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In this study, a scalar field propagating in a higher-dimensional Reissner-Nordström-de Sitter black hole
is investigated. Scalar fields are assumed to have nonminimal coupling to the brane or bulk scalar curvature.
Five different definitions of black hole temperatures are discussed: temperature based on surface gravity,
Bousso-Hawking temperature, and three effective temperatures. The greybody factors of minimally and
nonminimally coupled scalar fields on the brane and in the bulk are examined under the effect of particle
and spacetime properties. The energy emission spectra of black holes are determined at various
temperatures for both the brane and bulk channels. The energy emission rates at the Bousso-Hawking
temperature are found to be dominant over those at other temperatures. The energy emission curves are
suppressed by the presence of coupling parameters. Finally, the bulk-over-brane emission ratios are
calculated. Notably, bulk dominance becomes possible for a certain definition of the temperatures and
regime of the cosmological constant.
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I. INTRODUCTION

The existence of black holes is predicted using Einstein’s
general theory of relativity. Black holes are described as
solutions to Einstein’s field equation. The first exact black
hole solution discovered by Karl Schwarzschild in 1916
serves as an analytic tool for probing the properties of
gravity under extreme conditions. Four-dimensional black
holes have been studied both intensively and extensively.
The existence and physical properties of black holes have
been thoroughly explored.
In contrast, higher-dimensional theories of gravity have

received significant attention as a possible framework for
the unification of four fundamental interactions. These
extra-dimensional theories suggest the possibility of the
existence of higher-dimensional black objects [1]. The first
higher-dimensional spherically symmetric black hole is
known as the Tangherlini solution [2]. It generalizes the
Schwarzschild solution of general relativity to higher
dimensions in the presence of the cosmological constant.
In addition to black holes and gravity, cosmology and
particle physics have also been explored in the light of
higher-dimensional theories [3–6].
One aspect of black hole physics that has received

significant attention from physicists is Hawking radiation
which is the emission of particles from a black hole owing
to the quantum mechanical effect near an event horizon [7].
In the spirit of higher-dimensional theories, the emission of

Hawking radiation spectra from higher-dimensional black
holes has been explored by several authors, in spherically
symmetric or axially symmetric setups [8–21]. While
several studies have investigated the Hawking radiation
of a higher-dimensional Schwarzschild black hole, only a
few studies have focused on their de Sitter (dS) counter-
parts. For a higher-dimensional Schwarzschild-dS black
hole, minimally coupled scalar radiations on the brane and
in the bulk were studied in [22]. In [23], an analytic study of
the transmission amplitude or greybody factor under the
same conditions was performed. In addition to the scalar
field, the Hawking emission of fields with arbitrary spins
[24] and greybody factors of the fermionic field [25] on the
Scwharzschild-dS black hole have been investigated.
Moreover, in the nonminimally coupled scalar field sector,
the greybody factor was studied in [26] for the four-
dimensional Schwarzschild-dS spacetime and in [27–29]
for Gauss-Bonnet black holes. This was later extended to a
higher dimension by Kanti et al. [30], where the scalar field
existed either on the brane or in the bulk. Later, the
Hawking radiation spectra and greybody factor for non-
minimally coupled scalar fields in the D-dimensional
Schwarzschild-dS black hole were computed in [31].
Furthermore, many studies have focused on fields and

particles propagating from charged black holes. For a
spherically symmetric black hole, Hawking radiation can
be understood based on the tunneling phenomenon [32].
The emission of Hawking radiation for the Reissner-
Nordström (RN) black hole was determined using the
tunneling method [33]. Hawking radiation and fermion
tunneling have been studied in and beyond the semiclassical
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limits for higher-dimensional RN black holes [34]. In
addition, the absorption cross section of a massive scalar
field propagating from a charged black hole has been
numerically computed at intermediate frequencies [35]. A
series of studies has been undertaken to examine the
absorption and emission spectra of a higher-dimensional
RN black hole for brane and bulk scalars [36–38], Dirac
fermions [39], and electromagnetic waves [40]. The bounds
of the greybody factor for the RN black hole have been
determined using transfer matrices [41]. Few researchers
have shown interest in the emission of Hawking radiation
spectra for charged black holes in nonasymptotically flat
spacetime. In [42], fermion tunneling from the Reissner-
Nordström–anti-de Sitter (RN-AdS) black hole was consid-
ered. In addition, the greybody factor of nonminimally
coupled scalar fields in RN-dS was discussed in [43].
Using the tunneling method, Wu and Jian calculated
Hawking radiation-charged particles from higher-dimen-
sional RN-dS black holes [44].
In the standard black hole thermodynamics, the temper-

ature of the black hole is based on its surface gravity
associated with a horizon. A problem arises when the
black hole possesses a positive cosmological constant.
Such a spacetime has an upper boundary, referred to as
the cosmological horizon. Therefore, an observer living
in the region bounded by an event horizon and a cosmo-
logical horizon cannot be in thermodynamic equilibrium.
Heat always flows from the hotter (event) horizon to the
colder (cosmological) horizon. Moreover, defining black
hole parameters in the dS spacetime is subtle, as the
notion of these parameters is securely defined only
on an asymptotically flat spacetime. In [45], Bousso and
Hawking proposed a normalized black hole temperature
at which the value of the cosmological constant is
assumed to be small; thus, the two horizons are located
far apart. Therefore, the two horizons can be treated as
two independent thermodynamic systems. The effective
temperature of the dS black hole was proposed [46–48]
to consider a large cosmological constant scenario. In
[49], the Hawking emission spectra of minimally and
nonminimally coupled scalar fields on the brane and
in the bulk for a higher-dimensional Schwarzschild-
dS black hole were examined under five different
definitions of black hole temperatures, namely, the tem-
perature based on surface gravity, Bousso-Hawking
temperature, and three effective temperatures. The
results indicate that different temperatures can lead to
different outcomes in terms of the domination of the
brane or bulk emission channel.
Herein, we extend the study of Kanti and Pappas [49] by

considering the effect of the charge of the black hole on
energy emission spectra and comparing the power spectra
at five different temperatures. The remainder of this paper
is organized as follows. In Sec. II, a higher-dimensional
RN-dS black hole is discussed. A selective black hole phase

space is also explored. In Sec. III, we define five different
black hole temperatures. In Sec. IV, we present the equation
of motion for a nonminimally coupled scalar field. The
greybody factor is also derived and numerically computed
for brane and bulk scalar fields. In Sec. V, we calculate and
compare the energy emission rates (EERs) obtained under
the effect of the five definition temperatures. The bulk-
over-brane total energy emission ratio is compared in
Sec. VI. We present our conclusions in Sec. VII.

