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Time-dependent spherically symmetric perturbations of Schwarzschild black holes are studied within
torsion bigravity, i.e., within generalized Einstein-Cartan theories where the dynamical torsion carries
massive spin-2 excitation. We reduce linearized perturbations to a Zerilli-like equation. The structure of the
potential entering the latter Zerilli-like equation has two important consequences. First, in order to avoid the
presence of singularities in generic perturbations, one must restrict the range (or inverse mass) of the spin-2
excitation to be (essentially) smaller than the radius of the considered black hole. Second, we then show
that the Schwarzschild black hole is linearly stable against spherically symmetric perturbations.
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I. INTRODUCTION

The standard model of relativistic gravity, namely,
general relativity (GR), has been found to be in agreement
with all experimental and observational data, on a very
wide range of scales from a micron to cosmological scales.
It is, however, important to be able to contrast GR
predictions to predictions coming from alternative theories
of gravity. Among alternative theories of gravity, two of
them are distinguished by having, as spectrum, a massive
spin-2 excitation in addition to the Einstein-like massless
spin-2 one. The first such theory is (ghost-free) bimetric
gravity [1], which features two coupled space-time metrics,
gμν and fμν. The second one is torsion bigravity [2], which
is a generalized version of the Einstein-Cartan theory [3–5]
comprising both a dynamical space-time metric gμν, and a
dynamical torsion Tλ

μν. General classes of dynamical
torsion theories have been introduced at the end of the
1970s [6–11] and revived, within a cosmological context,
in Refs. [12–18].
The study of the physical properties of torsion bigravity

has been recently initiated [2,19–21]. Static starlike torsion-
hairy solutions were constructed [2]. Furthermore, it was
found [19] that, contrary to the case of bimetric gravity, in
torsion bigravity, there exists a smooth infinite-range limit
which allows to consider small masses κ of the spin-2
excitation without appealing to any Vainshtein-type mecha-
nism. Then, following a path initiated in ghost-free bimetric
gravity [22–25], black hole solutions were investigated in
Refs. [20,21]. Torsionless Einstein black-hole space-times
are exact solution of torsion bigravity [12,13]. A no-hair
theorem for time-independent linearized perturbations of a
Schwarzschild black hole was proven, and nonasymptoti-
cally flat torsion-hairy black holes were constructed [20]. In
addition, it was shown that, in the infinite range limit,

torsion bigravity admits torsion-hairy asymptotically flat
black hole solutions [21].
The discovery (in the infinite range limit) of the latter

torsion-hairy asymptotically flat black holes poses the
question whether they can be realized in Nature. In order
to answer this question, we must investigate the stability of
black hole solutions within torsion bigravity. In bimetric
gravity, it was found [23,25] that, when the mass of the
spin-2 fluctuation1 is small enough, κrh < 0.86, where rh
denotes the radius of the horizon, the Schwarzschild
solution was unstable. The unstable mode was found to
be spherically symmetric (being related to the Gregory-
Laflamme instability [26]). This leads us, in the present
paper, to study the dynamical stability of Schwarzschild
black hole against spherically symmetric perturbations
within torsion bigravity. We leave the study of nonspheri-
cally symmetric perturbations to future work.

II. REMINDER OF TORSION
BIGRAVITY FORMALISM

The fundamental fields of torsion bigravity are a space-
time metric gμν (with mostly plus signature) and a metric-
compatible (∇ðAÞg ¼ 0) affine connection Aλ

μν with torsion
Tλ½μν�. The Lagrangian density of torsion bigravity reads

L ¼ cRR½g� þ cFF½g; A�

þ cF2

�
FðμνÞ½A�FðμνÞ½A� − 1

3
F2½g; A�

�

þ c34F½μν�½A�F½μν�½A�: ð2:1Þ

1In this paper, the mass of the spin-2 excitation, i.e., the inverse
of its range, will be denoted by κ.
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Here, R½g� denotes the scalar curvature of gμν, Fμν½A�≡
Fλ

μλν½A� denotes the Ricci tensor of the connection Aλ
μν,

while F½g; A�≡ gμνFμν½A� denotes the corresponding Ricci
scalar. The coupling constants cR, cF and cF2 can be
written as

cR ¼ λ

1þ η
; cF ¼ ηλ

1þ η
; cF2 ¼ ηλ

κ2
; ð2:2Þ

where λ ¼ cF þ cR ¼ 1
16πG0

measures the gravitational
coupling of the massless spin-2 fluctuation; η ¼ cF=cR
is the ratio between the couplings of the massive and the
massless spin-2 fluctuations, and κ is the mass of the
massive spin-2 fluctuation. [The massive spin-2 fluctuation
is contained within the dynamical torsion Tλ½μν�.] The
coupling constant c34 multiplying the last contribution to
the Lagrangian density (2.1) will enter intermediate equa-
tions of our analysis, but will drop out of our final results.
As in previous works on dynamical torsion [6–21], we

introduce a vierbein eî
μ, where the hatted latin indices

î; ĵ;… ¼ 0; 1; 2; 3 denote frame indices. In the following,
we will use as basic field variables, the coframe compo-
nents eîμ, and the frame components Aî

ĵ k̂ of the connec-
tion. Let us also recall that the frame components
Tîĵ k̂ ¼ ηî ŝT

ŝ
ĵ k̂ of the torsion tensor are related to the

frame componentsKîĵ k̂ ¼ ηî ŝK
ŝ
ĵ k̂ of the contorsion tensor,

Kλ
μν ≡ Aλ

μν − Γλ
μν½g�, via Tî½ĵ k̂� ¼ Kî ĵ k̂ − Kî k̂ ĵ.

The explicit form of the field equations of torsion
bigravity in terms of these variables can be found in
[18] (see Eqs. (3.2) and (3.7) there).

III. PERTURBATIONS OF BLACK HOLES
IN TORSION BIGRAVITY

Vacuum (Ricci-flat) solutions of Einstein’s equations are
exact solutions of the field equations of torsion bigravity
[13]. In particular, stationary Einsteinian black hole sol-
utions (Schwarzschild and Kerr) are torsionless solutions of
torsion bigravity. Here we shall consider linearized pertur-
bations of the Schwarzschild solution. The perturbations of
Schwarzschild black holes in torsion bigravity are
described by two tensor fields, the perturbation of the
metric, hμν, and the perturbation of the frame components
of the connection, aîĵ k̂:

gμνðt; r; θ;ϕÞ ¼ gSμνðr; θ;ϕÞ þ εhμνðt; r; θ;ϕÞ þOðε2Þ;
Aî

ĵ k̂ðt; r; θ;ϕÞ ¼ AîS
ĵ k̂ðr; θ;ϕÞ þ εaîĵ k̂ðt; r; θ;ϕÞ þOðε2Þ:

ð3:1Þ

Here the superscript S denotes Schwarzschild background
values. We can decompose the perturbations both in
frequency space and in tensorial harmonics:

hμνðt; r; θ;ϕÞ ¼
X
l;m

Z
∞

−∞
dωe−iωt½heven;lmμν ðω; r; θ;ϕÞ

þ hodd;lmμν ðω; r; θ;ϕÞ�; ð3:2Þ

aîĵ k̂ðt; r; θ;ϕÞ ¼
X
l;m

Z
∞

−∞
dωe−iωt½aîeven;lm

ĵ k̂
ðω; r; θ;ϕÞ

þ aîodd;lm
ĵ k̂

ðω; r; θ;ϕÞ�: ð3:3Þ

Here, we decomposed the perturbations in even-parity
ones and odd-parity ones. For the reasons explained in
the Introduction, we shall only consider here spherically
symmetric perturbations: ðl; mÞ ¼ ð0; 0Þ.
Exact time-dependent spherically symmetric solutions of

torsion bigravity are described by ten variables. First, there
are two metric variables, Φðt; rÞ and Λðt; rÞ, such that

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3:4Þ

As is always possible [27] for generic time-dependent
spherically symmetric metrics, we used here a
Schwarzschild-type coordinate system with gtr ¼ 0 and
gθθ ¼ gϕϕ= sin2 θ ¼ r2. The connection components will

then refer to the orthonormal (co-)frame θî ¼ eîμdxμ

(î ¼ 0̂; 1̂; 2̂; 3̂, or t̂; r̂; θ̂; ϕ̂) with

θ0̂ ¼ eΦdt; θ1̂ ¼ eΛdr;

θ2̂ ¼ rdθ; θ3̂ ¼ r sin θdϕ: ð3:5Þ

Besides the two metric variables Φðt; rÞ and Λðt; rÞ, there
are four even-parity connection variables, Vðt; rÞ, Wðt; rÞ,
Xðt; rÞ and Yðt; rÞ,

Vðt; rÞ≡ A1̂
0̂ 0̂ ¼ e−ΛΦ0 þ T 0̂

1̂ 0̂;

Wðt; rÞ≡ A1̂
2̂ 2̂ ¼ −

e−Λ

r
− T 2̂

1̂ 2̂;

Xðt; rÞ≡ A1̂
0̂ 1̂ ¼ e−Φ∂tΛþ T 1̂

0̂ 1̂;

Yðt; rÞ≡ A2̂
0̂ 2̂ ¼ T 2̂

0̂ 2̂; ð3:6Þ

and four odd-parity connection variables, C1ðt; rÞ, C2ðt; rÞ,
C3ðt; rÞ and C4ðt; rÞ,

