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Due to the conical singularity along the symmetry axis Taub-NUT spacetimes suffer from a long and
problematic history of physical interpretation. In 1969 Misner proposed a nonsingular interpretation taking
advantage of the spacetime’s topology and its underlying group-theoretic structure. We extend and refine
his method to include a broader family of solutions and completely solve the outstanding issue of a
nonsingular extension of the Kerr-NUT–(anti–)de Sitter solutions to Einstein’s equations. Our approach
relies on an observation that in 2 dimensional algebra of Killing vector fields there exist two distinguished
vector fields that may be used to defineUð1Þ-principal bundle structure over the nonsingular spaces of non-
null orbits. For all admissible parameters we derive appropriate Killing vector fields and discuss limits to
spacetimes with less parameters. The global structure of spacetime, together with nonsingular conformal
geometry of the infinities is presented and (possibly also projectively nonsingular) Killing horizons is
presented.
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I. INTRODUCTION

In 1963 Ezra Ted Newman and his two students Louis A.
Tamburino, and Theodore W. J. Unti introduced a defor-
mation of the Schwarzschild spacetime that made it twist-
ing [1]. In the cosmological context, an equivalent solution
to Einstein’s equation had been found earlier, in 1951, by
Abraham Haskel Taub [2]. Due to the twisting Taub-NUT
solution was an early candidate for the relativistic descrip-
tion of a rotating black hole. Even though this proposal did
not turn out to be true the NUT paper had an enormous
impact on the theory of exact solutions to the Einstein
equations. In particular it led to the correct description in
the form of Kerr solution [3].
The NUT-like modification may be generalized to the

Kerr solution to the vacuum Einstein equations by adding
a parameter l called the NUT parameter. The resulting
Kerr-NUT spacetime is still Ricci flat, but its topology is
considerably different than that of the Kerr spacetime. Due
to the Misner’s method of compactifying the symmetry
group [4], the global structure of those spacetimes is
obtained as R × S3 and it contains closed timelike curves.
On the other hand, for sufficiently large value of l, the Kerr
singularity is smoothed out, although the spacetime still
contains horizons. Due to the unquestionably growing
relevance of the cosmological constant in physics, it is
natural to generalize the family of the Kerr-NUT solutions
by adding a constant Λ. That has been done a long time
ago. These solutions to the vacuum Einstein equations with

a cosmological constant are referred to as the Kerr-NUT-
(anti) de Sitter spacetimes and set a 4-dimensional family
and since then has been of an interest [5–9].
In the original case of the Taub-NUT spacetime the

recipe for Misner’s gluing consisted of connecting two
patches Taub-NUT spacetime into a nonsingular one.
This had the consequence of compactifying the orbits of
∂t Killing vector to circles. However, in the case of
Kerr-NUT–(anti–)de Sitter, a generalized Misner’s gluing
does not work properly—there still persists a conical
singularity irremovable at least from one of the axis of
the rotational symmetry. We completely solve that problem
in the current paper, thus our approach generalizes the
Misner’s compactification both in used methods and the
class of applicable spacetimes.
We recognize a geometric mechanism of the problem—it

is hidden in the spaces of non-null orbits of Killing vectors
of Kerr-NUT–(anti–)de Sitter spacetimes. Only some dis-
tinguished Killing vectors define a nonsingular geometry
and we find all of them. Next, one of those fields is used to
perform a nonsingular generalization of Misner’s gluing.
We study the global properties of the resulting spacetime
from the past conformal infinity I− to the future one Iþ, as
well as the contained Killing horizons.
This paper is the third in the series concerning the

nonsingular interpretation of Kerr-NUT-de Sitter space-
times. However, it is a completely self contained continu-
ation. In the previous papers we focused on the geometry of
the Killing horizons contained in that family of spacetimes.
We introduced a notion of a projectively nonsingular
horizon, i.e., the horizon is said to be projectively non-
singular if its space of null generators in nonsingular, and
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derived a 3-dimensional subfamily of the Kerr-NUT-de
Sitter spacetimes, each of which contains a projectively
nonsingular horizon. For those Kerr-NUT-de Sitter space-
times (of a well tuned value of the cosmological constant)
we were able to introduce a generalized Misner’s con-
struction in a nonsingular manner. This is a special case of
the generalization derived in the current paper that is valid
for all the values of Λ independently of the remaining three
parameters, regardless of the projective properties of the
horizons. If a Kerr-NUT-de Sitter spacetime happens to
contain a projectively nonsingular horizon, then the current
construction of nonsingular spacetimes may be reduced to
the one presented in [10]. Thus the previous results fit
neatly into the new ones.

