom ~ (r—r3)7!, while the (invariantly defined) torsion
component Tii() has the stronger singular behavior,
T im ~ (r—r3)72. [By contrast, the metric perturbations
¢,(r) and A, (r) turn out to be both finite near r3 but still to
contain mildly singular contributions of the types: 5" (r) ~
(r—r3)3log (r —r3) and A" (r) ~ (r — r3)* log (r — r3).]

We will discuss below the phenomenological conse-
quences of the condition (6.12). Let us recall here that the
possible necessity of imposing a constraint of the type
(6.12) was mentioned at the end of Sec. 4 of [13]. More
precisely, the Stiickelberg treatment of [13] showed that, in
sufficiently weak Weyl-curvature backgrounds, namely,
(1+n)|W;ju| <«?, the usual Fierz-Pauli mass-term in
Eq. (5.7) dominates over the additional Weyl-coupling
term, so that the propagating modes are not ghosts. It left
open, however, the fact that there may appear ghost
modes when (1 4 #7)|W;j,| Z k*. The Weyl curvature of
a (Schwarzschild) black hole is of order r,/r?, and reaches
its maximum value 1/r7 on the horizon. We thereby
see that, indeed, the condition (6.12) is a precise version
of the no-ghost condition (1 -+ #)|W,;,| <«* discussed
in [13].
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B. Plots and comparison with the scalar potential
and the bimetric gravity potential

Treating Eq. (5.4) as an equation describing a (real)
scalar field (¢, r,), with a Lagrangian density

,£:%W@UJQP—%WmMLHH2
V(o) (6.13)

one can write the conserved energy density of such a field,

5:%@MLMP+;@ﬂ@GW

[

+=V(r)e(t r.)> (6.14)

o

From this expression, it is clear that there are no instabilities
if V(r,) > Oforall r,, since the energy is conserved. This is
the case of the Zerilli-like potential describing the propa-
gation of a scalar field on a Schwarzschild background. See
Fig. 1 where the latter (positive) scalar potential is plotted.

On the other hand, if the condition V(r) > 0 is not
satisfied, there might exist instabilities, at least in the case
where V(r,) is sufficiently negative. This is the case for the
even sector of the monopole perturbations in bimetric
gravity. It was found in [25] that, for r,kx < 0.86, there
exist an instability (see a paragraph below Eq. (30) there).
[Let us recall again that the potential describing the
monopole perturbations in bimetric gravity is obtained

Vmassive scalar

V(’) = _1) = Vbimetric

FIG. 1. The solid green curve V .civescalar displays the Zerilli-
like potential describing a massive scalar field on a Schwarzschild
background, see Eq. (5.24). Its massless version, Eq. (5.29),
appears as the bottom dotted green curve V(x = 0). The blue
curve V(n = 0) shows the potential (5.20) of torsion bigravity
computed for # =0. The red curve V(3 = —1) exhibits the
potential (5.23) of bimetric gravity. In all the curves, we have
taken r, = 1 and x = 1.1.

from the potential (5.20) by the formal limit  — —1.]
Fig. 1 exhibits the potential (5.23) describing the even
sector of the monopolar perturbations in bimetric gravity
for kr, = 1.1. One can see that there is a region where
Viimetric gravity (7<) < 0. [The negative-potential part gets
deeper when kr;, < 0.86.]

A plot of the torsion bigravity potential for one particular
set of 7 and « is also exhibited in Fig. 1 (we chose to plot the
potential for = 0, because the phenomenologically mean-
ingful values of # are quite small, see Sec. VII). One can see
that the shape of this plot is similar to that of the bimetric
gravity potential. Most importantly, V[r(r,)] is not always
positive, there is a region where V[r(r,)] < 0. The question
then arises, whether the potential V[r(r,)] is sufficiently
negative to create an instability or not. Below, we are going
to prove that, in spite of the presence of a region of
V]r(r,)] < 0, the potential (5.20) provides no instabilities
for solutions of the Eq. (5.4).

