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We show that the no-hair theorem for scalar-tensor theories with bimetric structure can be evaded.
We find that hairy black hole solutions in the presence of an electric charge admit anti-de Sitter (AdS), flat
or de Sitter asymptotics with spherical, flat, or hyperbolic base manifolds. Spherically symmetric,
asymptotically flat black holes and asymptotically AdS configurations with any horizon topology are
compatible with a regular scalar field on and outside the event horizon. The latter presents a rich
thermodynamic behavior induced by the disformal factor that enters as a coupling parameter in the theory.
In the grand canonical ensemble, there is an interplay of stability and first-order phase transitions between
thermal AdS, the hairy black hole, and the Reissner-Nordström-AdS black hole, whose thermodynamic
phase space resembles a solid-liquid-gas system, with an electric potential playing the role of pressure.
In close analogy, there is a triple point where the three phases coexist, being equally probable.
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I. INTRODUCTION

As it is discussed by Bekenstein in Ref. [1] to describe
gravitation, one may need two geometries. One of these
describes gravitation, while the other defines the geometry
in which matter describes the gravitational dynamics. This
approach is necessary if one wants to formulate a modified
theory of gravity. To avoid conflicts with the tests of
general relativity (GR), one has to use a Riemannian metric
gμν describing the geometry’s dynamics, and in order to see
the effect from the departure from standard GR, one has to
introduce a relation between gμν and the physical geometry
on which matter propagates.
Then, he introduced the following Riemannian metric,

ds2 ¼ ĝμνdxμdxν ≡ ðgμνAþ L2B∂μϕ∂νϕÞdxμdxν; ð1Þ

where L is a length scale and A and B are in general
functions of the scalar field ϕ. The physical metric gμν and
the matter metric ĝμν are related by a conformal and a
disformal transformation. The physical understanding of
the relation of the two metrics in (1) was presented in
Ref. [1]. When B ¼ 0, a conformal transformation relates
these two metrics. This transformation leaves all shapes
invariant and stretches equally all spacetime directions.
When B ≠ 0, we have a disformal transformation, the effect
of which is that the stretch in the direction parallel to ∂μϕ is

by a different factor from that in the other spacetime
directions and shapes are distorted. To see the physical
context which is introduced by the disformal transforma-
tion, the field equations should be written at the outset with
the metric ĝμν.
This bimetric scalar-tensor gravity theory developed by

Bekenstein was employed in cosmology to explain obser-
vational results and study the propagation of gravitational
waves. In Refs. [2,3], it is argued that the contribution from
the scalar field in the metric ĝμν can generate acceleration in
the expansion of the Universe, without negative pressure
and with zero cosmological constant, and gravitational
waves will propagate at a different speed from nongravita-
tional waves. Furthermore, the authors found that the
gravitational waves and matter waves have different propa-
gation speeds in this bimetric structure. They studied a
model in which ordinary matter is coupled to the matter
metric ĝμν of (1) with A ¼ L2 ¼ 1. All matter fields except
the scalar field ϕ propagate in the geometry described by
ĝμν, while matter and radiation will propagate along geo-
desics determined by this geometry and obey the equiv-
alence principle. A result of this consideration is that the
speed of gravitational wave propagation is found to be
significantly different from the speed of matter waves and
photon propagation in the early Universe. In Ref. [4], stars
and black holes in varying speed of light theories are
studied.
Disformal transformations were used in the study of

various scalar-tensor gravity theories. One of them is the
most general scalar-tensor theory leading to second-order
field equations in four dimensions is the Horndeski theory.
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In Ref. [5], it is shown that disformal transformations play,
for the Horndeski theory, a role similar to conformal
transformations for scalar-tensor theories. Disformal
transformations were used in higher-order scalar-tensor
Horndeski theories to study the stability of these theories
and the absence of ghosts [6,7]. In these theories, cosmo-
logical perturbations were studied in Ref. [8], and it was
shown that both curvature and tensor perturbations on the
flat isotropic cosmological background are invariant under
the disformal transformation.
The formation of compact objects in a class of scalar-

tensor theories with disformal coupling to matter was
studied in Ref. [9]. A minimal model of a massless
scalar-tensor theory was proposed, and an investigation
of how the disformal coupling affects the spontaneous
scalarization of slowly rotating compact objects was carried
out. In Ref. [10], starting from suitable seed solutions in
degenerate higher-order scalar-tensor theories, new solu-
tions were discussed using disformal field transformations,
and also hairy black hole solutions were obtained.
The aim of this work is to find hairy black holes in

bimetric theories in which the two metrics are connected by
a disformal transformation. In this study, we will let in (1)
A ¼ L2 ¼ 1 and B to be constant independent of the scalar
field ϕ. As we mentioned, when B ¼ 0, the two metrics are
connected by a conformal transformation. Black hole
solutions where the scalar field is conformally coupled
to gravity were found by Bocharova, Bronnikov, and
Melnikov and independently by Bekenstein, called a
BBMB black hole [11]. The spacetime of this solution
is the extremal Reissner-Nordström (RN) spacetime, but
the scalar field diverges at the black hole horizon. Later, a
cosmological constant was introduced in Ref. [12], and also
a quartic scalar potential that respects the conformal
invariance and a simple relation between the scalar curva-
ture and the cosmological constant was generated. In this
case, the scalar field does not diverge at the horizon of the
black hole. Black hole solutions in scalar-tensor theories
were found [13–22], and even boson stars and black holes
in biscalar extensions of Horndeski theories were studied in
Ref. [23]. Recently, black hole solutions with a non-
minimally coupled scalar field were studied in Ref. [24–
29]. Black hole thermodynamics in anti-de Sitter (AdS)
space has been also studied for hairy solutions in higher
dimensions [30–32].
The primary motivation of this work is to study if we can

evade the no-hair theorem in scalar-tensor theories with
bimetric structure in four dimensions, and if we can
generate hairy black holes with a regular scalar field on
the horizon and beyond. We will consider a scalar field ϕ
coupled to the physical metric gμν and an electromagnetic
field coupled to the matter metric ĝμν. Solving the field
equations, we will show that the theory admits hairy black
hole solutions with regular scalar field on and outside the
horizon. Since the disformal factor B is a coupling constant,

it defines an effective cosmological constant, and the
spacetime can be asymptotically flat, de Sitter (dS) or
AdS. Studying the thermodynamics, we will show that the
solution has a rich thermodynamic behavior. In the grand
canonical ensemble, there is an interplay of stability and
first-order phase transitions between the hairy black hole,
the Reissner-Nordström-AdS black hole, and thermal AdS,
whose thermodynamic phase space resembles a solid-
liquid-gas system, with an electric potential playing the
role of pressure. In close analogy, there is a triple point
where the three phases coexist, being equally probable.
This work is organized as follows. In Sec. II, we present

the general setup of the model. In Sec. III, we perform the
thermodynamical analysis using the Euclidean approach. In
Sec. IV, we discuss the local stability of the black hole
solution. In Sec. V, we discuss the phase transitions of the
hairy black hole solution. Finally, in Sec. VI, we present
our conclusions.