II. KERR-NUT–(ANTI–)DE SITTER SPACETIMES
AND OUR APPROACH

A. Kerr-NUT–(anti–)de Sitter spacetimes
and their problems

The Kerr-NUT–(anti–)de Sitter metric in the simplified
form first derived by Griffith and Podolsky [7] can be
expressed in the Boyer–Lindquist-like coordinates as

ds2 ¼ −
Q
Σ
ðdt − AdϕÞ2 þ Σ

Q
dr2 þ Σ

P
dθ2

þ P
Σ
sin2 θðadt − ρdϕÞ2; ð1Þ

where

Σ ¼ r2 þ ðlþ a cos θÞ2;

A ¼ asin2θ þ 4lsin2
1

2
θ;

ρ ¼ r2 þ ðlþ aÞ2 ¼ Σþ aA;

Q ¼ ða2 − l2Þ − 2mrþ r2

− Λ
�
ða2 − l2Þl2 þ

�
1

3
a2 þ 2l2

�
r2 þ 1

3
r4
�
;

P ¼ 1þ 4

3
Λal cos θ þ Λ

3
a2cos2θ: ð2Þ

Above, l and a denote the NUT and the Kerr parameters,
respectively, Λ is a cosmological constant of any value
and m stands for the mass parameter (when Λ ≠ 0, m is
proportional to the conserved quantity corresponding to
time translation symmetry [11], while for Λ ¼ 0 it is
exactly the mass.
Throughout this paper we use a generalization of the

(ingoing) Eddington-Finkelstein coordinates adopted to
the rotating spacetime

dv ≔ dtþ ρ

Q
dr; dϕ̃ ≔ dϕþ a

Q
dr: ð3Þ

This provides an extension of the metric (1) that covers the
roots of the function Q. Then the metric tensor takes the
following form

ds2 ¼ −
Q
Σ
ðdv − Adϕ̃Þ2 þ 2drðdv − Adϕ̃Þ

þ Σ
P
dθ2 þ P

Σ
sin2θðadv − ρdϕ̃Þ2: ð4Þ

The above metric shows singularities (apparent or true)
familiar from the analysis of the standard Kerr and Kerr-
(anti–)de Sitter solutions, which are special cases of the
considered metrics.
We emphasize now the consequences of the presence of

the NUT parameter l. A helpful consequence of

jlj > jaj

is that the function Σ never vanishes. Otherwise, if

jlj ≤ jaj

the function Σ takes the value zero at r ¼ 0 and θ ¼ θc such
that

cos θc ¼ −
l
a
:

That is a source of a nonremovable curvature singularity
[8]. The singularity has a similar structure to that of Kerr, in
particular, there are continues curves that pass from the
r > 0 region to the region of r < 0 such that Σ is finite
along them, hence they avoid the singular regions.
Therefore, this singularity does not split spacetime into
two disconnected components corresponding to r > 0, and
r < 0, by the analogy to the Kerr singularity. In the current
paper we admit all the values of a and l, hence the
vanishing Σ singularity either appears or not.
If the NUT parameter l is large enough while a and Λ are

kept constant the function PðθÞ changes the sign for some
θ ∈ ½0; π�. That is accompanied by a change of the sig-
nature of the metric tensor. To avoid this pathology we
allow in the current paper only those values of l, a, and Λ
that ensure

PðθÞ > 0; for every θ ∈ ½0; π�: ð5Þ

This amounts to
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P > 0⟺

��
2

���� la
���� ≤ 1 ∧ 0 < Λ <

3

4l2

�
∨
�
2
l
a
> 1 ∧ 0 < Λ <

−3
a2 − 4al

�

∨
�
−2

l
a
> 1 ∧ 0 < Λ <

−3
a2 þ 4al

�
∨
�

−3
a2 − 4al

< Λ < 0 ∧ al < 0

�

∨
�

−3
a2 þ 4al

< Λ < 0 ∧ al > 0

��
: ð6Þ

It is conceivable, that this assumption could be carefully
relaxed by making the inequality nonsharp, but this lies
beyond the scope of this paper.
The nonvanishing NUT parameter l ≠ 0, introduces a

notable difficulty that eventually has topological conse-
quences. What is peculiar about this case is the singularity
of the differential 1-form Adϕ̃ that is caused by the term

4l sin2
1

2
θdϕ̃:

Indeed, when considered on a sphere parametrized by
ðθ; ϕ̃Þ ∈ ½0; π� × ½0; 2πÞ, that term is discontinuous at the
pole θ ¼ π. That singularity can be cured by introducing
another chart that covers the pole θ ¼ π. It was defined first
by Misner in the Taub-NUT case, i.e.,

a ¼ 0 ¼ Λ

and can be easily generalized to arbitrary values of the
parameters a and Λ. The Misner charts give rise to the
topology R × S3 of spacetime, and an action of the U(1)
group generated by the Killing vector ∂t of the metric
tensor (1) that induces a principal fiber bundle structure

R × S3 → R × S2; ð7Þ

that for each sphere S3, defined by a fixed value of the
variable r, reduces to

S3 → S2: ð8Þ

In the case of Λ ¼ 0 the gluing solves the problem at
θ ¼ π. However, at a generic case of

alΛ ≠ 0;

one more obstacle appears. As long as the fibers of the
bundle (8) contained in the spacetime R × S3 are not null
and the spacetime is twice differentiable, the geometry
induced on S2 should be continues and differentiable. The
latter one is defined by the angular part of the spacetime
metric tensor (4) (or equivalently of the metric tensor (1)
except for the horizons)

Σ
P
dθ2 þ P

Σ
sin2 θρ2dϕ̃2 ð9Þ

while the remaining parts are differentiable on S2 on their
own and the term ð4l sin2 1

2
θdϕ̃Þ2 is cured by the Misner

gluing. It is easy to see [10], that the tensor (9) gives rise to
a well-defined and differentiable metric tensor on entire S2

including the poles θ ¼ 0 and θ ¼ π by a suitable rescaling
of the variable ϕ̃, if and only if

Pð0Þ ¼ PðπÞ; ð10Þ

that is the case (see definitions (1) and (2), if and only if

alΛ ¼ 0:

Otherwise, the angular part of the metric tensor (9) has an
irremovable conical singularity at least at one of the poles.
In the spacetime R × S3, the corresponding singularity
takes the form of a 2-dimensional surface on which the
variable r takes all the values in R. Hence, in the case
alΛ ≠ 0, the metric tensor (1) can not be extended to an
analytic metric tensor defined on R × S3 such that the
Killing vector ∂t generates the fibers of the projection (7).
The above naive approach to the solution of the problem is
further justified in the following chapters using the broader
geometrical picture of the spaces with NUT parameters.
In the current paper we solve the problem of a non-

singular generalization of Misner’s gluing to a general case
of the Kerr-NUT–(anti–)de Sitter spacetime. The resulting
spacetime still has the U(2)-bundle structure (7) and the
only possible singularities corresponding to zeros of the
function Σ if jlj < jaj. Otherwise the spacetime is com-
pletely singularity free. Thus adding large enough NUT
parameter may be seen as a complete and smooth (as will
be demonstrated later) regularization of Schwarzschild and
Kerr solutions, which also happens to satisfy Einstein
Equations.
The metric tensor is well defined and analytic in the

following range of the variables

−∞ < v; r < ∞; 0 ≤ θ < π; 0 ≤ ϕ̃ < 2πPð0Þ;

while we still have to take care of the half-axis θ ¼ π.
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B. Our approach to the problem

Throughout this paper we use the convention that objects
with bar (e.g., ḡ, q̄, ξ̄, ω̄) are globally defined on the whole
R × S3. We wish to construct a spacetime metric ḡ, such
that ḡ:

(i) is locally isometric to (4) with l ≠ 0,
(ii) admits an isometric action of the group U(1) that

induces the principal fiber structure

Π∶ R × S3 → R × S2: ð11Þ

We start with addressing necessary conditions for a choice
of a Killing vector ξ of (4) whose orbits will be compacti-
fied. If the desired metric ḡ exists then, the extension ξ̄ of
the vector field ξ is the generator of the U(1) action, and as
such has to be a nowhere vanishing Killing vector field. The
projection (11) induces a metric tensor q̄ on an open subset

U ⊂ R × S2;

of the non-null (with respect to ḡ) orbits of the action of
U(1) in R × S3. In every point of U the metric tensor q̄
should be well defined and (at least) differentiable.
Therefore, in Sec. III we study the spaces of orbits of
Killing vectors of the form

∂v þ b∂ϕ̃

in the spacetime (4). We determine those Killing vectors
that define a nonsingular metric tensor q on U. It turns out,
that in the presence of l ≠ 0 there are allowed exactly two
values of the parameter f for each triple of values of a, Λ
and l. As far as we know this consequence of the presence
of the NUT parameter l ≠ 0 has not been described in the
literature before. Indeed, in the l ¼ 0 case for every value of
the parameter b, the corresponding Killing vector field
defines a nonsingular geometry q on the space of non-null
orbits and the problem becomes trivial.
The element of the desired metric tensor ḡ on R × S3

encoding the nontrivial structure of the bundle (11) is the 1-
form of the rotation-connection of the Killing vector ξ̄,
namely