II. SPACETIME BACKGROUND

The action describing the higher-dimensional Einstein-
Maxwell theory with a cosmological constant Λ is
defined as

S ¼
Z

dnþ4 ffiffiffiffiffiffi
−g

p �
R
2
− Λ −

1

4
FμνFμν

�
; ð1Þ

where R and Fμν are the Ricci scalar and Maxwell tensor,
respectively. When we vary this action with respect to the
metric tensor, we obtain the Einstein field equation

Rμν −
1

2
gμνRþ Λgμν ¼ FμρF

ρ
ν −

1

4
FσγFσγ: ð2Þ

Because this theory admits a static spherically symmetric
background, its line element is expressed as

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2
nþ2; ð3Þ

where the metric of the ðnþ 2Þ sphere is

dΩ2
nþ2 ¼ dθ21 þ

Xnþ2

i¼2

�Yi−1
j¼1

ðsin2θjÞ
�
dθ2i : ð4Þ

The metric function is explicitly defined as

f ¼ 1 −
2M
rnþ1

þ Q2

r2ðnþ1Þ − r2Λ̄: ð5Þ

The mass and charge of the black hole are denoted as
M and Q, respectively. The cosmological constant is
Λ̄≡ 2Λ

ðnþ2Þðnþ3Þ. The real positive roots determine the loca-

tions of the horizons of the black hole. A charged dS
black hole typically has three horizons, namely, the Cauchy
ðr0Þ, event ðrhÞ, and cosmological horizons ðrcÞ, where
r0 < rh < rc.
The mass of the black hole, M, can be related to other

background parameters Q and Λ. Considering fðrhÞ ¼ 0,
we get

M ¼ 1

2rnþ1
h

ðQ2 þ r2nþ2
h ð1 − r2hΛ̄ÞÞ: ð6Þ
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To ensure the presence of the event horizon, we require
fðrhÞ ¼ 0 and f0ðrhÞ ≥ 0. With fixed rh ¼ 1 andQ;Λ ≥ 0,
we obtain the following condition:

Λ̄ ≤
ðnþ 1Þð1 −Q2Þ

nþ 3
: ð7Þ

For this study, the event horizon of the black hole was fixed
at 1. Therefore, the charges on the black holes vary within
the range of 0 ≤ Q < 1. Figure 1 illustrates the parameter
space of higher-dimensional RN-dS black holes for various
spacetime dimensions n. Black holes with three horizons,
namely, r0 < rh < rc, can be identified in the colored area
in the plot. In addition, the Nairai limit ðrh → rcÞ [50] is
described by the extremal curve located at the boundaries
of these plots. It is evident that when the charge of the black
hole increases, black holes with three horizons exist, with a
small value of Λ. In addition, the allowed value of Λ (i.e.,
the colored area) increases when the number of extra
spacetime dimensions increases.
In this study, we consider the EER of scalar propagation

in the brane and bulk spacetimes. Any nonstandard
model of particles may travel in bulk, as described by
the background metric (5). In contrast, ordinary particles
are constrained to propagate only on a four-dimensional
brane, where an observer exists. This four-dimensional
brane is described by the following gravitational back-
ground metric [49]:

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2: ð8Þ

On the 4D brane, the extra-hyper-angular dθ3 ¼ � � � ¼
dθnþ2 is fixed to zero such that an ordinary particle moves
only in four dimensions. However, it must be emphasized
that the free particle living on the 4D brane will move
differently from those living in the usual four-dimensional
spacetime. This is because metric function f on the brane
decays faster than the standard f function in four dimen-
sions; therefore, their gravitational potentials are different.
Note that the metric function preserves the form expressed
in (5). Therefore, the horizon structure and parameter space
analysis discussed earlier can also be applied to the brane
scenario.

III. BLACK HOLE TEMPERATURE

In this study, we investigated the EER of a (non)
minimally coupled scalar field on bulk and brane space-
times. Note that the EER formula depends on the temper-
ature of the black hole. While this temperature has been
widely studied by many researchers, most studies have
been performed on asymptotically flat black holes. For the
black holes in the dS spacetime, their temperature requires
careful analysis. Therefore, in this section, we explore the
various definitions of temperatures of nonasymptotically
flat black holes.
The spacetime metrics (3) and (8) have time-translational

symmetry. They admit a timelike killing vector ξ ¼ ∂
∂t . For

the spherically symmetric background, the surface gravity
and temperature of the black hole are expressed as

κi ¼
f0

2

����
r¼ri

; ð9Þ

Ti ¼
κi
2π

; ð10Þ

where surface gravity can be evaluated at the Cauchy,
event, and cosmological horizons, that is, i ¼ f0; h; cg.
Therefore, the temperatures of the higher-dimensional RN-
dS black holes at the event and cosmological horizons are
conventionally expressed as

Th ¼
1

4πr2nþ3
h

ðr2nþ2
h ððnþ 1Þ− ðnþ 3Þr2hΛ̄Þ− ðnþ 1ÞQ2Þ;

ð11Þ

Tc ¼−
1

4πr2nþ3
c

ðr2nþ2
c ððnþ1Þ− ðnþ3Þr2cΛ̄Þ− ðnþ1ÞQ2Þ:

ð12Þ

When κc < 0, an additional minus sign is included in Tc.
In the presence of the cosmological horizon, the thermo-
dynamics of black holes in the dS spacetime becomes
more complicated than that in the asymptotically flat
spacetime, because each horizon has its own temperature.
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FIG. 1. Parameter space of higher-dimensional RN-dS black
hole with rh ¼ 1. The shaded regions denote the area where the
black hole has three horizons.
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When Th > Tc, there is a continuous flow of thermal
energy from the event horizon to the cosmological horizon,
and the observers in this region are not in thermodynamic
equilibrium. The temperatures (11) and (12) of the black
hole are determined under the assumption that the cosmo-
logical horizon is located relatively far away from the event
horizons. Therefore, the temperature at each horizon can be
treated as its own independent thermodynamic state. This
assumption is valid only for a small value of Λ̄.
To improve the notion of black hole temperature, Bousso

and Hawking proposed a normalized temperature of the
black hole [45] with the following formula:

TBH ¼ Thffiffiffiffiffiffiffiffiffiffiffiffi
fðrmÞ

p ; ð13Þ

where 1ffiffiffiffiffiffiffiffi
fðrmÞ

p is the normalization constant of the killing

vector, and rm is the location of the global maximum of f.
In the absence of charge Q, rm can be easily determined

[49] using f0ðrmÞ ¼ 0. In general, rm must be chosen such
that it is located inside the causally connected region
rh < rm < rc; otherwise, the temperature (13) becomes a
complex number.
Recently, another definition of the temperature of black

holes has attracted significant attention. The effective
temperature of black holes attempts to unify Th and Tc
into one formula. In the conventional analysis of black hole
thermodynamics, the mass and cosmological constant of
the black hole are often treated as enthalpy and pressure,
respectively, when formulating the first law of black holes.
In addition, the total entropy is assumed to be the sum of
both horizons, S ¼ Sh þ Sc. In this framework, the effec-
tive temperature has the form [46,48,49]

