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We present a new method of measuring the mass density along the line of sight, based on precise
measurements of the variations of the times of arrival (TOAs) of electromagnetic signals propagating
between two distant regions of spacetime. The TOA variations are measured between a number of slightly
displaced pairs of points from the two regions. These variations are due to the nonrelativistic geometric
effects (Rømer delays and finite distance effects) as well as the gravitational effects in the light propagation
(gravitational ray bending and Shapiro delays). We show that from a sufficiently broad sample of TOA
measurements we can determine two scalars quantifying the impact of the spacetime curvature on the light
propagation, directly related to the first two moments of the mass density distribution along the line of
sight. The values of the scalars are independent of the angular positions or the states of motion of the two
clock ensembles we use for the measurement and free from any influence of masses off the line of sight.
These properties can make the mass density measurements very robust. The downside of the method is the
need for extremely precise signal timing.
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I. INTRODUCTION

In this paper we develop a method of tomographic
measurement of mass density of matter along the line of
sight using variations of times of arrival (TOAs) of pulses
of electromagnetic radiation between pairs of points from
two small, distant regions connected by a null geodesic.
The result may be seen as a continuation of the research
program initiated in [1,2] on determining the spacetime
geometry, or—more precisely—the spacetime curvature,
directly from precise optical or astrometric measurements,
but this time focusing on a different observable, namely the
precise time when a sharp discontinuity of the electromag-
netic field reaches a receiver.
The TOAs of electromagnetic signals are among the

most important observables in general relativity. They have
been studied in many fields of relativity and astronomy: in
pulsar and binary pulsar timing [3–5], time-delay cosmog-
raphy using strong lenses in cosmology [6,7], experiments
with atomic clocks and clock ensembles in gravitational
fields [8], relativistic geodesy [9], navigation on Earth
[10,11] or measurements of Shapiro delays from massive
bodies [12]. They also played an important role in the early
days of special relativity as the main observable in the
Einstein’s radar method of time and distance measure-
ments. The general problem of TOAs in a curved spacetime

is rather difficult; it has been considered by Synge [13], and
later by Teyssandier, Le Poncin-Lafitte and Linet [14–16].
In this work we propose a differential measurement in

which we compare the TOAs between many pairs of distant
of points, with the points contained in two fixed distant
regions. The points in each region are displaced with
respect to each other in both space and time. The meas-
urement can be performed with the help of two ensembles
(or groups) of comoving synchronized clocks, each located
in one of the two distant regions. We assume that the clocks
are equipped with transmitters and receivers of electro-
magnetic radiation and are able to emit pulses of radiation
at prescribed moments. They can also measure precisely the
moments of reception of signals emitted by other clocks,
recognizing at the same time the origin of each received
signal. The clocks within each ensemble are in free fall and
at rest with respect to each other. We assume that they are
positioned fairly close to each other and in a prescribed
manner within the ensembles, while the ensembles them-
selves are located far apart (see Fig. 1).
Each of the two ensembles plays a different role in the

measurement. The clocks in the emitters’ ensemble emit
signals in the form of pulses according to a fixed meas-
urement protocol. Each signal should contain a time
marker, defining the emission moment as sharply as
possible, for example by the means of a discontinuity in
a component of the electromagnetic field. The clocks in the
receivers’ group register the moments of arrival of the
markers (see Fig. 1). We assume that the receivers can also*korzynski@cft.edu.pl
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recognize the origin of each signal, meaning the emitting
clock and the moment of emission [17]. This way the
system is able to record the TOAs between all emitter-
receiver pairs and for various moments of emission. In this
paper we provide a method of combining all these data and
extracting information about the spacetime curvature and
the matter content along the line of sight, assuming that we
know precisely the placement and the motions of the
emitters and receivers as measured in their respective local
inertial frames.
The two ensembles resemble two clock-based gravita-

tional compasses as discussed in [18–20]. Recall that the
clock-based gravitational compass is a curvature-measuring
device using differences in ticking rates of precise clocks. It
generalizes the notion of the gravitational compass intro-
duced by Szekeres [21] and developed also by other authors
[22–25]. The setup we discuss may be also be considered a
special case of an extended gravitational clock compass in
the terminology of [18–20], consisting of two distinct
groups of clocks. Unlike the former, it is only extended
along a single null geodesic, and therefore it is only able to
measure some of the curvature components. On the other
hand, this extension is so large that we need to allow the
curvature to vary along the way.
Direct measurements of the spacetime curvature in

general relativity are usually quite challenging for a simple
reason; with the exception of cosmology, black hole theory
or strong gravitational lensing, the scale of the curvature is
usually very large in comparison to all other time and
length scales involved. Thus the curvature corrections to

observables are usually tiny and need to be distinguished
from many other effects. However, the measurement pre-
sented here is designed in such a way that potentially much
larger contributions to the TOAs due to the kinematical
effects (states of motion of the two ensembles), attitude
effects (angular position or attitude of both ensembles with
respect to each other or to the line of sight) and influence of
nearby masses off the line of sight (Shapiro delays from
nearby masses) cancel out completely. Effectively it is only
the gravity of the mass density located along the null
geodesic linking the two regions that contributes to the
results. This implies a strong resistance of the measurement
to perturbations by external masses or due to the effects of
unknown velocities or misalignment of the two clock
ensembles. This property makes the measurement very
robust despite very small magnitude of the expected signal.
Moreover, thanks to the advancements in atomic clock
techniques, the time measurements are now among the most
precise types of measurements possible today, and therefore
the TOAs can in principle be measured with high precision.
The quantities determined by the measurement are the

distance slip μ, introduced in Grasso et al. [1] and
Korzyński and Villa [26], and a closely related quantity
ν. Recall that the dimensionless scalar μ measures the
difference between the parallax effects and the magnifica-
tion between two points along a null geodesic, suitably
averaged over all possible baseline orientations. In a flat
spacetime the effect of the transverse displacement of the
receiver on the apparent position of a distant luminous
source (i.e., the trigonometric parallax) is identical to the

FIG. 1. The synchronized, comoving clocks in the emitters’ ensemble (left) emit pulses of radiation in all directions at prescribed
moments defined by their local time. The pulses travel then a long distance through the curved spacetime and finally reach the receivers’
ensemble (right), where each of the synchronized and comoving clocks records the time of arrival of each signal. The regions of
emission and reception are connected by the fiducial null geodesic γ0.
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effect of the same displacement of the source in the
opposite direction, leading to μ ¼ 0. In a curved spacetime
this is no longer the case, and, as a result, the two methods
of distance measurement to a single body, by angular size
and by parallax, may yield different numbers, resulting in
nonvanishing μ. We showed in [1] that the measurement of
μ is selectively sensitive to the curvature along the line of
sight and that for short distances it is sensitive to an integral
of a single component of the stress-energy tensor. The same
applies to ν and therefore the method we present may be
seen as a tricky differential measurement of the Shapiro
delays, sensitive only to the signal originating from the
mass density along the line of sight.
In the meantime, as an important side result, we develop

further the bilocal approach to light propagation in the
curved spacetime, introduced first in [1]. In this framework
the TOAs, just like other observables, are expressed as
functions of the curvature tensor along the line of sight,
describing the influence of spacetime geometry on light
propagation, as well as the momentary positions and
motions of both sources and receivers, as described in their
locally flat coordinates. The dependence of the TOAs on the
spacetime geometry is clearly separated from the depend-
ence on the momentary positions and motions of the clocks.
We then consider the emitters and the receivers as contained
in two distant, free-falling Einstein elevators. The direct
influence of gravity is undetectable inside each elevator
within the time scale of the experiment. However, light
propagating over long distances from one elevator to the
other does feel the impact of the curved spacetime and, aswe
show in this paper, this impact can be detected.

A. Geometric description and mathematical apparatus

The description of light propagation using bilocal
operators is quite different from the more standard
approach in which we use an approximation (for example
post-Newtonian, post-Minkowskian or linearized gravity),
to calculate the potentials or metric components from the
mass distribution and then trace the perturbed null geo-
desics as well as the perturbed worldlines of the emitters
and receivers of the pulses. In contrast, the bilocal approach
works in any spacetime and does not require an explicit
decomposition of the metric into a global flat background
plus perturbations. It shares many features with the time
transfer function formalism of Teyssandier, Le Poncin-
Lafitte and Linet [14–16], including the use of Synge’s
world function, but it also differs in a number of important
ways. Firstly, our formalism does not aim to be global; it
provides expressions for the variations of the TOAs in the
form of a Taylor expansion valid in the immediate
neighbourhood of a given pair of points, rather than the
exact or approximate value of the TOAs between any
emitter-receiver pair in a given spacetime. Consequently, it
does not need to make use of a global time coordinate as a
reference.

Following [1], we proceed here by deriving a number of
exact geometric relations between the spacetime geometry,
the kinematical quantities describing the momentary posi-
tions and states of motion of the emitters and receivers in
their local inertial frames, and the TOAs they measure. The
whole framework is therefore formulated in a coordinate-
independent, geometric way.
The dependence of the TOAs on the spacetime geometry

enters only via two covariantly defined tensors and one
bitensor encoding the impact of the spacetime on the
wavefronts, just like in [1]. These linear operators are
defined as functionals of the components of the Riemann
curvature tensor along the line of sight, independently from
any tetrads, frames or other structures. This is again in
contrast to [14–16], where the dependence of TOAs on the
spacetime geometry enters directly via the components of
the metric expressed in a particular coordinate system,
related to the post-Newtonian or post-Minkowskian
approximation. As we will see, this last feature is crucial
for deriving the key result of this paper, namely the method
for extracting the bare curvature effects from the variations
of the TOAs.
Since the definitions and the measurements of the

observables in question require no external structures like
global coordinate systems (for example the Solar System
barycentric coordinates), large-scale nonrotating reference
frames, Killing vectors etc., we avoid any problems of the
astrometric data reduction in the data interpretation [27].

B. The basic idea of the measurement

We consider the exact moment of arrival of a signal sent
from a point in the emitters’ region NE as measured by a
clock performing the measurement in a local inertial frame
in the receivers’ region NO. We fix the receivers’ reference
frame by fixing their common four-velocity uμO and thus
also the corresponding coordinate time. The TOA depends
now on the spatial position and the moment of emission in
NE and the spatial position of the receiver in NO. We
consider two reference points E ∈ NE and O ∈ NO such
that a signal from E reaches O. We can then describe the
positions and the emission moment by the displacement
vectors from O (three spatial components only) and E
(four-dimensional spacetime vectors). We can then expand
the TOA up to the next-to-leading, second order in
the displacements. At the leading, linear order we just
see the Rømer delays, i.e., the dependence of the TOAs on
the position of the emitter and the receiver along the line of
sight, and the frequency/time transfer effects (the redshift or
blueshift of frequencies and difference between the receiv-
er’s proper time lapse and the observed emitter’s time
lapse), see Fig. 2, upper panel. These effects do not depend
explicitly on the spacetime curvature and can be described
using just special relativity (see Butkevich and Lindegren
[28] for a discussion in the context of precise astrometry).
However, as we will see, the quadratic term in the
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displacements contains curvature corrections on top of the
standard, distance-dependent effects present also in a flat
spacetime (Fig. 2, lower panel). The idea is to recognize
and evaluate these curvature corrections to the “flat” finite
distance effects.
The quadratic term in question encodes the subleading,

transverse effects in the TOAvariations as well as the cross
effects of displacements on both ends. They are usually
much smaller than the linear effects and are responsible for,
among other things, the curved shape of the light cones and
the wave fronts. The TOAs depend also on the receivers’
and emitters’ rest frames via the standard special relativity
effects, but we prove here that the two quantities we
measure are Lorentz-invariant with respect to both the
emitters’ and receivers’ frames.
The basic idea of the measurement has a simple geo-

metric interpretation; the TOAs between two regions can be
geometrically described by a subset of the product manifold

M ×M constructed from the spacetimeM. We consider the
locus of pairs of spacetime events which can be connected
by a null geodesic. Under fairly mild assumptions this locus
is (locally) an embedded hypersurface in M ×M and we
will call it the local surface of communication (LSC). Its
shape in the vicinity of a given point ðO; EÞ can be
approximated by its second order tangent surface by the
means of a Taylor series. The second order term in this
approximation, related to the extrinsic curvature of the LSC
as an embedded hypersurface in M ×M, contains space-
time curvature corrections and, as we show, can be related
to the Riemann tensor along the line of sight. The
measurement itself amounts to sampling the LSC over a
large number of nearby emission/reception event pairs,
with the help of clocks equipped with electromagnetic
radiation transmitters and receivers. Note that by definition
each emission-reception pair we register yields a point in
M ×M lying on the LSC. If the sampling is sufficiently
broad, the shape of the LSC in the second order Taylor
expansion can be recovered completely from the data and
the extrinsic curvature tensor can be obtained component-
wise. Finally, the two bilocal scalars μ and ν measuring the
spacetime curvature are calculated from the extrinsic
curvature and the first order term.
The local surface of communication is an important

theoretical concept we introduce in this paper. It encodes
the information about light propagation between two
distant regions of the spacetime, very much like the bilocal
geodesic operator discussed in Grasso et al. [1]. We will
explore the relation between these two geometric objects
and prove a number of results related to the geometry of
the LSC.
We point out here that the TOAs of mechanical waves in

elastic media and their variations have been studied
extensively in seismology. In fact, the formalism developed
in this paper may be also regarded as the general relativistic
counterpart of the second order approximation for travel
times in seismic ray theory [29–32].

C. Assumptions and limitations of the approach

We assume the validity of the geometric optics approxi-
mation throughout the work. This means that the electro-
magnetic wave’s wavelength is assumed to be much
smaller than all other length scales involved and the
radiation intensity small enough so as not to produce
any significant contribution to the stress-energy tensor.
With these assumptions we can consider the electromag-
netic radiation as propagating along null geodesics of a
fixed metric [33,34]. Consequently, we can assume that a
pulse of radiation originating from single emission event
propagates along this event’s future light cone.
The assumptions regarding the two distant regions are

similar to those in [1]. We assume that both regions we
consider are sufficiently small in comparison with the
spacetime curvature scale that the light propagation

FIG. 2. Upper panel, left: The variations of the TOAs of light
signals, as registered by the receiver in his or her proper time,
plotted for a fixed observation point O, but variable emission
point. Blue colour denotes an earlier TOA, while yellow a later
TOA. For sufficiently small displacements we see only the
leading order, linear effects in displacements. Upper panel, right:
the same TOAs, but for a fixed emission point E and variable
observation points. Note that in both cases in the linear order we
only see the dependence on the displacements along the line of
sight (Rømer delays). Due to special relativistic effects the
dependence on displacements does not need to be exactly the
same on both ends. Lower panel, left: Again TOAs for a fixed
observation point O and displaced emission points. For suffi-
ciently large displacements we begin to see the quadratic order
effects in displacements, in the form of transverse delays. Lower
panel, right: The TOAs for a fixed emission point O and
displaced observation points, together with the second order
effects. In a general spacetime the magnitude of the second order
effects may be different at the two endpoints.
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between them can be approximated using the first order
geodesic deviation equation. As we will see in this paper,
this is equivalent to assuming that the Synge’s world
function can be approximated by its Taylor series truncated
at the second order. In a more physical language, this means
that we demand the curvature to be constant in the trans-
verse directions across the long, thin cylinder connecting
both regions. It follows that we need to assume the matter
density and the tidal effects to be constant in the transverse
directions as well.
We assume that each process of emission and reception

of a signal happens at one single event and without
instrumental delays. We also disregard any nongravita-
tional effects of refraction or pulse dispersion due to the
presence of a medium, for example ionized hydrogen,
along the line of sight. This kind of medium produces
additional frequency-dependent delays related to the elec-
tron column density along the line of sight [4].

D. Structure of the paper

The paper is organized as follows: In Sec. II we describe
in detail the geometry of the problem, introduce the product
manifold and discuss all types of coordinate systems we use
in the rest of the paper. Then, in Sec. III, we introduce the
mathematical machinery of the paper; we derive the
relation between the shape of the local surface of commu-
nication and the spacetime curvature, first generally and
then in the small curvature limit, and prove a number of
general results regarding the geometry of the LSC. We then
derive exact expressions for the TOA and finally discuss the
inverse problem of reconstructing the shape of the local
surface of communication from TOA measurements.
In Sec. IV we introduce the two scalar observables

measuring the curvature corrections and prove their proper-
ties. Section V contains the derivation of the order-of-
magnitude estimates of various TOA effects in terms of the
characteristic scales of the problem. Additionally, we relate
the two observables to the first two moments of the mass
distribution along the line of sight. We also summarize the
most important results of the first five sections. Section VI
contains an example of the measurement protocol. We
conclude the paper with a summary and conclusions. The
Appendix contains the details and the derivations of more
elaborate technical results of the paper.