C1ðr;tÞ≡A3̂
2̂ 0̂¼−A2̂

3̂ 0̂¼T 2̂
0̂ 3̂−

1

2
T 0̂

2̂ 3̂;

C2ðr;tÞ≡A3̂
2̂ 1̂¼−A2̂

3̂ 1̂¼T 2̂
1̂ 3̂þ

1

2
T 1̂

2̂ 3̂;

C3ðr;tÞ≡−A0̂
2̂ 3̂¼A0̂

3̂ 2̂¼−A2̂
0̂ 3̂¼A3̂

0̂ 2̂¼−
1

2
T 0̂

2̂ 3̂;

C4ðr;tÞ≡−A1̂
2̂ 3̂¼A1̂

3̂ 2̂¼A2̂
1̂ 3̂¼−A3̂

1̂ 2̂¼−
1

2
T 1̂

2̂ 3̂: ð3:7Þ
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In Eqs. (3.6) and (3.7), Tî
ĵ k̂ ¼ −Tî

k̂ ĵ denote the frame
components of the torsion tensor. The definitions of the
four connection variables C1;…; C4 all depend on the
choice of an orientation within the 2-sphere ð2̂; 3̂Þ ¼ ðθ̂; ϕ̂Þ,
hence their odd-parity character.
The background (i.e., Schwarzschild) values of the odd-

parity variables all vanish: 0 ¼ CS
1 ¼ CS

2 ¼ CS
3 ¼ CS

4 . The
odd-parity spherically symmetric perturbations are studied
in Appendix B and shown there to be trivial. In the
following, we focus on even-parity perturbations.
The unperturbed components of the metric and (even-

parity) connection variables describing a Schwarzschild
black hole are

ΦSðrÞ ¼ þ 1

2
ln

�
1 −

rh
r

�
; ΛSðrÞ ¼ −

1

2
ln

�
1 −

rh
r

�
;

VSðrÞ ¼
1

2

rh
r2

�
1 −

rh
r

�
−1=2

; WSðrÞ ¼ −
1

r

�
1 −

rh
r

�
1=2

;

XSðrÞ ¼ 0; YSðrÞ ¼ 0; ð3:8Þ

where rh denotes the Schwarzschild radius.
We will use the following specific notation for the

frequency-space linearized Schwarzschild perturbations,

ϕoðω; rÞ;Λoðω; rÞ; Voðω; rÞ;Woðω; rÞ; Xoðω; rÞ; Yoðω; rÞ;
ð3:9Þ

where, for instance,

Φðt;rÞ¼ΦSðrÞþ ε

Z
∞

−∞
dωe−iωtϕoðω;rÞþOðε2Þ: ð3:10Þ

Inwhat follows, we use a 0≡ ∂r to denote the r-derivative,
and _≡ ∂t to denote the derivative with respect to t.

IV. REDUCTION OF THE LINEARIZED
FIELD EQUATIONS TO A SYSTEM OF TWO

FIRST-ORDER RADIAL EQUATIONS

There are fourteen exact field equations describing time-
dependent spherically symmetric torsion bigravity configu-
rations (Φðt; rÞ, Λðt; rÞ, Vðt; rÞ;…). They have been
written down by Rauch and Nieh [28]. See (4.3a)–(4.3f),
(4.5a)–(4.5d) and (4.6a)–(4.6d) there. [Beware that, con-
trary to the latter equations, the rewritten Eqs. (4.4a)–(4.4f)
and (6.2a)–(6.2e) contain some misprints. See Appendix A
for details.] Nine of these exact field equations contain the
odd-parity variables C1;…; C4 only quadratically, while

five of them are linear in the odd-parity variables. The
former nine even-parity equations are given in Appendix A
(neglecting to write contributions quadratic in C1;…; C4

which do not enter the linearized level). The corresponding
nine (even-parity) linearized perturbed equations [using
Eq. (3.10)] for the frequency-space variables (3.9) can be
found in the Supplemental Material [29].
Among the linearized even-parity equations, several of

them contain second-order radial derivatives of the field
variables. Namely, the linearized version of Eq. (A6)
contains ϕ00

oðrÞ, the linearized Eqs. (A9) and (A12) contain
ϕ00
oðrÞ, V 00

oðrÞ and W00
oðrÞ, and the linearized Eq. (A11)

contains Y 00
oðrÞ. Actually, V 00

oðrÞ and W00
oðrÞ always appear

in the single combination V 00
o þW00

o. In addition, ϕo
never appears undifferentiated. [This is linked to the
residual gauge invariance Φðt; rÞ → Φðt; rÞ þ fðtÞ of the
Schwarzschild coordinate gauge used in Eq. (3.4)]. As a
consequence of these properties, one can transform the set
of nine linearized field equations Eqs. (A4)–(A12) into an
equivalent set of eleven first-order differential equations by
introducing the three auxiliary variables

Foðω; rÞ≡ ϕ0
oðω; rÞ;

Zoðω; rÞ≡ Y 0
oðω; rÞ;

poðω; rÞ≡ V 0
oðω; rÞ þW0

oðω; rÞ: ð4:1Þ

More precisely, one finds that the eight variables

½Yiðω;rÞ�i¼1;…;8≡fFo;Λo;Vo;Wo;Xo;Yo;Zo;pog; ð4:2Þ

must satisfy a set of eleven first-order linear differential
equations with respect to r, of the form

Aαiðω; rÞY0
iðω; rÞ þ Bαiðω; rÞYiðω; rÞ ¼ 0: ð4:3Þ

Here the index α ¼ 1;…; 11 labels the eleven linearized
field equations, while the index i ¼ 1;…; 8 labels the eight
frequency-space perturbed field variables (4.2). We use
Einstein’s summation convention on all repeated indices
(here: i ¼ 1;…; 8). Two of these equations are conse-
quences of Eqs. (4.1), namely,

Y 0
oðω; rÞ − Zoðω; rÞ ¼ 0;

V 0
oðω; rÞ þW0

oðω; rÞ − poðω; rÞ ¼ 0: ð4:4Þ

Let us display here, for concreteness, another equation in
the system (4.3):
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−
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
rhη

κ2r7=2
½V 0

oðω; rÞ þW0
oðω; rÞ� þ

4κ2r3ðr − rhÞ − r2hηð1þ ηÞ
2κ2r5ð1þ ηÞ Foðω; rÞ

þ η
4κ2r3ðr − rhÞ − ð2r − rhÞð1þ ηÞrh

2κ2r9=2
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p ð1þ ηÞ Voðω; rÞ − η
2κ2r3ð2r − rhÞ þ ð6r − 7rhÞð1þ ηÞrh

2κ2r9=2
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p ð1þ ηÞ Woðω; rÞ

−
iωrhηXoðω; rÞ
κ2r5=2

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p −
iωηð−2κ2r3 þ rh þ rhηÞ
κ2r5=2

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p ð1þ ηÞ Yoðω; rÞ −
4κ2r4 þ 3r2hηð1þ ηÞ

2κ2r6ð1þ ηÞ Λoðω; rÞ ¼ 0: ð4:5Þ

The coefficients Aαiðω; rÞ entering Eqs. (4.3) are, gen-
erally speaking, first-order polynomials in ω, while the
coefficients Bαiðω; rÞ are second-order polynomials in ω.
This property comes from the fact that the original field
equations were second-order in time derivatives.
In the following, we will think of the system (4.3) in

matrix form. Namely,

AY0 þ BY ¼ 0; ð4:6Þ
where A and B are 11 × 8 matrices, and Y is an
8-dimensional column vector.
This radial evolution system implies a certain number of

algebraic constraints on the variables Y. First, one obtains
primary constraints (in the sense of Dirac). These con-
straints are linked to the rank of the matrix A. We find that
the rank of A is six. This implies, in particular, that the left
null-space of the 11 × 8 matrix A is five-dimensional.
Indeed, any left null eigenvector vα of A, namely, any
solution of the equation

vαAαi ¼ 0; ð4:7Þ

implies [by contracting vα with the field equations (4.3)]
the corresponding algebraic constraint

CprimaryðvÞ≡ vαBαiYi ¼ 0: ð4:8Þ

There are five such primary constraints corresponding to
the five-dimensional nature of the left null-space of the
matrix A, or equivalently, to the right null-space of the
transposematrix AT . Explicit computation of the right null-
space of AT shows that the five corresponding primary
constraints CprimaryðvÞ, Eq. (4.8), are independent. Indeed,
we find that the five constraints CprimaryðvÞ on the eight
variables Y can be solved for Fo, Λo, Yo, Zo, po in terms of
the three residual variables,

ðZaÞa¼1;2;3 ≡ fVo;Wo; Xog: ð4:9Þ

After substituting the solutions

FoðZaÞ;ΛoðZaÞ; YoðZaÞ; ZoðZaÞ; poðZaÞ ð4:10Þ

of the five primary constraints in the eleven original
equations (4.3), we obtain a system of the form

CαaZ0
a þDαaZa ¼ 0: ð4:11Þ

Here the index α ¼ 1;…; 11 takes eleven values, while
a ¼ 1; 2; 3.
Following the Dirac approach, we must now study the

rank of the matrix C appearing in (4.11) to know how many
equations are independent, and how many secondary
constraints they imply. By explicit computation one finds
that the rank of the 11 × 3 matrix C is equal to two. This
means that the left null-space of C is nine-dimensional.
Denoting by w any left null-eigenvector of the matrix C, we
thereby get nine secondary constraints,