II. MODEL

In the general setup, the total action is a contribution of
the Einstein-Hilbert action SEH½gμν�, the action Sϕ½gμν;ϕ�
for the scalar field ϕ, and the action SM½ĝμν;ψ � for the
matter field ψ . The matter field is coupled to the so-called
matter metric ĝμν which is related to gμν through the relation
ĝμν ¼ gμν þ B½ϕ�∂μϕ∂νϕ. Then, the total action corre-
sponds to gravity minimally coupled to a scalar field
and an electromagnetic field minimally coupled to the
matter metric ĝμν. Namely,

I¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−2Λ
2κ

−
1

2
gμν∇μϕ∇νϕ−

1

4
ĝμνĝαβFμαFνβ

�
;

ð2Þ

where Fμν¼∂μAν−∂νAμ and F̂αβ ¼ ĝαμĝβνFμν. We obtain
the following field equations,

Eμν ≔ Gμν þ Λgμν ¼ κðTμν
ϕ þ sT̂μνÞ; ð3Þ

□ϕ − BsT̂μν∇̂μ∇̂νϕ ¼ 0; ð4Þ

∇̂βF̂
αβ ¼ 0: ð5Þ

with s ¼ ffiffiffiffiffiffi
−ĝ

p
=

ffiffiffiffiffiffi−gp
. The energy-momentum tensors are

Tμν ¼ −
1

2
gμνð∇ϕÞ2 þ∇μϕ∇νϕ; ð6Þ

T̂αβ ¼ F̂αμF̂β
μ −

1

4
F̂2ĝαβ; ð7Þ
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where1 ð∇ϕÞ2≔∇μϕ∇μϕ, ð∇̂ϕÞ2 ≔ ∇̂μϕ∇̂μϕ,□ ≔ ∇μ∇μ,

□̂ ≔ ∇̂μ∇̂μ.
We are interested in static black hole solutions to the

field equations with a generic base manifold. Accordingly,
we choose the following ansatz,

ds2 ¼ −N2ðrÞFðrÞdt2 þ dr2

FðrÞ þ r2dΩ2
γ ;

ϕ ¼ ϕðrÞ; A ¼ AðrÞdt; ð8Þ

as well as the disformal function B½ϕ� ¼ B as a constant
parameter, where dΩ2 stands for the line element of a two-
dimensional Euclidean manifold of constant curvature
normalized to γ ¼ f−1; 0; 1g, corresponding to a static
hyperbolic, flat, or spherical space, respectively. In general,
the field equations are quite complicated since the scalar
field is present in every term where the matter metric is
involved. However, following the same line of thought used
in Ref. [33] to evade the no-hair theorems’ obstructions,
this technical but important detail can be significantly
simplified, allowing us to obtain analytical solutions.
This theory is shift symmetric under ϕ → ϕþ c, and in
consequence, the scalar field equation can be viewed as a
conservation law,∇μJμ ¼ 0, where the conserved current is
given by

Jμ ¼ ðgμν − BsT̂μνÞ∇νϕ: ð9Þ

Note that the assumption of a regular horizon with a finite
scalar current must have a vanishing radial component.
This can be seen by demanding a finite norm of the scalar
current JμJμ ¼ ðJrÞ2=F at the horizon, which implies that
Jr must vanish there. According to this ansatz, the scalar
field equation admits a first integral, r2Jr ¼ C0, where C0

is an integration constant. Then, Jr must vanish everywhere
to satisfy this equation. This means

Jr ¼ Fψ

�
1þ BðA0Þ2

2N2ð1þ BFψ2Þ3=2
�
¼ 0; ð10Þ

where ψ ¼ ϕ0ðrÞ and prime stands for derivation with
respect to the radial coordinate. Note that Jr is the only
nonvanishing component of the current in (9). We immedi-
ately see a restriction to the parameter B, which must be
negative to satisfy this relation. Using Eq. (10), we can
solve the remaining Einstein equations, and as is expected,
the Maxwell equations are automatically solved by virtue
of the Bianchi identity. It is found that the theory admits a
charged hairy black hole solution (hBH). Namely,

NðrÞ ¼ N0

FðrÞ ¼ −
r2

3

�
Λ −

κ

2B

�
þ γ −

2M
r

−
κBq4

40r6

ψ2ðrÞ ¼ −
1

BF

�
1 −

B2q4

4r8

�
; AðrÞ ¼ −

Bq3

10r5
; ð11Þ

where N0,M, and q are integration constants. Without loss
of generality, we can always set N0 ¼ 1 by a proper
rescaling on the time coordinate. We can see that this
spacetime is asymptotically flat, dS, or AdS when
Λ ¼ κ=2B, Λ > κ=2B, or Λ < κ=2B, respectively. In
fact, identifying the effective cosmological constant
Λeff ¼ Λ − κ=2B, when the radial coordinate approaches
infinity, the Riemann tensor takes the form

Rαβ
μν ¼

Λeff

3
δαβμν; ð12Þ

while the spacetime solution

gtt ¼ −grr ∼
r→∞

Λeff

3
r2: ð13Þ

In the case of Λeff ≠ 0, the asymptotic behavior of ψ2 goes
like

ψ2ðrÞ ∼
r→∞

3

BΛeffr2
þOðr−4Þ; ð14Þ

and in the case of Λeff ¼ 0,

ψ2ðrÞ ∼
r→∞

−
1

Bγ
þOðr−1Þ: ð15Þ

From (14) and (15), we see that there is a relation between a
real scalar field and the asymptotic behavior. When
Λeff ≠ 0, imposing the reality condition on the scalar field
restricts the effective cosmological constant to Λeff < 0,
whereas in the asymptotically flat case Λeff ¼ 0, this
condition is only compatible with a spherical base mani-
fold. On the other hand, near the horizon rþ, we have