E. Notation and conventions

In this work we use many different types of indices,
related to various types of geometric objects and bases
(tetrads), and running over different sets of integers. We
will now summarize our index conventions.
The Greek indices μ; ν;… run from to 0 to 3 and denote

geometric objects expressed in various coordinate bases.
We borrow the notation from [35] for bilocal (or two-point)
geometric objects, in which primed Greek indices μ0; ν0;…
refer to the tangent space at the observation point O, while

the unprimed ones refer to the emission point E. The Latin
indices i0; j0; k0;… and i; j; k;… run from 1 to 3, again
referring to O and E respectively. They will be used for the
spatial components of vectors and other objects.We also use
indices with an overline μ̄; ν̄;… for geometric objects
expressed in a parallel propagated tetrad along the fiducial
null geodesic γ0, independently of the point along γ0. The
Latin capitals, both with overline (Ā; B̄;…) or without
(A; B;… or A0

;B0;…), run from 1 to 2 and will be used
for the transverse spatial components, orthogonal to the line
of sight.
Finally, we also introduce notation for eight-dimensional

vectors in the direct sum of the tangent spaces at O and E,
i.e., in TOM ⊕ TEM, as well as tensors on this space. The
geometric objects themselves will be denoted by boldface
capitals, i.e., X;Y;…. Moreover, all index numbers in this
case will be denoted by the boldface font; the indices run by
convention from 0 to 7. The first four components (i.e., 0–3)
will refer to the μ0 components in TOM, while the latter four
(4–7) to the μ components from TEM. We will also use the
boldface latin letters i; j;… to denote the seven components
ranging from 1 to 7, i.e., omitting the 0 component.
For the sake of simplicity we will assume that c ¼ 1

throughout the paper, i.e., we are using distance units to
express time. In Table I we list the most important
acronyms used in the paper.

II. GEOMETRICAL PRELIMINARIES

A. Geometric setup

The geometric setup is similar to that of [1] (see Fig. 3).
Let M be the spacetime of dimension 4, equipped with a
smooth metric g of signature ð−;þ;þ;þÞ. We consider
two points O and E such that an electromagnetic signal
emitted at E can be received at O. In other words, we
assume that O lies on the future light cone centered at E. In
this case O and E can be connected by a null geodesic γ0.
We also consider two small regions NO ⊂ M and NE ⊂ M
around pointsO and E respectively, extending in both space
and time. Under the assumptions above we may expect that
signals from other points (events) in NE can be received at
other points in NO.

TABLE I. Most important acronyms used in the paper and the
reference to the appropriate section, listed in alphabetical order.

Acronym Meaning Section

BGO Bilocal geodesic operator III A
COM Center of mass VA
LF Locally flat (coordinates) II D
LOS Line of sight II A
LSC Local surface of communication II C
ODE Ordinary differential equation III A
OLF Orthonormal locally flat (coordinates) II D
ON Orthonormal IVA
PLF Parallel-propagated locally flat (coordinates) II D
TOA Time of arrival I
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We assume that both NE and NO are sufficiently small to
be effectively flat. Namely, if R denotes the spacetime
curvature radius scale and L the size of both regions, then
we assume that L2=R2, a dimensionless quantity scaling
the curvature corrections within both regions, is negligibly
small. In this case we may simply identify points in NO
with vectors in the tangent space TOM with the help of the
exponential map and the spacetime metric g with the flat
metric on the tangent space; the same construction works
for NE. With this identification the points O and E will
serve as reference for other points in NO and NE and
vectors in TOM and TEM, denoted δxO and δxE , as
displacement vectors representing points. The null geodesic
γ0 connectingO and E will be referred to as the line of sight
(LOS) or the fiducial null geodesic and will be used as
reference for other geodesics connecting points in NO and
NE . We assume that γ0 is parametrized affinely by the
parameter λ, although we make no assumptions regarding
the normalization of this parametrization. In order to be
consistent with [1,2] we will assume that the parametriza-
tion runs backward in time, i.e., from O to E. The null
tangent vector to γ0 will be denoted by l.
In a general spacetime it is possible that more than one

geodesic connects a pair of points from NO and NE . In the
context of geometrical optics this means that we may

expect multiple imaging and, consequently, many TOAs of
a single signal from a given event. The TOAs becomes then
multivalued for a given receiver. For the sake of simplicity
we will assume throughout this paper that both NE and NO
lie in the normal convex neighbourhood of E. Under this
assumption the geodesics connecting such pairs are unique
and no multiple TOAs are possible. This assumption also
allows us to define a single-valued world function; an
important object in this work.
We point out, however, that the results of this paper

should also hold if multiple imaging is present, but NO and
NE do not contain conjugate points, i.e., they are away from
caustics, and they are both sufficiently small. In this case
we simply need to limit the geodesics considered to those
contained in a sufficiently narrow tube around a single
connecting geodesic γ0 [1], and this way limit our interest
to a particular single image of the distant region NE on the
celestial sphere. However, in this paper we will not consider
this situation in detail.
We assume that the light propagating between E andO is

affected by the spacetime curvature, but this effect can be
efficiently described in terms of the Riemann tensor along
γ0. In other words, the effects of higher derivatives of the
curvature along the LOS are negligible. It follows that the
behavior of geodesics connecting NO and NE can be very
well approximated using the first order geodesic deviation
equation (GDE). This is again true provided that NO and
NE are small enough [1]. As we will see, this assumption
has an important effect on the TOAs between the two
regions. Namely, it means that we can approximate the
variations of the TOAs using the second order Taylor
expansion.

B. The product manifold

The geometric construction behind the direct curvature
measurements from the TOA variations is much simpler to
explain if we perform it at the level of the product manifold
M ×M instead of the spacetimeM itself. Consider then the
Cartesian product M ×M, consisting of pairs ðp; qÞ of
points in M. It is also a smooth manifold and its tangent
vectors can be identified with pairs of vectors in M at two
(usually distinct) points. Namely, for X ∈ Tðp;qÞðM ×MÞ
we have X≡ ðX1; X2Þ, where X1 ∈ TpM and X2 ∈ TqM.
More formally, at every ðp; qÞ we have a natural isomor-
phism Tðp;qÞðM ×MÞ ≅ TpM ⊕ TqM between the tangent
space to the product manifold and a direct sum of the
tangent spaces to the spacetime.
Moreover, M ×M as a manifold can be equipped with a

smooth metric tensor h constructed from g. There are many
ways to define it, but we propose here the following one: for
X;Y ∈ TpM ⊕ TqM we define hðX;YÞ ¼ gpðX1; Y1Þ−
gqðX2; Y2Þ, whereX1; Y1 ∈ TpM andX2; Y2 ∈ TqM denote
vectors from the decomposition of X and Y respectively,
while gp and gq denote the spacetime metric g at p and q.

FIG. 3. Geometric setup of the paper, with two locally flat
regions NO and NE , connected by a null geodesic γ0 passing
through O and E. The displacement vectors δxO and δxE identify
points in both regions. The tangent vector to γ0 is denoted by lμ.
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The readermaycheck that thismetric is nondegenerate andof
split signature (4,4), i.e., with equal number of positive and
negative signs in the diagonal form.
The advantage of the product space construction is that

now the bilocal scalars or tensors onM, defined for pairs of
points, can be identified with strictly local functions or
tensors inM ×M. Moreover, as we will see, the problem of
TOA variations has a particularly simple and elegant
geometric formulation in the language of the product
manifold.

C. Local surface of communication

Consider now the neighbourhood of the point
ðO; EÞ ∈ M ×M, given by NO × NE ⊂ M ×M. The sig-
nals propagating between both regions define the set Σ ⊂
NO × NE of pairs of points which can be connected by a
null geodesics. Physically they correspond to pairs of
points ðx0; xÞ such that the signal emitted from x can be
received at x0. Note that by assumption we always
have ðO; EÞ ∈ Σ.
In a general situation Σ may have a complicated geo-

metric structure; the wave fronts, which constitute simply
the sections of Σ though surfaces xμE ¼ const, x0

0
O ¼ const,

typically develop folds, cusps and other types of singular-
ities [36,37]. However, in the absence of strong lensing we
may expect it to form an embedded submanifold of
codimension one passing through ðO; EÞ, at least locally
within NO × NE . We will therefore refer to Σ as the local
surface of communication (LSC), the word “local”meaning
simply that we restrict our considerations to a small
neighborhood of ðO; EÞ.
The physical interpretations of Σ all follow from the fact

that Σ governs the shapes of the past light cones centered at
points in NO, as registered in NE , and the shapes of the
future light cones centered at points in NE , as measured in
NO. More precisely, the sections of Σ with the surfaces
xμ

0
O ¼ const yield the past light cones in NE with vertex at

chosen xμ
0

O, while the sections with xμE ¼ const give light
cones in NO with vertex at xμE . The shapes of the light cones
on the other hand govern the times of arrival as well as the
shapes of the wavefronts. The latter means that it also
controls the direction of light propagation. In Sec. III we
will show that the shape of Σ near ðO; EÞ is directly related
to the spacetime curvature tensor along γ0.

D. Coordinate systems and orthonormal tetrads

We will use a number of distinct types of coordinate
systems thoughout the paper. We will list them below from
the most general to the most specific.
The most general type is any coordinates in M covering

both NO and NE . However, we will more often use the
locally flat (LF) coordinates, i.e., any coordinates covering
NO and NE such that the Christoffel symbols vanish at O
and E,

Γμ
ναðEÞ ¼ Γμ0

ν0α0 ðOÞ ¼ 0;

or, equivalently, that the first derivatives of the metric
components vanish at O and E. A special type of coor-
dinates of this kind can be obtained from a pair of
orthonormal tetrads, one in TOM and the other in TEM.
Namely, given two such orthonormal tetrads ðuO; eiÞ,
ðuE ; fjÞ, consistent with the spacetime orientation and with
both uO and uE timelike and future pointing, we can
introduce locally flat coordinates at NO and NE as a pair of
Riemann normal coordinates defined by the two tetrads.
We define the point p ∈ NO corresponding to (sufficiently
small) coordinates ðyμÞ ∈ R4 as expðy0uO þ yieiÞ, with
exp denoting the exponential map at O (analogous con-
struction works in NE). We will call such coordinates the
orthonormal locally flat (OLF) coordinates.
Finally, given a single orthonormal tetrad ðu; eiÞ at O,

properly oriented with future pointing, timelike u, we can
parallel propagate it along γ0. This provides us with a
parallel-propagated tetrad at every point along γ0, useful
for describing geometric objects along the line of sight, as
well as a corresponding orthonormal tetrad at E. Repeating
the same construction of the Riemann normal coordinates
yields parallel-propagated locally flat (PLF) coordinates
covering NO and NE as a special case of OLF coordinates.
For any of these coordinate systems we will use the
corresponding coordinate tetrads at TOM and TEM for
decomposing the tensors and the bitensors into components.
Given two pairs of tetrads used for defining the OLF

coordinates, say ððuO; eiÞ; ðuE ; fjÞÞ and ððũO; ẽiÞ; ðũE ; f̃jÞÞ,
we can always transform the first pair into the secondone bya
pair of proper, orthochronal Lorentz transforms acting on the
two tetrads. This way we see that the OLF coordinates are
defined uniquely up to the action of a pair of special,
orthochronal Lorentz groups. On the other hand, the PLF
coordinates are defined uniquely up to the action of a single
proper, orthochronal Lorentz group.
As a special type of oriented and time-oriented ortho-

normal tetrads along γ0 we will consider the adapted
tetrads, i.e., those for which the third spatial vector is
aligned along the null tangent vector lμ. For a tetrad ðu; eiÞ
this simply means that lμ ¼ Qð−uμ þ eμ3Þ for some tetrad-
dependent Q > 0. Adapted tetrads will be denoted by
ðu; eA; e3Þ and we will call the two spatial vectors eμA,
orthogonal to lμ, the transverse vectors, forming a Sachs
basis [37]. Adapted tetrads can be transformed into other
adapted tetrads by the elements of the stabilizer of the null
direction of lμ, a four-dimensional subgroup of the proper
orthochronal Lorentz group defined by the condition
Λα

βlβ ¼ Clα for some C > 0, with Λα
β denoting the group

element. Any oriented and time-oriented orthonormal
tetrad can be transformed into an adapted tetrad by a
spatial rotation aligning eμ3 with the spatial projection of l

μ.
Let us stress here that we assume that each of our

coordinate systems and tetrads is properly oriented and the
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tetrads are also time-oriented. This is an important restric-
tion, as it makes the spatial volume three-form unique and
well defined. We will make use of this fact in Sec. IV B.
Finally, any coordinate system ðξμÞ covering NO and NE

provides automatically a coordinate system ðξμ; ξμ0 Þ on
NO × NE . Moreover, it is easy to see that any of the locally
flat coordinates at O and E, i.e., LF, OLF or PLF
coordinates, produce this way a locally flat coordinate
system at the point ðO; EÞ ∈ NO × NE with respect to the
metric h.

III. THE CURVATURE TENSOR AND THE SHAPE
OF THE LOCAL SURFACE OF COMMUNICATION

The goal of this section is to derive the first key result of
this paper, i.e., the relation between the shape of the LSC
and the Riemann tensor along the LOS. The derivation uses
the Synge’s world function for its intermediate steps and
therefore we begin by a short review of its definition and
properties.
The world function is a powerful tool for tracing geo-

desics between pairs of points [13,35] and determining
which pairs of points can be connected by null geodesics
[14–16]. It also helps to express the relations between
geodesics in curved spacetime in a covariant way and to
solve the geodesic deviation equations of the first and
higher orders [38]. It has also found its applications in the
problem of navigation in a curved spacetime using electro-
magnetic signals, as in the Global Positioning System
(GPS) [10,39]. We will now briefly review its most
important properties; for a more detailed treatment and
full derivations see [13,35]. In this work we follow the
notation and conventions of [35].
The world function σ is defined on pairs of points from

M. Let x0 ∈ M be one point (called the base point) and
x ∈ M (the field point) be another one belonging to the
normal convex neighbourhood of x0. In this case there is a
unique, affine parametrized geodesic segment γðλÞ through
these two points. We define

σðx; x0Þ ¼ Δλ
2

Z
λx

λx0
gμν

dxμ

dλ
dxν

dλ
dλ;

where the integration is performed along γðλÞ, λx is the
value of the affine parameter λ corresponding to x, λx0 to x0
and Δλ ¼ λx − λx0 is the affine distance between the two
endpoints.
The partial derivatives of σ with respect to the compo-

nents x0 and x, taken in any coordinate system, are
proportional to the components of the tangent vectors to
γ at x and x0 with lowered indices,

σ;ν ¼ Δλ
dxμ

dλ

����
λ¼λx

gμν ð1Þ

σ;ν0 ¼ −Δλ
dxμ

0

dλ

����
λ¼λx0

gμ0ν0 : ð2Þ

Here, following [35], the primed indices refer to the
differentiation with respect to x0 and the unprimed to x.
Note that in any coordinates σ;ν ¼ σ;ν and σ;ν0 ¼ σ;ν0 ,
because the covariant and the partial first derivatives of
a two-point function always coincide. σ obeys also the
identity 2σ ¼ σ;ασ;α ¼ σ;α

0
σ;α0. Differentiating it cova-

riantly with respect to x and x0 yields the following
relations:

σ;ν0 ¼ σ;μ0ν0σ
;μ0 ¼ σ;μν0σ

;μ ð3Þ

σ;ν ¼ σ;μ0νσ
;μ0 ¼ σ;μνσ

;μ: ð4Þ

Moreover, we always have σ;μν ¼ σ;νμ, σ;μ0ν0 ¼ σ;ν0μ0 ,
σ;μν0 ¼ σ;ν0μ.
The applicability of the world function to the problem of

signal propagation follows from the observation that
σðx; x0Þ ¼ 0 if and only if x and x0 are linked by a null
geodesic [16]. This means that the local surface of
communication between the neighborhoods of x and x0
may be identified with the zero level set of σ, i.e.,
Σ ¼ fðp0; qÞ ∈ U0 × Ujσðp0; qÞ ¼ 0g, where U and U0
are sufficiently small neighborhoods of x and x0.
Our goal is to understand the TOAs and the shape of Σ in

the neighborhood of E andO. We will begin by considering
the second order Taylor expansion of σ near this pair of
points. Let xE and xO be the coordinates of the points E and
O in a general coordinate system and let δxO and δxE be
small displacements expressed in the same coordinates. As
noted before, for points contained in NO and NE we may
identify δxO and δxE with tangent vectors at TOM and
TEM. By convention O will play the role of the base point
x0, while E will be identified with the field point x. In this
setup we have the following Taylor expansion,