ω̄ ≔
ξ̄μdxμ

ξ̄αξ̄
α
; ð12Þ

valid wherever

ξ̄αξ̄
α ≠ 0:

If the bundle extension (11) of the spacetime (4) exists, then
the part of the spacetime R × S3 described by (4) is a
trivialization of (11) that covers the pole θ ¼ 0 of S2.
Therefore, in Sec. IV, for each of the Killing vectors ξ
derived in Sec. III we derive the rotation-connection 1-form

ω. The analysis of the discontinuity of ω as θ → π leads
to a complementary trivialization of (11) that covers the
pole θ ¼ π. Remarkably, the key limit properties of ω at
θ ¼ π are independent of r. Hence, the second trivializa-
tion covers also the null orbits. The transformation law
between the trivializations becomes a recipe for bundle
reconstruction implemented in Sec. V. The trivializations
come with metric tensors g and g0, respectively. The former
one is the original metric tensor (4), and the latter is a new,
transformed metric. On the overlap of the trivializations
the metric tensors g and g0 are consistent with each other
according to the trivialization transformations. In that way
they consistently make up a uniquely defined metric tensor
ḡ on the entire manifold R × S3 that satisfies all of the
desired properties.

III. NONSINGULAR SPACE OF KILLING ORBITS
AND NONSINGULAR KN(A)DS SPACETIME

In this section we consider the geometries of the spaces
of orbits of the Killing vector fields [12] in the spacetime
(4). In a case of generic parameters, the most general form
of nowhere vanishing Killing vector field is

ξ ¼ ∂v þ b∂ϕ̃; b ¼ const: ð13Þ

For a ¼ 0, i.r. in the Taub-NUT–(anti–)de Sitter case the
metric has richer symmetry group generated by suð2Þ ⊕
uð1Þ, where the summands correspond right action by a 3D
rotations and right action by a time translation, respec-
tively.1 Consequently instead of the combination (13) we
could equivalently consider its rotation.
In an adapted coordinates system, that is

ðxμÞ ¼ ðτ; xiÞ ¼ ðv; r; θ; ϕ̂ ≔ −bvþ ϕ̃Þ ð14Þ

the Killing vector field ξ takes a simple form

ξ ¼ ∂τ:

The three coordinates

ðxiÞ ¼ ðr; θ; ϕ̂Þ

are adopted in the sense that they satisfy

ξðxiÞ ¼ 0;

hence they set a coordinate system on the space of the
orbits. To find the metric tensor induced thereon, we use the
rotation-connection 1-form

1In fact every Ricci flat spacetime admitting SUð2Þ × Uð1Þ
isometry group corresponds to a generalized Taub-NUT space-
time with the topology of R × Lðn; 1Þ, where Lðn; 1Þ is a lens
space [13].
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ω ≔
ξμdxμ

ξαξ
α ; ð15Þ

and decompose the spacetime metric (4) in the following
manner

g ¼ ξαξαω
2 þ q: ð16Þ

Then, the part q of the spacetime metric satisfies

ξμqμν ¼ 0 ¼ Lξqμν;

hence, it is expressed purely in terms of the three coor-
dinates ðxiÞ,

q ¼ qijðr; θ; ϕ̂Þdxidxj: ð17Þ

As a matter of fact, q is the pullback to the spacetime of the
metric tensor induced on the space of the non-null orbits of
ξ. When the variables r, θ, and ϕ̂ denote both the spacetime
and the space of the orbits coordinates, the pullback of the
metric on the space of the orbits is given exactly by (17).
We calculated q for the metric tensor (4) transformed to the
adapted coordinate system (14), and the result reads as

q ¼ ð1 − AbÞ2Σ
Qð1 − AbÞ2 − Psin2θða − bρÞ2 dr

2

þ Psin2θΣðbρ − aÞ
Qð1 − AbÞ2 − Psin2θða − bρÞ2 2drdϕ̂

þ Σ
P
dθ2 þ PQsin2θΣ

Qð1 − AbÞ2 − Psin2θða − bρÞ2 dϕ̂
2: ð18Þ

The above metric is well defined for ðr; θ; ϕ̂Þ ∈ R×�0;
π½×½0; 2πc½, as long as the denominators do not vanish. The
parameter c represents the rescaling freedom that will be
used to fix the metric at the poles. The function P is positive
everywhere by the assumption, and the other denominators
are proportional to ξμξμ. More precisely

gðξ; ξÞ ¼ gττ ¼ Σ−1ðP sin2 θða − bρÞ2 −Qð1 − AbÞ2Þ:
ð19Þ

For general values of the parameters m, a, Λ, l, b it does
vanish for some values of ðr; θÞ,where we do not expect the
metric q to be well defined. Hence we consider the metric q
only where