ψ2ðrÞ ∼
r→rþ

−
1

BF0ðrþÞðr − rþÞ
�
1 −

B2q4

4r8þ

�
þOð1Þ

⇒ ϕðrÞ ∼
r→rþ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

−BF0ðrþÞ
�
1 −

B2q4

4r8þ

�s ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p

þOðr − rþÞ: ð16Þ

The black hole condition on the metric function F at the
horizon ensures the reality of the scalar field in the domain
of outer communication, provided

1Remember that ∇̂μϕ ¼ K∇μϕ and ∇̂μϕ ¼ ∇μϕ with K ¼
1 − Bð∇̂ϕÞ2.
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B2q4

4r8þ
≤ 1: ð17Þ

A curvature singularity at the origin is dressed by the
event horizon as is evident from the Kretschmann scalar,

K ¼ 239B2q8κ2

200r16
þ 56Bq4Mκ

5r11
þ 2Bq4κΛeff

3r8
þ 48M2

r6

þ 8Λ2
eff

3
: ð18Þ

It is worth mentioning that there is no limit to a hairy
neutral solution. It is because switching off the integration
constant q, which we will see is proportional to the electric
charge, recovers the Schwarzschild black hole solution
with a trivial scalar field. However, a second branch of
solutions corresponds to the Reissner-Nordström AdS
(RNAdS) black hole with a trivial scalar field ϕ ¼ 0.
Throughout this work, we will focus on the case of AdS
asymptotics, which requires Λ ¼ −3=l2 and B < −l2=6.
This way, both black hole spacetimes, the bald and the
hairy one, share the same asymptotic behavior as is
required for a compatible thermodynamic analysis. We
give more detail on this in the next section. Hereafter, to not
overload with negative signs in the values of B, wherever
we use B̄, we are considering B̄≡ jBj.
Up to now, we have just mentioned the event horizon

located at rþ. Event horizons are located at FðrÞ ¼ 0, and
since the metric function can be written as an eighth-degree
polynomial,

F ¼ 1

120B̄r6
Pðr;M; q; B̄; γÞ

¼ 1

120B̄r6
ð3B̄2q4κ − 240B̄Mr5 þ 120B̄γr6

− 20ðκ þ 2B̄ΛÞr8Þ; ð19Þ

there are eight roots: two real and six complex. The real
roots represent the inner and outer horizon, r− and rþ,
respectively.
As in the next section, any discussion of equilibrium

black hole thermodynamics based on the Euclidean
approach requires determining the allowed values of the
parameters to define thermodynamic quantities at the
boundary without any obstruction. It can be done by
finding the extremality condition, where both event hori-
zons coincide. For this, we study the discriminant of
polynomial Pðr;M; q; B̄Þ, which is a quite involved expres-
sion, and it is not instructive to show it. Instead, we plot the
results in Fig. 1 for each topology. The plots depict the
allowed region for the integration constant q andM, which
we will see are related to the conserved charges of mass and
electric charge. Each region is delimited by the critical
curve where r− ¼ rþ. The allowed values are in the whole
region below the curve for some values of the parameter B.
We see that as we approach the asymptotically flat limit
B̄ ∼ 1=6, the set of allowed values drastically increases.

III. THERMODYNAMICS

In this section, we perform the thermodynamical analysis
using the Euclidean approach. To achieve this, the partition
function for a thermodynamical ensemble is identified with
the Euclidean path integral in the saddle-point approxima-
tion around the classical Euclidean solution [34].
The Euclidean continuation of the black hole configu-

ration (11) reads

ds2E ¼ N2ðrÞFðrÞdτ2 þ dr2

FðrÞ þ r2dΩ2
γ ;

ϕ ¼ ϕðrÞ; A ¼ AðrÞdτ; ð20Þ

with 0 ≤ τ ≤ β periodic and r > rþ. A regular Euclidean
geometry at the horizon requires a period β of the
Euclidean time identified with the inverse temperature

FIG. 1. Allowed values of q4 for a given value of M for different values of B̄. We have used l to plot it in dimensionless variables
and κ ¼ 1. The whole region below each curve represents the values of the mass where the hairy black hole possesses two event
horizons.
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T ¼ β−1 ¼ F0ðrþÞ=4π. The reduced Hamiltonian action is
obtained replacing (20) in (2) and can be written as follows,

IE ¼ βσ

Z
∞

rþ
drðNH − AτGÞ þ BE; ð21Þ

where σ is the area of the base manifold Ωγ . This area is
formally infinite, but we can always compactify the horizon
on a 2-torus and make it finite. The term BE is a
supplementary boundary term associated to the
Euclidean action and

H ¼ r2

κ

�
F0

r
þ F − γ

r2
þ Λþ κ

2
Fψ2

�

þ ðπrÞ2
2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B̄Fψ2

q
; ð22Þ

G ¼ ∂rπ
r: ð23Þ

Here, πr stands for the only nonvanishing component of
the electromagnetic field momentum, defined by2

πr ¼ −
r2A0

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B̄Fψ2

p : ð24Þ

The boundary term BE is fixed by requiring that the action
attains an extremum in the class of configuration consid-
ered. The variations on the reduced action with respect to
N,F, A, πr, ϕ provides the following equations of motion:

H ¼ 0; ð25Þ

−
rN0

κ
þ 1

2
r2Nψ2 −

B̄NðπrÞ2ψ2

4r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B̄Fψ2

p ¼ 0; ð26Þ

G ¼ 0; ð27Þ

A0 þ Nπr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B̄Fψ2

p
r2

¼ 0; ð28Þ

∂rðNr2JrÞ ¼ 0; ð29Þ

respectively. It can be shown that these equations are
consistent with the Einstein equations, i.e., the black hole
solution is also a solution of this set of equations. In fact,
Eq. (28) is nothing other than the definition of the
electromagnetic momentum. Equation (27) is solved by
πr ¼ q, with q an integration constant. From (29), we have

obtained from the scalar field equation thatNr2Jr ¼ j, with
j an integration constant. As we mentioned before Eq. (10),
the regularity condition imposed on the horizon and the
scalar current Jr implies that Jr must vanish. Finally, it is
straightforward to show that the aforementioned equations
provide ψ2 and A. Additionally, equations (25) and (26)
determine N as a constant and F by the expression given in
(11). Without loss of generality, we set N ¼ 1.
The variation of the boundary term gives