CsecondaryðwÞ≡ wαDαaZa ¼ 0; ð4:12Þ

on the three variables ðZaÞ ¼ fVo;Wo; Xog. Explicit
computation shows that these nine constraints are propor-
tional to each other. Thus, there is only one independent
secondary constraint among the three variables, Vo, Wo,
Xo. We then solve this single secondary constraint for Xo,
say,

Xo ¼ Xsol
o ðVo;WoÞ: ð4:13Þ

Inserting this relation in the previous solutions (4.10) yields
six solutions:

Fo ¼ Fsol
o ðVo;WoÞ; Λo ¼ Λsol

o ðVo;WoÞ;
Yo ¼ Ysol

o ðVo;WoÞ; Zo ¼ Zsol
o ðVo;WoÞ;

po ¼ psol
o ðVo;WoÞ; Xo ¼ Xsol

o ðVo;WoÞ: ð4:14Þ

Substituting this solution in the original set of equations,
one finds that the full set of perturbed equations is
equivalent to a system of two first-order differential
equations for the two variables, Vo and Wo. Say,

V 0
oðω; rÞ ¼ CVVðω; rÞVoðω; rÞ þ CVWðω; rÞWoðω; rÞ;

W0
oðω; rÞ ¼ CWVðω; rÞVoðω; rÞ þ CWWðω; rÞWoðω; rÞ:

ð4:15Þ

The coefficients CVVðω; rÞ; CVWðω; rÞ;… entering
Eqs. (4.15) are rational functions of ω2. More precisely,
CVV , CWV and CWW are of the form
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a0ðrÞ þ a2ðrÞω2

b0ðrÞ þ b2ðrÞω2
; ð4:16Þ

while CVW is of the form

CVW ¼ a0ðrÞ þ a2ðrÞω2 þ a4ðrÞω4

b0ðrÞ þ b2ðrÞω2
: ð4:17Þ

The various coefficients anðrÞ, bnðrÞ are algebraic func-
tions of r (involving

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
) and polynomials in κ2 and η.

The explicit expressions of these coefficients are given in
the Supplemental Material [29].
The reduction of the full set of perturbed equations to a

system of two first-order differential equations (whose
general solution is parametrized by two initial data) does
correspond to the expected degrees of freedom for time-
dependent spherically symmetric solutions of the field
content of torsion bigravity, namely a massless spin-2
and a massive spin-2 one. Indeed, by Birkhoff’s theorem,
the massless spin-2 time-dependent spherically symmetric
sector is trivial, and it is easily seen that time-dependent
spherically symmetric massive spin-2 excitations must
involve two initial data. Let us note in passing that this
is a further confirmation of the absence of Boulware-Deser
sixth degree of freedom [30]. A complementary side of this
result is that the odd-parity time-dependent spherically
symmetric perturbed sector is expected to be trivial. This is
indeed explicitly checked in Appendix B.

V. REDUCTION TO A ZERILLI-LIKE EQUATION

The nonpolynomial dependence on ω of the frequency-
domain system (4.15) does not allow one to easily analyze
the behavior of the perturbations if we wanted to analyze
them in the time domain. The question then arises whether
it is possible to transform our system (4.15) into a Zerilli-
type equation, i.e., an equation of the form

∂2

∂r2� φωðr�Þ ¼ ðV½rðr�Þ� − ω2Þφωðr�Þ ð5:1Þ

with a frequency-independent potential V½rðr�Þ�. Here, as
usual, r� denotes the tortoise radial coordinate,

r� ¼ rþ rh ln ðr=rh − 1Þ; dr�
dr

¼ rh
r − rh

: ð5:2Þ

Let us recall indeed that, after transforming to the time
domain, namely,

φðt; r�Þ ¼
Z þ∞

−∞
dωe−iωtφωðr�Þ; ð5:3Þ

Eq. (5.1) reads

∂2

∂r2� φðt; r�Þ −
∂2

∂t2 φðt; r�Þ ¼ V½rðr�Þ�φðt; r�Þ: ð5:4Þ

The latter equation exhibits the fact that the (front) velocity
of the black hole perturbations is equal to the speed of light.
The transformation from the system (4.15) to an equation

of the type (5.1) comprises two steps. To motivate the first
step, let us recall a result of Refs. [13,14] concerning
perturbations of Einstein spaces in torsion gravity. If one
denotes the following (symmetrized) combination of the
frame components Fî ĵ of the Ricci tensor of the connection
Aî

ĵμ as

Uî ĵ ≡ Fðî ĵÞ −
1

6
Fηî ĵ ð5:5Þ

its perturbed value around Einstein spaces, namely,

uî ĵ ≡Uð1Þ
î ĵ

≡ Fð1Þ
ðî ĵÞ −

1

6
Fð1Þηî ĵ; ð5:6Þ

satisfies a generalized Fierz-Pauli equation comprising both
a mass term and an additional coupling to the Weyl tensor
of the background, namely

κ2ðuî ĵ − uηî ĵÞ þ ð1þ ηÞWî κ̂ ĵ l̂u
κ̂ l̂: ð5:7Þ

This result indicates that it will be useful to replace the two
basic (connection-related) variables Vo, Wo entering the
system (4.15) by two other variables more directly con-
nected with the auxiliary Fierz-Pauli-like variables uî ĵ. An
analog approach has been used when considering perturbed
black holes within bimetric gravity [25]. The latter refer-

ence used the combination hðmÞ
μν ∝ Mgδfμν − CMfδgμν of

the perturbations of the two metric tensors gμν, fμν that
satisfies a Fierz-Pauli-like equation as a starting point to
construct a variable φðt; r�Þ satisfying a Zerilli-like
equation (5.1).
Our first step will therefore be to derive the explicit

expressions of the torsion-bigravity variables uî ĵ in terms
of our two basic variables Vo, Wo. In a generic time-
dependent spherically symmetric situation, the nonzero
components of uî ĵ are u0̂ 0̂, uð1̂ 0̂Þ, u1̂ 1̂, and u2̂ 2̂ ¼ u3̂ 3̂.
Within the usual Regge-Wheeler-Zerilli [31,32] setting,
these frame components of a generic metric perturbation
are respectively denoted as H0, H1, H2 and K. Within our
perturbed torsion-bigravity setting, the results obtained in
the previous sections has shown that any perturbed variable
can be finally expressed [by using the algebraic constraints
(4.14), together with the differential constraints (4.15)] as a
linear combination of Vo and Wo. This fact shows in
particular that the four metriclike variables u0̂ 0̂, uð1̂ 0̂Þ, u1̂ 1̂,
and u2̂ 2̂ (or equivalently H0, H1, H2 and K) satisfy two
algebraic constraints. It is therefore enough to chose two
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independent components of uî ĵ and to express them in
terms of our basic (connection-related) variables Vo and
Wo. Inspired by the results of Zerilli [32] (and their
bimetric-gravity analogs [25]), we chose to work with
the two variables uð1̂ 0̂Þ ¼ H1 and uð2̂ 2̂Þ ¼ K. These are the

perturbed values of the exact Ricci components Uî ĵ ≡
Fðî ĵÞ − 1

6
Fηî ĵ for î ĵ ¼ 0̂ 1̂ and î ĵ ¼ 2̂ 2̂. An explicit

calculation yields

Uð1̂ 0̂Þðt; rÞ ¼−∂rYðt; rÞe−Λðt;rÞ þ ∂tWðt; rÞe−Φðt;rÞ

−Wðt; rÞXðt; rÞþ
�
−
e−Λðt;rÞ

r
þVðt; rÞ

�
Yðt; rÞ;

Uð2̂ 2̂Þ ¼
1

3

�
∂rVðt; rÞe−Λðt;rÞ þ ∂rWðt; rÞe−Λðt;rÞ

− ∂tXðt; rÞe−Φðt;rÞ þ ∂tYðt; rÞe−Φðt;rÞ þ 2

r2

þFðt; rÞe−Λðt;rÞVðt; rÞ− 2Wðt; rÞ2þ 2Yðt; rÞ2

þ
�
e−Λðt;rÞ

r
þVðt; rÞ

�
Wðt; rÞ

þXðt; rÞð−∂tΛe−Φðt;rÞ þYðt; rÞÞ
�
: ð5:8Þ

Linearizing these exact expressions and passing to fre-
quency-space yields the following primary expressions for
uð1̂ 0̂Þðω; rÞ≡H1ðω; rÞ and u2̂ 2̂ðω; rÞ≡ Kðω; rÞ in terms of
Fo, Λo, Vo, Wo, Xo, Yo and their radial derivatives:

H1ðω; rÞ ¼ ½−2ir2ωWoðrÞþ2ðr− rhÞXoðrÞ−2rYoðrÞ
þ3rhYoðrÞ−2rðr− rhÞY 0

oðrÞ�=
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ðr− rhÞ

q �
;