P sin2 θða − bρÞ2 −Qð1 − AbÞ2 ≠ 0: ð20Þ

The degeneracies of q that we do worry about are the
half-axis p0 and pπ corresponding to θ ¼ 0 and θ ¼ π,
respectively. The term proportional to dr2 is manifestly
regular, so is the term proportional to drdϕ̂ because it can

be viewed as a regular 1-form sin2 θdϕ̂ times an analytic
function times dr. Now we turn to the purely angular part
and consider the pullbacks of q to the surfaces of r ¼ const,
that is

ð2Þq ¼ Σ
P
dθ2 þ PQsin2θΣ

Qð1 − AbÞ2 − Psin2θða − bρÞ2 dϕ̂
2: ð21Þ

One of the tools we use for the analysis are closed curves of
θ ¼ θ0, which can be view as circles around either pole
(notice, that the ϕ̂ ¼ const curves are geodesic with respect
to ð2Þq). The radii as seen from either pole (R0 or Rπ,
respectively) and circumference ðL0Þ are defined as

R0ðθ0Þ ¼
Z

θ0

0

ffiffiffiffiffiffiffiffiffiffiffi
ð2Þqθθ

q
dθ; Rπðθ0Þ ¼

Z
π

θ0

ffiffiffiffiffiffiffiffiffiffiffi
ð2Þqθθ

q
dθ;

Lðθ0Þ ¼
Z

2πc

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Þqϕ̂ ϕ̂

q
dϕ̂: ð22Þ

Then the condition for removing the conical singularity is
recovering the expected limit of 2π of ratio of the circum-
ference to radius of the aforementioned cures as we tend to
the poles

lim
θ0→0

Lðθ0Þ
R0ðθ0Þ

¼ 2π ¼ lim
θ0→π

Lðθ0Þ
Rπðθ0Þ

: ð23Þ

The above amounts to2

Pð0Þ ¼ PðπÞ
j1 − 4lbj ; c ¼ 1=Pð0Þ: ð24Þ

We would be in trouble, if this condition involved the
coordinate r, however, this is not the case because the
function P depends only on θ.
Due of the absolute value in the denominator above, for

l ≠ 0, there are 2 possible branches of solutions, each
depending on the parameters of the spacetime. For the
further convenience let us denote

σ ≔ sgnð1 − 4lbÞ:

Either we have σ ¼ 1 and then we find the solution b ¼ bþ,
such that

0 < 1 − 4lbþ ¼ PðπÞ
Pð0Þ ; bþ ¼ 2aΛ

3þ a2Λþ 4alΛ
ð25Þ

or σ ¼ −1 in which case the solution f ¼ f−, satisfies

2One may also consider an extension of the Kerr-NUT–(anti–)
de Sitter spacetimes to the case with the acceleration parameter.
Then the condition (23) is formally the same, although with more
complicated function P. See [14] for a discussion of the non-
singularity if ξ develops the horizon.
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0 < 4lb− − 1 ¼ PðπÞ
Pð0Þ ; b− ¼ 3þ a2Λ

2lð3þ a2Λþ 4alΛÞ :

ð26Þ
We note, that the assumed inequalities rewritten in (25) and
(26) are consistent with the overall assumption that the
function P does not vanish for θ ∈ ½0; π�.
In either case, the rescaled angle variable ranging from 0

to 2π is

φ ¼ Pð0Þϕ̂: ð27Þ
It is instructing to test our results on the special cases that

are encountered in the literature. A very special case when
the Killing vector field ξ develops a horizon was studied
extensively in [10,14]. Then the coefficient b is related to the
value r0 taken by the coordinate r at the horizon, namely

b ¼ a
r20 þ ðaþ lÞ2 : ð28Þ

Then it follows that

1 − 4lb ¼ 1 −
4la

r20 þ ðaþ lÞ2 ¼
r20 þ ða − lÞ2
r20 þ ðaþ lÞ2 > 0; ð29Þ

hence this choice falls in the very case (25). The conditions
(28) and (25) determine the value of Λ, namely