δBE ¼ βσ

�
N

�
−
rδF
κ

− r2Jrδϕ

�
þ Aδπr

�
∞

rþ
; ð30Þ

where rþ represents the outer event horizon. As we
mentioned in the previous section, real scalar fields are
compatible with AdS or flat asymptotics, and AdS black
holes admit any horizon topology. As we discuss in the
Conclusions, another motivation to consider AdS black
hole solutions (Λeff < 0) is that these solutions allow for
holographic applications. For this black hole solution, we
get the following contributions from the fields evaluated at
the event horizon and at infinity, respectively:

δFjrþ ¼−
4π

β
δrþ; δϕjrþ ¼ δϕðrþÞ−ϕ0jrþδrþ;

δπrjrþ ¼ δq;

δFj∞¼−2
δM
r

þ κB̄δq4

40r6
;

δϕj∞¼−
ffiffiffiffi
3

B̄

r
δM

jΛeff j3=2r3
;þOðr−5Þ; δπrj∞¼ δq: ð31Þ

Notice that, due to the condition Jr ¼ 0, only the first and
third terms in (30) contribute, getting

δBEðrþÞ ¼ δ

�
ωþ
4G

�
þ βΦδðσqÞ; ð32Þ

δBEð∞Þ ¼ βσ
2δM
κ

; ð33Þ

where we have identified the chemical potential for the
electric field as Φ ¼ AðrþÞ and used that ωþ ¼ σr2þ is the
horizon area. At this point, we adopt the grand canonical
ensemble, where the temperature T ¼ β−1 and the chemical
potential are fixed. Using the boundary conditions, we
integrate the variations of the boundary term, obtaining the
expressions

BEðrþÞ ¼
ωþ
4G

þ βΦσq; ð34Þ

BEð∞Þ ¼ βσ
2M
κ

; ð35Þ

2These quantities can be obtained as a result of the standard
Hamiltonian formalism applied to this theory. We note here that
the metric function NðrÞ is a necessary function to obtain an
equivalent set of field equations to the Einstein equations. As Aτ,
it plays the role of a Lagrange multiplier.
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and the value of the reduced action on shell reads

IE ¼ βσ
2M
κ

−
ωþ
4G

þ βΦσq; ð36Þ

up to an arbitrary additive constant without variation. In the
grand canonical ensemble, the Gibbs energy G is related to
the Euclidean action by IE ¼ βG ¼ βM − S − βΦQ,
where the mass M, the electric charge Q, and the entropy
S are computed as usual, obtaining

M¼
� ∂
∂β− β−1Φ

∂
∂Φ

�
IE ¼ σ

2M
κ

;

Q¼−
1

β

∂IE
∂Φ ¼ σq; S¼

�
β
∂
∂β−1

�
IE ¼

ωþ
4G

: ð37Þ

As a consequence of this approach, the first law of
thermodynamics is satisfied dM ¼ TdSþΦdQ, which
is the case considering the last expressions.
There is a second branch of black hole solution which is

not smoothly connected to the previous one when the scalar
field is switched off. This means that the thermodynamical
system can admit a second configuration in the same grand
canonical ensemble. As we mentioned in the previous
section, this is nothing other than the RNAdS solution with
trivial scalar field ϕ ¼ 0, which reads

F0ðρÞ ¼ −
ρ2

3
Λþ γ −

2M0

ρ
þ κq20
2ρ2

;

ψ2
0ðρÞ ¼ 0; A0ðρÞ ¼ −

q0
ρ
: ð38Þ

For the RNAdS black hole, the mass M0, the electric
charge Q0, and the entropy S0 are given by

M0 ¼ σ
2M0

κ
; Q0 ¼ σq0; S0 ¼

ωþ0

4G
; ð39Þ

where ρþ stands for the outer event horizon, ωþ0 ¼ σρ2þ is
the horizon area, and the chemical potential for the electric
field can be identified as Φ0 ¼ A0ðρþÞ.
At this stage, it is convenient to use l as a length scale and

rescale thermodynamic quantities to express them as
dimensionless variables. Namely,

T →
T
l

M → σlM S → σl2S;

Φ → Φ Q → σlQ G → σlG: ð40Þ

By consistency with this rescaling, we promote r → rl,
q → ql, M → Ml, and the parameter B → Bl2 to dimen-
sionless variables. The same rescaling runs for the corre-
sponding RNAdS quantities. With this rescaling, we get
rid of carrying the parameter l in any of the following
equations. We also set κ ¼ 8πG ¼ 1, unless G appears
explicitly.
As expected, the mass of the black hole strongly depends

on the coupling parameter B. It is given by

M ¼ γ
ffiffiffi
S

p

2
ffiffiffiffiffiffi
2π

p −
ð1 − 6B̄ÞS3=2
24

ffiffiffi
2

p
π3=2B̄

þ 51=3Φ4=3S5=6

8
ffiffiffi
2

p
π5=6B̄1=3

ð41Þ

and plotted in Fig. 2 for a fixed potential. We have included
the RNAdS mass for comparison.
We see that the hairy black hole with spherical and flat

base manifold possesses positive mass, irrespective of its
size. In contrast, in the hyperbolic case, the mass is no
longer a monotonically increasing function, and black
holes with negative mass are allowed, which imposes a
physical restriction on the allowed size of these black holes.
For a given positive mass at the same electric potential, the
entropy of the hBH is larger than the entropy of the
RNAdS, even in the asymptotically flat case B̄ ¼ 1=6.
The difference of the entropy increases as the coupling
parameter increases, reaching a limit curve when the scalar

FIG. 2. Mass as a function of the entropy for fixed potential. For comparison, we have included the red curve corresponding to RN
black hole, while the blue curve is representative of the curves for any value of B̄. In particular, we used B̄ ¼ 10. The electric potential
has been set to Φ ¼ 1.
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field is strongly coupled given byM ¼
ffiffi
S

p ðSþ2πγÞ
4
ffiffi
2

p
π3=2

, as can be

seen in the black curve and obtained from (41). Although it
is not conclusive, it strongly suggests that the hBH is
thermodynamically most stable than its GR counterpart.
We can also interpret from these curves that for black holes
with the same entropy, the black hole mass is reduced as we
increase the strength of the coupling parameter.