Kðω; rÞ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr− rhÞ

p
rhFoðrÞþ rð3rh−2rÞVoðrÞ

þ10r2WoðrÞ−9rrhWoðrÞþ2ir3ωXoðrÞ

−2ir3ωYoðrÞþ3rh

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

rh
r

r
ΛoðrÞ

þ2r2ðr− rhÞV 0
oðrÞ

þ2r2ðr− rhÞW0
oðrÞ�=

�
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5ðr− rhÞ

q �
: ð5:9Þ

Substituting the algebraic relations (4.14) of Sec. IV into
these expressions, and using the differential conditions
(4.15), finally yields the following explicit algebraic
expressions for H1 and K in terms of Vo and Wo:

H1 ¼ −
2iωffiffiffiffiffiffiffiffiffiffiffi

1 − rh
r

p
η½κ2r3 − rhð1þ ηÞ� f−2ðr − rhÞrhð1þ ηÞ½κ4r6 þ r2hηð1þ ηÞ − κ2r3rhð1þ 2ηÞ�VoðRÞ

þ ½r2hηð1þ ηÞ2ð2rrh − r2h þ 4r4ω2Þ − 2κ2r3rhð1þ ηÞðr2hð1 − 4ηÞ þ rrhð5η − 1Þ þ 4r4ηω2Þ
þ κ4r6ð−r2hð4þ 7ηÞ þ 4rðrh þ 2rhηÞ þ 4r4ηω2Þ�WoðrÞg=
½rhð1þ ηÞð−10rrh þ 9r2h − 4r4ω2Þ þ κ2r3ð4rrh − 3r2h þ 4r4ω2Þ�;

K ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
r3=2η

f2ðr − rhÞ½κ4r6 þ r2hηð1þ ηÞ − κ2r3rhð1þ 2ηÞ�VoðrÞ þ ½−4κ4r6ðr − rhÞ

þ rhηð1þ ηÞð−2rrh þ r2h − 4r4ω2Þ þ κ2r3r2hð2þ ηÞ þ κ2r3ð4r4ηω2 − 2rrhÞ�WoðrÞg=
frhð1þ ηÞð9r2h − 10rrh − 4r4ω2Þ þ κ2r3ð4rrh − 3r2h þ 4r4ω2Þg: ð5:10Þ

Differentiating the latter expressions for H1 and K yields
the values of H0

1 and K
0 in terms of Vo,Wo, V 0

o,W0
o. Then,

using the differential system (4.15) and the inverse relations
Vo ¼ VoðH1; KÞ, Wo ¼ WoðH1; KÞ obtained by solving
the system (5.10), one obtains a linear system of two
differential equations for H1 and K. Rewriting this system
in terms of K and H̃ ¼ H1ω

−1 leads to a system of the form

K0 ¼ CKKðω; rÞK þ CKHðω; rÞH̃;

H̃0 ¼ CHKðω; rÞK þ CHHðω; rÞH̃: ð5:11Þ
A crucial feature of the coefficients entering this differential
system is that each of them is now found to have a simple
linear dependence on ω2, namely

CKKðω; rÞ ¼ aKKðrÞ þ ω2bKKðrÞ; etc: ð5:12Þ
The latter linear dependence on ω2 allows us to apply the
procedure introduced by Zerilli [32] in the general relativity
setting. This procedure consist in looking for a 2 × 2matrix
MðrÞ (depending only on r), say

MðrÞ ¼
�
fðrÞ gðrÞ
hðrÞ kðrÞ

�
; ð5:13Þ

such that the transformation

�
K

H̃

�
¼ MðrÞ

�
φ

ψ

�
ð5:14Þ
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maps the system (5.11) on a first-order system of the form

	 r−rh
r φ0 ¼ ∂r�φ ¼ ψ ;

r−rh
r ψ 0 ¼ ∂r�ψ ¼ ðVðrÞ − ω2Þφ

[this system is equivalent to Eq. (5.4)]. Writing the conditions following from this procedure we found an explicit solution
given by the expressions

fðrÞ ¼ kðrÞ
2r4DfðrÞ

iðr − rhÞð4κ8r13 þ κ10r15 þ 2κ6r10rh − 6κ8r12rh − κ6r9r2h þ 4κ6r10rhη − 3κ8r12rhη

− 18κ4r7r2hη − κ6r9r2hηþ 4κ2r4r3hηþ 19κ4r6r3hη − 5κ2r3r4hη − 18κ4r7r2hη
2 þ 2κ6r9r2hη

2

þ 12κ2r4r3hη
2 þ 21κ4r6r3hη

2 þ 2rr4hη
2 − 17κ2r3r4hη

2 − r5hη
2 þ 8κ2r4r3hη

3 þ 2κ4r6r3hη
3 þ 4rr4hη

3

− 15κ2r3r4hη
3 − r5hη

3 þ 2rr4hη
4 − 3κ2r3r4hη

4þr5hη
4 þ r5hη

5Þ; ð5:15Þ

gðrÞ ¼ iðr − rhÞkðrÞ
r2

; ð5:16Þ

hðrÞ ¼ kðrÞ
2r2DfðrÞ

ð4κ8r13 þ 2κ6r10rh − 5κ8r12rh − κ6r9r2h þ 4κ6r10rhη − 18κ4r7r2hη − 2κ6r9r2hηþ 4κ2r4r3hη

þ 18κ4r6r3hη − 5κ2r3r4hη − 18κ4r7r2hη
2 þ 12κ2r4r3hη

2 þ 18κ4r6r3hη
2 þ 2rr4hη

2 − 15κ2r3r4hη
2 − r5hη

2

þ 8κ2r4r3hη
3 þ 4rr4hη

3 − 10κ2r3r4hη
3 − 2r5hη

3þ2rr4hη
4 − r5hη

4Þ; ð5:17Þ

where

DfðrÞ≡ ðκ2r3 − rhηÞ½κ2r3 − rhð1þ ηÞ�½κ4r6 − r2hηð1þ ηÞ�; ð5:18Þ

and

kðrÞ ¼ iκ2r3

ðr − rhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ4r6 − ηð1þ ηÞr2h

q : ð5:19Þ

The most important result of using this Zerilli procedure is the value of the potential VðrÞ. We find the explicit expression

VðrÞ ¼ ðr − rhÞNðr; κ; ηÞ
r4½κ2r3 − rhð1þ ηÞ�2ðκ2r3 − rhηÞ2½κ4r6 − r2hηð1þ ηÞ�2 ; ð5:20Þ

Nðr; κ; ηÞ≡ ð6κ16r25 þ κ18r27 þ 12κ14r22rh − 12κ16r24rh − 5κ14r21r2h − 3κ12r18r3h þ κ10r15r4h

þ 24κ14r22rhη − 3κ16r24rhη − 99κ12r19r2hη − 15κ14r21r2hηþ 30κ10r16r3hηþ 110κ12r18r3hη − 15κ8r13r4hη

− 49κ10r15r4hηþ 21κ8r12r5hη − κ6r9r6hη − 99κ12r19r2hη
2 − κ14r21r2hη

2 þ 90κ10r16r3hη
2 þ 127κ12r18r3hη

2

þ 45κ8r13r4hη
2 − 161κ10r15r4hη

2 − 18κ6r10r5hη
2 − 17κ8r12r5hη

2 þ 6κ4r7r6hη
2 þ 26κ6r9r6hη

2 − 9κ4r6r7hη
2

þ 60κ10r16r3hη
3 þ 13κ12r18r3hη

3 þ 120κ8r13r4hη
3 − 126κ10r15r4hη

3 − 72κ6r10r5hη
3 − 82κ8r12r5hη

3

− 27κ4r7r6hη
3 þ 126κ6r9r6hη

3 þ 12κ2r4r7hη
3 − 7κ4r6r7hη

3 − 9κ2r3r8hη
3 þ 60κ8r13r4hη

4 − 15κ10r15r4hη
4

− 90κ6r10r5hη
4 − 45κ8r12r5hη

4 − 111κ4r7r6hη
4 þ 183κ6r9r6hη

4 þ 60κ2r4r7hη
4 þ 16κ4r6r7hη

4 − 45κ2r3r8hη
4

þ r9hη
4 − 36κ6r10r5hη

5 − κ8r12r5hη
5 − 117κ4r7r6hη

5 þ 97κ6r9r6hη
5 þ 108κ2r4r7hη

5 þ 8κ4r6r7hη
5 − 79κ2r3r8hη

5

þ 4r9hη
5 − 39κ4r7r6hη

6 þ 13κ6r9r6hη
6 þ 84κ2r4r7hη

6 − 15κ4r6r7hη
6 − 57κ2r3r8hη

6 þ 6r9hη
6

þ24κ2r4r7hη
7 − 9κ4r6r7hη

7 − 12κ2r3r8hη
7 þ 4r9hη

7 þ 2κ2r3r8hη
8 þ r9hη

8Þ: ð5:21Þ
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As already announced, the coupling constant c34 does not
enter the potential VðrÞ [nor the system (4.15) and the
algebraic constraints (4.14)].
One can rewrite this potential in the following form,

Vðr; rh; η; κÞ ¼
�
1 −

rh
r

��
rh
r3

þ κ2

þ κ2
6rhðrh − 2rÞ þ 6r3ðr − 2rhÞκ2

ðrh þ r3κ2Þ2

þðηþ 1Þκ2Vaddðr; rh; η; κÞ
�
; ð5:22Þ

where Vaddðr; rh; η; κÞ is a rational function of its arguments
that possesses the following properties: (i) it has a finite
limit when r → rh; (ii) it goes to zero ∼r−3 when r → ∞;
(iii) it has a finite limit as κ → 0 and (iv) it has a finite limit
as η → −1.
One can then deduce a few conclusions from the

rewriting (5.22). First, VðrÞ → κ2 when r → ∞. This is
related to the fact that, far away from a black hole, the wave
equation describing the massive excitations of torsion
bigravity satisfies a Fierz-Pauli (massive spin-2) equation
[13]. Second, VðrÞ → 0 when r → rh. This is related to the
fact that, very near the horizon, a massive spin-2 perturba-
tion (having a finite frequency seen from infinity) prop-
agates as if it was a massless spin-2 one. This property
holds also in bimetric gravity [25].
The third observation concerns the formal limit η → −1.