σðxE þ δxE ; xO þ δxOÞ

¼ σ;μ0δx
μ0
O þ σ;μδx

μ
E þ

1

2
σ;μ0ν0δx

μ0
Oδx

ν0
O þ σ;μ0νδx

μ0
Oδx

ν
E

þ 1

2
σ;μνδx

μ
Eδx

ν
E þOðδx3Þ;

the higher order terms being of the order of three and up in
the displacements. Since σðxE ; xOÞ ¼ 0 (recall that by
assumption E and O are connected by the fiducial null
geodesic γ0) we have no free term in this expansion. The
partial derivatives of σ are evaluated at ðxE ; xOÞ. Now, while
the formula in this form works in any coordinate system, in
LF coordinates it takes a particularly useful form; namely,
in this case we have σ;μν ¼ σ;μν, σ;μ0ν0 ¼ σ;μν. On top of that,
we always have σ;μν0 ¼ σ;μν0 , σ;μ0ν ¼ σ;μ0ν, σ;μ ¼ σ;μ and
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σ;μ0 ¼ σ;μ0 , so we can rewrite the Taylor expansion using the
covariant second derivatives of bitensors only

σðxE þ δxE; xO þ δxOÞ

¼ σ;μ0δx
μ0
O þ σ;μδx

μ
E þ

1

2
σ;μ0ν0δx

μ0
Oδx

ν0
O þ σ;μ0νδx

μ0
Oδx

ν
E

þ 1

2
σ;μνδx

μ
Eδx

ν
E þOðδx3Þ: ð5Þ

Therefore, in LF coordinates the expansion contains only
the covariant derivatives of σ, which turn out to have a
special geometric meaning. We will explore this fact in the
rest of this section.
Define now the 1 × 8 matrix

L ¼ −
1

Δλ
ð σ;μ0 σ;μ Þ; ð6Þ

which constitutes the matrix representation the rescaled
gradient of σ as a function on M ×M at ðO; EÞ, i.e., the
linear mapping L∶ TOM ⊕ TEM → R. From the proper-
ties of the first derivatives of the world function (1)–(2) we
can easily prove that it is in fact composed of the
components of tangent vectors to γ, calculated with the
parametrization λ at the two endpoints, and with lowered
indices

L ¼ ð lOμ0 −lEμ Þ: ð7Þ

We also define the 8 × 8 matrix

U ¼ −
1

Δλ

�
σ;μ0ν0 σ;μ0ν

σ;μν0 σ;μν

�
; ð8Þ

i.e., the rescaled Hessian of σ. It is the matrix representation
of a symmetric bilinear mapping U∶ ðTOM ⊕ TEMÞ×
ðTOM ⊕ TEMÞ → R. As a matrix it decomposes naturally
into four 4 × 4 matrices in the block decomposition

U ¼
�
UOO UOE

UEO UEE

�
;

withUOOμ0ν0 andUEEμν being tensors atO and E respectively
and UOEμ0ν and UEOμν0 being bitensors.
Define now the eight-dimensional vector inTOM⊕TEM,

composed of the two displacement vectors [40]

X ¼
�
δxμ

0
O

δxμE

�
:

With these definitions andwith the help of (5) we can rewrite
the equation σðx0; xÞ ¼ 0 for the surface of communicationΣ
in LF coordinates as an equation in TOM ⊕ TEM,

LðXÞ þ 1

2
UðX;XÞ þOðX3Þ ¼ 0: ð9Þ

If we neglect the third and higher order terms we obtain an
equation of a seven-dimensional quadric in an eight-dimen-
sional vector space. Equation (9) has no free term, which
means that the quadric approximating Σ must pass through
the origin X ¼ 0, i.e., point ðO; EÞ. This is again a conse-
quence of our initial assumption that O and E can be linked
by the fiducial null geodesic γ0. The quadric Eq. (9) is not the
normal form, but, as we show in Appendix A, can be
transformed to the normal form.
We point out that in this approach X, L and U can

always be interpreted as eight-dimensional geometric
objects, living on M ×M, and with the summation implied
in the equations performed over all eight components of
vectors in TOM ⊕ TEM. However, we can also divide the
components of X into the four components corresponding
to TOM and the four components corresponding TEM, and
sum over them separately. This way the one-form L
decomposes into two one-forms lO and lE as in (6) and
the two-form U decomposes into four two-forms as in (8).
While the first representation is more concise and simpler
from the geometric point of view, the second one is more
closely related to the spacetime itself and has therefore a
more straightforward physical interpretation. In the rest of
the paper we will freely switch between these two equiv-
alent representations of equations and geometric objects.

A. Physical interpretation and algebraic
properties of L and U

We will now briefly summarize the algebraic properties
and the physical interpretation of the covector L and the
quadratic form U. We note first that both objects are given
up to a common rescaling. Namely, the transformation
L → C ·L, U → C · U with C > 0 amounts to an affine
reparametrization of the fiducial null geodesic λ → C−1 · λ
and therefore leaves all physical quantities invariant.
Therefore, the global scaling of both objects plays the role
of a gauge degree of freedom [1,2].
L is always null with respect to the metric h, i.e.,

h−1ðL;LÞ ¼ 0. Moreover, both of its constituent covectors
are null with respect to the spacetime metric, i.e.,

lμ
0

OlOμ0 ¼ lμElEμ ¼ 0. Since lμ
0

O and lμE are the tangent vectors
to the fiducial null geodesic γ0 at O and E, L describes the
way events at and near E appear to an observer at O.

Namely, lμ
0

O defines the apparent position in the sky of an
object at E, as it is registered by observers at O and, by
extension, the approximate position of every light signal
from NE as seen by observers at NO [1]. lμE on the other
hand, is related to the viewing angle, i.e., the direction from
which observers at NO observe the events at NE . They are
also both related to the redshift, or frequency transfer,
between a frame defined by a normalized, future-pointing
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timelike vector uμE at E and a frame defined by another such

vector at uμ
0

O, via the standard relation 1þ z ¼ uμE lEμ

uμ
0

O lOμ0
for the

redshift z [1,16].
From the definition (8) it is straightforward to see that

U is a symmetric matrix, i.e.,

UT ¼ U; ð10Þ

or, equivalently, that UOOα0β0 ¼ UOOβ0α0 , UEEαβ ¼ UEEβα,
UEOαβ0 ¼ UOEβ0α. Additional algebraic relations between U
and L follow from the properties for the world function
(3)–(4). Combining them with (10) yields four relations
between the submatrices of U and the tangent vectors lO, lE

UOOα0β0 l
β0
O ¼ UOOβ0α0 l

β0
O ¼ −

1

Δλ
lOα0 ð11Þ

UEOαβ0 l
β0
O ¼ UOEβ0αl

β0
O ¼ 1

Δλ
lEα ð12Þ

UOEα0βl
β
E ¼ UEOβα0 l

β
E ¼ 1

Δλ
lOα0 ð13Þ

UEEαβl
β
E ¼ UEEβαl

β
E ¼ −

1

Δλ
lEα: ð14Þ

The bilocal operator U has a simple geometric inter-
pretation; it relates the variations of the endpoints of a
geodesic to the variations of the tangent vectors at the

endpoints, calculated at linear order around γ0. Let δx
μ0
O and

δxνE be the endpoints variations, expressed in general
coordinates, and let δlOμ0 and δlEν be the variations of
the components of the tangent vectors. We introduce the
covariant variations ΔlOμ0 ¼ δlOμ0 − Γν0

μ0σ0 ðOÞlOν0δxσ
0

O and
ΔlEμ ¼ δlEμ − Γν

μσðEÞlEνδxσE ; with this notation we have

ΔlOμ0 ¼ UOOμ0ν0δxν
0
O þUOEμ0νδxνE ð15Þ

−ΔlEμ ¼ UEOμν0δxν
0
O þ UEEμνδxνE ; ð16Þ

(see Appendix B for the proof).
In Appendix A we prove a couple of simple algebraic

results regarding U and we will briefly summarize them
here. U as a symmetric, bilinear form is always degenerate
in one direction. Namely, we define the vector via
L♯ ¼ ð lμ0O lμE Þ, i.e., as the upper-index version of the

covector L. Then we have UðL♯; ·Þ ¼ 0.
In a flat spacetime U turns out to degenerate in as many

as four linearly independent directions. This degeneracy is
actually related to the translational invariance of the
Minkowski spacetime; the condition for two points to be
connected by a null geodesic does not depend on their
absolute position, but rather in their relative positions. Thus
the four components of the absolute position drop out from

the condition (9). The invariant signature of U in a flat
spacetime reads actually (1,3,4), i.e., one minus sign, four
plus signs and four zeros. In the small curvature limit, when
the light propagation is only slightly perturbed by curvature
corrections (see Sec. III B), the three zeros may turn into
any other signs. In the general case, however, the signature
of U is only subject to the degeneracy condition in the
direction of L♯, as we have mentioned above.
The basic principle of the measurement we discuss in

this paper in based on the fact that U can be expressed as a
functional of the curvature tensor along the LOS. The
relation we present here is indirect; U is related by a
nonlinear transform to another geometrical object describ-
ing the propagation of light betweenNO andNE , the bilocal
geodesic operator, which in turn is related to the curvature
as a solution of a simple ordinary differential equation
(ODE). We will explain this point in detail.
Recall first the bilocal geodesic operator (BGO)

W∶ TOM ⊕ TOM → TEM ⊕ TEM, relating the perturbed
initial data for a geodesic near O to the perturbed final data
near E, discussed extensively in [1]. In the context of null
geodesics it may be seen as a general relativistic generali-
zation of the ray bundle transfer matrix from nonrelativistic
optics [41]. W can represented by four bitensors

W ¼
�
WXX

μ
ν0 WXL

μ
ν0

WLX
μ
ν0 WLL

μ
ν0

�
;

each mapping vectors from TOM to TEM. By definition it
links the displacement and the direction deviation vectors
of a perturbed geodesic (not necessary null) at λ ¼ λO to the
displacement and the direction deviation vectors at λ ¼ λE ,
at the linear order

δxμE ¼ WXX
μ
ν0δxν

0
O þWXL

μ
ν0Δlν

0
O ð17Þ

ΔlμE ¼ WLX
μ
ν0δxν

0
O þWLL

μ
ν0Δlν

0
O; ð18Þ

with Δlμ
0

O ¼ δlμ
0

O þ Γμ0
ν0σ0 ðOÞlν0Oδxσ

0
O and ΔlμE ¼ δlμEþ

Γμ
νσðEÞlνEδxσE . The equations above constitute the relativ-

istic counterpart of the decomposition of the ray bundle
transfer matrix into the ABCD blocks in the nonrelativistic
optics [41].
One can now show that U between O and E is related to

W between the same pair of points by a nonlinear matrix
transform, derived in Appendix C. In the block matrix form
with indices suppressed it reads

U ¼
�

−gOW−1
XLWXX gOW−1

XL

gEðWLLW−1
XLWXX −WLXÞ −gEWLLW−1

XL

�
:

ð19Þ

Here g stands for the lower-index metric tensor in the
coordinate frame, taken atO or E. It lowers the first index in
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each submatrix, consistently with the definition ofU above.
The transformation (19) works in any coordinate system
and any tetrads. Moreover, since UEO ¼ UT

OE there is
actually no need to evaluate the complicated, lower-left
expression for UEO, it is enough to evaluate the upper-right
one for UOE and transpose. Note that the transformation
works as long as WXL is invertible. With this assumption
we can also derive the inverse transform

W ¼
 

−U−1
OEUOO U−1

OEgO

g−1E ðUEEU−1
OEUOO − UEOÞ −g−1E UEEU−1

OEgO

!
;

ð20Þ

with g−1 denoting the upper-index metric. We may there-
fore regard U and W as two equivalent methods of
encoding the geometric information about the behavior
of perturbed geodesics passing near the two endpoints E
and O. W corresponds to the initial value problem, para-

metrized by the initial data ðδxμ0O;Δlμ
0

OÞ according to (17)–
(18), while U governs the boundary problem parametrized

by ðδxμ0O; δxμEÞ via (15)–(16).
The relation between the pair of matrices WXX, WXL,

known as Jacobi propagators [38,42,43], and the second
derivatives of the world function, proportional to U, is an
old result dating back to Dixon [43] (see also [38]). It has
found its applications in the study of equations of motions
of massive objects [35]. Here we have presented this
relation in a complete form, including all four constituent
bitensors of W, and applied it in the context of geometric
optics and perturbed light rays.
The relation of W to the curvature is best described in a

parallel propagated tetrad along γ0 and the corresponding
PLF coordinates. In this case W is simply the resolvent
matrix of the first order geodesic deviation equation (GDE)
with λ ¼ λO as the initial data point [1,41]. Namely, for a
solution ξðλÞ of the GDE in a parallel propagated tetrad

̈ξμ̄ðλÞ − Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ξν̄ðλÞ ¼ 0:

With the initial data ξðλOÞμ̄ ¼ δxμ̄O, _ξðλOÞμ̄ ¼ Δlμ̄O we have
the following relation:

�
ξμ̄ðλÞ
_ξν̄ðλÞ

�
¼ WðλÞ

�
δxμ̄O
Δlν̄O

�
;

with WðλÞ expressed as an 8 × 8 matrix in the parallel-
propagated tetrad. Therefore, we can obtain W between O
and E as a solution of the resolvent matrix ODE in the
parallel-propagated tetrad, with the value taken at λ ¼ λE .
This ODE and the initial condition read

_WðλÞ ¼
��

0 I4
0 0

�
þ
�

0 0

RllðλÞ 0

��
WðλÞ ð21Þ

WðλOÞ ¼ I8; ð22Þ

where In is the n-dimensional unit matrix and RllðλÞ is the
optical tidal matrix Rμ̄

ᾱ β̄ ν̄ðλÞlᾱlβ̄ in the parallel propagated
frame. Note that the equations above are formally identical
to the equations for the time evolution operator in quantum
mechanics, with λ playing the role of the time and with the
Hamiltonian consisting of a λ-independent “free evolution”
term and the λ-dependent perturbation given by appropriate
components of the Riemann tensor. The “free Hamiltonian”
fully governsW (and thus also U) in a flat spacetime and it
is therefore responsible for the finite-distance optical effects
mentioned in Sec. I B. The second term on the other hand
generates the curvature corrections present in nonflat
spacetimes. This way we obtain a formal separation of
the optical effects into the finite-distance effects, present
also in the Minkowski space, and the “pure” curvature
effects.

B. Small curvature limit

In the absence of strong lensing we may expect the
curvature terms appearing in (21) to be small in comparison
to the rest. In Sec. V we will make this statement more
precise by deriving more precise estimates, but here we
simply assume that we may treat the curvature terms as
small corrections superimposed on top of the finite distance
terms. The standard procedure in this case is to apply the
perturbative expansion in powers of the Riemann tensor
[44–46]. We will follow this approach and truncate the
expansion at the first order, effectively linearizing the
dependence on the curvature in all relations above.
The details of the calculations are laid out in the

Appendix. First, the derivation of W at first order from
(21) is described in Appendix D, and then the linearization
of (19) around a “flat” solution, leading to the analogous
expansion in powers of curvature for U, is described in
Appendix E. As expected, the final expression for U
contains a finite distance term and a curvature correction.
In a parallel transported tetrad and PLF coordinates it reads

U ¼ Uð0Þ þ Uð1Þ ð23Þ

with

Uð0Þ ¼ 1

Δλ

�−ημ̄ ν̄ ημ̄ ν̄

ημ̄ ν̄ −ημ̄ ν̄

�
; ð24Þ

and
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Uð1Þ ¼ −
Z

λE

λO

�
Rμ̄ ᾱ β̄ ν̄ðλÞlᾱlβ̄ ðλE−λÞ2

Δλ2 Rμ̄ ᾱ β̄ ν̄ðλÞlᾱlβ̄ ðλ−λOÞðλE−λÞ
Δλ2

Rμ̄ ᾱ β̄ ν̄ðλÞlᾱlβ̄ ðλ−λOÞðλE−λÞ
Δλ2 Rμ̄ ᾱ β̄ ν̄ðλÞlᾱlβ̄ ðλ−λOÞ2

Δλ2

�
dλ: ð25Þ

The leading order termUð0Þ gives the finite distance effects,
inversely proportional to the affine distance Δλ between E
and O, while Uð1Þ governs the leading order curvature
corrections, proportional to the integrals of the optical tidal
tensor with kernels of the form of second order polynomials
in the affine parameter λ.