IV. LOCAL STABILITY

In this section, we analyze the local stability of the black
hole solution by studying its response to the system under
small perturbations of its thermodynamical variables
around the equilibrium. There are many equivalent criteria
in the literature, such as the sign of the second derivative of
the entropy and the energy or any of its associated Legendre
transforms. Since we are considering the grand canonical
ensemble, here, we choose to analyze the local stability by
computing the heat capacity at constant electric potential
and electric permittivity at a constant temperature. This is,
respectively,

CΦ ≡ T

�∂S
∂T

�
Φ
; ϵT ≡

�∂Q
∂Φ

�
T
: ð42Þ

To obtain this expression, we need the temperature against
the entropy for a fixed potential. This expression is given by

T ¼ γ

2
ffiffiffiffiffiffi
2π

p ffiffiffi
S

p −
5 × 51=3Φ4=3

8
ffiffiffi
2

p
π5=6B̄1=3S1=6

−
ð1 − 6B̄Þ ffiffiffi

S
p

8
ffiffiffi
2

p
π3=2B̄

; ð43Þ

which can be seen in Fig. 3.
In the spherical case, S0 generically represents the value

of entropy associated with the minimum temperature. For
each curve, the respective vertical dot-dashed line crosses
the entropy axis at that particular value of the entropy. We
see that below the extremal value of B̄, there are two
extremal black holes with entropies S1 and S2, which
belong to the small and large branches, respectively.
From (42), the heat capacity and electric permittivity are

explicitly given by

CΦ ¼ 6Sð−4πB̄γ þ 5 × 51=3π2=3B̄2=3Φ4=3S1=3 þ ð1 − 6B̄ÞSÞ
12πB̄γ − 5 × 51=3π2=3Φ4=3B̄2=3S1=3 þ 3ð1 − 6B̄ÞS ; ð44Þ

ϵT ¼ 51=3S5=6ð4πγB̄ − 35 × 51=3π2=3B̄2=3Φ4=3S1=3 þ ð1 − 6B̄ÞSÞffiffiffi
2

p
π5=6B̄1=3Φ2=3ð12πB̄γ − 5 × 51=3π2=3Φ4=3B̄2=3S1=3 þ 3ð1 − 6B̄ÞSÞ : ð45Þ

The graphic results might be more enlightening
than the analytical expressions, as can be seen in
Fig. 4.
In the strongly coupled regime, the T − S curve takes a

particularly simple form for any topology of the base
manifold,

TB̄→∞ ¼ 2πγ þ 3S

4
ffiffiffi
2

p
π3=2

ffiffiffi
S

p : ð46Þ

A. Case γ = 1

In Fig. 3, we see that TðSÞ reaches a global minimum
Tmin at a value of the entropy which we generically denoted

FIG. 3. Temperature as a function of the entropy for fixed potential. The electric potential has been set to Φ ¼ 1, and the curves are
representatives for each case. The critical value of the coupling constant is B̄ext ¼ 1.13, and it is the value at which there is only one
extremal black hole. In particular, we have used B̄ ¼ 0.6 representing curves with B̄ < B̄ext, B̄ ¼ 10 for B̄ > B̄ext and B̄ < ∞. The limit
curve for B̄ → ∞ can be found analytically and is represented in black.
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as S0 for each curve. It corresponds to those values of the
entropy where the dashed vertical lines cut the S axis in the
plot. This means that this value satisfies ∂STðS0Þ ¼ 0 and is
given by the relation

12πB̄−5×51=3π2=3Φ4=3B̄2=3S1=30 þ3ð1−6B̄ÞS0¼0: ð47Þ

In consequence, the temperature Tmin corresponding to
entropy S ¼ S0 can be obtained by using (43) and (47) and
represents the minimum temperature of the system. We can
interpret this as there are two phases in the T − S curve,
separated by the point ðS0; TminÞ in Fig. 3. According to the
expression for the entropy in (39), since it is a monotonic
increasing function on rþ, there are two branches of black
holes having small black holes for S < S0 and large black
holes for S > S0, with both phases existing above the
minimum temperature Tmin. Unlike the RNAdS black hole,
this solution admits two extremal black holes for a certain
range of parameters, and it is always possible to find the
two phases. We can divide the space of parameters B̄ −Φ
in two regions, one with no extremal black holes and the
other containing two extremal black holes, with a limit case
where there is only one extremal black hole, i.e., Tmin ¼ 0.
The critical value B̄ext represents the unique value at which
the latter situation happens for a given potential. This can

be found by casting Eq. (43) to a cubic polynomial and
analyzing the resultant discriminant. We find that

B̄ext ¼
1

6
þ 625Φ4

648
: ð48Þ

When the value of the coupling constant B is such that
B̄ < B̄ext, there are values of the event horizon associated
with entropies S1 and S2 which correspond to two extremal
black holes. It means that S1 and S2 satisfy TðS1Þ ¼ 0 ¼
TðS1ÞwithS0 ∈ ½S1; S2� andTmin < 0. Onlywhen B̄ ¼ B̄ext,
we getS0 ¼ S1 ¼ S2. On the other hand, there is no extremal
black hole for B̄ > B̄ext where Tmin > 0, and if we continue
increasing the parameter B̄, in the strong coupled regime,
Tmin reaches its maximum possible value T ¼ ffiffiffi

3
p

=2π at
S0 ¼ 2π=3 aswe can see in Fig. 3 and obtain from (43). As B̄
decreases, S0 gets smaller until it reaches the limit case for
asymptotically flat black holes when B̄ ¼ 1=6 approaches
an entropy given by S0 → 32π=ð1875Φ4Þ. In consequence,
the value of S0 ∈ ð32π=ð1875Φ4Þ; 2π=3� when we dial
B̄ ∈ ð1=6; B̄ → ∞Þ, as it can be seen in the sequence
of vertical dashed lines. From (48), we check that
B̄ext > 1=6, which ensures that all the electrically charged

FIG. 4. Heat capacity in the first row and electric permittivity in the second row as a function of the entropy for fixed potential. We
have used the same representative values for the electric potential and B̄ as in Fig. 3, except that in the limit B̄ → ∞, the electric
permittivity vanishes, and in consequence, we use B̄ ¼ 1000 to represent a curve in the strongly coupled regime.
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asymptotically AdS black holes posses two extremal black
holes in the range B̄ ∈ ð1=6; B̄extÞ.
The heat capacity exhibits a negative and positive

branch. It indicates a discontinuity in the heat capacity
and electric permittivity, suggesting the occurrence a
second-order phase transition that occurs at T ¼ Tmin
between the small and large branches. The denomi-
nator in both expressions determines a divergence at S0
since it occurs when (47) is satisfied.3 In contrast to
the nonextremal RNAdS solution, for large potentials,
namely, Φ >

ffiffiffi
2

p
, the hairy black hole still presents

two branches. Additionally, large black holes are locally
stable, having both positive heat capacity and electric
permittivity.