In this limit, the last term in (5.22) [∝ðηþ 1Þκ2Vadd] equals
to zero. The remaining terms yield the potential of the
massive spin-2 field in the bimetric gravity exhibited in
[25], namely,

Vbimetricgravity¼
�
1−

rh
r

��
rh
r3
þ κ2

þ κ2
6rhðrh−2rÞþ6r3ðr−2rhÞκ2

ðrhþ r3κ2Þ2
�
: ð5:23Þ

This property of the formal limit η → −1 follows from the
fact exhibited in Eq. (5.7) that, in torsion bigravity, the
massive spin-2 excitation has (compared to bimetric grav-
ity) an additional coupling to the Weyl curvature propor-
tional to (1þ η). Considering the limit η → −1 is useful for
giving checks of our results. In particular, it is easy to check
that the η → −1 limit of the matrix entries fðrÞ, gðrÞ, hðrÞ,
kðrÞ of the Zerilli transformation (5.14) coincides with the
corresponding bimetric gravity result, as given above
Eq. (30) in Ref. [25].
In addition, the first line in Eq. (5.22) gives the Zerilli-like

potential describing the spherically symmetric fluctuations
of a massive scalar field in a Schwarzschild background,
namely,

Vmassive scalar ¼
�
1 −

rh
r

��
rh
r3

þ κ2
�
: ð5:24Þ

Finally, the massless limit of Eq. (5.22), κ → 0, namely,

Vκ¼0 ¼
�
1 −

rh
r

�
rh
r3

; ð5:25Þ

coincides with the massless limit of the scalar potential
(5.24). The same feature holds for the bimetric gravity case
[25] [as one can easily see in Eq. (5.23)].

VI. PROPERTIES OF THE ZERILLI-LIKE
POTENTIAL VðrÞ FOR TORSION BIGRAVITY

A. Denominators and singularities

The denominator of the potential for torsion bigravity,
VðrÞ, reads

r4½κ2r3 − rhð1þ ηÞ�2ðκ2r3 − rhηÞ2½κ4r6 − r2hηð1þ ηÞ�2:
ð6:1Þ

This denominator has double zeroes for three values of
r > 0. Namely, the first bracket in Eq. (6.1) has a double
zero at

r ¼ r3 ≡
�
rhð1þ ηÞ

κ2

�
1=3

; ð6:2Þ

the second bracket has a double zero at

r ¼ r3add ≡
�
rhη
κ2

�
1=3

; ð6:3Þ

and the third bracket has a double zero at

r ¼ r6 ≡
�
r2hηð1þ ηÞ

κ4

�
1=6

: ð6:4Þ

When η > 0 (which is a necessary condition for the
physical consistency of torsion bigravity [7]) the values
of r3, r3add and r6 are such that r3add < r6 < r3. Each one of
these three values (or, equivalently, the three corresponding
points r�3add < r�6 < r�3 on the r�-axis) can potentially
induce a singular behavior in the generic solution φωðr�Þ of
Eq. (5.1). Let us study the behavior of the generic solution
φωðr�Þ of Eq. (5.1) near these three potentially singular
points.
Let us start with the outermost value r3. When r → r3 or,

equivalently, when r� → r�3, the asymptotic behavior of
the potential V½rðr�Þ� near r� ¼ r�3 is of the form

Vðrðr�Þ; rh; η; κÞ ≃
Cpoleðrh; η; κÞ
ðr� − r�3Þ2

: ð6:5Þ
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Taking into account that dr�dr ¼ r
r−rh

, one computes the value

of the coefficient Cpoleðrh; η; κÞ as being

Cpoleðrh; η; κÞ

¼
�
Vðr; rh; η; κÞðr − r3Þ2

�
r

r − rh

�
2
�
r¼r3

¼ 2: ð6:6Þ

Following the usual Fuchsian analysis, one looks for
asymptotic solutions of Eq. (5.1) of the form

φωðr�Þ ∼ ðr� − r�3Þs: ð6:7Þ

Inserting the latter power-law ansatz in Eq. (5.1), taking
into account the singular behavior (6.6), one finds the
following indicial equation for s:

sðs − 1Þ ¼ Cpoleðrh; η; κÞ: ð6:8Þ

In the specific case of the r3 double pole, the value
Cpoleðrh; η; κÞ ¼ 2, Eq. (6.6). This leads to the two expo-
nents, sþ ¼ 2 and s− ¼ −1. In other words, the generic
solution φωðr�Þ near r� ¼ r�3 has the following form

φωðr�Þ ¼
r�→r�3

C2ðr� − r�3Þ2 þ C−1ðr� − r�3Þ−1; ð6:9Þ

where the last term exhibits a singular behavior. To be more
precise, the singular solution proportional to C−1 has an
expansion near r� ¼ r�3 of the form

C−1½ðr� − r�3Þ−1 þ c1ðr� − r�3Þ
þc2Lðr� − r�3Þ2 log ðr� − r�3Þ þ…�; ð6:10Þ

inwhich log ðr� − r�3Þ enters starting at the ðr� − r�3Þ2-level.
At this stage, we should recall that, in view of the linear

vanishing of the potential VðrÞ ∝ ðr − rhÞ near the horizon,
corresponding to an exponential vanishing V½rðr�Þ�∝
expðr�=rhÞ as r�→−∞, the generic solution of Eq. (5.1)
near the horizon is of the form

φωðr�Þ ¼
r�→−∞

CþðωÞeþiωr� þ C−ðωÞe−iωr� : ð6:11Þ

It is easily seen that, when completing this result by the
factor e−iωt, the Cþ-term represents a wave which is
outgoing from the horizon. We should therefore impose
the usual no-outgoing-wave black hole boundary condi-
tion CþðωÞ ¼ 0. The latter boundary condition is sufficient
for determining the solution φωðr�Þ modulo an irrel-
evant overall factor (at least, in the scattering regime
ω2 > Vðþ∞Þ ¼ κ2). We therefore cannot impose one more
boundary condition at r�3 to cancel the singular term
C−1ðr� − r�3Þ−1. The only way to avoid the generic

presence of a singularity at r�3 in the torsion bigravity
master field φðr�; tÞ is to restrict the value of the spin-2
mass κ so that r3ðrh; η; κÞ lies under the horizon: r3 < rh. In
view of Eq. (6.2), this means constraining κ to satisfy the
inequality

κ >

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
rh

: ð6:12Þ

We have also analyzed the singular behaviors near the
points r�6 and r�3add. The corresponding values of the
coefficient Cpole entering the double pole are Cpole

6 ¼ − 1
4

and Cpole
3add ¼ 2, respectively. The corresponding generic

solutions are both singular. However, since we have (when
η > 0) the inequalities r3add < r6 < r3, the satisfaction of
the condition (6.12) is enough for ensuring that all the
singular points are hidden under the horizon, so that the
generic solution φωðr�Þwill be regular outside a black hole.
In addition, when computing [by using the inverse of

Eq. (5.14)] the linear perturbations inK and H̃ in terms of φ
and its derivative,we have found that, near the singular point
r3, H̃ðrÞ and, therefore, H1ðrÞ, have a singular behavior of
the type H̃ðrÞ ∼ ðr − r3Þ−1, whileKðrÞ is finite at r3 but dKðrÞdr

is logarithmically infinite. As H1 ¼ Fð1Þ
ð0̂ 1̂Þ is an invariantly

defined linear perturbation of the Ricci tensor of the
torsionful connection A, this shows that the singularity at
r3 has a gauge-invariant meaning. As another way to see
the gauge-invariant meaning of this singular behavior,
we have checked that the (invariantly defined) torsion
component T 0̂

1̂ 0̂ has also singular behavior of the type

T 0̂
1̂ 0̂ ∼ ðr − r3Þ−1, while the (invariantly defined) torsion

component T 1̂
1̂ 0̂ has the stronger singular behavior,

T 1̂
1̂ 0̂ ∼ ðr − r3Þ−2. [By contrast, the metric perturbations

ϕoðrÞ and ΛoðrÞ turn out to be both finite near r3 but still to
containmildly singular contributions of the types:ϕsing

o ðrÞ ∼
ðr − r3Þ3 log ðr − r3Þ and Λsing

o ðrÞ ∼ ðr − r3Þ2 log ðr − r3Þ.]
We will discuss below the phenomenological conse-

quences of the condition (6.12). Let us recall here that the
possible necessity of imposing a constraint of the type
(6.12) was mentioned at the end of Sec. 4 of [13]. More
precisely, the Stückelberg treatment of [13] showed that, in
sufficiently weak Weyl-curvature backgrounds, namely,
ð1þ ηÞjWijklj ≪ κ2, the usual Fierz-Pauli mass-term in
Eq. (5.7) dominates over the additional Weyl-coupling
term, so that the propagating modes are not ghosts. It left
open, however, the fact that there may appear ghost
modes when ð1þ ηÞjWijklj≳ κ2. The Weyl curvature of
a (Schwarzschild) black hole is of order rh=r3, and reaches
its maximum value 1=r2h on the horizon. We thereby
see that, indeed, the condition (6.12) is a precise version
of the no-ghost condition ð1þ ηÞjWijklj≲ κ2 discussed
in [13].
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B. Plots and comparison with the scalar potential
and the bimetric gravity potential