C. Absence of instabilities

In the case of perturbations of a Schwarzschild black
hole in bimetric gravity [25], it was found: (i) that there
existed instabilities for r,x < 0.86, and (ii) the complex
frequency @ = wp + iw; of these instabilities is purely
imaginary, wp = 0, with @; > 0. Let us prove that, if there
existed instabilities in torsion bigravity, they would nec-
essarily have also a purely imaginary frequency.

A simple proof of this fact can be obtained by
considering the conserved current of the Klein-Gordon
equation (5.4). Denoting x = r,, the latter equation can be
written as

0? 0*

—ﬁ(p(t, X) -I-ﬁ(p(t, x) = V[r(x)]p(t,x) =0.  (6.15)

For any complex solution ¢(t,x) of Eq. (6.15) which
decays both at x - —oo0 and x — +o0, the following charge
is conserved (if the potential V[r(x)] is real)

0= /_:o dX% [0 (1, )0, (1. x) — 0™ (1. X)p(1, X)),
(6.16)

where * denotes complex conjugation.
Let us suppose that there exist an unstable mode
(t,x) = e~lontionty, (x). (6.17)

Inserting (6.17) in the definition of Q, Eq. (6.16), yields
+o0 N
R

—+o00
mwMj dxlp ()2

o

(6.18)

024032-10



SPHERICALLY SYMMETRIC PERTURBATIONS OF A ...

PHYS. REV. D 104, 024032 (2021)

This charge can be conserved only if the product
wrw; = 0. An unstable mode (w; # 0) must therefore have
Wp = 0.

The search for unstable modes is thereby reduced to the
search for real bound states of the Schrodinger-like
equation

2

__(pw(x) + V[r(x)](pw(x) = wzqow(x)’

o (6.19)

where @? = —w? is negative.

In order to establish? the presence or absence of unstable
modes, we can then use the theorem [33,34] saying that the
number of negative-energy bound states of a potential V(x)
is equal to the number of nodes of the zero-energy
wave function ¢g(x) satisfying one of the bound-state
boundary conditions (see Appendix C for the sketch of a
proof of this theorem). In the case of torsion bigravity,
where the potential tends to +x> as x = r, — +oo, it is
convenient to impose on the zero-energy wave function

@o(x), satisfying

82
—@(Po(x) + V[r(x)]go(x) = 0, (6.20)
the boundary condition that it vanishes at 4o,
goo(x)x_iooe_"x. (6.21)

A numerical study of the so-defined wave-function ¢g(x)
for all relevant values of x and «, ie., >0 and
(krp)? > 14 n, has shown that this wave function stays
positive for all values of x. In other words, the number of
nodes is zero, which proves that there are no negative-
energy bound states.

By contrast, we have checked the usefulness of this
theorem by applying the same method to the potential
Vimetric gravity> (9-23). We indeed confirmed that, when
kr, < 0.86, the right decaying zero-energy wave function
does have a single node, thereby proving the existence of
one bound state, i.e., one unstable mode.

VII. PHENOMENOLOGICAL CONSEQUENCES
OF OUR RESULTS

We found that torsion bigravity perturbations of
Schwarzschild black holes were developing singularities
if k> < (1 +7n)/r;. More generally, we have seen above
that singularities might develop when x> is smaller than
(1 + n) times the eigenvalues of the Weyl curvature. The
astrophysical objects having the largest Weyl curvature

*Note that the additional potential contribution (17+1)x2V yqq(r),
compared to the bimetric gravity one, is not always positive. So that
we cannot establish the absence of unstable modes simply on the
ground of the inequality (6.12).

would be small-mass black holes. In absence of exper-
imental evidence for the existence of subsolar-mass black
holes we shall conservatively assume that the largest Weyl
curvature’ to consider is the one at the surface of a 2 M. ®
black hole. [Indeed, there are no known neutron stars for
which the Weyl curvature would be larger than the Weyl
curvature at the surface of a 2 M, black hole.] This yields
the phenomenological constraint

1+7n
6

K> km~!,

(7.1)

Remembering that # must be positive, this means that the
range k= of the massive spin-2 excitation must be smaller
than 6 km. If we assume that the range is indeed of order of
a few km, the existing gravitational tests then imply (see
Sec. X. A in [2]) that

n<3x1074  for k! < 10 km. (7.2)

The schematic structure of the torsion bigravity action (2.1)
reads

1
L~cRR—|—cFF<1 +¥F) (7.3)
K
where the (schematic) term %F is a higher derivative
fractional correction to the FEinstein-Cartan-like F-term.