B. Case γ = f0;− 1g
When the base manifold has a flat or hyperbolic top-

ology, we observe the same qualitative behavior for the
T − S curves since all of them are monotonically increasing
functions (see Fig. 3). They have only one extremal black
hole with entropy S1, i.e., TðS1Þ ¼ 0. The value of S1
increases to infinity as we decrease B̄ up to the flat case
B̄ ¼ 1=6 where there are no extremal configurations. The
only difference can be noted in the strongly coupled limit
by evaluating (46) for the respective topology. This
determines a minimum possible value for the allowed
entropies with positive temperatures, bounded from below
by S1 evaluated at the strongly coupled limit. Namely,
S1 > Smin

1 with

Smin
1 ¼ −

2πγ

3
: ð49Þ

This means that the size of hyperbolic black holes is
restricted by the topology of the base manifold. The
hyperbolic and flat black holes are locally stable since
their heat capacity and electric permittivity are positive
for S > S1.

V. PHASE TRANSITIONS

The study of global stability determines which configu-
ration is thermodynamically favored. This section’s main
idea is to compare the free energies of the hairy black hole,
the RNAdS black hole, and thermal AdS to determine
which configuration is favored. Remember that these three
configuration have the same asymptotics for B̄ > 1=6. We
consider the grand canonical ensemble where the temper-
ature T and the electric potential Φ are fixed. In this
ensemble, the Gibbs energy G for the hairy black hole is
computed from (36) and (37) through the relation with the

Euclidean action G ¼ IE=β ¼ M − TS −ΦQ, leading to
the following expression:

GðT;ΦÞ ¼
ffiffiffi
S

p

24
ffiffiffi
2

p
π3=2

�
12πγ þ ð1 − 6B̄Þ SðT;ΦÞ

B̄

þ 45 × 51=3π2=3Φ4=3

�
SðT;ΦÞ

B̄

�
1=3

�
: ð50Þ

Since it is not possible to get an explicit and analytical
expression for SðT;ΦÞ, we extract this relation numerically
from (43). This is to fix Φ and T in (43) and solve
for S to get the numerical dependence. The free energy
associated to the RNAdS can be analytically obtained as
follows [36]:

G0ðT;ΦÞ ¼ 1

108

�
4πT ∓ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2T2 − 6γ þ 3Φ2

q �2

×
�
2πT �

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2T2 − 6γ þ 3Φ2

q �
: ð51Þ

To compare the free energies, both black holes must be in
the same grand canonical ensemble. This means that we
must impose T ¼ T0 andΦ ¼ Φ0, where T0 andΦ0 are the
temperature and the electric potential of the RNAdS black
hole, respectively. Thermal AdS corresponds to the vacuum
configuration such that GAdSðT;ΦÞ ¼ 0, and in conse-
quence, we have three “competing” configurations in terms
of thermodynamical stability. We proceed to study the
global stability for each horizon topology.

A. Case γ = 1

Notice that, in contrast with its GR counterpart, the
Gibbs energy of the hairy black hole exhibits an inter-
section point at temperature T⋆ between both branches and
not a “cusp” behavior. This means that the small branch is
less probable compared to the large branch up to a
temperature T⋆ from which this behavior reverses. Then,
as we increase the temperature, a first-order phase transition
can occur from thermal AdS to the large hairy black holes
at a temperature τ̄c (see Fig. 5).
For small electric potentials Φ <

ffiffiffi
2

p
, if T0

min < Tmin,
there are no available black hole configurations with
temperatures T < T0

min, and thermal AdS is the favored
configuration (see the left panel in Fig. 6). For
T0
min⩽T < Tmin, RNAdS black holes can coexist in thermal

equilibrium with thermal radiation. Still, they are less
favored until it reaches a critical temperature τc where
the first phase transition occurs, and the RNAdS black
holes start dominating, being the most stable configuration.
If we continue increasing the temperature, namely,
Tmin⩽T < Tc, the hairy black hole configurations appear
as possible states, but they are less favored than the RNAdS
black hole, and large RNAdS black holes still dominate. It
is not until a second phase transition at Tc, where the large
hairy black holes dominate at higher temperatures over
thermal AdS and RNAdS black holes.

3The phase transition order can be determined by using the
Ehrenfests scheme by analyzing the divergence of the heat
capacity and electric permittivity, in the same way as has been
done in Ref. [35] for RNAdS in higher dimensions.
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A second situation is possible for small electric poten-
tials when Tmin < T0

min < T⋆ (see the right panel in Fig. 6).
Here, the situation is the same, except that hairy black hole
configurations appear first, coexisting with pure AdS, and
then the RNAdS black holes join the ensemble. This
happens as one increases the temperature from Tmin⩽ T <
T0
min and T0

min⩽ T < τc, respectively. For values of the
coupling parameter B̄⩽ B̄ext, two hairy black holes are
possible configurations in the thermodynamic ensemble
even at T ¼ 0, which correspond to the extremal ones.
There is a third possible case for T⋆ ⩽ T0

min where only one
phase transition takes place at τ̄c from thermal AdS to the
hairy black hole (see Fig. 7). There are no phase transitions
at large temperatures.
For large electric potentials

ffiffiffi
2

p
⩽Φ, the RNAdS

configuration contains the extremal black hole (see

Fig. 8), dominating the partition function from T ¼ 0.
As is known, the RNAdS black hole has only one branch
whose Gibbs energy is strictly negative, whereas the
large branch of hairy black holes is the only branch
having negative Gibbs energy for temperatures larger
than τ̄c. Interestingly enough, our numerical analysis
determines a first-order phase transition at higher temper-
atures Tc compared to the case with small electric
potential. As we increase even more the potential, Tc
gets larger, and RNAdS dominates the partition function
for a larger range of temperatures. The situations
described are qualitatively the same when the hairy black
hole contains the two extremal black holes in the
range B̄⩽B̄ext.
From these cases, we can conclude that, as we increase

the temperature, a first-order phase transition will take

FIG. 6. Gibbs energy vs temperature for the hairy and Reissner-Nordström configurations: RN (S) stands for the small RNAdS black
holes, RN (L) stands for the large RNAdS black holes, HBH (S) stands for the small hairy black holes, and HBH (L) stands for the large
hairy black holes. A first-order phase transition occurs at a temperature Tc between large black holes from RNAdS to the hairy black
holes. We have used Φ ¼ 1.3 and B̄ ¼ 25 and Φ ¼ 0.1 and B̄ ¼ 1.5 in the left and right panels respectively.