C. Times of arrival of signals

We now use the results derived above to approximate the
shape of Σ in LF coordinates near ðO; EÞ by its second
order tangent. This approximation automatically yields an
approximation for the TOAs of pulsed electromagnetic
signals between displaced points.
We begin by solving perturbatively (9) near X ¼ 0,

treating U as small. Formally we write X ¼ Xð0Þ þXð1Þ
and obtain the relations

LðXð0ÞÞ ¼ 0; ð26Þ

LðXð1ÞÞ ¼ −
1

2
UðXð0Þ;Xð0ÞÞ: ð27Þ

At the leading, linear order we simply obtain the equation
of the tangent space to Σ, given byLðXð0ÞÞ ¼ 0. Expressed
back in the spacetime notation this is equivalent to the
condition for the time of arrival of the form

lOμ0δx
μ0
O ¼ lEμδx

μ
E

in LF coordinates. This condition is covariant, i.e., it
maintains the same form in any coordinate system. Its
physical significance has been discussed in [1], where it is
called the flat lightcones approximation (FLA). The FLA
takes into account the effects of the delays along the LOS
(or Rømer delays), the frequency shift between the rest
frames of the emitters and the receivers (of whatever
physical origin), but not the transverse delay effects. In
order to evaluate them we need to go to the subleading,
quadratic order, given by (27).
Note that from (26) the leading termXð0Þ is orthogonal to

the normal vector L, or Xð0Þ ∈ L⊥, where L⊥ denotes the
seven-dimensional normal subspace to L. Therefore, (27)
depends effectively only on the operator U restricted to the
subspace L⊥. We will denote this restriction as
U⊥ ¼ UjL⊥ ; the equations now take the form of

LðXð0ÞÞ ¼ 0 ð28Þ

LðXð1ÞÞ ¼ −
1

2
U⊥ðXð0Þ;Xð0ÞÞ: ð29Þ

In order to describe the TOA conditions in detail we
introduce an OLF coordinate system, constructed from a
pair of tetrads ðuO; eiÞ, ðuE ; fjÞ. uO is chosen here to be
aligned with the four-velocities of the receivers, uE with the
four-velocities of the emitters, while the remaining space-
like vectors are so far arbitrary. The rest of the equations in
this section are expressed in these coordinates. We intro-
duce the (tetrad-dependent) gauge condition

lO00 ≡L0 ¼ 1; ð30Þ
which fixes the normalization of L and U.
In our measurement the time of arrival δx0

0
O plays a

different role than other components of X. Namely, we
may treat the spatial positions of the receivers δxi

0
O, the spatial

positions of the emitters δxiE and the moments of emission
δx0E as controlled by the experimentator. The timeof arrival of
the signals on the other hand is an uncontrolled, measured
quantity. Therefore in the subsequent analysis we will treat
δx0

0
O as a function of the other seven components, which in

turn play the role of the independent variables

X0 ≡ δx0
0
O ≡ τðδxi0O; δxμEÞ≡ τðXaÞ;

with index a running from 1 to 7. The functional dependence
is defined implicitly by Eq. (9), or, more generally,
by the vanishing condition for the world function
0 ¼ σðxμE þ δxμE ; x

00
O þ τðδxi0O; δxμEÞ; xi

0
O þ δxi

0
OÞ. This way

we represent Σ locally as a graph of a function X0 ¼
τðXaÞ in TOM ⊕ TEM. In the following calculations we
will expand τðXaÞ in terms of the other seven components
Xa up to the second order, consistently with the expansions
(28)–(29) and (9). The expansion can be obtained directly
from (9)

X0 ¼ −LaXa −
1

2
QabXaXb þOððXaÞ3Þ; ð31Þ

with Qab being a symmetric square matrix of dimension
seven given by

Qab ¼ Uab − 2U0ðaLbÞ þ U00LaLb:

Higher order terms on the right hand side are of the order of
OððXaÞ3Þ and will be neglected from now on. Returning to
the standard notation on M this can be written as
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δx0
0

O ¼ −lOi0δxi
0
O þ lEμδx

μ
E

−
1

2
ðQOOi0j0δx

i0
Oδx

j0
O þ 2QOE i0μδx

i0
Oδx

μ
E

þQOOμνδx
μ
Eδx

ν
EÞ; ð32Þ

with QOOi0j0 , QEEμν, QOE i0μ being the submatrices of Qab,

QOOi0j0 ¼ UOOi0j0 − 2UOO 00ði0 lO j0Þ þ UOO0000 lOi0 lOj0 ð33Þ

QEEμν ¼ UEEμν − 2UOE 00ðμlE νÞ þ UOO0000 lEμlEν ð34Þ

QOE i0μ ¼ UOE i0μ −UOE 00μlO i0

−UOO 00i0 lEμ þ UOO0000lOi0 lEμ: ð35Þ

Taken together they form Qab according to

Qab ¼
�QOO QOE

QEO QEE

�
; ð36Þ

(note that the submatrices here are of unequal shape and size
and thatQEO ¼ QT

OE). In the terminology of [14,15], Eq. (32)
provides the Taylor expansion (up to a constant) for the
reception time transfer function T r expressed in locally flat
coordinates at O and E.
The seven-dimensional subvectors Xa contain now the

degrees of freedom under control of the experimentator,
i.e., the positions of emitters and receivers with respect to
their local inertial frames, plus the moment of emission in
the emitter’s frame. Together with X0 they form an eight-
dimensional vector in TOM ⊕ TEM. The matrix Q has a
simple algebraic interpretation as a method to express U⊥
using the components a ¼ 1;…7. Namely, let Eμ denote
the eight basis vectors ðuO; ei; uE ; fjÞ in TOM ⊕ TEM.
Then we have

Qab ¼ UðEa −LaE0; Eb −LbE0Þ:

Since the combinations Ea −LaE0 are all orthogonal to L,
the components above can be calculated from U⊥ only.

D. Geometry of the LSC

We can obtain a deeper geometric insight into the
problem if we consider Σ as a surface embedded isomet-
rically in ðM ×M;hÞ, (see Fig. 4). The reader may check
that, in this interpretation, L is simply the normal covector
to Σ at ðO; EÞ, while U⊥ can be identified with its covariant
derivative in the tangent directions, i.e., the extrinsic
curvature (or the second fundamental form), of Σ at
ðO; EÞ. The vector L is null with respect to the metric h
and therefore cannot be normalized; both L and U⊥ are
thus given only up to rescalings, unless we fix them with a
condition of type (30). In this picture the fundamental
Eqs. (31) and (32) for the TOAs may be interpreted as

resulting simply from approximating Σ by its second order
tangent, defined by the null normal and extrinsic curvature,
in locally flat coordinates in M ×M. In particular, Qab
represents in this case the extrinsic curvature at ðO; EÞ
expressed in the coordinate system on Σ given by the seven
components Xa restricted to Σ (see Fig. 4).
We will now list a few algebraic properties of U⊥, or the

extrinsic curvature tensor, proved in Appendix A.
Independently of the spacetime geometry, U⊥ is always
degenerate in two directions, spanned by the vectors KO ¼
ð lμ0O 0 Þ andKE ¼ ð 0 lμE Þ, namelywe haveU⊥ðKO; ·Þ ¼
U⊥ðKE ; ·Þ ¼ 0. In a flat spacetimeU⊥ is in fact degenerate in
five directions and has the signature of (0,2,5), i.e., no pluses,
twominuses and five zeros. In the small curvature limit three
of the zeros may change into other signs.

E. The inverse problem: L and U⊥
from the measurements of TOAs

Equations (31) and (32) provide also a method for the
inverse problem, i.e., the problem of determining the
components of L and Q from the TOA measurements.
As our input dataset we may consider a finite sample of
pairs of events connected by null geodesics. Assume thus
that we have obtained by direct measurements a sample of

FIG. 4. Approximating of Σ by its first and second order
tangents hypersurfaces in M ×M. The first order tangent is
parametrized just by the normal vector L. The second order
tangent requires also the extrinsic curvature Q. The surface may
be then represented by the graph with δx0

0
O as the dependent

variable.
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pairs of points δxμE ðiÞ, δx
μ0
OðiÞ, i ¼ 1;…; n, in NE and NO,

such that signals from the former event reach the latter. The
pairs form a set of eight-vectors XðiÞ. We can now write
down Eq. (31) for each XðiÞ, expressed in a system of OLF
coordinates, and treat the resulting system of n equations as
a linear system for the components of L and Q, with the
components of XðiÞ now considered known. Since the
number of independent coordinates of L and Q, subject to
(30), is 7þ 28 ¼ 35, and since the problem is linear, we
expect that with at least 35 independent measurements we
may determine this way all components of L and Q.[47]
Geometrically this procedure is equivalent to determin-

ing the shape of the LSC Σ in the second order Taylor
approximation by probing it at a finite number of points
near the origin. In this approximation Σ must be a quadric
passing through the origin, therefore its shape near the
origin is parametrized by 35 numbers. The inverse problem
becomes then the question of finding a unique quadric of
type (32) through a set of known points in dimension eight.
Note that the feasibility of this procedure crucially

depends on the linear independence of the resulting
equations for Qab and La. This obviously imposes addi-
tional restrictions on the choice of the points over which we
probe the TOAs. The detailed analysis of these restrictions
is an algebraic geometry problem in dimension eight and it
is beyond the scope of this article. We just note here that the
independence condition for the equations is equivalent to a
nondegeneracy condition for a 35 × 35 matrix; namely, the
determinant made of the components and products of
components of the seven-vectors Xa

ðiÞ should not vanish.

We may therefore expect the independence to hold generi-
cally, i.e., always except a measure-zero set of degenerate
configurations of sampling points. However, in this paper
we do not attempt to provide a rigorous proof; in Sec. VI
we simply present a particular choice of sampling points
(i.e., a choice of the spatial positions of the emitters and the
times of emission as well as the spatial positions of the
receivers) for which we may prove that the inverse problem
can always be solved. Nevertheless, many other sampling
strategies should be possible here.
We also note here that the reconstruction of U, defining

the shape of the LSC via the quadric equation (9), from the
TOA measurements near O and E is not complete. As long
as the approximation (31) is valid, only the components of
U⊥ can be reconstructed, while the rest is hidden in the
unobservable, higher order effects in Xa. However, as we
will see in the next section, this is not really a problem,
because U⊥ contains all the information about the matter
density along the line of sight we need.

IV. TWO SCALAR QUANTITIES MEASURING
THE CURVATURE IMPRINT

The operator U⊥ consists of the finite distance part and
much smaller curvature corrections. In order to evaluate the

curvature imprint we need to find a way to measure the
latter independently of the former. It should preferably be
done in a covariant, tetrad-independent manner. In this
section we present two functions of U⊥ and L which
measure the curvature impact in a tetrad-invariant way.
Let ðuO; fA; f3Þ and ðuE ; gA; g3Þ be a pair of adapted

tetrads at O and E respectively. In the previous papers
[1,26] we have introduced the distance slip, i.e., a scalar,
dimensionless quantity, defined as

μ ¼ 1 −
detΠA0

B0

detMA0
B
:

Here ΠA0
B0 is the parallax matrix, describing the linear

relation between the perpendicular displacement of the
observer δxB

0
O and the apparent displacement of the image

δθA
0 ¼ ðuμ0OlOμ0 Þ−1ΔlA0

O of an object at E on the observer’s
celestial sphere, expressed in radians

δθA
0 ¼ −ΠA0

B0δxB
0

O :

MA0
B on the other hand is the magnification matrix, relating

the perpendicular displacement of the emitter δxBE to the
apparent displacement of the image δθA

0
at linear order

δθA
0 ¼ MA0

BδxBE :

μ measures the spacetime curvature along the LOS by
comparing two methods of distance determination to a
single object; by parallax and by the angular size. It
vanishes in a flat spacetime, or whenever the Riemann
tensor along the LOS vanishes [1,26]. From (15) we can
prove that this quantity can be calculated directly from U
via the ratio of the determinants of its two transverse
submatrices

μ ¼ 1 −
detUOOA0B0

detUOEA0B
¼ 1 −

detUOO
A0
B0

detUOE
A0
B
: ð37Þ

We can also define its counterpart with the roles ofO and E
reversed

ν ¼ 1 −
detUEEAB

detUOEA0B
: ð38Þ

It is also a dimensionless scalar and its physical interpre-
tation is similar to that of μ; it measures the difference of the
variations of the viewing angle with respect to displace-
ments at O and at E, and ν ¼ 0 in a flat spacetime. Both
quantities are insensitive to the rescalings of U and L
mentioned in Sec. III A.
The definitions of μ and ν between eventsO and E can be

reformulated in terms of the cross-sectional area of infini-
tesimal bundles of null geodesics along γ0 (see [37] for the
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definition of the infinitesimal bundles of rays). Namely, we
have

μ ¼ 1 −
AE

AO
; ð39Þ

where AE and AO denote the signed cross-sectional areas
of a bundle of rays parallel at O, measured at E and O
respectively. Without any curvature the bundle of rays
remains parallel all along γ0 and the cross-sectional area is
constant. On the other hand, the focusing or defocusing due
to the Weyl or Ricci tensors will lead to the variations of the
area along γ0 and thus to nonvanishing μ. An analogous
formula for ν reads

ν ¼ 1 −
ÃO

ÃE

; ð40Þ

where the infinitesimal bundle of rays is assumed to be
parallel at E instead of O and Ã denotes its cross-
sectional area.
The language of bundles of null geodesics and its

evolution along a null geodesic is probably more familiar
to most relativists than the bilocal formulation (see, for
example, Perlick [37] for a review) so we present this
formulation in Appendix G. As a side result we also derive
alternative expressions for μ and ν in terms of ODEs
involving the shear and expansion of an appropriate bundle.

A. Independence from the adapted tetrads

While the definitions above require introducing two
adapted tetrads at O and E, both these quantities are in
fact independent of the choice of these tetrads. More
formally, the expressions (37) and (38) define two functions
of the components of U expressed in adapted tetrads:
μ≡ μðUOOA0B0 ; UOEA0BÞ, ν≡ νðUEEA0B0 ; UOEA0BÞ. On the
other hand, we may also regard them as functions of the
“abstract”, tetrad-independent linear mappings U, L, and a
pair of adapted orthonormal (ON) tetrads ðuO; fA; f3Þ,
ðuE ; gA; g3Þ in which we have expressed their components,

μ≡ μðU;L; ðuO; fA; f3Þ; ðuE ; gA; g3ÞÞ ð41Þ

ν≡ νðU;L; ðuO; fA; f3Þ; ðuE ; gA; g3ÞÞ: ð42Þ

In Appendix F we show explicitly that for any other pair of
adapted ON tetrads ðũO; f̃A; f̃3Þ and ðũE ; g̃A; g̃3Þ the values
of both μ and ν are the same. We do it by showing that the
transverse submatrices of UOO, UOE and UEE transform
very simply under the change of the adapted ON tetrads,
i.e., via two-dimensional rotations of the transverse com-
ponents. These transformations do not affect the values of
the determinants in (37) and (38). This way we prove that μ
and ν are adapted tetrad-independent functions of the
geometric objects U and L only,

μ≡ μðU;LÞ ð43Þ

ν≡ νðU;LÞ: ð44Þ

B. Extracting μ and ν from Q

We have defined μ and ν as a function of L and U.
However, we can show that it is only the components ofU⊥
which contribute, i.e.,

μ≡ μðU⊥;LÞ ð45Þ

ν≡ νðU⊥;LÞ: ð46Þ

Define first the four transverse eight-vectors labeled by O,
E and A ¼ 1, 2

ZOA ¼
�
fμ

0
A

0

�

ZEA ¼
�
0

gμA

�
:

The reader may check that all four are orthogonal to L.
Now, we have obviously UOOAB ¼ UðZOA;ZOBÞ,
UEOAB ¼ UðZEA;ZOBÞ, UEEAB ¼ UðZEA;ZEBÞ. But since
all transverse eight-vectors are orthogonal to L, we simply
have UOOAB ¼ U⊥ðZOA;ZOBÞ, UEOAB ¼ U⊥ðZEA;ZOBÞ,
UEEAB ¼ U⊥ðZEA;ZEBÞ, i.e., we only need U⊥ to calculate
them. It follows that we can calculate μ and ν via (37) and
(38) just from U⊥. This in turn means that it should be
possible to express both scalars by the components of Qab
expressed in a pair of adapted tetrads.
During the measurement we cannot expect the spatial

vectors of the tetrads we use for defining the positions and
directions to be aligned precisely along the line of sight.
Therefore, we need to relax the requirement for the ON
tetrads to be adapted. We will simply assume that after the
measurement we are given Qab in an arbitrary pair of ON
(and properly oriented) tetrads ðuO; eiÞ and ðuE ; fjÞ. Note
that after the measurement of the components of L we can

simply rotate both tetrads to make eμ
0

3 and fμ3 aligned with

lμ
0

O and lμE and later work in a pair of adapted tetrads. The
reader may check that in this case the transverse compo-
nents of UOO and UOE and UEE coincide with the
corresponding components of QOO, QOE , QEE [see
Eqs. (33)–(34)] so we can directly substitute QOOA0B0 ,
QOEA0B and QEEAB to (37)–(38). However, the tetrad
adjustment can be avoided if we introduce more general,
rotationally invariant definitions of μ, ν.
Given the decomposition of Qab in not necessarily

adapted ðuO; eiÞ, ðuE ; fjÞ we define
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μ ¼ 1 −
QOOi0j0QOOk0l0ϵ

i0k0
O ϵj

0l0
O

QOE i0jQOEk0lϵ
i0k0
O ϵjlE

ð47Þ

ν ¼ 1 −
QEE ijQEEklϵ

ik
E ϵ

jl
E

QOE i0jQOEk0lϵ
i0k0
O ϵjlE

; ð48Þ

with the two antisymmetric, spatial two tensors

ϵi
0j0
O ¼ 1

lO00
εi

0j0k0
O lOk0 ð49Þ

ϵijE ¼ 1

lE0
εijkE lEk: ð50Þ

εi
0j0k0
O and εijkE denote here the standard, totally antisym-
metric spatial three-tensors, with ε1

02030
O ¼ ε123E ¼ 1, i.e., the

SO(3)-invariant, upper-index spatial volume forms. The
expressions on the right hand sides of (47)–(48) are
obviously SO(3) invariant in both NE and NO, and thus
they are insensitive to spatial rotations of the tetrads at O
and E. Thus they can also be applied with nonadapted ON
tetrads. On the other hand, if we do align the vectors f3 and
g3 with lO and lE respectively, this way both tetrads are
adapted, then

ϵi
0j0
O ¼

8<
:

1 for i0 ¼ 10; j0 ¼ 20

−1 for i0 ¼ 20; j0 ¼ 10

0 otherwise

ϵijE ¼
8<
:

1 for i ¼ 1; j ¼ 2

−1 for i ¼ 2; j ¼ 1:

0 otherwise:

It is now easy to see that in Eqs. (47)–(48), expressed in
adapted tetrads, the contractions of QOO, QOE and QEE

with ϵi
0j0
O and ϵijE automatically yield their transverse

subdeterminants. These are in turn equal to the correspond-
ing transverse subdeterminants of UOO, UOE and UEE
because of (33)–(35). Therefore, in a pair of adapted ON
tetrads we have (47) equal to (37) and (48) equal to (38).
Summarizing, we have proved that both definitions (47)–

(48) and (37)–(38) are equivalent, but the Eqs. (47)–(48)
can be used with any pair of ON, oriented and time-oriented
tetrads at O and E. In other words, (47)–(48) are fully

invariant with respect to proper, orthochronal Lorentz
transforms on both geodesic endpoints.

1. Remarks

In a similar way we may introduce fully Lorentz-
invariant versions of (37) and (38)

μ ¼ 1 −
UOOi0j0UOOk0l0ϵ

i0k0
O ϵj

0l0
O

UOE i0jUOEk0lϵ
i0k0
O ϵjlE

ð51Þ

ν ¼ 1 −
UEE ijUEEklϵ

ik
E ϵ

jl
E

UOE i0jUOEk0lϵ
i0k0
O ϵjlE

: ð52Þ

Here both scalars are formally expressed as functions ofU⊥
and L as well as a pair of properly oriented ON tetrads,

μ≡ μðU⊥;L; ðuO; eiÞ; ðuE ; fiÞÞ ð53Þ

ν≡ νðU⊥;L; ðuO; eiÞ; ðuE ; fiÞÞ; ð54Þ

with the tetrad dependence effectively spurious, as in
(45)–(46).

C. μ and ν and the stress-energy tensor

From (25), (37) and (38) respectively we can show that in
the leading order of the expansion in the curvature

μ ¼ 8πG
Z

λE

λO

TllðλÞðλE − λÞdλþOðRiem2Þ ð55Þ

ν ¼ 8πG
Z

λE

λO

TllðλÞðλ − λOÞdλþOðRiem2Þ; ð56Þ

where TllðλÞ≡ Tμνlμlν. Thus both μ and ν effectively
depend on a single component of the stress-energy tensor
out of the whole Riemann tensor. Equations (55)–(56) are
most conveniently derived in a parallel-transported adapted
tetrad ðû; êA; ê3Þ, although note that both equations are in
fact covariant and therefore valid in all possible tetrads or
coordinates. Since the equation for μ has already been
derived in [1], we present in detail the derivation of Eq. (56)
for ν.
From (24) and (25) we get the first two terms of

expansion of the transverse components of UEE and UOE
in the powers of the Riemann tensor

UEE Ā B̄ ¼ −Δλ−1δĀ B̄ −
Z

λE

λO

RĀ μ̄ ν̄ B̄ðλÞlμ̄lν̄
ðλ − λOÞ2

Δλ2
dλþOðRiem2Þ

UOE Ā B̄ ¼ Δλ−1δĀ B̄ −
Z

λE

λO

RĀ μ̄ ν̄ B̄ðλÞlμ̄lν̄
ðλE − λÞðλ − λOÞ

Δλ2
dλþOðRiem2Þ:
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From this we get the expansion of the determinants

detUEE Ā B̄ ¼ Δλ−2 þ Δλ−1
Z

λE

λO

RĀ
μ̄ ν̄ ĀðλÞlμ̄lν̄

ðλ − λOÞ2
Δλ2

dλþOðRiem2Þ

detUOE Ā B̄ ¼ Δλ−2 − Δλ−1
Z

λE

λO

RĀ
μ̄ ν̄ ĀðλÞlμ̄lν̄

ðλE − λÞðλ − λOÞ
Δλ2

dλþOðRiem2Þ:

In the next step we simplify the integrands. Note that for a null vector lμ̄ the contraction of the Riemann over the two
transverse indices is equal to the full contraction over the whole space [1], i.e., RĀ

μ̄ ν̄ Āl
μ̄lν̄ ¼ Rᾱ

μ̄ ν̄ ᾱlμ̄lν̄ ¼ −Rμ̄ ν̄lμ̄lν̄.
Moreover, from the Einstein equations

Rμν −
1

2
Rgμν ¼ 8πGTμν − Λgμν;

it is easy to show that Rμ̄ ν̄lμ̄lν̄ ¼ 8πGT μ̄ ν̄lμ̄lν̄, i.e., only the matter stress-energy tensor contributes to both integrals, while
the cosmological constant drops out, thus

detUEE Ā B̄ ¼ Δλ−2 − Δλ−18πG
Z

λE

λO

TllðλÞ
ðλ − λOÞ2

Δλ2
dλþOðRiem2Þ

detUOE Ā B̄ ¼ Δλ−2 þ Δλ−18πG
Z

λE

λO

TllðλÞ
ðλE − λÞðλ − λOÞ

Δλ2
dλþOðRiem2Þ;

From this and (38) we get the expansion of ν in the form of

ν ¼ Δλ8πG
Z

λE

λO

TllðλÞ
�ðλ − λOÞ2

Δλ2
þ ðλE − λÞðλ − λOÞ

Δλ2

�
dλþOðRiem2Þ: ð57Þ

Simplifying the integrand we obtain (56). Equation (55) for
μ can be derived the same way from the analogous
expansion of UOOĀ B̄ in the powers of Rμ

ναβ. However,
note that there is also a short-cut reasoning leading directly
from (56) to (55); since ν is simply the same quantity as μ,
but with the role of the geodesic endpoints O and E
reversed, we can simply obtain (55) from (56) by con-
sistently swapping the O and E subscripts on the right
hand side.
We also point out that the expansions (55)–(56) in the

curvature contain no free term. It follows that μ ¼ ν ¼ 0 in
the absence of curvature.

V. EXPANSION IN SMALL PARAMETERS

We will now compare the magnitude of various terms in
Eq. (9) governing the TOAs in a typical astrophysical
situation. We assume that the curvature tensor is of the scale
of R−2, where R is the curvature radius scale and X is of
the order of the size of NO and NE , denoted by L. For
simplicity we pick the affine parameter λ normalized in the
receivers’ frame, i.e., lOμu

μ
O ¼ 1. In this case we can also

assume that λO ¼ 0 and λE ¼ D, where D is the affine
distance from O to E in the receivers’ frame.

We introduce the dimensionless counterparts of the
objects appearing in (9), (24) and (25), denoted by tilde

λ ¼ Dλ̃ ð58Þ

X ¼ LX̃ ð59Þ

L ¼ L̃ ð60Þ

lμ̄ ¼ l̃μ̄ ð61Þ

Rμ̄
ν̄ ᾱ β̄ ¼ R−2R̃μ̄

ν̄ ᾱ β̄: ð62Þ

Then (9) can be recast in the following form:

0¼LL̃ðX̃Þþ1

2

�
L2

D

�
Ũð0ÞðX̃;X̃Þþ1

2

�
DL2

R2

�
Ũð1ÞðX̃;X̃Þ;

ð63Þ

with the dimensionless expansion for U given by

Ũð0Þ ¼ DUð0Þ ¼
�−ημ̄ ν̄ ημ̄ ν̄

ημ̄ ν̄ −ημ̄ ν̄

�
ð64Þ
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Ũð1Þ ¼ R2

D
Uð1Þ ¼

Z
1

0

dλ̃R̃μ̄
ν̄ ᾱ β̄ðr̃Þlν̄lᾱPðλ̃Þ; ð65Þ

where Pðλ̃Þ denotes the appropriate second order poly-
nomials for each submatrix [see Eq. (25)]. Dividing the
resulting equation by L we obtain

0¼ L̃ðX̃Þþ1

2

�
L
D

�
Ũð0ÞðX̃;X̃Þþ1

2

�
L
D

��
D
R

�
2

Ũð1ÞðX̃;X̃Þ:

ð66Þ

In this form the hierarchy between the three terms is
evident. Assuming L ≪ D ≪ R (physically realistic case)
we see that the first term, responsible for the LOS effects, is

Oð1Þ and thus dominating over the other two. The finite
distance corrections term, responsible for the “flat” trans-
verse effects in TOAs, scales like the ratio of the size L of
the regions NO, NE and their mutual distance D. Finally,
the curvature term is a small correction upon the finite
distance term, smaller again by the factor D2=R2. We also
see that the curvature correction grows with the distance D
between the two regions. This is expected, as the signals
pick up more and more curvature corrections as they
propagate through the curved spacetime. The second term,
on the other hand, decreases as D grows.
We may now solve (66) for X̃0, as in Sec. III C, this time

treating L=D and D2=R2 as legitimate small parameters.
We get the dimensionless version of Eq. (31)

X̃0 ¼ −L̃aX̃
a −
�
L
D

�
1

2
ðŨð0Þ

ab − 2Ũð0Þ
0ðaL̃bÞ þ Ũð0Þ

00 L̃aL̃bÞX̃aX̃b

−
�
L
D

��
D
R

�
2 1

2
ðŨð1Þ

ab − 2Ũð1Þ
0ðaL̃RbÞ þ Ũð1Þ

00 L̃aL̃bÞX̃aX̃b þ h:o:t:; ð67Þ

where the higher order terms (h.o.t.) include, among other
things, terms with higher powers of the small parameters,
i.e., OððLDÞ2Þ, OððDRÞ3Þ or their products, which arise when
we solve (66) for X̃0. Note that if the curvature corrections
are sufficiently small while L is large enough it may happen
that ðLDÞ2 is comparable or larger than ðLDÞðDRÞ2. In this case
we may need to include the second or even higher power
terms in L

D in Eq. (67) and in the data analysis. They are of
third and higher order in X̃, i.e., of the form

ðLDÞ2Qð3Þ
abcX̃

aX̃bX̃c etc. Their presence complicates the
inverse problem and thus also the measurement μ and ν,
but the general idea should still remain applicable; with
sufficiently many sampling points X̃a

ðiÞ over which we

measure the TOAs we should be able to obtain exactly also
the third or higher order terms in X̃a in the Taylor
expansion (67), since the third order tangent surface is
also parametrized by a finite number of parameters.
We will not discuss here the inverse problem with a

longer Taylor expansions in detail. Let us just note that the
number of additional unknown coefficients to be deter-
mined in the process is not as large as one might think at
first. As an example, note that the term Qð3Þ

abc represents the
higher order corrections to the TOA in a flat spacetime,
with no curvature corrections. Thus we may expect that this
term, just like the one arising from Uð0Þ, has a fairly simple,
universal form in a parallel propagated, adaptedON tetrad, as
in Eq. (24). In a generic situation this term can be para-
metrized by L=D and six numbers relating the orthonormal
tetrads on O and E we use (this follows from the Lorentz
invariance of a flat spacetime). This means that the effective

number of new, free parameters we need to include with a
third order Taylor expansion is at most seven.

A. Particular case: weak field limit
with nonrelativistic dust

Consider a spacetime filled with a static or very slowly
varying dust distribution, i.e., T00 ¼ ρðxiÞ, T0i and Tij
negligible. We assume that the weak field limit of GR
holds, i.e., gμν ¼ ημν þ hμν with hμν small. Let the receiv-
ers’ frame uμO coincide fairly precisely with the rest frame
of the dust. As before, let λ denote the affine distance along
γ0 normalized with respect to uμO.
Note that in this case we have μ; ν ¼ OðhÞ. It follows

that in the leading order in the metric perturbation hμν we
may approximate γ0 in the integration by an unperturbed
geodesic (i.e., a null straight line in ημν) and the affine
parameter by the radial coordinate r centered at O;
corrections to μ and ν will be at most Oðh2Þ. The integrals
(55) and (56) take now the form of

μ ¼ 8πG
Z

D

0

ρðrÞðD − rÞdrþ h:o:t: ð68Þ

ν ¼ 8πG
Z

D

0

ρðrÞrdrþ h:o:t:; ð69Þ

with the integration performed over a straight radial line.
The higher order terms are either Oðh2Þ or Oðβ · hÞ, where
β ¼ v=c is the relative velocity of the receivers and the
dust, and we consider them negligible.
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The dimensionless parameters μ and ν are not the most
convenient tool to describe the mass distribution betweenO
and E, but with the help of the equations above they can be
transformed into quantities with a more clear physical
interpretation. We first note that their sum gives the integral
of ρðrÞ, or the zeroth moment of the mass distribution along
the LOS

μþ ν ¼ 8πGD
Z

D

0

ρðrÞdr;

providing this way the true tomography of the matter
distribution ρðxiÞ, unlike μ or ν themselves, which provide
density integrals with linear kernels. It also follows that this
sum can be translated directly into the average matter
density along LOS, defined by

hρi ¼ 1

D

Z
D

0

ρðrÞdr:

Namely, we have the relation

hρi ¼ μþ ν

8πGD2
: ð70Þ

On top of that, μ and ν contain the information about the
first moment of the mass distribution along the LOS,
related to the position of its center of mass (COM).
Namely, consider the dimensionless parameter αCM

αCM ¼
R
D
0 ρðrÞ r

D drR
D
0 ρðrÞdr :

It determines the position of the COM along γ0; αCM is
equal to 0 for a mass distribution centered atO, 1 for a mass
distribution centered at E and 1

2
if it has its COM at the

midpoint. One can now prove using (68)–(69) that

αCM ¼ ν

μþ ν
: ð71Þ

Equations (70) and (71) show how to relate μ, ν and the
distance D between E and O to physically more interesting
quantities; the directional average of the mass distribution
and the COM of this distribution.
Note that while Eq. (70) requires formally the normal-

ized affine distance D between O and E, we may use
instead the angular diameter distance Dang or the parallax
distanceDpar in the receivers’ frame which is much simpler
to measure in the astronomical context. These distance
measures differ at most by OðhÞ, so in the leading order
they lead to the same value of hρi.