The development of singularities when x* < (1 + 75)|W|
then appears as being associated to situations where the

fractional correction IIC#F becomes of order unity. From

the theoretical point of view, we might then expect that this
signals the necessity of completing the torsion bigravity
action by higher-order-in-curvature terms, say,

1+7 F12 F1]3
P F+|:P:| +|:p:| + - .

(7.4)

LUVNCRR+CFF(1 +

Such an extended model (possibly of the Born-Infeld type
[35] or another limiting-curvature model [36]) might cure
the mass-related singularity while, hopefully, improving
the UV-behavior of the theory.

VIII. CONCLUSIONS

We studied spherically symmetric perturbations of
Schwarzschild black holes within torsion bigravity theo-
ries. These Einstein-Cartan-type theories (with dynamical
torsion) contain two excitations: an Einsteinlike massless
spin-2 one, and a massive spin-2 one, of inverse range «.

Though early stages of cosmological expansion feature
large curvatures, these are not large Weyl curvatures because
Friedmann models are conformally flat.
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We proved that the odd-parity time-dependent spherically
symmetric perturbed sector is trivial (see Appendix B). We
reduced the full set of perturbed even-parity equations to a
system of two first-order differential equations [see
Egs. (4.15)], together with six algebraic constraints
(4.14). [This confirms the absence of a Boulware-Deser
sixth degree of freedom.]

We then showed how to transform the system (4.15) of
two first-order differential equations into a Zerilli-like
equation

2 2
O 0ltr) =Tt r) = Vir(r o)

*

(8.1)

with potential V(r) given in Eq. (5.20). Several features of
this potential were discussed. In particular, it was shown
that it reduces to the corresponding potential (5.23) in
ghost-free bimetric gravity [25] when the torsion bigravity
coupling constant 1 = cp/cg formally takes the value
n = —1. [This is related to the fact that, in torsion bigravity,
the Fierz-Pauli-like equation describing massive spin-2
excitations are modified by an extra coupling to the
Weyl curvature, proportional to 1 + 7 (see Eq. (5.7).]

On the other hand, contrary to the bimetric gravity
potential (5.23), the torsion bigravity potential, considered
for physically allowed values 7 > 0, contains possibly
vanishing denominators outside the horizon when
(krp)? < 1+n. It was shown that these denominators, if
present, would induce a corresponding singular behavior in
the generic solution of the Zerilli-like equation. It was then
concluded that a necessary condition for the physical
acceptability of torsion bigravity is to constrain the mass
of the spin-2 excitation by the condition

- (8.2)

where r;, denotes the radius of the considered black hole.
[The condition (8.2) is again linked to the presence of an
additional Weyl-curvature coupling in the Fierz-Pauli-like
equation, see Eq. (5.7), describing massive spin-2 excita-
tions in torsion bigravity.]

The torsion bigravity potential V(r;n, k), now consid-
ered for physically allowed values 7 > 0 and (k7;)* > 1 +7,
is not everywhere positive (see Fig. 1). We could, however,
prove the stability of Schwarzschild black holes against
monopolar perturbations, by (numerically) showing the
absence of negative-energy bound states in the potential
V(r;n, k) (using the theorem sketched in Appendix C).