Teff− ¼ ThTc

Th − Tc
: ð14Þ

This can be expressed explicitly as

Teff− ¼ ððnþ 1ÞQ2 þ r2nþ2
h ððnþ 3Þr2hΛ̄ − ðnþ 1ÞÞÞððnþ 1ÞQ2 þ r2nþ2

c ððnþ 3Þr2cΛ̄ − ðnþ 1ÞÞÞ
4πððnþ 1Þðr2nþ3

h þ r2nþ3
c ÞQ2 þ ðrhrcÞ2nþ2ðrh þ rcÞððnþ 3ÞrhrcΛ̄ − ðnþ 1ÞÞÞ : ð15Þ

Parameter Teff− reduces to the temperature of the cosmological horizon Tc in the limit rh → 0. In contrast, when the system
becomes pressureless (Λ̄ ¼ 0 or equivalently rc → ∞), the effective temperature vanishes. This indicates that Teff− is not
valid in the absence of a cosmological constant [49]. Furthermore, this effective temperature sometimes yields negative
results and is ill defined at a critical point where the temperature becomes infinitely high. This aspect will be revisited later,
when the various definitions of temperature are compared.
To resolve the issue of the unphysical result of Teff−, a new effective temperature was proposed by [46,48]. In contrast

with Teff−, the total entropy was expressed as the difference between the entropies of the two horizons, S ¼ Sc − Sh. An
ad hoc formula for the temperature is

Teffþ ¼ ThTc

Th þ Tc
;

¼ ððnþ 1ÞQ2 þ r2nþ2
h ððnþ 3Þr2hΛ̄ − ðnþ 1ÞÞÞððnþ 1ÞQ2 þ r2nþ2

c ððnþ 3Þr2cΛ̄ − ðnþ 1ÞÞÞ
4πððnþ 1Þðr2nþ3

c − r2nþ3
h ÞQ2 − ðrhrcÞ2nþ2ðrc − rhÞððnþ 3ÞrhrcΛ̄þ ðnþ 1ÞÞÞ : ð16Þ

Teffþ is similar to Teff−, that is, Teffþ → Tc as rh → 0 and
Teffþ → 0 as rc → ∞. However, at the critical point, Teffþ
vanishes instead of exhibiting an infinite jump, as in the
case of Teff−. This is because the numerator in (16)
becomes zero faster than its denominator.
Finally, a new form of effective temperature was pro-

posed by Kanti and Pappas [49]. Motivated by the effective
temperature discussed above, the new effective temperature
is given by

TeffBH ¼ TBHTc

TBH − Tc
: ð17Þ

Because its explicit form is rather lengthy and complex, we
decided not to explicitly display it here. This definition of

the temperature of the black hole inherits several features
from the aforementioned formulas. First, in the limit
Th → 0, TeffBH reduces to Tc and becomes zero when
Λ̄ → 0. Second, the conventional temperature Th is
replaced by the normalized temperature TBH. Third, in
the absence of the charge of the black hole, TeffBH is found
to be zero at the critical point [49]. As we approach the
critical point, the numerator in TeffBH falls to zero faster
than its denominator [49]. However, as will be seen below,
this is not always the case when Q ≠ 0.
Now, the effects of cosmological constant Λ, charge Q

on the black hole, and the number n of extra spacetime
dimensions on the black hole temperatures Th; TBH;
Teff−; Teffþ, and TeffBH are investigated. These are depicted
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in Figs. 2–4. Note that in these plots, we chose the
background parameters such that r0 < rh ¼ 1 < rc.
The temperatures of the black hole are plotted against

cosmological constant Λ in Fig. 2. The conventional tem-
perature Th decreases monotonically with Λ for both small
and large value of n. When Λ approaches the maximum
allowed value (reaching the Nairai limit), Th vanishes. The
normalized temperature TBH differs significantly from Th.
TBH initially increases with Λ before gradually reaching a
constant value for low values of n. For large values of n, TBH

continues to increase at lower values ofΛ. As is evident in the
figure,Th andTBH agree only atΛ ¼ 0, as expected.We note
that Teff− increases withΛ. For n ¼ 6, it is evident that Teff−
indicates a sign of divergence closer to the Nairai limit. In
contrast, both Teffþ and TeffBH are zero near the Nairai limit.
This is because their numerators converge to zero faster than
their denominators. They are similar to TBH in the low-Λ
regime and resemble Th in the high-Λ regime.
Figure 3 depicts the plot of temperature as a function

of the number n of extra dimensions. Varying n does
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FIG. 3. Comparisons of temperatures of higher-dimensional RN-dS black hole with Q ¼ 0.5, (a) Λ ¼ 0.1, (b) Λ ¼ 0.4.
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FIG. 2. Comparisons of temperatures of higher-dimensional RN-dS black hole with Q ¼ 0.15, (a) n ¼ 1, (b) n ¼ 6.
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not significantly affect the structure of the horizons
(r0 < rh ¼ 1 < rc is always satisfied). Therefore, no infin-
ite jump in any of these temperatures is observed. It is
evident that TBH is always larger than Th, as depicted in
Fig. 2. The difference between these two temperatures is
more significant at low values of n and large values of Λ.
All the effective temperatures become nearly identical as n
increases. These plots are similar to those presented in [49].
Figure 4 depicts the effect of the charge of the black hole

on each definition of temperature. With an increase in Q,
the spacetime structure approaches the extremal limit,
r0 → rh, and rh ¼ 1 becomes the smallest real positive
root when Q > Qcrit. Although normalized temperature
TBH is significantly larger than Th, they both vanish at a
certain critical valueQcrit. In addition, effective temperature
Teffþ also becomes zero atQ ¼ Qcrit because the numerator
of (16) becomes zero faster than its denominator owing to
Th ¼ 0 when Q reaches its critical value. In contrast, Teff−
and TeffBH exhibit infinite jumps at a certain value of Q.
This can be understood from the definitions of Teff− (15)
and TeffBH (17). The values of Th and TBH are generally
larger than that of Tc. However, as the value ofQ increases,
the values of Th and TBH decrease, whereas that of Tc
remains unchanged. Therefore, at a certain value of Q,
temperatures Th and TBH have the same numerical value as
that of Tc. Therefore, both Teff− and TeffBH diverge. We
note that TeffBH does not exhibit an infinite jump for the
higher-dimensional Schwarzschild-dS spacetime [49].
However, an infinite jump in the temperature of the black
hole, TeffBH, is observed when the charge of the black hole
is included, as illustrated in these plots.

IV. GREYBODY FACTOR

In the preceding section, we explored five different
formulas of temperature for higher-dimensional RN-dS
black holes in detail. In this section, we derive and
investigate the greybody factor of (non)minimally coupled
scalar fields in ð4þ nÞ-dimensional RN-dS black holes.
Particularly, we examine the greybody factor of the
brane and bulk scalar fields propagating on the RN-dS
background. Similar studies have been performed for
higher-dimensional Schwarzschild-dS [30,31] and four-
dimensional RN-dS black holes [43]. For the sake of
generality, we calculate the necessary results based on
the case of a nonminimally coupled scalar field propagating
in bulk spacetimes.
A nonminimally coupled scalar field in a curved back-

ground can be described as

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ þ ϵRnΦ ¼ 0; ð18Þ

where ϵ is a coupling constant and Rn is a higher-dimen-
sional Ricci scalar:

Rn ¼
2ðnþ 4Þ
nþ 2

Λ: ð19Þ

Considering the factorized spherical symmetric ansatz
Φ ¼ e−iωtRðrÞYðθi; θnþ2Þ, where Yðθi; θnþ2Þ are hyper-
spherical harmonics, the scalar field equation (18) can be
decomposed into radial and angular parts, as follows:
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FIG. 4. Comparisons of temperatures of higher-dimensional RN-dS black hole with Λ ¼ 0.9, (a) n ¼ 2, (b) n ¼ 3.
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1

rnþ2

d
dr

�
frnþ2

dR
dr

�
þ
�
ω2

f
−
lðlþ nþ 1Þ

r2
− ϵRn

�
R ¼ 0:

ð20Þ

The angular eigenvalue of the hyperspherical harmonic
function is expressed as lðlþ nþ 1Þ. The ϵ term can
be considered an effective mass term of the scalar
field. In the minimally coupled case, the scalar wave
equation (20) is reduced to the conventional massless
Klein-Gordon equation. The projected-on-the-brane
scalar field equation can be obtained by setting n ¼ 0
in the above equation, whereas radial function f con-
tinues to be in the same form as (5) (without setting
n ¼ 0 in f). In addition, scalar curvature Rn (19) is
replaced by [30]

R4 ¼
24Λ

ðnþ 2Þðnþ 3Þ þ
2Mnðn − 1Þ

rnþ3
: ð21Þ

To compute the transmission amplitude of the scalar field
or greybody factor, we consider the radial equation in the
proximity of the event horizon of the black hole. First, we
make the following transformation [30]:

r→ hðrÞ¼ fðrÞ
1− Λ̄r2

;

¼ 1−
½ð1−r2hΛ̄Þþ Q2

ðrr2hÞnþ1 ðrnþ1− rnþ1
h Þ�

1− Λ̄r2

�
rh
r

�
nþ1

:

ð22Þ

Thus, h varies from 0, at r ¼ rh, to 1, when r ≫ rh. The
following relationship also holds:

dh
dr

≡ ð1 − hÞ BðrÞ
rð1 − r2Λ̄Þ ; ð23Þ

where B is defined as

B¼Q2ðΛ̄ðnþ 3Þrnþ3 − ðnþ 1Þrnþ1 − 2Λ̄ðnþ 2Þr2rnþ1
h þ 2ðnþ 1Þrnþ1

h Þ− rnþ1r2nþ2
h ðΛ̄r2h − 1ÞðnðΛ̄r2 − 1Þ þ 3Λ̄r2 − 1Þ

Q2ðrnþ1
h − rnþ1Þ þ rnþ1r2nþ2

h ðΛ̄r2h − 1Þ :

ð24Þ

Under transformation (22), radial wave equation (20) at
r ≃ rh is expressed as follows:

hð1 − hÞ d
2R
dh2

þ ð1 −DhhÞ
dR
dh

þ
�
ω2r2h
B2
hh

−
Ωhð1 − r2hΛ̄Þ
ð1 − hÞB2

h

�
R ¼ 0; ð25Þ

where

Ωh ≡ lðlþ nþ 1Þ þ ϵRðhÞ
n r2h; ð26Þ

Bh ≡ BðrhÞ ¼ ðnþ 1Þð1 −Q2r−2ðnþ1Þ
h Þ − ðnþ 3Þr2hΛ̄;

ð27Þ

Dh ≡ 2 −
ð1 − r2hΛ̄Þ

Bh

�
ðnþ 1Þ þ rhB0ðrhÞ

Bh

�
: ð28Þ

The scalar curvatureRnwas evaluated at r ¼ rh.We redefine
the radial field function R ¼ hαð1 − hÞβHðhÞ. Thus, the
near-horizon equation (25) can be substituted into the
standard form of a hypergeometric differential equation,

hð1 − hÞ d
2H
dh2

þ ½c − ð1þ aþ bÞh� dH
dh

− abH ¼ 0; ð29Þ

where parameters a, b, and c are defined as

a ¼ αþ β þDh − 1; ð30Þ

b ¼ αþ β; ð31Þ

c ¼ 1þ 2α: ð32Þ

Exponents α and β are obtained by solving the following
equations:

α2 þ ω2r2h
B2
h

¼ 0; ð33Þ

β2 þ βðDh − 2Þ −Ωhð1 − r2Λ̄Þ
B2
h

¼ 0: ð34Þ

Thus, the explicit forms of α and β are expressed as

α ¼ αð�Þ ≡� iωrh
Bh

; ð35Þ

β ¼ βð�Þ ≡Bhð2−DhÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
hð2−DhÞ2 þ 4ð1− r2hΛ̄ÞΩh

q
2Bh

:

ð36Þ
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The general solution to hypergeometric equation (29) can be
written in terms of hypergeometric function H as

RNH ¼ A1hαð1 − hÞβHða; b; c; hÞ þ A2h−αð1 − hÞβHða
− cþ 1; b − cþ 1; 2 − c;hÞ; ð37Þ

where A1;2 are arbitrary constants. At event horizon h ¼ 0,
the general solution reduces to

RNH ∼ A1hα þ A2h−α: ð38Þ

When A1;2 is arbitrary, we have the freedom to choose the
sign of α. With α ¼ αð−Þ, A1 is the coefficient of ingoing
wave, whereas the outgoing part is associated with the term
with coefficient A2. Moreover, the convergence of hyper-
geometric function H requires that Reðc − a − bÞ > 0,
which implies that β ¼ βð−Þ. Thereafter, we impose the
boundary condition at the event horizon in which only the
ingoing wave is allowed. Therefore, we set A2 ¼ 0, and
the near-horizon solution is now

RNH ∼ A1hα ¼ A1e
−iωrh
Bh

ln h: ð39Þ

It is possible to obtain an analytic formula of the greybody
factor using a matching technique [30,43]. This can be done
by considering radial wave equation (20) close to the
cosmological horizon. By considering a region located away
from black hole rh ≪ rc, the effects of the mass and charge
of the black hole can be neglected. Therefore, the near-
cosmological horizon equation is significantly simplified.
The solution to this equation can be matched with the near-
event-horizon solution (39). However, to fully consider the
effect of the cosmological constant and the mass and charge
of the black hole, we need to perform a numerical analysis
instead of adopting an analytical approach. Our numerical
analysis is based on similar analyses performed for higher-
dimensional Schwarzschild-dS black holes [30,49].
We now shift our attention to the near-cosmological

horizon. Following the same analysis as performed for
the near-event-horizon regime, we repeat all the calcula-
tions from (22) to (37) while replacing rh, Dh, and Bh with
rc; Dc ¼ DðrcÞ, and Bc ¼ BðrcÞ, respectively. The solution
near the cosmological horizon is expressed as

RNC ∼ B1hα̃ þ B2h−α̃ ¼ B1e
−iωrc
Bc

ln h þ B2e
iωrc
Bc

ln h: ð40Þ

Integration constants B1;2 are defined as amplitudes of the
ingoing and outgoing waves at the cosmological horizon.
These amplitudes define the transmission probability or
greybody factor as

jAj2 ¼ 1 −
����B2

B1

����2: ð41Þ

To simplify our numerical calculation, we choose A1

such that RNHðrhÞ ¼ 1 [49], which plays the role of the
boundary condition for the numerical integration. Another
boundary condition is determined from the first derivative
of RNH:

dRBH

dr

����
r¼rh

≃ −
iω
f
: ð42Þ

Radial wave equation (20) can now be numerically inte-
grated from the event horizon up to the cosmological
horizon using two boundary conditions stated earlier. In
practice, we start our numerical integration from very close
to the event horizon, that is, rh þ δ, where δ takes an
arbitrary small value. Throughout our computation, δ was
chosen to be 10−6. In addition, numerical analyses were
performed using Wolfram’s Mathematica.
Integration constants B1 and B2 can be extracted from

the near cosmological horizon solution (40). They are
given by

B1 ¼
1

2

�
f

1 − r2Λ̄

�
iωrc=Bc

�
RNC þ irBcf

ωrcBð1 − hÞ
dRNC

dr

�
;

ð43Þ

B2 ¼
1

2

�
f

1 − r2Λ̄

�
−iωrc=Bc

�
RNC −

irBcf
ωrcBð1 − hÞ

dRNC

dr

�
:

ð44Þ

After radial solution R is obtained, the greybody factor can
be calculated using (41). Note that these coefficients are
evaluated at the cosmological horizon.