FIG. 5. Gibbs energy versus temperature for the hairy black hole with different values of the coupling parameter. The continuous line
depicts the large branch and the dashed line the small branch of hairy black holes. Unlike the charged AdS RNAdS black hole in the
grand canonical ensemble, there is no “cusp” behavior. Instead, both branches meet at a second temperature reached at T⋆, while a first-
order phase transition can take place from thermal AdS to the large branch at τ̄c. We have used the same representative values for the
electric potential and B̄ as in Fig. 4.
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place such that the thermodynamic ensemble is dominated
by a large hairy black hole either at τ̄c or Tc. To illustrate
this, the phase structure for a fixed value of the coupling
constant is summarized in the diagrams in Fig. 9.
The phase diagram depicts the critical lines at which

first-order phase transitions take place. The solid lines
represent phase transitions between the most favored
configurations. Each critical line is extended by a dashed
line where first-order transitions still occur but at higher
Gibbs energies, and therefore the favored configuration
does not change. It is remarkable that the phase structure
very much resembles a solid-liquid-gas system. In this
analogy, the electric potential plays the role of pressure
while thermal AdS, large RNAdS, and large hairy black
holes correspond to the solid, liquid, and gas state,
respectively. One noticeable difference is that there is no
critical point since the critical line for Tc (liquid-gas
critical line) extends to infinity, at least in the numerical
domain from which we can infer that this is clearly the
tendency. In close analogy to a solid-liquid-gas thermo-
dynamical system, there is a triple point where three phases
coexist and are equally probable. Particularly interesting is
the evolution of each region in the phase diagrams as a
function of the coupling parameter as one goes from the
flat limit B̄ ¼ 1=6 to the strong coupling regime. In Fig. 9,
as we increase the value of B̄, the critical point rapidly
descends over the τc critical line in a clockwise fashion,
while the hairy black hole region that enters into the AdS
shrinks. This abrupt behavior can be seen if we collect the
critical temperatures for many values of B̄, mainly around
the asymptotically flat limit (B̄≳ 1=6). In consequence, the
hairy black holes abruptly reduce their zone of dominance
in the phase diagram, as soon as the coupling constant
departs from the flat limit. These results are plotted
in Fig. 10.

FIG. 8. For large potentials, the RNAdS black hole is the more
stable configuration from T ¼ 0 to Tc, where there is a phase
transition with the large branch of hairy black holes. We have
used Φ ¼ 2 and B̄ ¼ 40.

FIG. 7. Note that as we increase the temperature, there is only
one phase transition from thermal AdS to large hairy black holes
at τ̄c. We have used Φ ¼ 0.06 and B̄ ¼ 0.5.

FIG. 9. Phase diagram Φ − T. The phase diagram depicts the critical lines at which first-order phase transitions take place. The solid
lines represents phase transitions between the most favored configurations. Each critical line is extended by dashed lines where first-
order transitions occurs but at a Gibbs energy which is not the lowest one. The three lines converge at the triple point, as can be seen in
the magnified region at the right panel, which in this case is located at T ¼ 0.317 and Φ ¼ 0.110 for B̄ ¼ 1.
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For values of B̄≳ 1=6, the τ̄c and Tc curves get closer,
straighter, and almost vertical, meaning that in the weakly
coupled regime, the phase diagram is mainly dominated by
the large hairy black hole phase. A particularly simple and
analytical expression for this limit can be obtained using
series expansions in (43) and (50), getting

τ̄cðB̄≳ 1=6Þ ∼ 5

π
ð6B̄ − 1Þ1=4Φ; ð52Þ

which exhibits the described behavior. On the other hand,
as we increase the scalar coupling, the AdS region and large
RNAdS phases rapidly dominate the phase diagram, and
curiously enough, the limit of B̄ → ∞ tends to a critical
temperature which is exactly the critical temperature of
Schwarzschild black holes. This can be seen by the
analytical expression of τ̄c at Φ ¼ 0, which is

τ̄cðΦ ¼ 0Þ ¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

6B̄

r
: ð53Þ

Note that phase transitions at Tc occur only if the electric
potential reaches a minimum value, which is why this
critical line enters to the AdS region, but it has an ending
point. For lower values than that minimum, we are in the
situation depicted in Fig. 7.

B. Case γ = 0

The flat hairy black hole as well as the RNAdS black
hole have only one branch containing only one extremal
black hole. The former possesses positive Gibbs energy,
and the latter negative Gibbs energy in their extremal
configurations. The ensemble is dominated from T ¼ 0 up
to Tc by the RNAdS black hole since its Gibbs energy
conserves a negative value, and only a first-order phase
transition occurs at Tc from which the hairy black hole
starts to dominate. This is independent of the value on the
space of parameters B̄ −Φ as can be seen in the phase
diagram (see the right panel in Fig. 11).

FIG. 10. Temperatures of triple points as a function of the coupling parameter. This curve presents a steep slope close to the
asymptotically flat limit and rapidly tends to the Schwarzschild critical temperature. Recall that the asymptotically flat limit is the value
of the coupling parameter at which the effective cosmological constant tends to zero.

FIG. 11. Left panel: Gibbs energy vs temperature for the hairy black hole and Reissner-Nordström configurations. We have considered
Φ ¼ 0.5 for B̄ ¼ 1. Right panel: Phase diagram of the two possible favored configurations. The dashed line represents phase transition at
higher Gibbs energy. Here, we have used B̄ ¼ 1.
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Note in the left panel of Fig. 11 that there are no phase
transitions between thermal AdS and RNAdS. There are
only two phase transitions: the first one at τ̄c, which is at
higher Gibbs energy, and in consequence does not change
the favored configuration, while a second one occurs at
higher temperature Tc that switches the dominance of the
thermodynamics in favor of the hairy black hole. Like the
spherical case, as we approach B̄ ¼ 1=6, the zone domi-
nated by the hairy black hole in the phase diagram can be
drastically increased, while the critical line Tc gets closer to
the critical line τ̄c. The latter behaves in the same way as
Eq. (52) describes.