Treating Eq. (5.4) as an equation describing a (real)
scalar field φðt; r�Þ, with a Lagrangian density

L ¼ 1

2
½∂tφðt; r�Þ�2 −

1

2
½∂r�φðt; r�Þ�2

−
1

2
Vðr�Þφðt; r�Þ2; ð6:13Þ

one can write the conserved energy density of such a field,

E ¼ 1

2
½∂tφðt; r�Þ�2 þ

1

2
½∂r�φðt; r�Þ�2

þ 1

2
Vðr�Þφðt; r�Þ2: ð6:14Þ

From this expression, it is clear that there are no instabilities
if Vðr�Þ > 0 for all r�, since the energy is conserved. This is
the case of the Zerilli-like potential describing the propa-
gation of a scalar field on a Schwarzschild background. See
Fig. 1 where the latter (positive) scalar potential is plotted.
On the other hand, if the condition VðrÞ > 0 is not

satisfied, there might exist instabilities, at least in the case
where Vðr�Þ is sufficiently negative. This is the case for the
even sector of the monopole perturbations in bimetric
gravity. It was found in [25] that, for rhκ ≤ 0.86, there
exist an instability (see a paragraph below Eq. (30) there).
[Let us recall again that the potential describing the
monopole perturbations in bimetric gravity is obtained

from the potential (5.20) by the formal limit η → −1.]
Fig. 1 exhibits the potential (5.23) describing the even
sector of the monopolar perturbations in bimetric gravity
for κrh ¼ 1.1. One can see that there is a region where
Vbimetric gravityðr�Þ < 0. [The negative-potential part gets
deeper when κrh < 0.86.]
A plot of the torsion bigravity potential for one particular

set of η and κ is also exhibited in Fig. 1 (we chose to plot the
potential for η ¼ 0, because the phenomenologically mean-
ingful values of η are quite small, see Sec. VII). One can see
that the shape of this plot is similar to that of the bimetric
gravity potential. Most importantly, V½rðr�Þ� is not always
positive, there is a region where V½rðr�Þ� < 0. The question
then arises, whether the potential V½rðr�Þ� is sufficiently
negative to create an instability or not. Below, we are going
to prove that, in spite of the presence of a region of
V½rðr�Þ� < 0, the potential (5.20) provides no instabilities
for solutions of the Eq. (5.4).

C. Absence of instabilities

In the case of perturbations of a Schwarzschild black
hole in bimetric gravity [25], it was found: (i) that there
existed instabilities for rhκ ≲ 0.86, and (ii) the complex
frequency ω ¼ ωR þ iωI of these instabilities is purely
imaginary, ωR ¼ 0, with ωI > 0. Let us prove that, if there
existed instabilities in torsion bigravity, they would nec-
essarily have also a purely imaginary frequency.
A simple proof of this fact can be obtained by

considering the conserved current of the Klein-Gordon
equation (5.4). Denoting x≡ r�, the latter equation can be
written as

−
∂2

∂t2 φðt; xÞ þ
∂2

∂x2 φðt; xÞ − V½rðxÞ�φðt; xÞ ¼ 0: ð6:15Þ

For any complex solution φðt; xÞ of Eq. (6.15) which
decays both at x → −∞ and x → þ∞, the following charge
is conserved (if the potential V½rðxÞ� is real)

Q≡
Z þ∞

−∞
dx

i
2
½φ�ðt; xÞ∂tφðt; xÞ − ∂tφ

�ðt; xÞφðt; xÞ�;

ð6:16Þ

where � denotes complex conjugation.
Let us suppose that there exist an unstable mode

φðt; xÞ ¼ e−iðωRþiωIÞtφωðxÞ: ð6:17Þ

Inserting (6.17) in the definition of Q, Eq. (6.16), yields

Q ¼ ωR

Z þ∞

−∞
dxφ�ðt; xÞφðt; xÞ

¼ ωRe2ωI t

Z þ∞

−∞
dxjφωðxÞj2: ð6:18Þ

FIG. 1. The solid green curve Vmassive scalar displays the Zerilli-
like potential describing a massive scalar field on a Schwarzschild
background, see Eq. (5.24). Its massless version, Eq. (5.25),
appears as the bottom dotted green curve Vðκ ¼ 0Þ. The blue
curve Vðη ¼ 0Þ shows the potential (5.20) of torsion bigravity
computed for η ¼ 0. The red curve Vðη ¼ −1Þ exhibits the
potential (5.23) of bimetric gravity. In all the curves, we have
taken rh ¼ 1 and κ ¼ 1.1.
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This charge can be conserved only if the product
ωRωI ¼ 0. An unstable mode (ωI ≠ 0) must therefore have
ωR ¼ 0.
The search for unstable modes is thereby reduced to the

search for real bound states of the Schrödinger-like
equation

−
∂2

∂x2 φωðxÞ þ V½rðxÞ�φωðxÞ ¼ ω2φωðxÞ; ð6:19Þ

where ω2 ¼ −ω2
I is negative.

In order to establish2 the presence or absence of unstable
modes, we can then use the theorem [33,34] saying that the
number of negative-energy bound states of a potential VðxÞ
is equal to the number of nodes of the zero-energy
wave function φ0ðxÞ satisfying one of the bound-state
boundary conditions (see Appendix C for the sketch of a
proof of this theorem). In the case of torsion bigravity,
where the potential tends to þκ2 as x≡ r� → þ∞, it is
convenient to impose on the zero-energy wave function
φ0ðxÞ, satisfying

−
∂2

∂x2 φ0ðxÞ þ V½rðxÞ�φ0ðxÞ ¼ 0; ð6:20Þ

the boundary condition that it vanishes at þ∞,

φ0ðxÞ ≈
x→þ∞

e−κx: ð6:21Þ

A numerical study of the so-defined wave-function φ0ðxÞ
for all relevant values of η and κ, i.e., η > 0 and
ðκrhÞ2 > 1þ η, has shown that this wave function stays
positive for all values of x. In other words, the number of
nodes is zero, which proves that there are no negative-
energy bound states.
By contrast, we have checked the usefulness of this

theorem by applying the same method to the potential
Vbimetric gravity, (5.23). We indeed confirmed that, when
κrh ≤ 0.86, the right decaying zero-energy wave function
does have a single node, thereby proving the existence of
one bound state, i.e., one unstable mode.

VII. PHENOMENOLOGICAL CONSEQUENCES
OF OUR RESULTS

We found that torsion bigravity perturbations of
Schwarzschild black holes were developing singularities
if κ2 < ð1þ ηÞ=r2h. More generally, we have seen above
that singularities might develop when κ2 is smaller than
(1þ η) times the eigenvalues of the Weyl curvature. The
astrophysical objects having the largest Weyl curvature

would be small-mass black holes. In absence of exper-
imental evidence for the existence of subsolar-mass black
holes we shall conservatively assume that the largest Weyl
curvature3 to consider is the one at the surface of a 2 M⊙
black hole. [Indeed, there are no known neutron stars for
which the Weyl curvature would be larger than the Weyl
curvature at the surface of a 2 M⊙ black hole.] This yields
the phenomenological constraint

κ >

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
6

km−1: ð7:1Þ

Remembering that η must be positive, this means that the
range κ−1 of the massive spin-2 excitation must be smaller
than 6 km. If we assume that the range is indeed of order of
a few km, the existing gravitational tests then imply (see
Sec. X. A in [2]) that

η≲ 3 × 10−4 for κ−1 ≲ 10 km: ð7:2Þ

The schematic structure of the torsion bigravity action (2.1)
reads

L ∼ cRRþ cFF

�
1þ 1þ η

κ2
F

�
; ð7:3Þ

where the (schematic) term 1þη
κ2

F is a higher derivative
fractional correction to the Einstein-Cartan-like F-term.
The development of singularities when κ2 ≲ ð1þ ηÞjWj
then appears as being associated to situations where the
fractional correction 1þη

κ2
F becomes of order unity. From

the theoretical point of view, we might then expect that this
signals the necessity of completing the torsion bigravity
action by higher-order-in-curvature terms, say,

LUV ∼ cRRþ cFF

�
1þ 1þ η

κ2
F þ

�
F
κ2

�
2

þ
�
F
κ2

�
3

þ � � �
�
:

ð7:4Þ

Such an extended model (possibly of the Born-Infeld type
[35] or another limiting-curvature model [36]) might cure
the mass-related singularity while, hopefully, improving
the UV-behavior of the theory.

VIII. CONCLUSIONS

We studied spherically symmetric perturbations of
Schwarzschild black holes within torsion bigravity theo-
ries. These Einstein-Cartan-type theories (with dynamical
torsion) contain two excitations: an Einsteinlike massless
spin-2 one, and a massive spin-2 one, of inverse range κ.