The constraint (8.2) has important consequences for
phenomenological applications of torsion bigravity. The
first consequence is that one cannot consider large inverse
ranges k~', say, of galactic or cosmological sizes. The
constraint (8.2) restricts the physical applicability of torsion
bigravity to inverse ranges smaller or equal to ~6 km [see

(7.1)]. Even when taking into account such a constraint,
torsion bigravity could still have important phenomeno-
logical consequences for the physics of neutron stars and
(stellar-mass) black holes. We leave a discussion of these
phenomenological consequences to future work.
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APPENDIX A: FIELD EQUATIONS IN
GENERAL FORM, EVEN SECTOR

The field equations for general R + R? Riemann-Cartan-
type theories (with generic metric compatible affine con-
nection), in the time-dependent spherically symmetric case,
were given by Rauch and Nieh in [28]. The original field
equations that describe the even-parity sector are the
“gravity” equations (4.3a)—(4.3e), and the “connection”
equations (4.5a)—(4.5d) of [28]. [By contrast to these
original field equations, beware of some sign misprints
in the “slightly different form” given later for the field
equations, namely, Egs. (4.4a)—(4.4f) and, consequently,
Egs. (6.2a)—(6.2e). Specifically, the signs of the contribu-
tions proportional to i (—a + 2c¢ —34) in Egs. (4.4c) and
(6.2¢) should be reversed.] To adjust these field equations
to the case of torsion bigravity, one needs to take the
following values of the parameters Agy, dry> Pry> CrNS
DPrN> GrNs TRN> SRN> TRy Used in [28] (see Eq. (1.1) there for
definitions of these parameters):

/IRN = Cf +CR,

cry = bry = —agy = cp,
Pry = qrn = 0,
Sov — RN _ _CF
) 6’
C3y 2CF2
thy = — . Al
v = 2 = (A1)

Let us recall the field variables in even-parity sector:
®(r,r) and A(t,r) describing the spherically symmetric
metrics, and four variables describing dynamical torsion,

V(t,r) =AT = +Al; = e+ T,

-A
N N A e P

W(tr)=ATyy = ATy = =A% = =A% = o %5

X(t,r)=A; =4AL;, = e ®ON+T7;,

Y(1,r) =A%y = +AT, =A% = Al =T, (A2)

Introducing the following auxiliary quantities,
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—-A
A=—eM2[0,(MX) - ,(e?V)], C=-0,Ye®—VW, D=—(rY) +XW, G=-0,We®-VY,
r

—A 1
H=""(rWy+XY, L==+Y-W?, Q=A-L+2(C-H), (A3)
r r

and using (A1) and (A2), one can rewrite the 9 (nonlinear) field equations (4.3a)—(4.3e), (4.5a)—(4.5d) of [28], adapted for
torsion bigravity, in the following form:

C34+CF2 2 2 CFZ 2 2 2CR o é
= " (G*-D?)+2H+L - A-C)*-H-L)*|+——[T;T%,
CF+CR ( ) 3(CF+CR) [( ) ( )] CF+CR[ ! 10
*3 (7.5 + T%5°) = T0,5X = (T73; + T%,5)Y + (2517, 5 + 0,7, )] + 0dd® = 0, (A4)
C3a+Cp s 5 Cp2 5 5 2cg —on 7d
- (G*-D)+2C-L+———[(A+H)"— (C+ L) |+ e~ 0.7,
CF+CR ( ) 3(CF+CR) K ) ( ) ] CF+CR[ t 10
+5 (T%7 5+ T0%,) + 10, )T i = TO, )V + (T, + T'1) W] + 0dd? = 0, (A5)
Cr2 C P A 2 ~
A+C-H-—F _(A-C+H-L)A+L R grt.10. —T0 T,
+ 3(CF+CR)( + )( + )+CF+CR{ tr 10 70 rt

+ ;e_A_q)[(atT’;? +0,T% ;)¢ r — (0,T%, 5+ 0,T";7)e®r + e*rO,N(TT;; + T% ) — e®(T%, 5, + T';;)