Λ ¼ 3

a2 þ 2l2 þ 2r20
: ð30Þ

That is exactly the value found in [14] when the horizon can
be made projectively nonsingular, i.e., its space of the null
generators is nonsingular. This can be done using the same
rescaled coordinate as for the surrounding spacetime. The
horizon is then necessarily cosmological (more precisely: the
outermost, possibly with a negative mass parameter) and
nonextremal.
Another compelling choice of the Killing vector is

simply

ξ ¼ ∂v; meaning b ¼ 0;

resembling the original Misner’s choice is his nonsingular
interpretation of the Taub-NUT metric tensor. Upon this
choice, the condition (24) amounts to the constraint

Pð0Þ ¼ PðπÞ;
which is met iff Λal ¼ 0. We have discussed that case in
Sec. II A. However now, in view of our general result
derived in this section, the value b ¼ 0 falls into the bþ case
(25), while there is yet another solution, the one of the b−
type (26), namely

b ¼ 1

2l
:

The corresponding the Killing vector field is

ξ ¼ ∂v þ
1

2l
∂ϕ̃: ð31Þ

Finally, when the NUT parameter is switched off, that is
when l ¼ 0, then every Killing vector field

ξ ¼ ∂v þ b∂ϕ̃; b ¼ const

defines a nonsingular geometry on the orbit space wherever
ξμξμ ≠ 0. That is why we never encounter that issue while
considering spacetimes without the NUT parameter.

Remark. An intriguing and useful observation are the
following general identities:

bþ þ b− ¼ 1

2l
;

and

b− − bþ ¼ PðπÞ
2lPð0Þ : ð32Þ

Although from the conceptual point of view satisfying
the constraint (23) guarantees only the continuity of the
metric, we also recover that the metric is smooth. The
suspicious parts of the decomposition (16) are connection
1-form ω and the orbit metric ð2Þq induced on sphere
r ¼ const. The explicit formulas for the before-mentioned
tensors are given by (21) after the substitution (27) and
(35). Using the coordinates corresponding to orthogonal
projections of a hemisphere covering one of the poles to the
plane, we check by inspection that the components of those
tensors are smooth. The details of this procedure are
analogous to those described in the Appendix of [14].

IV. GENERALIZATION OF MISNER’S GLUING

The starting point for this section is one of the Killing
vector fields ξ (13) found in the previous section, that is
such that the constant b satisfies one of the conditions:
either (25) or (26). In terms of the adapted coordinates (14)
with the rescaled angle variable (27) the metric tensor (4)
takes the following form

ds2 ¼ −
Q
Σ

�
ð1 − bAÞdτ − A

Pð0Þ dφ
�

2

þ 2dr

�
ð1 − bAÞdτ − A

Pð0Þ dφ
�
þ Σ
P
dθ2

þ P
Σ
sin2θ

�
ða − ρbÞdτ − ρ

Pð0Þ dφ
�

2

; ð33Þ

and the Killing vector field is simply

ξ ¼ ∂τ: ð34Þ
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If this spacetime is a trivialization of the principal fibre
bundle (11) and ξ is a generator of the structure group
action, as we want it to be, then the orbits of ξ are closed
curves, and the parameter τ takes values in a finite interval

τ ∈ ½0; τ0Þ:

The relation of τ0 and the NUT parameter will follow as a
consistency condition for a transformation between the
given one and a new, complementary trivialization that
will cover the half-axis θ ¼ π. It is the rotation-connection
1-form (12) that will tell us, how to construct this com-
plementary trivialization. The explicit formula for ω reads

ω ¼ dτ −
ð1 − AbÞΣdrþ ðAQð1 − AbÞ − P sin2 θρða − bρÞÞdφ=Pð0Þ

Qð1 − AbÞ2 − P sin2 θða − bρÞ2 : ð35Þ

It is well defined at θ ¼ 0, however it fails to be so at θ ¼ π,

ωφðr; θ ¼ 0Þ ¼ 0; ωφðr; θ ¼ πÞ ¼ −
4l

1 − 4lb
1

Pð0Þ ¼ σ
−4l
PðπÞ : ð36Þ

The obstruction is nonvanishing of the component ωφ at the second half-axis.
Along with ω the metric tensor is not well defined at θ ¼ π, what can be seen from the formula (16). From the limit of ωφ

at θ ¼ π, we deduce a coordinate transformation that cures ω at that half-axis at the cost of θ ¼ 0, namely

τ ¼ τ0 þ σ
4l

PðπÞφ
0; r ¼ r0; θ ¼ θ0; φ ¼ φ0 for; θ; θ0 ≠ 0; π: ð37Þ

The condition for the constant τ0 is hidden behind the
transformation of τ. If φ and φþ 2π correspond to a same
point of spacetime for every value of τ, r, θ and ϕ, and
the same is true for φ0 and φ0 þ 2π, also τ and τ0 must
parametrize circles with the period

τ0 ¼ 2π
4l

1 − 4lb
1

Pð0Þ ¼ 2πσ
4l

PðπÞ ; ð38Þ

alternatively the period may be a 1
n fraction of the above.