B. Estimating the signal from a small background
matter density

We will now estimate the additional TOA variations
caused by a small mass density along the LOS in the weak
field approximation. This estimate may also serve as an
indicator of the minimal precision of pulse timing required
for detection of the mass density. We consider here a
simplified scenario in which the spacetime is filled with a
tiny, constant background mass density ρðxÞ≡ ρ of pres-
sureless matter. We perform the measurement of μ and ν
along the line of sight between the two groups of clocks of
size L and separated by the distance of D. The idea is now
to estimate the contribution coming from the constant
stress-energy tensor T00 ¼ ρ, T0i ¼ Tij ¼ 0 to the TOAs
in the form of (31) or, equivalently, of (67), ignoring the
Weyl or the cosmological constant terms since their
contributions will cancel out anyway.
Since the stress-energy tensor Tμν is of the order of ρ, its

contribution to the Ricci tensor is Rμν ∼ 8πGρ. This in turn
corresponds to the curvature radius R2 ¼ ð8πGρÞ−1 in the
terminology of Sec. V. It follows now from (67) that the
pressureless matter contribution to the dimensionless TOA
X̃0, contained in the third term on the right-hand side, is of
the order of ðLDÞðDRÞ2 ¼ ðLDÞ4πGρD2 ¼ 4πGρDL. Returning
to the dimensional TOA X0 ¼ LX̃0 we obtain the estimate
X0 ∼ 4πGρDL2 for the TOA variations induced by the
mass density along the LOS. For comparison we include
here the analogous estimate for the finite distance varia-
tions, which are of the order of L2=D.
This estimate can be also reformulated as a simple rule of

thumb for the TOAvariations. Namely, note that 4πρDL2 is
simply the total mass Mtot contained in a thin 3D cylinder
of radius L and height D, connecting NO and NE along the
spatial dimensions. With this interpretation 4πGρDL2 is
simply the half of the Schwarzschild radius corresponding
to Mtot. The result may therefore be rephrased as follows:
the TOA variations caused by the matter along the LOS,
expressed in units of length, are of the order of the
Schwarzschild radius of the total mass contained in a
spatial cylinder connecting NO and NE whose radius L is
equal to the physical size of each of the two clock systems.
Note also that the same number may serve as an estimate of
the precision of time measurements required to detect the
mass density background of the order of ρ.

C. Summary of the results

We will pause here to give a short summary of the most
important results of Secs. II–V.

1. Local variations of the TOAs in the vicinity of two
points E and O can be expanded in a Taylor series
consisting of the leading order, linear effects and the
quadratic effects in the displacements [see Eq. (9) or
(31)]. The linear effects involve the line of sight
delays (Rømer delays) as well as the frequency shifts
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and are governed by the components of the eight-
vectorL. The quadratic effects involve, among other
things, the transverse variations and are governed by
the quadratic form U⊥. They consist of the finite
distance effects, present also in flat spacetimes and
are related to the distance between the endpoints, as
well as the curvature effects which are usually much
smaller and superimposed on the former. This
approach to the TOAvariations has a neat geometric
interpretation of approximating the LSC Σ ∈ M ×
M by its second order tangent at ðO; EÞ, defined by
the normal vector L and the extrinsic curvature U⊥.

2. U⊥ can be expressed as a functional of the Riemann
tensor along the LOS, via an ODE in a parallel-
transported tetrad [Eqs. (19), (21)]. It can therefore
be used to measure the curvature impact on the
propagation of signals.

3. The linear and quadratic order effects are effectively
parametrized by a finite set of numbers, i.e., the
independent components of L and U⊥, expressed in
a chosen pair of locally flat, orthonormal coordi-
nates. By sampling the TOAs over a sufficient
number of evenly distributed points we can deter-
mine all of these components and thus reconstruct
the shape of the LSC.

4. In order to quantify the curvature effects we have
defined two scalar, dimensionless functions μ and ν
of the components of L and U⊥ [see Eqs. (33)–(35)
and (47)–(48)]. They are both selectively sensitive to
the curvature corrections present in U⊥ and insensi-
tive to the finite distance effects, i.e., they both
vanish identically in a flat spacetime. Moreover,
both quantities are invariant with respect to the
proper orthochronous Lorentz transformations of
the coordinates on both endpoints (see Appendix F).

5. For short distances, at the leading order expansion in
the curvature tensor, both μ and ν depend only on
integrals of the stress-energy tensor [Eqs. (55)–(56)],
with the contributions from the Weyl tensor (tidal
forces) and the cosmological constant vanishing
identically.

6. Lorentz invariance implies the insensitivity of the
measurement to the states of motion and the angular
positions (or attitudes) of the two clock ensembles;
after the measurements we may perform the calcu-
lations in the internal ON tetrads of the ensembles,
recover the components ofL and U⊥ in these tetrads
and calculate the two invariants μ and ν. Their
invariance under passive Lorentz transforms of the
coordinates implies thus the invariance with respect
to active Lorentz boosts and spatial rotations of the
ensembles. On the other hand, the independence
from the Weyl tensor implies the insensitivity of the
measurement to the influence of masses off the LOS.

7. The values of μ and ν can be finally related to the
zeroth and first moment of the mass density dis-
tribution along the LOS [Eqs. (70) and (71)],
yielding a directional, tomographic measurement
of the mass distribution ρðxiÞ.

VI. AN EXAMPLE OF THE MEASUREMENT
PROTOCOL

As a proof of concept, we will now present a particular
method of measurement of μ and ν with the help of two
ensembles of clocks capable of exchanging electromag-
netic signals. We stress that this is not the only possible
measurement protocol based on the geometric principles
introduced in this paper. The setup we present is in fact
rather wasteful when it comes to resources; it is neither
optimal with respect to the number of clocks involved, nor
with respect the total number of measurements performed,
since, as we will see, only ≈10% of measured TOAs are
finally used in the data processing stage. However, the
peculiar geometry of both ensembles we consider here
allows for a fairly straightforward reconstruction of the
components of L and Q from the TOAs.
Assume we have at our disposal two sets of clocks, 13

receivers (O1;…; O13) in NO and 13 emitters (E1;…; E13)
in NE . The clocks within each group are in free fall,
comoving and synchronized, i.e., all clocks in one group
give the same readings along the simultaneity hypersurfa-
ces of their rest frames, respectively uO or uE. The readings
of the clocks will be denoted by tO and tE . The relative
motion of the two groups may be arbitrary and is consid-
ered uncontrolled by the experimentator.
Let L define the size of each group. We position 13

emitters and 13 receivers according to Table II, see also
Fig. 5. Their positions are measured with respect to two
OLF coordinate systems at NO and NE respectively,
constructed from two orthonormal, oriented tetrads,
ðuO; eiÞ at O and ðuE ; fiÞ and E. Therefore, the attitude
of both groups of clocks with respect to each other, with
respect to the line of sight, or with respect to any other
external reference frame, is also arbitrary and will be
treated as an uncontrolled variable.

TABLE II. Arrangement of both the emitters and the receivers
described in their local spatial coordinates.

1 (0,0,0) 8 ðL; L; 0Þ
2 ðL; 0; 0Þ 9 ð−L;−L; 0Þ
3 ð−L; 0; 0Þ 10 ðL; 0; LÞ
4 ð0; L; 0Þ 11 ð−L; 0;−LÞ
5 ð0;−L; 0Þ 12 ð0; L; LÞ
6 ð0; 0; LÞ 13 ð0;−L;−LÞ
7 ð0; 0;−LÞ � � � � � �
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All emitters now send time- and source-stamped signals
at three equally spaced moments in time, corresponding to
the readings tE − L, tE , and tE þ L. All signals are then
received by all 13 receivers, their origins are recognized
and their precise TOAs with respect to the receivers’ time
tO are recorded. This yields 13 × 13 × 3 ¼ 507 measure-
ments of TOAs between precisely localized pairs of events.
After the measurement we extract the signal from the data
using the procedure sketched below, effectively using only
57 of them.
In the first step we use the emission time tE of the second

group of signals and the TOA tO, the second signal sent
from the central emitter E1 and registered by the central
receiver O1, to define the respective offsets for all time
measurements by the emitters and the receivers. By
subtracting these offsets from all readings we obtain the
time coordinates δx0E and δx0

0
O respectively from the times

registered by the clocks in each group, with the reference
points E,O defined by the emission and the reception of the
second signal by the central clocks of the ensembles. This
way we define also the fiducial null geodesic γ0 through
these points.
We now pick a set of 56 other times of arrival which we

will further use to determine L and Q. As we have seen in
Sec III C, the TOAs are associated to seven-dimensional
subvectors defining the event of emission in NE and the
spatial position of the receivers NO. Therefore the sub-
vectors consisting of those components may be used for
indexing the individual TOA measurements. We now need
to define a set V of subvectors we will use for the
measurement. We first take the TOAs related to the

following 14 subvectors Ha with only one nonvanishing
component,

Ha
kþ ¼

�
0 for a ≠ k

L for a ¼ k

Ha
k− ¼

�
0 for a ≠ k

−L for a ¼ k
:

They correspond to the second signal emitted by E1 at E
and received by the receivers O2–O7, the second signals
emitted by E2–E7 and received byO1 and the first and third
signals emitted by E1 and received by O1. We also define
42 subvectors with two nonvanishing components,

Ha
kþ;lþ ¼

�
0 for a ≠ k and a ≠ l

L for a ¼ k or a ¼ l

Ha
k−;l− ¼

�
0 for a ≠ k and a ≠ l

−L for a ¼ k or a ¼ l
:

We assume here that k ≠ l and for the sake of unique
indexing we follow the convention that k < l in the
subscripts when describing them. The subvectors corre-
spond to the second signal from E1 received byO8–O13, the
second signals from E8–E13 received by O1, some of the
second signals form O2–O7 received by E2–E7, some of
the first and third signals from E2–E7 received by O1, and
the first and third signals from E1 received by some of the
receivers O2–O7.
These subvectors, taken together with the measured

TOA of the signal τðHa�Þ, constitute the full eight-dimen-
sional vectors H� ∈ TOM ⊕ TEM, i.e.,

H� ¼
�
τðHa�Þ
Ha�

�

or, equivalently, H0� ¼ τðHa�Þ, with � denoting any of the
subscripts for vectors in V, as defined above.
The set V contains 2 × 7þ 21 × 2 ¼ 56 subvectors and

this is the number of TOAs wewill use. It turns out that with
this particular placement of the emitters and receivers it is
possible to obtain exact expressions for the components ofL
andQ in the pair of ON tetrads ðuO; eiÞ and ðuE; fjÞ from the
TOAs.We first note that the setV is centrally symmetricwith
respect to the origin. Namely, for everyHa ∈ V we also have
−Ha ∈ V, i.e., all sub-vectors from V can be arranged in
pairs related by a point reflection through 0 [48]. Indeed, we
have −Ha

kþ ¼ Ha
k− and −Ha

kþ;lþ ¼ Ha
k−;l−. This feature is

important, because it simplifies greatly the problem of
solving the system (31) separately for the components of
L andQ. Note that the linear and quadratic terms in (31) [or
equivalently in (32)] differ in the way they behave when we
flip the signs of all components of the subvector Xa:
LaXa ¼ −Lað−XaÞ, but QabXaXb ¼ Qabð−XaÞð−XbÞ.

FIG. 5. Arrangement of the emitters and the receivers within
their respective groups, given in their locally flat, comoving
frame. We present here the receivers. The three solid lines are the
X, Y, and Z axes.O1 is the central receiver,O2–O7 are positioned
pairwise at the opposite sides at the three axes at the distance of L
from the center. O8–O13 lie on the three normal planes
of the axes.
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The idea now is to make a direct use of this fact in order to
decouple the equations governing the linear and quad-
ratic terms.
We calculate from (31) the difference between the TOAs

for the opposite subvectors Ha
kþ and −Ha

kþ ¼ Ha
k−,

1

2
ðτðHa

kþÞ − τðHa
k−ÞÞ ¼ −LaHa

kþ ¼ −LLk:

Thus we have obtained an exact expression for the
components of La

Lk ¼ −
L−1

2
ðτðHa

kþÞ − τðHa
k−ÞÞ; ð72Þ

with k ¼ 1…7 (recall that the missing component L0 is
equal to 1 due to the gauge condition (30) we have imposed
in order to fix the normalization of L and U).
We then calculate in the same way the average of the

TOAs for the opposite subvectors

1

2
ðτðHa

kþÞ þ τðHa
k−ÞÞ ¼ −

1

2
QabHa

k;þH
b
k;þ ¼ −

L2

2
Qkk;

obtaining the relation

Qkk ¼ −L−2ðτðHa
kþÞ þ τðHa

k−ÞÞ: ð73Þ

Finally we obtain the mixed terms Qkl with the help of the
polarization identity

QðA;BÞ ¼ 1

2
ðQðAþ B;Aþ BÞ −QðA;AÞ −QðB;BÞÞ

applied to Aa ¼ Ha
kþ and Ba ¼ Ha

lþ with k < l,

Qkl ¼ L−2QabHa
kþH

b
lþ

¼ L−2

2
ðQabHa

kþ;lþH
b
kþ; lþ −QabHa

kþH
b
kþ

−QabHa
lþH

b
lþÞ:

The three quadratic terms in the brackets can then be related
to the appropriate averages of the TOAs for pairs of
opposite subvectors, just like before. We obtain finally

Qkl ¼
L−2

2
ð−τðHkþ;lþÞ − τðHk−;l−Þ þ τðHkþÞ

þ τðHk−Þ þ τðHlþÞ þ τðHl−ÞÞ: ð74Þ

We have thus presented exact relations between the
components of L and Q in the two internal ON tetrads and
combinations of TOAs between chosen receiver-emitter
pairs, proving this way the feasibility of recovering
completely both objects from TOAs.

After that we divide L ¼ ð 1 La Þ into lOμ0 and lOν

according to (6) and Q into QOOi0j0 , QOE i0μ, QEEμν

according to (36). In the final step we apply relations
(47)–(50) in order to obtain μ and ν.

VII. SUMMARY AND CONCLUSIONS

We have provided a method of measuring the integrated
curvature along the line of sight by measuring the variations
of times of arrival of electromagnetic signals between two
regions in spacetime. In particular, we have demonstrated
how it is possible to extract the two first moments of the
mass density distribution along the line of sight. However,
the method may require modifications when applied to real
life physical situations or astronomical observations.

A. Alternative setups and protocols

The protocol described in Sec. VI can be modified in
many ways. In particular, there is no need to place the
clocks exactly according to Table II, or to send the signals
precisely at the moments we have prescribed there. The
clock placement and the emission moments can in principle
be arbitrary (the only restriction being the nondegeneracy
in the sense defined in Sec. III E), as long as they are all
precisely measured within each ensemble. In particular,
small deviations from the shape defined in Table II should
not affect the measurement, provided that we take them into
account while solving the inverse problem from Sec. III E
via Eq. (32).
In a broader context, note that it is also possible to drop

the assumptions of the clocks being comoving within each
group; at least as long as we are able to translate each
clock’s proper time to locally flat coordinates. This is
because the solution of the inverse problem requires only
the coordinates of all emission and reception events as
input, not the details of the motions of each individual clock
we use. Therefore, given sufficiently precise local tracking
of clocks within each group, we can in principle perform
the measurement in a purely passive mode, with no
attempts to steer or place the clocks in any way in each
ensemble. Even small, uncontrolled forces (drag, radiation
pressure, tidal forces) acting on the clocks can be in
principle taken into account in this case.
Precise tracking and motion measurements of this kind

can be achieved if each ensemble of clocks can also work as
a clock compass, i.e., a device capable of determining the
local inertial frame and measuring motions with respect to
it by the exchanging of electromagnetic signals between
clocks. An example of such device, based on clock
frequency comparisons has been presented in Neumann
et al. [18], Puetzfeld et al. [19], and Obukhov and Puetzfeld
[49]. Therefore, two distant clock compasses, each addi-
tionally capable of clock tracking and long-range commu-
nication, can in principle probe the mass density
distribution along their connecting line. More precise
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discussion of this kind of setup warrants a separate
publication.

B. Dark matter within the Solar System

Two ensembles of clocks within the Solar System could
in principle detect or provide upper bounds for the tiny
background matter density within the Solar System, includ-
ing the dark matter. The insensitivity of this method to the
tidal perturbations by all bodies of the Solar System and the
details of the motion of the clock ensembles makes it
particularly attractive in this setting. However, as we will
see, the measurement requires enormous precision of pulse
timing and huge distances in order to be competitive with
precise tracking of the Solar System bodies over long
periods [50].
Using the results of Sec. V B we may estimate the

minimal mass contained within the connecting cylinder
such setup could detect. Assuming the timing precision of
10 ns for a single measurement, comparable to the timing
precision of the Global Navigation Satellite Systems like
GPS, or to the precision of the millisecond pulsar timing
[51], we get the Schwarzschild radius of 3 m. This is a large
value, corresponding to the mass of 2 × 1027 kg, close to
the Jupiter mass. Assuming the dark matter mass density
bounds of ρDM < 10−19 g cm−3, taken from Pitjev and
Pitjeva [50], we would need the connecting cylinder
volume of at least 1010 AU3, far exceeding the size of
the Solar System. We see that without a significant
improvement of the timing precision it seems unfeasible
to achieve bounds comparable to [50] with two clock
ensembles.