C. Case γ = − 1
The hyperbolic black hole has behavior qualitatively

similar to the flat case, although there is a particular
property that makes a slight difference. Like the flat case,
thermal AdS does not have any dominance in the phase
diagram. However, the thermodynamic ensemble can be
dominated for small electric potentials even from zero
temperature by the extremal black hole.

In Fig. 12, and from left to right, we describe three
possible behaviors in the phase structure as we increase
the electric potential. The left plot shows a thermo-
dynamic system under a small electric potential, where
the hairy black hole has the global minimum of Gibbs
energy for all temperatures. As shown in the plot at the
middle, once the electric potential reaches a particular
value, the system allows RNAdS as a favored configura-
tion from extremal black holes up to a phase transition at
Tc where the hairy black hole recovers its dominance on
the ensemble. Finally, as the right plot describes, if we
continue increasing the electric potential, the extremal
hairy configuration can get a positive Gibbs energy and
allows phase transitions to thermal AdS at τ̄c. Still, it is not
enough to modify the favored configurations for the
previous situation. This behavior is depicted in the phase
diagram in Fig. 13.
Like the flat black holes, as we decrease the coupling

parameter, the region of hairy black holes in the phase
diagram increases.

VI. CONCLUSIONS

We have derived black hole solutions and studied their
thermodynamic behavior in bimetric scalar-tensor theories
with disformal symmetry. The main difficulty in these
theories is the existence of no-hair obstructions, a direct
consequence of the scalar field present in this kind of
theory. Inspired by the no-hair theorem for galileons and
exploiting the shift invariance of the theory, such an
obstruction can be evaded by requiring a regular conserved
current associated with the shift symmetry, a fact that
manifests in the scalar field equation. As a consequence, we
obtained an exact electrically charged black hole solution in
the presence of a real scalar field that is regular at and
outside the horizon. A curvature singularity at the origin is
hidden by an event horizon which is a surface of spherical,
flat, or hyperbolic topology.
The coupling parameter of the scalar field introduces an

effective cosmological constant which determines the black

FIG. 12. Gibbs energy vs temperature for the hairy black hole and Reissner-Nordström configurations. From left to right, we have
considered Φ ¼ 0.01, Φ ¼ 0.3, and Φ ¼ 0.5 for B̄ ¼ 1.

FIG. 13. Phase diagram of the two possible favored configu-
rations. The dashed line represents phase transition at higher
Gibbs energy. Here, we have used B̄ ¼ 1.
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hole asymptotics allowing the black hole solutions to
exhibit AdS, flat, or dS asymptotic behavior. Because of
the presence of the electric charge, the theory also admits
the Reissner-Nördstrom solution with a trivial scalar field, a
suitable configuration to be considered in the thermody-
namic analysis. This is carried out by employing the
Euclidean approach, where this solution can be regarded
as a third configuration, along with thermal AdS and the
hairy black hole as possible states of the grand canonical
ensemble by keeping fixed the temperature and the electric
potential.
Focused on the AdS asymptotics, we have found rich

thermodynamics whose behavior is highly dependent on
the coupling strength of the scalar field and the topology of
the horizon. In contrast to its GR counterpart, the spherical
configuration presents branches with large and small black
holes even for large electric potential. All the topologies
admit large black holes which are locally stable, meaning
that they are stable under thermal and electric fluctuations.
The global stability is analyzed by comparing Gibbs
energies between the three possible configurations. To
achieve this, we have adopted the grand canonical ensem-
ble, i.e., an ensemble at fixed electric potential and temper-
ature, and we investigated the consequences of the coupling
parameter on the phase structure. Whether a configuration
is thermodynamically preferred or not must be determined
considering its Gibbs energy relative to other configura-
tions at the same electric potential and temperature.
In the spherical case, the Gibbs energy of the hairy black

hole exhibits an intersection point at a specific temperature
between both branches and not a cusp behavior. Unlike the
RNAdS black hole, small black holes can be more probable
than large black holes undergoing a first-order phase
transition at the intersection point where this behavior
reverses. If we continue increasing temperature, a transition
from thermal AdS to large black holes takes place.
However, the competition by the minimum Gibbs energy
is modified once RNAdS is taken into account. Strikingly,
from a thermodynamic perspective, the phase structure
resembles a solid-liquid-gas system (see Fig. 9), where the
electric potential plays the role of pressure. In close
analogy, there is a triple point where the three phases
coexist, being equally probable.

In contrast to the spherical black hole, flat black holes and
flat RNAdS black holes have only one branch. Since the
latter have always negative Gibbs energy while the former
contains extremal black holes at positive Gibbs energy, this
one undergoes two phase transitions: the first one from
thermalAdS to the hairy black hole, which is at higherGibbs
anergy and, in consequence, does not change the favored
configuration, and a second one at a higher temperature that
finally switches the dominance of the thermodynamics in
favor of the hairy black hole. The phase structure is
significantly simple compared to the spherical case since
there are only two preferred phases. The phase diagram in
the hyperbolic case is similar to the flat case but with one
particularly curious distinction. If the electric potential does
not exceed a certain threshold potential, the thermodynamic
system is dominated by hairy black holes even at zero
temperature. Above that threshold, the phase diagram starts
to share the phase space with the RNAdS black hole.
We found that strongly coupled systems abruptly

increase the predominance of the undressed black holes
in the phase space (see Fig. 10), while the weak regime
increases the predominance of the hairy configuration. We
have only studied the asymptotically AdS black holes; it
would be interesting to explore how this behavior and the
phase structure can be modified when the coupling confers
flat or dS asymptotics. On the other hand, since the solution
contains horizons with different topologies, the flat geom-
etry of the horizon opens the possibility to study holo-
graphic applications based on the gauge/gravity duality.
Including a mechanism of momentum dissipation dc
conductivities and Hall angle of the holographic theory dual
to the hairy black hole can be studied to determine the effect
of the coupling parameter in this context.
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