Hence, the coordinates ðτ; r; θ;φÞ parametrize S1 ×R×
ðS2nfpπgÞ, and the coordinates ðτ0; r0; θ0;φ0Þ parametrize
S1 ×R × ðS2nfp0gÞ, where p0 and pπ are the poles of S2

corresponding to θ ¼ 0 and θ ¼ π, respectively. The trans-
formation (37) defines gluing of the patches and the vector
fields ∂τ and ∂τ0 give rise to a uniquely defined vector field

∂τ ¼ ξ̄ ¼ ∂τ0 :

The manifold defined by the two charts is diffeomorphic to
R × S3 and the flow of ξ̄ makes it the bundle (11). The
transformation (37) maps the 1-form ω into ω0, which is
extendable by the continuity to θ0 ¼ π. It is analytic 1-form
in the subset of the second chart corresponding to ξ0μξ0ν ≠ 0.
Finally, the 2-metric tensor q is invariant with respect to the
transformation (37).
Applying the transformation (37) to the metric tensor

(33) we obtain a metric, which is well defined on the chart
containing the pole θ ¼ π

ds02 ¼ −
Q
Σ

�
ð1 − bAÞdτ0 − A0

PðπÞ σdφ
0
�

2

þ 2dr0
�
ð1 − bAÞdτ0 − A0

PðπÞ dφ
0
�
þ Σ
P
dθ02

þ P
Σ
sin2θ0

�
ða − ρbÞdτ0 − ρ0

PðπÞ σdφ
0
�

2

; ð39Þ

where A0ðθ0Þ≔asin2θ0−4lcos2 1
2
θ0; ρ0ðr0Þ≔ r02þða− lÞ2.

Note that A0dφ0 is dual to Adφ is the sense that A0dφ0
vanishes at θ ¼ π and is singular at θ ¼ 0. Another way of
discovering these functions would be, instead of starting
with metric (1) well defined at p0, to start with a metric well
defined at pπ . This can be achieved by a transformation
t0 ¼ tþ 4lϕ and replacing A and ρ with A0 and ρ0 in (1)
and (2).
Finally, we can turn to the nonsingularity of the resulting

metric tensor ḡ. This issue amounts to showing the non-
singularity of the metric tensors (33) and (39) in their
charts. By construction, each of the metric tensors is
automatically nonsingular as long as

ξ̄μξ̄μ ≠ 0; ð40Þ

owing to the decomposition

g ¼ ξαξαω
2 þ q; g0 ¼ ξ0αξ0αω02 þ q ð41Þ

and the nonsingularity of ξαξα, ξ0αξ0α, ω, ω0 and q in the
corresponding charts. Notice, that the missing prime at the
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second q is intentional—indeed, at that stage of the
construction we use the single 3-metric tensor q, the same
for each chart.
As was argued in the previous section the above

components are smooth and thus metric g is smooth
whenever the decomposition (41) is valid. To also cover
the surfaces of ξ̄μξ̄μ ¼ 0 we repeat the procedure used
for the analysis of the smoothness of the decomposition.
Given the metric tensors in the form (33) and (39) we relax
the assumption (40) and decompose the formulas into
another set of nonsingular elements. First of all, except
for the half-axes θ ¼ 0 and θ0 ¼ π, all of the coefficients
are nonsingular. To analyse the metrics at the poles we
decompose them into the following way. First consider the
purely angular parts

Σ
P
dθ2 þ P

Σ
sin2θ

�
ρ

Pð0Þ
�

2

dφ2

¼ Σ
P

�
dθ2 þ P2

Σ2
sin2θ

�
ρ

Pð0Þ
�

2

dφ2

�
; at θ ¼ 0; ð42Þ

Σ
P
dθ02 þ P

Σ
sin2θ0

�
ρ0

PðπÞ
�

2

dφ02

¼ Σ
P

�
dθ02 þ P2

Σ2
sin2θ0

�
ρ0

PðπÞ
�

2

dφ02
�

at θ0 ¼ π:

ð43Þ
Employing again the orthogonal projection (as described
in Appendix A of [14] one can see that in the parentheses,
the coefficients at sin2 θdφ2 and sin2 θ0dφ02 are smooth
(analytic) and tend to 1 at θ ¼ 0 and, θ0 ¼ π, respectively.
Next, consider the differential 1-forms appearing in (33)

and (39)