C. Binary pulsars as sources

Instead of using artificial sources of signals we may
consider natural ones, provided by binary pulsars or
the double pulsar [4]. In this case the orbital motion of
the pulsars provides a natural sampling of the TOAs over
the emitters’ region, while the Earth’s orbital motion
provides the sampling over the receivers’ region. The
receiver-source distance is also larger by many orders of
magnitude than what could be achieved with artificial
sources, so we may expect a much larger integrated mass
along the line of sight, and therefore also a significantly
larger signal to measure.
Since we do not have independent measurements of the

distances or orbital elements in the binary pulsar system,
but rather we infer them from various relativistic effects via
precise pulsar timing [52], the method of measurement
would have to be modified. The effects of propagation of
signals through the curved spacetime between the binary
pulsar and the Solar System, including the effects of μ,
ν ≠ 0, would need to be included into an extended model of
the TOAs of the pulses, with a global fit of the observed
data performed over all unknown parameters [51]. The

feasibility of curvature measurements of this kind will be
discussed in another publication.
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APPENDIX A: NORMAL FORM OF THE
QUADRIC EQUATION AND
THE SHAPE OF THE LSC

We begin by absorbing the linear term in the quadric
Eq. (9). Define the vector Y ∈ TOM ⊕ TEM by
Y ¼ ð 0 Δλ · lμE Þ. From (11)–(14) we have UðY; ·Þ ¼ L
and UðY;YÞ ¼ 0. It follows that (9) is equivalent to

UðZ;ZÞ ¼ 0; ðA1Þ

where the new variable Z is defined as Z ¼ Xþ Y. Note
that this equation still contains no free term.
In the second step we need to diagonalize U in order to

determine its invariant signature. It is easy to show that,
irrespective of the spacetime geometry, the quadratic form
U must be degenerate in at least one direction. Define the
vectorL♯ ∈ TOM ⊕ TEM as the vector obtained by raising
the index of L with the help of the inverse metric h−1, i.e.,
L♯ ¼ ð lμ0O lμE Þ. This vector corresponds to a simultaneous
displacement of both endpoints along γ0, generated by
the same infinitesimal variation of the affine parameter.
Now, using again relations (11)–(14), we can show that
UðL♯; ·Þ ¼ 0.
The shape of the quadric depends on the signature of the

form U. However, apart from the single degenerate direc-
tion we have pointed out above, it is impossible to
determine the signature without further assumptions
regarding the Riemann tensor along the LOS. We can,
however, calculate the signature in a flat spacetime and then
use this result to gain some insight into the small curvature
limit case as defined in Sec. III B.
Let M be the Minkowski space in the standard coor-

dinates ðxμÞ and let xμO and xμE be two points connected by a
null line γ0, given by xμðλÞ ¼ xμO þ ðλ − λOÞlμ. The tangent
vector lμ satisfies lμ ¼ Δλ−1ðxμE − xμOÞ and is null by
assumption.
The world function of the Minkowski spacetime

reads [13]

σðxμ; x0νÞ ¼ 1

2
ημνðxμ − x0μÞðxν − x0νÞ:

From (6) and (8) we have
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U ¼ 1

Δλ

�−ημν ημν

ημν −ημν

�

L ¼ ð lμ −lμ Þ ðA2Þ

for the null geodesic γ0 between xμO and xμE [53].
The reduction of the quadric Eq. (9) to the normal form,

together with the diagonalization ofU, is fairly simple in the
flat case. We first introduce the vector ξμ ¼ δxμEþ
Δλlμ − δxμO. It is equal to the position of one displaced point
with respect to the other, i.e., ξμ ¼ xμE þ δxμE − xμO − δxμO.We
then express (9) in the new variables ðξμ; δxμOÞ instead of the
components of X. The quadric equation then takes a very
simple form

−
1

Δλ
ημνξ

μξν ¼ 0; ðA3Þ

with all δxμO terms dropping out. This is, up to the prefactor,
the standard condition for the two displaced points to be
connected by a null vector. It is valid for any pair of points,
not only for small displacements of the two points around the
geodesic endpoints, which means that in the Minkowski
space the quadric (9) is not an approximation, but rather it is
the exact, “global” surface of communication. Note that in
this form the quadric equation contains no linear terms and
that it is also diagonal with respect to the new pair of
variables, which means that we have achieved the nor-
mal form.
Thus the LSC in the Minkowski space turns out to be a

highly degenerate quadric, with four degenerate directions
corresponding to δxμO. The reason of the four-fold degen-
eracy is the translational invariance of the Minkowski
space, or, more precisely, the fact that the shape of a light
cone does not depend on the position of its vertex. A pair of
points xμE þ δxμE and x

μ
O þ δxμO lies on the LSC if and only if

the former is located on the light cone with its vertex
located at the latter. Due to the light cone shape invariance
the light cone equation depends only on the relative
position vector ξμ of first endpoint with respect to the
vertex, with no dependence on the absolute position of the
vertex encoded in δxμO.
It follows from (A3) that the signature of U in the

Minkowski space is (1,3,4), i.e., one plus sign, three minus
signs, four zeros [54]. Moreover, a small perturbation of the
quadratic form U of the type (25) (i.e., the small curvature
limit) cannot alter the first four signs, but it can affect the
zeros even at linear order. As we have seen, one zero must
always remain in the signature, but it is easy to show that
the three other zeros can be turned into any other sign by a
curvature perturbation. The resulting change of shape of the
quadric approximating the LSC is precisely the curvature
effect our measurement is sensitive to. Summarizing, the
invariant signature of the quadratic form in the small
curvature limit contains at least one plus, at least three

minuses and at least one zero, but otherwise depends on the
spacetime geometry.

1. Remark

We can extend these results to the quadratic form U⊥
defined on the seven-dimensional subspace L⊥, see
Sec. III C. Since it is equal to the extrinsic curvature of
the LSC, we study this way the local shape of the LSC.
The vector L♯ lies in the subspace L⊥, so from the

results of Sec. III C we see thatL♯ defines also a degenerate
direction for U⊥, and thus also for the extrinsic curvature of
the LSC. However, it is easy to show that U⊥ must always
be degenerate in two different directions. Define two
vectors KO;KE ∈ TOM ⊕ TEM via KO ¼ ð lμ0O 0 Þ and
KE ¼ ð 0 lμE Þ. Both lie in the subspace L⊥ and it is easy
to see from (11)–(14) that UðKE ; ·Þ ¼ −UðKO; ·Þ ¼ 1

ΔλL.
It follows that U⊥, defined as the restriction of U to the
subspace L⊥, satisfies U⊥ðKE ; ·Þ ¼ U⊥ðKO; ·Þ ¼ 0, so U⊥
is degenerate in the directions of both vectors.
In analogy with U we also consider the flat case and the

small curvature limit as special cases. In a flat spacetime we
may diagonalize U⊥ by the same substitution we have used
for U; we introduce again ξμ and δxμO as the new variables.
The orthogonality condition LðXÞ ¼ 0 defining L⊥
becomes simply lμξμ ¼ 0, with no restrictions on δxμO. It
follows that we can decompose ξμ according to

ξμ ¼ ξAeμA þ ξllμ; ðA4Þ

where the two spatial vectors eμA, A ¼ 1, 2, constitute an
orthonormal basis of the transverse subspace orthogonal to
lμ. It is straightforward to show then that

U⊥ðX;XÞ ¼ −
1

Δλ
ξAξBδAB: ðA5Þ

Thus the extrinsic curvature is degenerate in five directions
and negative in the two transverse directions of ξμ, so the
overall signature reads (0,2,5). In the small curvature limit
the two minus signs are stable against linear perturbations
and two zeros are protected because of the identities proved
above. Therefore up to three zeros out of five may turn into
other signs due to linear curvature perturbations.

APPENDIX B: U AND THE VARIATIONS OF
THE TANGENT VECTORS AT λO AND λE

Let tμ
0

Oðx; x0Þ and tμEðx; x0Þ denote the tangent vectors to a
geodesic passing through x and x0, and parametrized so that
λ − λ0 ¼ Δλ for a fixedΔλ. The vectors can be related to the
derivatives of the world function via

tOμ0 ðx; x0Þ ¼ −
1

Δλ
σ;μ0 ðB1Þ
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tEμðx; x0Þ ¼
1

Δλ
σ;μ ðB2Þ

(see [35]). We consider now a LF coordinate system, i.e.,
we have Γμ0

ν0α0 ðOÞ ¼ Γμ
ναðEÞ ¼ 0. In these coordinates we

calculate from (B1)–(B2) the linear variation of the
components of the tangent vectors under the variation of
the geodesic endpoints, calculated around the fiducial
geodesic corresponding with x ¼ E, x0 ¼ O. It takes the
form of

δtOμ0 ¼ −
1

Δλ
ðσ;μ0ν0δxν0O þ σ;μ0νδxνEÞ ðB3Þ

δtEμ ¼
1

Δλ
ðσ;μν0δxν0O þ σ;μνδxνEÞ; ðB4Þ

with the partial derivatives of σðx; x0Þ taken at ðE;OÞ. But
in the LF coordinates the standard second derivatives of σ
coincide with the covariant ones, i.e., σ;μν ¼ σ;μν,
σ;μ0ν0 ¼ σ;μ0ν0 , σ;μ0ν ¼ σ;μ0ν, σ;μν0 ¼ σ;μν0 . Also, in these
coordinates the coordinate-wise variations of tOμ0 and tEμ
can be identified with the covariant direction variations, i.e.,
ΔlOμ0 ¼ δtOμ0 and ΔlEμ ¼ δtEμ. In this case by comparing
(B3)–(B4) with the definition of U (8) we get (15)–(16).

APPENDIX C: TRANSFORMATIONS BETWEEN
W AND U IN THE GENERAL CASE

By comparing (17)–(18) to (15)–(16) we see that the
transformation between W and U corresponds to passing
from the initial value problem for the GDE, with the initial
data for the perturbed geodesic given by the pair

ðδxμ0O;Δlν
0
E Þ, to the boundary problem, with the displace-

ment vectors at both ends ðδxμ0O; δxνEÞ defining the boundary
values. Now, in a linear system of ODEs passing from one
problem to the other is a fairly straightforward algebraic
problem we will solve below.
We transform the relation (17)–(18) in order to express

Δlμ
0

O andΔlνE by δx
μ0
O and δxμE ; by left-multiplying both sides

of (17) with W−1
XL we obtain Δlμ

0
O, which we subsequently

insert into (18) to get ΔlνE . After collecting the like terms
and a small rearrangement we get

Δlμ
0

O ¼ −ðW−1
XLÞμ0νWXX

ν
σ0δxσ

0
O þ ðW−1

XLÞμ0νδxνO ðC1Þ

ΔlμE ¼ ð−WLL
μ
ν0 ðW−1

XLÞν0 κWXX
κ
σ0 þWLX

μ
σ0 Þδxσ0O

þWLL
μ
ν0 ðW−1

XLÞν0σδxσE : ðC2Þ

In the next step we need to lower the indices in both
equations using gμν atO in the first equation and gμν at E in

the second one. By comparing (15)–(16) with the result we
obtain immediately the nonlinear relation (19).
The inverse relation can be derived similarly—we may

re-express δxμE and ΔlμE in (19) with δxμ
0

O and Δlμ
0

O

δxμE ¼ −ðU−1
OEÞμα

0
UOOα0ν0δx

ν0
O þ ðU−1

OEÞμα
0
gα0ν0Δlν

0
O ðC3Þ

ΔlμE ¼ gμσðUEEσωðU−1
OEÞωα

0
UOOα0ν0 −UEOσν0 Þδxν0O

− gμσUEEσωðU−1
OEÞωγ

0
gγ0ν0Δlν

0
O: ðC4Þ

By comparing (17)–(18) with (C3)–(C4) we obtain the
inverse relation (20).

APPENDIX D: MAPPING W UP TO THE LINEAR
ORDER IN CURVATURE

In this Appendix we derive the formulas for zeroth and
first order of W, expressed in terms of curvature integrals
along the null geodesic. This has already been done for
timelike geodesics [46] and for null geodesic in the trans-
verse subspace [44,45,55], albeit using different terminol-
ogy and notation. For the sake of completeness we present a
derivation in our framework.
Bilocal operators (WXX, WXL, etc.), constituting the

4 × 4 submatrices of the matrix W, are solutions to the
nonhomogeneous ODE (21) defined along the null geo-
desic between the emitter and observer. From this ODE we
get system of differential equations8>>>>><

>>>>>:

_WXX ¼ WLX

_WXL ¼ WLL

_WLX ¼ RllWXX

_WLL ¼ RllWXL;

with initial conditions,8>>>>><
>>>>>:

WXXðλOÞ ¼ I4
WXLðλOÞ ¼ 0

WLXðλOÞ ¼ 0

WLLðλOÞ ¼ I4:

We may also rewrite this, by substituting relevant
matrices, as system of second-order equations,

ẄXX ¼ RllWXX ðD1aÞ

ẄXL ¼ RllWXL ðD1bÞ

WLX ¼ _WXX ðD1cÞ
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WLL ¼ _WXL; ðD1dÞ

with initial conditions

WXXðλOÞ ¼ I4 ðD2aÞ

WXLðλOÞ ¼ 0 ðD2bÞ

WLXðλOÞ ¼ 0 ðD2cÞ

WLLðλOÞ ¼ I4 ðD2dÞ

The second-order equations (D1a) and (D1b) for WXX
and WXL, together with the initial data (D2), form two
autonomous matrix ODEs. Once we solve them we can
obtainWLX andWLL by subsequent differentiation ofWXX
and WXL, see Eqs. (D1c) and (D1d). This system of ODEs
has been presented in [1] and we will use it here to derive
the perturbative expansion.
In zeroth order the solution of this system is the

following:

Wð0Þ
XX

μ̄
ν̄ ¼ δμ̄ν̄ ðD3aÞ

Wð0Þ
XL

μ̄
ν̄ ¼ ðλ − λOÞδμ̄ν̄ ðD3bÞ

Wð0Þ
LX

μ̄
ν̄ ¼ 0 ðD3cÞ

Wð0Þ
LL

μ̄
ν̄ ¼ δμ̄ν̄: ðD3dÞ

In order to evaluate the first order we insert solutions (D3)
into relevant equations (D1) containing the curvature factor
and integrate with respect to the affine parameter. For WXX
we have

Wð1Þ
XX

μ̄
ν̄ ¼

Z
λE

λO

dλ
Z

λ

λO

Rμ̄
ᾱ β̄ ν̄ðλ0Þlᾱlβ̄dλ0:

and WLX, as its derivative

Wð1Þ
LX

μ̄
ν̄ ¼

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄dλ:

Performing the same procedure for WXL and WLL, we get
full first order W

Wð1Þ
XX

μ̄
ν̄ ¼

Z
λE

λO

dλ
Z

λ

λO

Rμ̄
ᾱ β̄ ν̄ðλ0Þlᾱlβ̄dλ0;

Wð1Þ
XL

μ̄
ν̄ ¼

Z
λE

λO

dλ
Z

λ

λO

Rμ̄
ᾱ β̄ ν̄ðλ0Þlᾱlβ̄ðλ0 − λOÞdλ0;

Wð1Þ
LX

μ̄
ν̄ ¼

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄dλ;

Wð1Þ
LL

μ̄
ν̄ ¼

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλ − λOÞdλ:

In order to simplify the formulas for Wð1Þ, we can rewrite
them via integration by parts as integrals with the kernel
centered at λO. For WXX we have

Wð1Þ
XX

μ̄
ν̄ ¼

Z
λE

λO

dλ
Z

λ

λO

Rμ̄
ᾱ β̄ ν̄ðλ0Þlᾱlβ̄dλ0

¼
Z

λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλE − λÞdλ;

where 1 is integrated to λ − λO and
R
λ
λO
Rμ̄

ᾱ β̄ ν̄ðλ0Þlᾱlβ̄dλ0 is
differentiated to Rμ̄

ᾱ β̄ ν̄ðλÞlᾱlβ̄. Applying the same to other
operators we also get

Wð1Þ
XL

μ̄
ν̄ ¼

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλE − λÞðλ − λOÞdλ; ðD4aÞ

Wð1Þ
LX

μ̄
ν̄ ¼

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄dλ; ðD4bÞ

Wð1Þ
LL

μ̄
ν̄ ¼

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλ − λOÞdλ: ðD4cÞ

Finally, in order to make the formulas look more
compact, we may rewrite Wð0Þ and Wð1Þ in the form of
8 × 8 matrices:

Wð0Þ ¼
� I4 Δλ · I4
0 I4

�
ðD5Þ

Wð1Þ ¼
Z

λE

λO

�
Rμ̄

ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλE − λÞ Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλE − λÞðλ − λOÞ

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ Rμ̄

ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλ − λOÞ
�
dλ; ðD6Þ

where Δλ ¼ λE − λO. This result is consistent with Eq, (46) from Gallo and Moreschi [44] and equations (2.1)–(2.3) from
Flanagan et al. [46].
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APPENDIX E: MAPPING U UP TO THE LINEAR
ORDER IN CURVATURE

We are working in a parallel propagated tetrad, so the
metric tensor satisfies ημ̄ ν̄ ¼ diagð−1; 1; 1; 1Þ ¼ ημ̄ ν̄. U and
W are related between each other with a nonlinear trans-
formation (19). Obviously the derivation of Uð0Þ and Uð1Þ

requires evaluating W−1
XL. Assuming that terms quadratic in

curvature are small we have

W−1
XL

ð0Þ ¼ ðWð0Þ
XLÞ−1;

W−1
XL

ð1Þ ¼ −ðWð0Þ
XLÞ−1Wð1Þ

XLðWð0Þ
XLÞ−1:

Substituting (3) and (5) we get

ðW−1
XL

ð0ÞÞμ̄ν̄ ¼
1

Δλ
δμ̄ν̄

ðW−1
XL

ð1ÞÞμ̄ν̄ ¼ −
1

Δλ2

Z
λE

λO

Rμ̄
ᾱ β̄ ν̄ðλÞlᾱlβ̄ðλE − λÞðλ − λOÞdλ:

In order to find Uð0Þ we may use the relation (19)
between U and W at zeroth order,

Uð0Þ
OO ¼ −ηW−1

XL
ð0ÞWð0Þ

XX ¼ −
η

Δλ
I4 ðE1aÞ

Uð0Þ
OE ¼ ηW−1

XL
ð0Þ ¼ η

Δλ
I4 ðE1bÞ

Uð0Þ
EO ¼ Uð0Þ

OE
T ¼ ηT

Δλ
I4 ðE1cÞ

Uð0Þ
EE ¼ −ηWð0Þ

LLW
−1
XL

ð0Þ ¼ −
η

Δλ
I4; ðE1dÞ

η denoting the metric. The linear order term Uð1Þ requires
linearizing the relation (19) around Wð0Þ. We assume

U ¼ Uð0Þ þ Uð1Þ:

Wewill expand every bilocal operator contained inU in this
manner, use the relevant relation (E1), and collect the

products with respect to the right order (neglecting
the quadratic and higher orders in curvature). For UOO
we have

Uð0Þ
OO þ Uð1Þ

OO ¼ −ηðW−1
XL

ð0Þ þW−1
XL

ð1ÞÞ · ðWð0Þ
XX þWð1Þ

XXÞ

or

Uð0Þ
OO þUð1Þ

OO ¼ ηð−W−1
XL

ð0ÞWð0Þ
XX −W−1

XL
ð0ÞWð1Þ

XX

−W−1
XL

ð1ÞWð0Þ
XX −W−1

XL
ð1ÞWð1Þ

XXÞ:

The first term on the right-hand side is simply Uð0Þ
OO, while

the last one is quadratic and can be neglected at first order.
We then get

Uð1Þ
OO ¼ ηð−W−1

XL
ð0ÞWð1Þ

XX −W−1
XL

ð1ÞWð0Þ
XXÞ:

Now, using (D3) and (D5) we may rewrite the above result
in the following form:

Uð1Þ
OOμ̄ ν̄ ¼ −

1

Δλ2

Z
λE

λO

Rμ̄ ᾱ β̄ ν̄l
ᾱlβ̄ðλE − λÞ2dλ

(note the lowering of the first index due to η in front of the
expressions).
We apply the same procedure to the other three blocks of

U and obtain

Uð1Þ
OE μ̄ ν̄ ¼ −

1

Δλ2

Z
λE

λO

ðλE − λÞðλ − λOÞRμ̄ ᾱ β̄ ν̄l
ᾱlβ̄dλ;

Uð1Þ
EOμ̄ ν̄ ¼ −

1

Δλ2

Z
λE

λO

ðλE − λÞðλ − λOÞRμ̄ ᾱ β̄ ν̄l
ᾱlβ̄dλ;

Uð1Þ
EE μ̄ ν̄ ¼ −

1

Δλ2

Z
λE

λO

ðλ − λOÞ2Rμ̄ ᾱ β̄ ν̄l
ᾱlβ̄dλ:

The result is consistent with (10). As in the case of W, we may rewrite Uð0Þ and Uð1Þ in more compact, matrix form

Uð0Þ ¼ 1

Δλ

�−ημ̄ ν̄ ημ̄ ν̄

ημ̄ ν̄ −ημ̄ ν̄

�
;

Uð1Þ ¼ −
Z

λE

λO

�
Rμ̄ ᾱ β̄ ν̄l

ᾱlβ̄ ðλE−λÞ2
Δλ2 Rμ̄ ᾱ β̄ ν̄l

ᾱlβ̄ ðλE−λÞðλ−λOÞ
Δλ2

Rμ̄ ᾱ β̄ ν̄l
ᾱlβ̄ ðλE−λÞðλ−λOÞ

Δλ2 Rμ̄ ᾱ β̄ ν̄l
ᾱlβ̄ ðλ−λOÞ2

Δλ2

�
dλ:
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APPENDIX F: PROOF OF THE INVARIANCE
OF μ AND ν

We establish here the following Theorem:
Theorem F.1 Let ðuO; fA; f3Þ and ðuE ; gA; g3Þ be a pair

of ON, adapted and properly oriented tetrads at O and E
respectively. Let ðũO; f̃A; f̃3Þ and ðũE ; g̃A; g̃3Þ be another
such pair. Then μ and ν given by (37) and (38) have the
same values when calculated in both pairs of adapted
tetrads.
Note that in this Appendix we are not using primes for

internal tetrad indices at O.
Proof.—We first need the following Lemma, closely

related to the shadow theorem by Sachs [2,56]:
Lemma F.2. In this setting we have the following

relation between the transverse vectors

f̃A ¼ RB
AfB þ aAlO ðF1Þ

g̃A ¼ SBAgB þ bAlE ; ðF2Þ

where both RA
B and SAB are 2D rotation matrices, i.e.,

RTR ¼ STS ¼ I2, detR ¼ det S ¼ 1, and aA, bA are (irrel-
evant) four numbers.
Proof of Lemma F.2 The proof proceeds in two steps;

we first prove that relations (F1)–(F2) indeed hold and that
the matrices R and S need to be orthogonal. Then we show
that their determinants must be positive as well.
Orthogonality of R and S: Let the dot denote the scalar

product defined by the spacetime metric g. Since the f̃A’s
are orthogonal to both f̃3 and ũO and the g̃A’s are
orthogonal to both g̃3 and ũE we have f̃A · lO ¼ 0 and
g̃A · lE ¼ 0, i.e., the transverse vectors are also orthogonal
to the appropriate null tangents. Thus f̃A’s and ẽA’s lie in
the subspaces orthogonal to the appropriate null tangent.
Consider now the decomposition of f̃A in the ðuO; fA; f3Þ

frame, i.e., f̃A ¼ CAuO þ RB
AfB þDAf3, with undeter-

mined so far coefficientsRB
A,CA andDA. Then the condition

of orthogonality to lO ¼ Qð−uO þ f3Þ implies that
CA ¼ −DA, or equivalently f̃A ¼ −DAuO þ RB

AfBþ
DAf3 ¼ RB

AfB þ DA
Q lO. Applying the same reasoning to

gA we prove the following relations:

f̃A ¼ RB
AfB þ aAlO ðF3Þ

g̃A ¼ SBAgB þ bAlE ðF4Þ

with RB
A, SBA, aA and bA arbitrary.

We now impose the orthogonality and normalization
conditions between the transverse vectors, f̃A · f̃B ¼ δAB,
g̃A · g̃B ¼ δAB, on relations (F3)–(F4). They imply then that
RB

ARD
CδBD ¼ δAC and SBASDCδBD ¼ δAC, i.e., both RB

A

and SBA must be orthogonal 2 × 2 matrices. We now only

need to prove that they are also special orthogonal,
i.e., det SBA ¼ detRB

A ¼ 1.
The determinants of R and S are equal toþ1: Since both

matrices are orthogonal, it suffices to show that detRB
A >

0 and det SBA > 0. We will do it for RB
A, because the

reasoning for SBA is identical.
Let κ denote the exterior product of all base vectors, i.e.,

κ ¼ uO ∧ f1 ∧ f2 ∧ f3. Since both tetrads ðuO; fA; f3Þ
and ðũO; f̃A; f̃3Þ are assumed to be properly oriented we
must also have κ ¼ ũO ∧ f̃1 ∧ f̃2 ∧ f̃3 and an analogous
relation for the other tetrad at E. We now show that this
implies detRB

A > 0.
At O we have lO ¼ Q̃ð−ũO þ f̃3Þ, so

κ ¼ 1

Q̃
ũO ∧ f̃1 ∧ f̃2 ∧ lO:

The two four-velocities are related by

uO ¼ γũO þ γβif̃i ¼ γũO þ γβAf̃A þ γβ3f̃3

where βiβjδij < 1 and γ ¼ ð1 − βiβjδijÞ−1=2. It follows that

uO ¼ γð1þ β3ÞũO þ γβAf̃A þ γβ3

Q̃
lO:

We can now substitute ũO by uO in κ,

κ ¼ γð1þ β3Þ
Q̃

uO ∧ f̃1 ∧ f̃2 ∧ lO:

We can now make use of the relation (F3) between the two
transverse vectors f̃A and fA. Note that we have

f̃1 ∧ f̃2 ¼ ðdetRB
AÞf1 ∧ f2 þ lO ∧ α;

where α is an irrelevant one-form. Then

κ ¼ γð1þ β3Þ detRB
A

Q̃
uO ∧ f1 ∧ f2 ∧ lO:

In the last step we exchange lO for f3 using
lO ¼ Qð−uO þ f3Þ:

κ ¼ Qγð1þ β3Þ detRB
A

Q̃
uO ∧ f1 ∧ f2 ∧ f3:

But we also have κ ¼ uO ∧ f1 ∧ f2 ∧ f3, so

Qγð1þ β3Þ detRB
A

Q̃
¼ 1:

Now, since γ, Q̃, Q and 1þ β3 are all positive, it follows
that detRB

A > 0 as well. The same argument can be
applied to det SBA.
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End of proof of Lemma F.2. We now evaluate the
transverse components of (lowered-index) UOO in the new
frame

UOOðf̃A;f̃BÞ¼UOOðfC;fDÞRC
ARD

BþUOOðlO;fDÞaARD
B

þUOOðfC;lOÞRC
AaBþUOOðlO;lOÞaAaB:

ðF5Þ

From (11) we know that for every X ∈ TOM we have

UOOðX; lOÞ ¼ UOOðlO; XÞ ¼ −
1

Δλ
lO · X;

where the dot again denotes the spacetime metric scalar
product. Now, we have

lO · fA ¼ lO · f̃A ¼ lO · lO ¼ 0

from the definition of an adapted base and from the null
condition on lO. Thus the last three terms in (F5) simply
vanish and we have the transformation rule in the form of

UOOðf̃A; f̃BÞ ¼ UOOðfC; fDÞRC
ARD

B:

The same reasoning gives then the following transforma-
tion rules:

UEEðg̃A; g̃BÞ ¼ UEEðgC; gDÞSCASDB

UOEðf̃A; g̃BÞ ¼ UOEðfC; gDÞRC
ASDB

UEOðg̃A; f̃BÞ ¼ UEOðgC; fDÞSCARD
B:

Since the rotation matrices S and R have a unit determinant,
they have no impact on the value of the subdeterminants of
UOO and others

detUOOðf̃A; f̃BÞ ¼ detUOOðfA; fBÞ
detUEEðg̃A; g̃BÞ ¼ detUEEðgA; gBÞ
detUOEðf̃A; g̃BÞ ¼ detUOEðfA; gBÞ
detUEOðg̃A; f̃BÞ ¼ detUEOðgA; fBÞ:

Therefore the values of μ and ν defined by the expressions
(37) and (38) are the same in any pair of adapted tetrads at
O and E.
End of proof of Theorem F.1. Thus μ and ν are

independent of the choice of the adapted ON tetrad at O
and E, and thus uO- and uE-independent. Equation (37) can
be used with any pair of adapted tetrads at O and E.

APPENDIX G: μ, ν AND THE CROSS-SECTIONAL
AREA OF INFINITESIMAL BUNDLES OF RAYS

For simplicity we derive only the expressions for μ,
noting here that those for ν have exactly the same form, but

with the role of O and E reversed. The problem of tracking
the intersection of an infinitesimal bundle with a Sachs
screen of an observer is an old one. It is well known that the
area of this intersection is independent of the choice of the
observer’s frame [37].
We begin by picking an orthonormal, adapted tetrad

ðu; fA; f3Þ at O and parallel propagating it along γ0. We
consider an infinitesimal bundle of light rays intersecting
the area spanned by f1 and f2, defined as AO ¼ f1 ∧ f2,
such that the null geodesics are parallel atO. Its behavior is
determined by the geodesic deviation equation along γ0.
From (17) we see that at E this bundle crosses the area
element spanned by WXXðf1Þ and WXXðf2Þ. The cross
section of the bundle by the Sachs screen space f1 and f2 is
given by the projection of these vectors to the Sachs screen.
It can described by the products fB ·WXXðfAÞ, with ·
defined by the spacetime metric.
In [1] the following definition of μ was given

μ ¼ 1 − detw⊥A
B ¼ 1 − detðδAB þm⊥A

BÞ; ðG1Þ
where m⊥∶PO → PE was the perpendicular part of the
emitter-observer assymetry operator. It is easy to show that
by construction, w⊥A

B ¼ WXX
A
B, i.e., it is a 2 × 2 sub-

matrix of WXX
μ̄
ν̄, corresponding to the projection onto the

screen space spanned by f1 and f2. Namely, we have

w⊥A
B ¼ ½fA� · w⊥ð½fB�Þ ðG2Þ

where ½fA� is the equivalence class defined by the equiv-
alence relationX ∼ X þ Cl, whereC is a constant. But, from
the definition in [1] we also have ½fA� · w⊥ð½fB�Þ ¼
fA ·WXXðfBÞ, which proves the equality. Thus

μ ¼ 1 − detWXX
A
B: ðG3Þ

The determinant detWXX
A
B plays the role of the coefficient

defining how an area element of the screen spaceO appears
rescaled on the screen space at E when carried by the beam.
More precisely, it is equal to the ratio of the area element
WXXðf1Þ ∧ WXXðf2Þ projected to the screen space and f1 ∧
f2 at E. Since the latter defines the cross-sectional area of the
infinitesimal bundle atO, we can simply define μ as the ratio
of (signed) cross-sectional areas of the bundle at O and E,

μ ¼ 1 −
AE

AO
: ðG4Þ

This means that μ measures the focusing power of the
spacetime along γ0 by a simple comparison of the cross-
sectional areas of an initially parallel bundle of rays sent
backwards in time towards E. Moreover, this formula leads
immediately to a simple evolution equation for μ. Let gA ¼
WXXðλÞfA be the solutions of the GDE corresponding to f1
and f2 at O, defining the shape of the bundle. We start by
differentiating AðλÞ ¼ g1 ∧ g2,
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dA
dλ

¼ ∇lg1 ∧ g2 þ g1 ∧ ∇lg2

¼ ðgC1∇ClÞ ∧ g2 þ g1 ∧ ðgC2∇ClÞ
¼ ðg1 ∧ g2Þ∇ClC ¼ Aθ; ðG5Þ

where θ is the bundle expansion. We have used here the
properties of wedge product and the commutation relation
∇lg ¼ ∇gl. By differentiating (G4) we get

dμ
dλ

¼ θðμ − 1Þ; ðG6Þ

with the initial data of the form μðλOÞ ¼ 0.
Equation (G6) requires the expansion θðλÞ of the

infinitesimal bundle along γ0 as input. It can be obtained,

together with shear σABðλÞ, using the null Raychaudhuri
equation along γ0 and the shear equation [37,57,58], also
known as the Sachs equations

dθ
dλ

¼ −
θ2

2
− σABσ

AB − Rμνlμlν ðG7Þ

dσAB
dλ

¼ −θσAB þ CAμνBlμlν: ðG8Þ

As the initial data we take θðλOÞ ¼ 0 and σABðλOÞ ¼ 0,
corresponding to an initially parallel bundle. We do not
include the twist, because it must vanish at O together with
θ and σ, and thus also along the whole bundle.
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