2Note that the additional potential contribution ðηþ1Þκ2VaddðrÞ,
compared to the bimetric gravity one, is not always positive. So that
we cannot establish the absence of unstable modes simply on the
ground of the inequality (6.12).

3Though early stages of cosmological expansion feature
large curvatures, these are not large Weyl curvatures because
Friedmann models are conformally flat.
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Weproved that the odd-parity time-dependent spherically
symmetric perturbed sector is trivial (see Appendix B). We
reduced the full set of perturbed even-parity equations to a
system of two first-order differential equations [see
Eqs. (4.15)], together with six algebraic constraints
(4.14). [This confirms the absence of a Boulware-Deser
sixth degree of freedom.]
We then showed how to transform the system (4.15) of

two first-order differential equations into a Zerilli-like
equation

∂2

∂r2� φðt; r�Þ −
∂2

∂t2 φðt; r�Þ ¼ V½rðr�Þ�φðt; r�Þ ð8:1Þ

with potential VðrÞ given in Eq. (5.20). Several features of
this potential were discussed. In particular, it was shown
that it reduces to the corresponding potential (5.23) in
ghost-free bimetric gravity [25] when the torsion bigravity
coupling constant η≡ cF=cR formally takes the value
η ¼ −1. [This is related to the fact that, in torsion bigravity,
the Fierz-Pauli-like equation describing massive spin-2
excitations are modified by an extra coupling to the
Weyl curvature, proportional to 1þ η (see Eq. (5.7).]
On the other hand, contrary to the bimetric gravity

potential (5.23), the torsion bigravity potential, considered
for physically allowed values η > 0, contains possibly
vanishing denominators outside the horizon when
ðκrhÞ2 < 1þ η. It was shown that these denominators, if
present, would induce a corresponding singular behavior in
the generic solution of the Zerilli-like equation. It was then
concluded that a necessary condition for the physical
acceptability of torsion bigravity is to constrain the mass
of the spin-2 excitation by the condition

κ2 >
1þ η

r2h
; ð8:2Þ

where rh denotes the radius of the considered black hole.
[The condition (8.2) is again linked to the presence of an
additional Weyl-curvature coupling in the Fierz-Pauli-like
equation, see Eq. (5.7), describing massive spin-2 excita-
tions in torsion bigravity.]
The torsion bigravity potential Vðr; η; κÞ, now consid-

ered for physically allowed values η > 0 and ðκrhÞ2>1þη,
is not everywhere positive (see Fig. 1). We could, however,
prove the stability of Schwarzschild black holes against
monopolar perturbations, by (numerically) showing the
absence of negative-energy bound states in the potential
Vðr; η; κÞ (using the theorem sketched in Appendix C).
The constraint (8.2) has important consequences for

phenomenological applications of torsion bigravity. The
first consequence is that one cannot consider large inverse
ranges κ−1, say, of galactic or cosmological sizes. The
constraint (8.2) restricts the physical applicability of torsion
bigravity to inverse ranges smaller or equal to ∼6 km [see

(7.1)]. Even when taking into account such a constraint,
torsion bigravity could still have important phenomeno-
logical consequences for the physics of neutron stars and
(stellar-mass) black holes. We leave a discussion of these
phenomenological consequences to future work.
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APPENDIX A: FIELD EQUATIONS IN
GENERAL FORM, EVEN SECTOR

The field equations for general Rþ R2 Riemann-Cartan-
type theories (with generic metric compatible affine con-
nection), in the time-dependent spherically symmetric case,
were given by Rauch and Nieh in [28]. The original field
equations that describe the even-parity sector are the
“gravity” equations (4.3a)–(4.3e), and the “connection”
equations (4.5a)–(4.5d) of [28]. [By contrast to these
original field equations, beware of some sign misprints
in the “slightly different form” given later for the field
equations, namely, Eqs. (4.4a)–(4.4f) and, consequently,
Eqs. (6.2a)–(6.2e). Specifically, the signs of the contribu-
tions proportional to 1

3λ ð−aþ 2c − 3λÞ in Eqs. (4.4c) and
(6.2c) should be reversed.] To adjust these field equations
to the case of torsion bigravity, one needs to take the
following values of the parameters λRN , aRN , bRN , cRN ,
pRN , qRN , rRN , sRN , tRN used in [28] (see Eq. (1.1) there for
definitions of these parameters):

λRN ¼ cF þ cR;

cRN ¼ bRN ¼ −aRN ¼ cF;

pRN ¼ qRN ¼ 0;

sRN ¼ rRN
2

¼ −
cF2

6
;

tRN ¼ c34
2

þ 2cF2

3
: ðA1Þ

Let us recall the field variables in even-parity sector:
Φðt; rÞ and Λðt; rÞ describing the spherically symmetric
metrics, and four variables describing dynamical torsion,

Vðt; rÞ≡Ar̂
t̂ t̂ ¼þAt̂

r̂ t̂ ¼ e−ΛΦ0 þ Tt̂
r̂ t̂;

Wðt; rÞ≡Ar̂
θ̂ θ̂ ¼ Ar̂

ϕ̂ ϕ̂ ¼ −Aθ̂
r̂ θ̂ ¼ −Aϕ̂

r̂ ϕ̂ ¼ −
e−Λ

r
− T θ̂

r̂ θ̂;

Xðt; rÞ≡Ar̂
t̂ r̂ ¼þAt̂

r̂ r̂ ¼ e−Φ∂tΛþ Tr̂
t̂ r̂;

Yðt; rÞ≡Aθ̂
t̂ θ̂ ¼þAt̂

θ̂ θ̂ ¼ Aϕ̂
t̂ ϕ̂ ¼þAt̂

ϕ̂ ϕ̂ ¼ T θ̂
t̂ θ̂: ðA2Þ

Introducing the following auxiliary quantities,
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A≡ −e−Λ−ϕ½∂tðeΛXÞ − ∂rðeϕVÞ�; C≡ −∂tYe−Φ − VW; D≡ e−Λ

r
ðrYÞ0 þ XW; G≡ −∂tWe−Φ − VY;

H≡ e−Λ

r
ðrWÞ0 þ XY; L≡ 1

r2
þ Y2 −W2; Ω≡A −Lþ 2ðC −HÞ; ðA3Þ

and using (A1) and (A2), one can rewrite the 9 (nonlinear) field equations (4.3a)–(4.3e), (4.5a)–(4.5d) of [28], adapted for
torsion bigravity, in the following form:

c34 þ cF2

cF þ cR
ðG2 − D2Þ þ 2HþL −

cF2

3ðcF þ cRÞ
½ðA −CÞ2 − ðH −LÞ2� þ 2cR

cF þ cR
½Tr̂

t̂ r̂T θ̂
t̂ θ̂

þ 1

2
ðT θ̂

r̂ θ̂
2 þ T θ̂

t̂ θ̂
2Þ − T θ̂

t̂ θ̂X − ðTr̂
t̂ r̂ þ T θ̂

t̂ θ̂ÞY þ e−Λð2r−1T θ̂
r̂ θ̂ þ ∂rT θ̂

r̂ θ̂Þ� þ odd2 ¼ 0; ðA4Þ

c34 þ cF2

cF þ cR
ðG2 −D2Þ þ 2C −Lþ cF2

3ðcF þ cRÞ
½ðAþHÞ2 − ðCþLÞ2� þ 2cR

cF þ cR
½e−Φ∂tT θ̂

t̂ θ̂

þ 1

2
ðT θ̂2

r̂ θ̂ þ T θ̂2
t̂ θ̂Þ þ T θ̂

r̂ θ̂T
t̂
r̂ t̂ − T θ̂

r̂ θ̂V þ ðT θ̂
r̂ θ̂ þ Tt̂

r̂ t̂ÞW� þ odd2 ¼ 0; ðA5Þ

Aþ C −H −
cF2

3ðcF þ cRÞ
ðA −CþH −LÞðAþLÞ þ cR

cF þ cR
fTr̂

t̂ r̂T θ̂
t̂ θ̂ − T θ̂

r̂ θ̂T
t̂
r̂ t̂

þ 1

r
e−Λ−Φ½ð∂tTr̂

t̂ r̂ þ ∂tT θ̂
t̂ θ̂ÞeΛr − ð∂rT θ̂

r̂ θ̂ þ ∂rTt̂
r̂ t̂ÞeΦrþ eΛr∂tΛðTr̂

t̂ r̂ þ T θ̂
t̂ θ̂Þ − eΦðT θ̂

r̂ θ̂ þ Tt̂
r̂ t̂Þ

−eΦr∂rΦðT θ̂
r̂ θ̂ þ Tt̂

r̂ t̂Þ�g þ odd2 ¼ 0; ðA6Þ

D −
c34 þ cF2

cF þ cR
ðCD −GHÞ þ c34

cF þ cR
DðC −HÞ þ cF2

3ðcF þ cRÞ
DΩ

−
cR

cF þ cR

�
e−Λ

r
ðr∂rT θ̂

t̂ θ̂ þ 2T θ̂
t̂ θ̂Þ þ ðTr̂

t̂ r̂ þ T θ̂
t̂ θ̂ÞðT θ̂

r̂ θ̂ þWÞ − T θ̂
r̂ θ̂X

�
þ odd2 ¼ 0; ðA7Þ

G −
c34 þ cF2

cF þ cR
ðCD −GHÞ þ c34

cF þ cR
GðC −HÞ þ cF2

3ðcF þ cRÞ
GΩ

−
cR

cF þ cR
½e−Φ∂tT θ̂

r̂ θ̂ − T θ̂
t̂ θ̂V − ðT θ̂

r̂ θ̂ þ Tt̂
r̂ t̂Þð−T θ̂

t̂ θ̂ þ YÞ� þ odd2 ¼ 0; ðA8Þ

−
1

2
cF2e−Λ∂rΩþ T θ̂

r̂ θ̂ð3cF þ cF2ΩÞ þ 3c34ðD −GÞY þ 3

2
cF2

�
e−Λ

r
ðr∂rAþ 2AÞ þ 2CW − 2GY

�

þ odd2 ¼ 0; ðA9Þ

−
1

2
cF2e−Φ∂tΩþ T θ̂

t̂ θ̂ð3cF þ cF2ΩÞ − 3c34ðD −GÞW þ 3

2
cF2ðe−Φ∂tA − 2DW þ 2HYÞ þ odd2 ¼ 0; ðA10Þ

3cFðTr̂
t̂ r̂ þ T θ̂

t̂ θ̂Þ − cF2 ½e−Φ∂tΩ − ðTr̂
t̂ r̂ þ T θ̂

t̂ θ̂ÞΩ� þ 3cF2

�
e−Λ∂rDþ e−Φ∂tCþ e−ΦC∂tΛ

þ e−Λ

r
ð1þ r∂rΦÞDþGV þHX þLY

�
þ 3c34

e−Λ

r
½ð∂rD − ∂rGÞrþ ðD −GÞð1þ ∂rΦr − eΛrVÞ�

þ odd2 ¼ 0; ðA11Þ

3cFðT θ̂
r̂ θ̂ þ Tt̂

r̂ t̂Þ − cF2 ½e−Λ∂rΩ − ðT θ̂
r̂ θ̂ þ Tt̂

r̂ t̂ÞΩ� þ 3c34e−Φ½ðD −GÞð∂tΛ − eΦXÞ þ ∂tD − ∂tG�

þ cF2

�
−3e−ΦG∂tΛ − 3

e−Λ

r
ð1þ r∂rΦÞH − 3CV − 3LW − 3DX − 3e−Φ∂tG − 3e−Λ∂rH

�
þ odd2 ¼ 0: ðA12Þ
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In Eqs. (A4)–(A12), the notation odd2 denotes terms that
are quadratic in odd-parity variables, so that they do not
affect the linearized equations, and, thus, have no impor-
tance for the current study.

APPENDIX B: PARITY-ODD SECTOR

The five exact field equations that involve the odd-parity
variables C1;…; C4 linearly are displayed in Eqs. (4.3f),
(4.6a)–(4.6d) of [28] [let us recall that the parameters
a; b; c; p; q, etc of [28] take, in the case of torsion bigravity,
the values given in Eq. (A1)]. Recalling that the back-
ground values CiSðrÞ equal to zero, we insert in the latter
odd-parity equations the perturbed values

Ciðt; rÞ ¼ εĈiðt; rÞ; i ¼ 1;…; 4; ðB1Þ

which correspond to the odd-parity sector of Eq. (3.1). One
so obtains five linear equations involving only the four odd-
parity field variables Ĉ1;…; Ĉ4. In what follows, we omit
the notation ,̂ for simplicity.
These linearized equations are as follows4:

−
1

2r9=2
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p ð1þ ηÞλ ðc34rh þ c34rhη

þ r3ηλÞð2r2∂rC4 þ 2r2∂tC3 − 2rrh∂rC4 − 2rC2

þ 2rhC2 þ 2rC4 − rhC4Þ ¼ 0; ðB2Þ

3ηλC3

1þ η
¼ 0; ðB3Þ

3c34∂tC3

r
þ 3c34ðr − rhÞ

r3
ðr∂rC4 − C2Þ

þ 3

2r3ð1þ ηÞ ð2c34r − c34rh þ 2c34rη

−c34rhηþ 2r3ηλÞC4 ¼ 0; ðB4Þ

3c34
r

ð−∂tC2 þ r∂2
rtC4Þ

þ 3c34
2rðr − rhÞ

ð2r∂tC4 þ 2r2∂2
t C3 − rh∂tC4Þ

þ 3ηλ

1þ η
ðC1 − C3Þ ¼ 0; ðB5Þ

3c34
r2

ð−∂rC2 þ r∂2
rC4Þðr − rhÞ

þ 3c34
r2

ð2r∂rC4 þ r2∂2
rtC3 − rh∂rC4Þ

þ 3

4r3ðr − rhÞð1þ ηÞ ½2c34r
2ð2r − 3rhÞð1þ ηÞ∂tC3

− 2ðr − rhÞðc34rhð1þ ηÞ − 2r3ηλÞC2

−ðc34r2hð1þ ηÞ þ 4r3ðrh − rÞηλÞC4� ¼ 0: ðB6Þ

Equation (B3) implies

C3ðt; rÞ ¼ 0: ðB7Þ

Then, inserting this result into the following combination of
equations, c34rhð1þηÞþr3ηλ

r3=2ð1þηÞλ ðB4Þ þ 3c34
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p ðB2Þ, gives

3ηðc34rhð1þ ηÞ þ r3ηλÞC4

r3=2ð1þ ηÞ2 ¼ 0; ðB8Þ

which implies

C4ðt; rÞ ¼ 0: ðB9Þ

Substituting (B7) and (B9) in Eq. (B4) then gives
C2ðt; rÞ ¼ 0. Then, substituting C2ðt; rÞ ¼ 0 together
with (B9) and (B7) in Eq. (B5) gives C1ðt; rÞ ¼ 0.
Finally, we get

C1ðt; rÞ ¼ C2ðt; rÞ ¼ C3ðt; rÞ ¼ C4ðt; rÞ ¼ 0 ðB10Þ

which also identically satisfies Eq. (B6). Therefore, there
are no spherically symmetric odd-parity perturbations.

APPENDIX C: SKETCH OF A PROOF OF A
BOUND-STATES COUNTING THEOREM

One can formulate a concrete theorem within a Sturm-
Liouville context as follows:
The number of negative-energy bound states of the

potential VðxÞ between x0 and x1 > x0, i.e., the number
of solutions with λ < 0 of the following problem

∂2
xφλðxÞ ¼ ðVðxÞ − λÞφλðxÞ;
φλðx0Þ ¼ 0; φλðx1Þ ¼ 0 ðC1Þ

is equal to the number of nodes of a (nonzero) solution of
the following problem

∂2
xφ0ðxÞ ¼ VðxÞφ0ðxÞ; φ0ðx0Þ ¼ 0: ðC2Þ

The proof of this theorem is obtained by following, as λ
continuously increases from a sufficiently negative value to
zero, the nodes of a solution satisfying only one of the
boundary conditions, say, φλðx0Þ ¼ 0, which can be

4These are linearized versions of the equations of [28] written
in the following order: (4.3f), (4.6a)–(4.6d).
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completed (without loss of generality) by the condition
φ0
λðx0Þ ¼ 1.
First, if λ is less than the minimal value Vmin of the

potential VðxÞ (see Fig. 2), the difference VðxÞ − λ is
always positive, the second derivative φ00

λðx0Þ is positive in
the right vicinity of x0 (here and in what follows, the prime
denotes ∂x). It is then easily seen that the second derivative
φ00
λðx0Þ will always stay positive, so that the curve φλðxÞ

will be a convex, monotonically increasing function which
will never cross zero (see upper curve, φλ1, in Fig. 2).
If now one increases λ so that λ > Vmin, the second

derivative in (C1) becomes negative at some stage. The
curve φλðxÞ becomes concave which might allow it (if
VðxÞ − λ is sufficiently negative) to turn over and cross
zero. Let us denote as ξλ the value of x where φλðxÞ ¼
φλðξλÞ ¼ 0. Let us then prove that as λ is increased to a
nearby value μ≡ λþ ϵ, where ϵ > 0 and small, the
corresponding value ξμ where φλðξμÞ ¼ 0 is always on
the left of ξλ.
Integrating the easily checked identity

ðφμφ
0
λ − φ0

μφλÞ0 ¼ φλφμ½VðxÞ − λ − VðxÞ þ μ�
¼ ðμ − λÞφλðxÞφμðxÞ ðC3Þ

between x0 and ξλ yields

φμðξλÞφ0
λðξλÞ ¼ ðμ − λÞ

Z
ξλ

x0

φλðxÞφμðxÞ: ðC4Þ

The latter identity is easily seen to imply that, whatever be
the sign of the slope φ0

λðξλÞ, φμðxÞ (when μ is slightly larger
than λ) will have a zero located at a position ξμ on the left
of ξλ.

The rest of the proof consists in following this migration
toward the left of the zeros of φλðxÞ as λ increases. Each
bound state corresponds to the case where one such zero
passes through x1 (as illustrated by the middle curve, φλ2, in
Fig. 2). As a consequence, when λ reaches zero, the zero-
energy wave function φ0ðxÞ has accumulated N nodes in
the open interval ðx0; x1Þ, where N is exactly the number of
bound states of negative energy, λ < 0.
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