A. Scalar field on the brane

First, the greybody factor of the minimally coupled
scalar field on the brane, displayed in Fig. 5(a), is
investigated. The figure depicts the variation in angular
momentum number l. It is evident that the lowest mode
ðl ¼ 0Þ is the most dominant mode, whereas the higher
modes are suppressed when l increases. This is expected,
because the field mode with spherical symmetry is favored
under the spherical symmetric spacetime. The effect of
the black hole charge Q on the greybody factor is also
illustrated in this figure. Charge Q appears to enhance the
greybody factor throughout the energy spectrum and for all
cases of l. The effect of the extra spacelike dimension n on
the greybody factor of the nonminimally coupled scalar on
the brane is depicted in Fig. 5(b). In this plot, the greybody
factor is plotted for the lowest mode ðl ¼ 0Þ with coupling
parameter ϵ ¼ 0.3 and n ¼ 0; 1; 2; 3; 4. It is apparent that
the most enhanced greybody factor occurs in four dimen-
sions. The number of extra dimensions clearly suppresses
the greybody factor for all ranges of the frequency
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spectrum. This is also observed in the higher-dimensional
Schwarzschild-dS case [30].
Next, we explore the dependence of the greybody factor

on various parameters (Fig. 6) with the extra dimension
n ¼ 3. When the coupling constant ϵ increases, the grey-
body factor of the lowest partial mode ðl ¼ 0Þ is further
suppressed, as depicted in Fig. 6(a). This phenomenon was
also observed in studies on the greybody factor for a
massive scalar field under different conditions [51–53]. It
can be attributed to the fact that in the equation of motion
(20), the R4 term plays the same role as the mass term in the
scalar field. We also observe that when ω approaches zero,
the greybody factor tends to nonvanishing values in the
minimally coupled case, in contrast with the case when

ϵ ≠ 0, where the transmission amplitude becomes zero.
This has also been observed in four-dimensional [26] and
higher-dimensional Schwarzschild-dS [30,31] setups. The
effect of the charge of the black hole on the greybody factor
of the scalar field on the brane is illustrated in Fig. 6(b).
In this figure, the angular momentum number is l ¼ 3 and
the coupling parameter is ϵ ¼ 0.4 with Q ¼ 0; 0.2; 0.4;
0.6; 0.8. The higher emission mode l is chosen to enhance
the difference between each curve with a fixed Q. When
charge Q increases, the transmission amplitude is further
suppressed. The greybody factor is significantly different in
the intermediate energy spectrum, whereas it apparently
agrees in each asymptotic energy spectrum. Finally, we
study the response of the greybody factor to the variation in
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FIG. 6. Greybody factor of scalar field on the brane for n ¼ 3, (a) Q ¼ 0.4;Λ ¼ 0.1 and l ¼ 0, (b) ϵ ¼ 0.4;Λ ¼ 0.1 and l ¼ 3,
(c) ϵ ¼ 0.4, Q ¼ 0.4 and l ¼ 0.
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FIG. 5. Greybody factor of scalar field on the brane for, (a) ϵ ¼ 0; n ¼ 2;Λ ¼ 0.05 with Q ¼ 0 (solid) and Q ¼ 0.5 (dashed),
(b) ϵ ¼ 0.5; Q ¼ 0.2;Λ ¼ 0.1 and l ¼ 0.
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the cosmological constant, as illustrated in Fig. 6(c). It is
evident that when Λ increases, the greybody factor is
enhanced. Therefore, from Figs. 5 and 6, it is evident thatQ
and Λ increase the scalar transmission amplitude, whereas
ϵ, n, and l suppress the effect of the greybody factor.

B. Scalar field in bulk

In this subsection, we explore the greybody factor of the
bulk scalar field on the higher-dimensional RN-dS space-
time. For comparison, we chose the same set of parameters
as in the brane case. In Fig. 7(a), the greybody factor is
plotted as a function of the angular quantum number for
neutral and charged black holes. Apparently, the increase in
l suppresses the effect of the greybody factor. Moreover,

the charge of the black hole enhanced the amplitude of the
transmission of the scalar field. In addition, this enhance-
ment becomes more significant for higher l. Figure 7(b)
depicts the dependence of the extra spacelike dimension on
the greybody factor, which is the most enhanced when the
extra dimension vanishes. In higher dimensions, the scalar
transmission amplitude is further suppressed. In general,
the effects of l and n on jAj2 in the bulk are similar to those
in the brane case. However, l and n appear to have a more
suppressed effect on the greybody factor in the bulk case
than in the brane case.
Figure 8 depicts the effects of parameters ϵ, Q, and Λ,

with the extra dimension n ¼ 3. The coupling constant to
the Ricci scalar plays the same role as the effective scalar
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FIG. 7. Greybody factor of scalar field in the bulk for (a) ϵ ¼ 0; n ¼ 2;Λ ¼ 0.05 with Q ¼ 0 (solid) and Q ¼ 0.5 (dashed),
(b) ϵ ¼ 0.5; Q ¼ 0.2;Λ ¼ 0.1 and l ¼ 0.
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FIG. 8. Greybody factor of scalar field in the bulk for n ¼ 3, (a) Q ¼ 0.4;Λ ¼ 0.1 and l ¼ 0, (b) ϵ ¼ 0.4;Λ ¼ 0.1 and l ¼ 3,
(c) ϵ ¼ 0.4, Q ¼ 0.4 and l ¼ 0.
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field mass. Therefore, we expect that the greybody factor
will be further suppressed when the coupling parameter
increases, similar to the brane case. In the bulk scenario, we
also observe the variation depicted in Fig. 8(a). However,
the suppression effect of the coupling constant is less
significant than that of the brane case. The dependences of
the charge of the black hole and cosmological constant on
jAj2 are generally identical to those in the brane case,
that is, both enhance the greybody factor; see Figs. 8(b)
and 8(c). In comparison with the brane scenario, we
observe that the greybody factor is further suppressed in
the low-energy limit. In general, we see the same variation
as in the brane case, that is, Q and Λ improve the greybody
factor, whereas ϵ, n, and l suppress the effect of jAj2.