—e®rd,®(T%, ) + T',;)]} + odd? = 0, (A6)
D-¥TP(cp_GH) + —* DIC-H)+-— " DO
CF+CR CF+CR 3(CF+CR)
—-A
c e p 3 R p p p

o JfCR —(r0,T%p + 2T%) + (T35 + T%)(T% 5 + W) = T%,3X | + 0dd? =0, (A7)

_ R ep_GH) + — ¥ _G(C-H)+-——F__GQ

CF+CR CF+CR 3(CF+CR)

SR [, 10, — 0.,V — (T0,, + T'7)(=T?, + Y)] + 0dd? = 0, (A8)

CF+CR
—-A

1 3 3
- Eche‘AarQ +T%,Bcr + c2Q) +3c34(D-G)Y + FCr (eT

(rO,A +2A) +2CW — 2GY>

+ 0dd? =0, (A9)

1 p 3
—Eche_‘DatQ +T%,(3cr + c2 Q) = 3c3,(D - G)W + Ech(e_q’Z?,A —2DW +2HY) +odd®> =0, (A10)

3cp(Th; + Téfé) —cp[e 9, Q- (T; + T%@)Q] +3cp {e‘Aé‘rD +¢7®9,C + e ®CO,A

—A —-A
+eT(1 +r0,®)D+ GV + HX + LY] + 3c34eT [(0,D = 9,G)r + (D —G)(1 + 9,®r — e’rV)]

+odd? =0, (A11)

3ep(T0 )+ Thy) — cale™0,Q — (T2, 5 + T1:)Q) 4 3c34e~®[(D - G)(O,A — €®X) + 3,D — ,G]
-A
+cp |-3e7®GO,A — 3¢ (1+r0,®)H —3CV —3LW —3DX — 3¢ %9,G —3¢™0,H| +0dd’> =0. (Al2)
r
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In Egs. (A4)—(A12), the notation odd® denotes terms that
are quadratic in odd-parity variables, so that they do not
affect the linearized equations, and, thus, have no impor-
tance for the current study.

APPENDIX B: PARITY-ODD SECTOR

The five exact field equations that involve the odd-parity
variables Cy, ..., C, linearly are displayed in Egs. (4.3f),
(4.6a)—(4.6d) of [28] [let us recall that the parameters
a,b,c, p, q, etc of [28] take, in the case of torsion bigravity,
the values given in Eq. (Al)]. Recalling that the back-
ground values C;4(r) equal to zero, we insert in the latter
odd-parity equations the perturbed values

Ci(t,r) =eCi(t,r), i=1,..,4, (B1)

which correspond to the odd-parity sector of Eq. (3.1). One
so obtains five linear equations involving only the four odd-
parity field variables Cy. ....Cy. In what follows, we omit

the notation , for simplicity.
These linearized equations are as follows®:

1
— 279/2M(1 + ’7)/1 (0341”;, + C3arpN
+ 3n4)(2r?0,Cy + 2r%20,C5 — 2rr,0,Cy — 2rC,
+27’hC2+27"C4—1"hC4) = 0, (B2)
371C5
— =0, B3
I+n (B3)
3¢340,C3 3 -
034r i3 034(:3 rn) (r9,Cy — Cy)
3
+ m (26’34)" — C3yqty + 2C34}"7’]
—cagrpn + 2r°nA)Cy = 0, (B4)
3¢
% (=0,C, + r@%,C4)
3C34 20
m (2?81C4 —|— 27' 8, C3 - rha,C4)
3nl
——(C; = C3) =0, B5
(ci-c (85)

*These are linearized versions of the equations of [28] written
in the following order: (4.3f), (4.6a)—(4.6d).

3
30,05 + rBECY)(r = 1)
3¢ 292
+7 (2rarC4 +r 5,,(:3 - rh3,C4)

3
+
ar3(r—rp)(1 +1)
—2(r — rp)(caarp(1 + 1) —2r°72)C,

[2¢3472(2r = 3r;)(1 +17)0,C3

=(c3ar, (1 +n) + 47 (ry = r)na)Cy] = 0. (B6)
Equation (B3) implies
C3<t, r) =0. (B7)

Then, inserting this result into the following combination of

. 3 .
equations, W (B4) + 3c344/T = 17,(B2), gives

3n(csary(14 1) 4+ r’nd)Cy _
P21+ n)?