V. ENERGY EMISSION RATES OF SCALAR FIELD

In this section, we discuss the differential energy emis-
sion rates of the scalar field propagating in the higher-
dimensional RN-dS spacetime. Particularly, we investigate
the emission of (non)minimally coupled scalar both on
the brane and in the bulk. We also study the dependences of
the charge of the black hole, cosmological constant, and
coupling parameter on the energy emission rates on the
brane and bulk.
The differential energy emission rate of the scalar field is

defined as [13,22,54]

d2E
dtdω

¼ 1

2π

X
l

NljAj2ω
exp ðω=TÞ − 1

; ð45Þ

where ω is the energy of the emitted particle and T is the
temperature of the black hole. The multiplicity of states is
expressed as [22]

Nl ¼
( ð2lþ 1Þ brane;

ð2lþnþ1ÞðlþnÞ!
l!ðnþ1Þ! bulk:

ð46Þ

Formula (45) can be determined when the greybody factor
jAj2 and temperature of the black hole are known. The
greybody factor is calculated using the numerical routine
discussed in the preceding section. The temperature of the
black hole can be either Th; TBH; Teff−; Teffþ, or TeffBH, as
discussed earlier. Furthermore, we compare the energy
emission rates for each definition of the temperature of the
black hole.

A. Energy emission on brane

We start with the energy emission of the scalar field on
the brane. In Fig. 9, we depict the contribution of the
dominant modes of the scalar field to the total energy
emission. Note that the Bousso-Hawking temperature (13)
is chosen. The total emission rate was computed for modes
l ¼ 0–5. We observe that the lowest mode ðl ¼ 0Þ is the
most dominant mode in the total energy emission, whereas
the higher modes contribute less significantly. Therefore,
we ignore the l > 5modes in the calculation of (45) in this
study, unless stated otherwise. We also observe the sup-
pression of the energy emission rate as the coupling
constant increases. This is similar to what we found for
the greybody factor discussed earlier. It is apparent that the
emission rate of the lower modes is more affected by the
suppression of ϵ than that of the higher modes. Finally, in
the limit ω → 0, the nonvanishing value of the lowest mode
l ¼ 0 is inherited from the fact that the greybody factor is
nonzero as the frequency approaches zero for the minimally
coupled scalar field.
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FIG. 9. Energy emission rate for scalar field on the brane for n ¼ 2; Q ¼ 0.3;Λ ¼ 0.1, (a) ϵ ¼ 0, (b) ϵ ¼ 0.6, with the first five modes
l ¼ 0; 1; 2; 3; 4; 5.
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Next, the comparison of the energy emission rates of the
nonminimally coupled scalar field for each black hole
temperature is made. The differential energy emission rates
for higher-dimensional RN-dS black holes with charge
Q ¼ 0.1 and cosmological constant Λ ¼ 1 are displayed in
Fig. 10. For a six-dimensional black hole, the energy
emission rates vanish as ω → 0. When the frequency
increases, the emission rates reach their peaks at a certain
value of ω before decreasing to zero at a larger value of ω.
This bell-shaped curve of the energy emission rate is typical

and is found in similar studies on the Schwarzschild-dS
black holes [26,49]. The emission rates of energy for Th
and TBH are relatively higher than those for the effective
definitions of the temperatures of the black holes,
Teff−; Teffþ, and TeffBH. This is because Th and TBH are
generally higher than Teff−; Teffþ, and TeffBH, thus causing
a smaller denominator in (45). The subplot depicts similar
variations in the curves of Teff− and TeffBH.
For an eight-dimensional black hole [Fig. 10(b)], differ-

ential energy emission rates are enhanced for the Th and

(a) (b)

FIG. 10. Comparisons of energy emission rate for scalar field on the brane for each temperature with ϵ ¼ 0.01; Q ¼ 0.1;Λ ¼ 1
(a) n ¼ 2, (b) n ¼ 4.
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FIG. 11. Comparisons of energy emission rate for scalar field on the brane for each temperature with ϵ ¼ 0.1; n ¼ 1;Λ ¼ 0.25,
(a) Q ¼ 0.1, (b) Q ¼ 0.5.
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TBH curves. Whereas the greybody factor is generally
suppressed, Th and TBH increase with n, as depicted in
Fig. 3. The increasing temperature dominates the suppres-
sion of the greybody factor, thus enhancing these curves.
Conversely, for effective temperatures, the energy emission
rates decrease when the number of extra dimensions
increases because Teff−; Teffþ, and TeffBH decrease mono-
tonically with n. Therefore, the denominator of (45)
increases as n decreases. Moreover, the Teff− and TeffBH
curves become more identical because both Teff− and
TeffBH share a common feature when n increases.
Figure 11 depicts the energy emission rates of the

nonminimally coupled scalar field on the five-dimensional
RN-dS black hole. First, we notice that the emission rate
vanishes in the low-energy regime. The emission curves
also exhibit the typical bell shape for the five different
definitions of the temperature of the black hole. In contrast
with the previous plot, the increasing charge Q suppresses
the Th; TBH, and Teffþ energy emission curves. However, it
enhances the Teff− and TeffBH curves instead. When the
charge of the black hole increases, the greybody factor is
typically enhanced. However, Th; TBH, and Teffþ decrease
with respect to the charge of the black hole, as depicted in
Fig. 4, whereas Teff− and TeffBH increase. These affect the
denominator of (45) such that it becomes larger (for
Th; TBH, and Teffþ) and smaller (for Teff− and TeffBH).
Notably, the power spectrum of brane emission becomes
significantly narrower as the charge of the black hole
increases.
Figure 12 illustrates the effect of the cosmological con-

stant on the energy emission rates for seven-dimensional
RN-dS black holes. Similar to the previous case, the

bell-shaped curves and vanishing initial values are also
seen. This figure indicates that when the cosmological
horizon decreases, all the curves of differential energy
emission rates, except the traditional black hole temper-
ature curve Th, are enhanced. From Fig. 2, we deduce that
the Th line is the only one that decreases monotonically
with Λ, whereas the others increase in the intermediate-Λ
regime. This explains why suppression appears only in the
Th curve.

B. Energy emission in bulk

In this subsection, we investigate the energy emission
rates of the bulk scalar field in the higher-dimensional RN-
dS spacetime. To compare with the results obtained in the
preceding subsection, we deliberately choose parameters
similar to those used in the brane case. The energy emission
rates for each scalar field mode for six-dimensional RN-dS
black holes were calculated and are presented in Fig. 13.
In these plots, the Bousso-Hawking temperature TBH is
chosen, and the total emission rate is the total sum of the
scalar field mode up to l ¼ 5. It is evident that the major
contribution to the total emission rate is the result of the
lower mode. In addition, we observe that the operation in
the bulk scenario is similar to that of the brane case
discussed earlier. For a minimally coupled scalar field with
l ¼ 0, we find a nonvanishing value of the energy emission
rate for a low-energy regime, as expected. The energy
emission rates experience a suppression effect as the
coupling parameter increases. However, the suppression
from the coupling constant appears to have a lower effect
on the bulk scenario. Finally, the energy emission rates of
the bulk scalar (minimally and nonminimally coupled) are
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FIG. 12. Comparisons of energy emission rate for scalar field on the brane for each temperature with ϵ ¼ 0.05; n ¼ 3; Q ¼ 0.5,
(a) Λ ¼ 1, (b) Λ ¼ 2.
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more suppressed than those of the brane scalar for the
overall regime of ω.
Figure 14 depicts the energy emission rate of the non-

minimally coupled scalar field in the bulk. The effects of
the number of extra dimensions on the differential energy
emission are presented in this figure. In contrast with the
minimally coupled case, the energy emission rate becomes
zero in the low-frequency regime. Similarly, the Th and
TBH curves are higher than the effective temperature curves
by approximately 1 order of magnitude. This is because

Teff−; Teffþ, and TeffBH are comparatively smaller than the
traditional and normalized black hole temperatures. As the
number of extra dimensions increases, the Th and TBH
emission curves are enhanced, whereas the rest become
further suppressed. In comparison with the brane case
(Fig. 10), we find that the total energy emission rates for the
scalar brane are generally larger than those for the bulk
scalar field.
The dependence of the charge of the black hole on

the differential energy emission is depicted in Fig. 15.
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FIG. 13. Energy emission rate for scalar field in the bulk for n ¼ 2; Q ¼ 0.3;Λ ¼ 0.1, (a) ϵ ¼ 0, (b) ϵ ¼ 0.6, with the first five modes
l ¼ 0; 1; 2; 3; 4; 5.
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FIG. 14. Comparisons of energy emission rate for scalar field in the bulk for each temperature with ϵ ¼ 0.01; Q ¼ 0.1;Λ ¼ 1,
(a) n ¼ 2, (b) n ¼ 4.
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Bell-shaped curves are observed in this case. The Th; TBH,
and Teffþ curves are suppressed by the increasing value
of Q. Enhancements occur particularly for the Teff− and
TeffBH curves when the charge of the black hole increases.
In both cases, Q ¼ 0.1; 0.5, the differential energy emis-
sions appear to favor the low-energy regime. These curves
are found to be comparatively smaller than those of the
scalar field on the brane displayed in Fig. 15.
Figure 16 depicts the energy emission rates of non-

minimally bulk scalar field in the seven-dimensional

RN-dS background with two specific values of the cos-
mological constant, that is, Λ ¼ 1; 2. In general, the energy
emission curves are similar to those on the brane scalar
field. Suppression occurs only in the Th curves when the
cosmological constant increases. The other curves are all
enhanced by the increasing value of Λ. When compared
with the brane scalar case (Fig. 12), the energy emission
curves for the scalar field in the bulk are further suppressed.
Notwithstanding the fact that the energy emission rates

in the bulk do not differ significantly from those in the
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FIG. 15. Comparisons of energy emission rate for scalar field in the bulk for each temperature with ϵ ¼ 0.1; n ¼ 1;Λ ¼ 0.25,
(a) Q ¼ 0.1, (b) Q ¼ 0.5.
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FIG. 16. Comparisons of energy emission rate for scalar field in the bulk for each temperature with ϵ ¼ 0.05; n ¼ 3; Q ¼ 0.5,
(a) Λ ¼ 1, (b) Λ ¼ 2.
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brane scenario, the bulk energy emission curves are found
to be further suppressed in the overall regime of energy
than those in the brane scenario. Moreover, in both the
brane and bulk cases, the energy emission rates occur in the
low- to intermediate-frequency regimes.

VI. BULK-OVER-BRANE EMISSION RATIO

In this section, we investigate the effect of various
temperatures on the ratio of the total energy emitted by
higher-dimensional RN-dS black holes in the bulk to that of
the brane. We investigate the effect of the model param-
eters, particularly Q, Λ, and ϵ, on the bulk-over-brane
energy emission. To compute the total energy emitted in the
bulk and on the brane, Eq. (45) is numerically integrated
over the entire range of frequencies ω.
In Tables I and II, we plot the bulk/brane emission ratios

for five different temperatures of the black hole versusQ ¼
0.1; 0.3; 0.5; 0.7 with Λ ¼ 1. Note that Q is chosen such
that the temperatures of the black hole are finite. First, it is
evident that brane emissions dominate the signal from the
bulk. The emission ratios can be categorized into two types:
those that decrease with Q and those that increase with Q.
The temperatures Th and TBH belong to the first group. We
observe that the bulk-over-brane emissivities decrease
when Q increases. The results from Sec. V imply that
the energy emission curves Th and TBH are suppressed with
an increase in the charge. Therefore, the emission signals
from the bulk gradually become less significant when
compared with those from the brane. The second group
consists of ratios from Teff−; Teffþ, and TeffBH. For Teffþ,
the energy emission rates of both the brane and bulk scalar
fields are suppressed with an increase in Q. In addition, the
emission rates of the brane scalar field are less suppressed

when compared with those of the bulk one, thereby
enhancing the bulk/brane ratio when Q increases. In
contrast, when the energy emission rates are enhanced
for both the Teff− and TeffBH curves, it can be implied that
the increase in the bulk emission signal whenQ increases is
smaller than that in the brane case. Moreover, for the Teffþ
and TeffBH cases, the ratios change significantly in the high-
Q regime. This is because both temperatures approach
certain points at which they become infinite when Q
increases. This observation is depicted in Fig. 4. Finally,
when ϵ increases, the bulk-over-brane emission ratios are
further suppressed throughout the entire range of param-
eters investigated.
Next, we investigate the effect of the cosmological

constant on the bulk-over-brane emission ratios. For six-
dimensional RN-dS black holes with Q ¼ 0.1, Tables III
and IV present the total emission ratios versus Λ for each
temperature of the black hole. Similarly, the cosmological
constant spans the range over which the temperature of the
black hole is finite and positive. For the minimally coupled
scalar field, it is evident that the bulk/brane ratio increases
when Λ increases. In addition, for most cases explored in
this study, the total energy emissions from the brane
dominate the bulk emissions. However, the latter becomes
moderately more significant when Λ increases. Notably,
when Λ increases sufficiently, the total emission ratios
exceed unity, as demonstrated for TBH and Teff−. This
means that the emissions from the bulk channel overcome
the signal from the brane channel. The dominance of the
bulk emission signal over the brane emission is also
observed in the higher-dimensional neutral dS black hole
[31,49]. When the coupling constant is nonzero, the total
emission ratio is suppressed for the entire range of
parameters. In general, the bulk-over-brane ratios are

TABLE I. Bulk-over-brane emission ratio for ϵ ¼ 0, n ¼ 2 and
Λ ¼ 1.

Temperature Q ¼ 0.1 Q ¼ 0.3 Q ¼ 0.5 Q ¼ 0.7

Th 0.301549 0.273211 0.221700 0.163230
TBH 0.501751 0.452067 0.352243 0.218765
Teff− 0.133887 0.135955 0.142676 0.188552
Teffþ 0.125338 0.125657 0.126203 0.126572
TeffBH 0.131824 0.133242 0.137299 0.154225

TABLE II. Bulk-over-brane emission ratio for ϵ ¼ 1, n ¼ 2 and
Λ ¼ 1.