0, (B8)

which implies

Cy(t,r)=0. (B9)
Substituting (B7) and (B9) in Eq. (B4) then gives
C,(t,r) = 0. Then, substituting C,(z,r) =0 together
with (B9) and (B7) in Eq. (B5) gives C;(t,r) =0.
Finally, we get
Cl(t,r)ZCz(t,r):C3(t,r):C4(t,r)=0 (BIO)
which also identically satisfies Eq. (B6). Therefore, there
are no spherically symmetric odd-parity perturbations.

APPENDIX C: SKETCH OF A PROOF OF A
BOUND-STATES COUNTING THEOREM

One can formulate a concrete theorem within a Sturm-
Liouville context as follows:

The number of negative-energy bound states of the
potential V(x) between x, and x; > xo, i.e., the number
of solutions with 4 < 0 of the following problem

Fipa(x) = (V(x) = D, (x).

@i(x0) =0, @i(x1) =0 (C1)
is equal to the number of nodes of a (nonzero) solution of
the following problem

Dipo(x) = V(x)po(x),

The proof of this theorem is obtained by following, as 4
continuously increases from a sufficiently negative value to
zero, the nodes of a solution satisfying only one of the
boundary conditions, say, ¢;(xy) =0, which can be

po(x0) =0.  (C2)
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completed (without loss of generality) by the condition
) (x9) = 1.

First, if 1 is less than the minimal value V;, of the
potential V(x) (see Fig. 2), the difference V(x) —1 is
always positive, the second derivative ¢/ (x) is positive in
the right vicinity of x, (here and in what follows, the prime
denotes 0,). It is then easily seen that the second derivative
@Y (x9) will always stay positive, so that the curve ¢,(x)
will be a convex, monotonically increasing function which
will never cross zero (see upper curve, ¢,;, in Fig. 2).

If now one increases A so that 1 > V., the second
derivative in (C1) becomes negative at some stage. The
curve ¢,(x) becomes concave which might allow it (if
V(x) — A is sufficiently negative) to turn over and cross
zero. Let us denote as &, the value of x where ¢,(x) =
@;(&;) = 0. Let us then prove that as 1 is increased to a
nearby value uy=1+¢€, where ¢ >0 and small, the
corresponding value &, where @,(£,) =0 is always on
the left of &;.

Integrating the easily checked identity

(0,05 = 0,0:) = @0,V (x) =4 = V(x) + ]
= (u— ) (x)p,(x) (C3)

between x, and &, yields

2 ENPAE) = (=) / 0 e(x). (Ca)

The latter identity is easily seen to imply that, whatever be
the sign of the slope ¢/ (&,), @, (x) (when p is slightly larger
than 1) will have a zero located at a position &, on the left

of 6/1.

(2581

Lozt T Pa2

= ~‘~\ Seel

\\\ -~

\\ X
Xo S~ X1
D3
....................................... A3
............................................................. )kz
Vmin

A1

FIG. 2. A negative potential (in red) entering the equation
2, (x) = (V(x) — )@, (x). The functions ¢, ¢,, and ¢,; are
the three solutions corresponding to A = 1;, A =4, and 1 = 13,
satisfying the left boundary condition ¢;;(xy) = 0, ¢;(xg) = 0.
The energy parameter A continuously increases, 4; < 4, < 43,
and the value A, corresponds to the first bound state of the
potential.

The rest of the proof consists in following this migration
toward the left of the zeros of ¢,(x) as 4 increases. Each
bound state corresponds to the case where one such zero
passes through x; (as illustrated by the middle curve, ¢;,, in
Fig. 2). As a consequence, when A reaches zero, the zero-
energy wave function ¢q(x) has accumulated N nodes in
the open interval (xo; x; ), where N is exactly the number of
bound states of negative energy, 4 < 0.
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