Temperature Q ¼ 0.1 Q ¼ 0.3 Q ¼ 0.5 Q ¼ 0.7

Th 0.159281 0.129055 0.071677 0.013403
TBH 0.380857 0.326871 0.213148 0.059079
Teff− 0.003263 0.003635 0.005352 0.031760
Teffþ 0.002555 0.002634 0.002819 0.003211
TeffBH 0.002931 0.003113 0.003743 0.008527

TABLE III. Bulk-over-brane emission ratio for ϵ ¼ 0, n ¼ 2
and Q ¼ 0.1.

Temperature Λ ¼ 2 Λ ¼ 3 Λ ¼ 4 Λ ¼ 5

Th 0.401939 0.529195 0.646310 0.867203
TBH 0.793922 1.218580 1.932757 3.314220
Teff− 0.322934 0.536059 0.876612 2.201602
Teffþ 0.299156 0.507383 0.728516 0.925172
TeffBH 0.311829 0.500666 0.654044 0.882097

TABLE IV. Bulk-over-brane emission ratio for ϵ ¼ 1, n ¼ 2
and Q ¼ 0.1.

Temperature Λ ¼ 2 Λ ¼ 3 Λ ¼ 4 Λ ¼ 5

Th 0.086116 0.050423 0.030787 0.017883
TBH 0.510153 0.798298 1.445196 2.538121
Teff− 0.011776 0.056609 0.304208 1.602842
Teffþ 0.003782 0.004598 0.005125 0.005418
TeffBH 0.005529 0.008871 0.012074 0.012514
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similar to those in the minimally coupled case. The
exception occurs only for the traditional Th. The bulk/
brane emission ratios increase when Λ approaches the
maximum allowed value. This phenomenon occurs because
the energy emission curves shift toward the high-frequency
regime when ϵ increases, leading to the absence of the low-
energy emission mode. However, the contribution of Th
toward the energy emission curve in the high-energy
regime is significantly small, because Th retains its maxi-
mum in the low-energy region [49]. Therefore, the sup-
pression of the bulk/brane emission ratios whenΛ increases
implies that the bulk emission signal is affected signifi-
cantly more than the brane signal for the Th case.

VII. CONCLUSIONS

In this study, we investigated the thermodynamics of
higher-dimensional RN-dS black holes. In particular, we
considered the effects of the model parameters on five
different temperatures of the black hole: traditional temper-
ature Th; normalized (Bousso-Hawking) temperature TBH;
and three effective temperatures, namely, Teff−; Teffþ, and
TeffBH. We first explored five temperatures under the effect
of the cosmological constant Λ. In the limit where the
cosmological constant vanishes, TBH was identical to Th, as
expected. The three effective temperatures were all zero,
which indicated the invalidity of the effective temperature
formulas in the absence of Λ. When Λ approached its
maximum allowed value, where the two horizons coincide,
Th and Teff− gradually reached a nonzero value, whereas
the rest of the temperatures tended to zero. Thereafter,
the temperatures were studied under the effect of the
number n of the extra spacelike dimensions. Both Th
and TBH monotonically increased with n, whereas the
effective temperatures approached a nonzero (yet small)
constant. The dependence of the five different tempera-
tures on the charge of the black hole was discussed
subsequently. The surface-gravity-based temperature Th,
Bousso-Hawking temperature TBH, and Teffþ decreased
with Q before reaching zero in the same limit. In contrast,
the other two effective temperatures experienced infinite
jumps in their values when the charge of the black hole
approached its maximum allowed value. For the entire
range of parameters investigated, the normalized temper-
ature was dominant over the other definitions of the
temperature of the black hole.
We also studied the scalar propagation on the brane and

in the bulk. The scalar field was assumed to have non-
minimal coupling to the curvature constant. The scalar
curvature term was effectively the same as the mass term in
the scalar equation of motion. We derived and numerically
computed the transmission probability amplitude or grey-
body factor. We then investigated the effect of the model
parameters, namely, coupling parameters ϵ; n;l; Q, and Λ,
on the greybody factors, both on the brane and in the bulk.
Under the effects of these parameters, greybody factors

share several common features on the brane and in the bulk.
The scalar transmission amplitudes were enhanced with
an increase in Q, Λ, whereas the greybody factors were
suppressed with an increase in ϵ, n, and l. Particularly, the
suppression effect of the coupling parameters on the grey-
body factor in the bulk was softer than that on the brane.
A notable difference was observed between the greybody
factor with ϵ ¼ 0 and that with ϵ ≠ 0 in the lowest
dominant mode l ¼ 0 for both the brane and bulk, whereas
it tended to a nonzero value for the former, it became zero
for the latter when ω → 0.
Next, we calculated the power spectra of energy emis-

sion based on the five aforementioned temperatures for a
(non)minimally coupled scalar field propagating on the
brane and in the bulk. For both the brane and bulk
scenarios, we found that the major contribution to the
power spectra resulted from the first few lowest modes l.
When ϵ took nonzero values, we noticed a suppression in
the energy emission rates. Thereafter, we explored the
dependences of n, Q, and Λ on the power spectra. The
nature of the emission curves was generally dictated by
the temperature. When the number of extra dimensions
increased, the emission rates for Th and TBH were
enhanced, whereas those of the other effective temperatures
were suppressed. The charge of the black hole affected the
energy emission curves such that the Th; TBH, and Teffþ
curves were suppressed when Q increased, whereas the
Teff− and TeffBH curves were enhanced. Moreover, only
the Th curve was suppressed, whereas the other curves
were enhanced when Λ increased. For the entire range of
parameters n, Q, and Λ that we investigated, we observed
that the emission rates for the traditional Th and Bousso-
Hawking TBH were generally dominant over the effective
temperature curves. In addition, we found that, for the same
set of parameters, the energy emission rates of the scalar
field on the brane were typically higher than those in
the bulk.
Section VI presents a comparison of the total energy

emissions along the brane and bulk channels. The bulk-
over-brane emission ratios for the five temperatures were
calculated while varying the various parameters. When
the charge of the black hole increased toward the maxi-
mum allowed value, the total energy emission in the bulk
channel became increasingly significant for Th and TBH.
For the effective temperatures, however, the emission
ratios increased slightly whenQ increased. We also noticed
an abrupt change in the values of the ratios when Q
approached the maximum value for the Teff− and TeffBH
cases. This reflected infinite jumps in the Teff− and TeffBH
curves, as discussed earlier. In general, the results of the
total energy emissions confirmed the dominance of the
scalar brane signal over the bulk signal. Nevertheless, when
Λ approached the maximum allowed value, the emission
ratios were possibly larger than unity. Therefore, the bulk
emission dominated over the emission channel at temper-
atures TBH and Teff−. In general, the total energy emission
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ratios were suppressed when the coupling parameter was
turned on, as expected. Note that we herein considered
black holes with extra dimensions. However, our observ-
able universe, at macroscopic scales, has four dimensions,
so the gravitational effects of extra-large spatial dimensions
are not observed in our Universe. Instead of large spatial
dimensions, extra dimensions might be hidden by some
short-scale mechanism such as compactification. Then,
considering effects of the extra dimensions can be relevant
in such a short range. Hence, our results might be important
for phenomena involving small black holes with sizes
comparable to the size of the extra dimensions. In this case,

the gravitational effects owing to the extra dimensions can
be detected by the radiation the black hole emits such as its
Hawking radiation.
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