α1 ¼ Adφ; α2 ¼ sin2θdφ;

α01 ¼ A0dφ0; α02 ¼ sin2θ0dφ0: ð44Þ
Clearly, they are smooth (analytic) in their domains
including the poles θ ¼ 0, and θ0 ¼ π respectively. The
remaining elements used in the definitions of the metric
tensors g and g0 are smooth (analytic) functions in their
domains, also at the respective half-axes.
In conclusion, the metric tensors g and g0 give rise to a

metric tensor ḡ uniquely defined on the manifold con-
structed above, diffeomorphic to R × S3, and admitting the
U(1) bundle structure induced by the flow of the Killing
vector field ξ̄.
For the construction above we have used one of the two

possible choices (25) or (26) of the parameter b. Does the
other vector have any special meaning in the resulting
spacetime? Does the outcome of this section depend on that
choice? To answer those questions suppose that

b ¼ bþ;

with the corresponding vector field ξ renamed as ξþ for
consistency. Next, consider the other vector field ξ−
corresponding to b−. Now we transform it to the coor-
dinates adapted to ξþ

ξ− ¼ ∂τ þ ðb− − bþÞ∂ϕ̂ ¼ ∂τ þ
PðπÞ
2l

∂φ:

It is convenient to consider to consider a rescaled version
of ξ−

ξ̂− ≔ ∂φ þ
2l

PðπÞ ∂τ:

Upon the triviality transformation (37) it is expressed as

ξ̂− ¼ ∂φ0 −
2l

PðπÞ ∂τ0 :

That symmetry indicates a special character of this vector
field. Indeed, we can introduce on every surface r ¼ const
an auxiliary structure of the group SU(2), such that the
vector field ξþ generates a left invariant vector field, the
vector field ξ− a right invariant vector field, and the vector
fields coincide at the circles corresponding to θ ¼ 0, while
they equal minus each other along the circles θ ¼ π.
For this reason the two points of intersection of orbits of
ξþ and ξ− in Figs. 1 and 2 are in fact two circles. An
important consequence of that symmetry between ξþ and

FIG. 1. Global structure of the spacetime for Λ > 0. Each point
on the cylinder corresponds to a S2. Each circle corresponds to a
S3 although via different sections. Four uppermost, blue circles
Hi correspond to surfaces of constant r ¼ ri for i ¼ 1, 2, 3, 4, i.e.,
Killing horizons. Green, lowermost circle is S3 projected along
the orbit of ξþ. The orbit is closed and spacelike near both of the
I . Similarly the orbit of ξ− is shown orange. Points of intersection
of the orbits are circles. Future oriented (in the direction of ∂−r)
parts of lightcones are shown.

JERZY LEWANDOWSKI and MACIEJ OSSOWSKI PHYS. REV. D 104, 024022 (2021)

024022-8



ξ− is that the glued spacetime is independent of whether we
chose ξþ or ξ− in order to define the generalized Misner
gluing. Alternatively it is straightforward to explicitly
check that after performing the gluing with ξþ it is possible
to find four coordinate systems such that two of them are
compatible [in the sense of (14)] with ξþ, one covering
θ ¼ 0 pole and the other θ ¼ π pole, and the other two
coordinate systems are an analogue for ξ−. Then the
transformation between the coordinates compatible with
ξ− satisfy precisely (37) with σ ¼ −1, thus showing that
spacetimes constructed with either ξþ or ξ− are equivalent.

V. THE GLOBAL STRUCTURE

The spacetime manifold is the entire R × S3 provided
jlj > jaj. Otherwise, if

jlj ≤ jaj; ð45Þ

the vanishing of Σ produces an nonremovable singularity at

ðr; θÞ ¼ ð0; θcÞ ¼ ðr0; θ0Þ;

where the critical value θc is defined by

cos θc ¼ −
l
a
:

The type of the singularity can be characterized as a “ring”
one, except for the case

l ¼ �a;

where the ring is shrunk to a point. Notice however that, as
in the Kerr spacetime, a curve going between the r > 0 to
r < 0 regions has to cross the surface

r ¼ 0; θ; θ0 ≠ θc;

which has a nonvanishing 3-dimensional volume, hence it
connects the two spacetimes regions making a connected
spacetime.
The vector field corresponding to ∂r in unprimed chart,

and to ∂r0 in the primed chart is globally defined and
everywhere null

ḡð∂r; ∂rÞ ¼ 0:

A time orientation of spacetime can be defined by either
declaring

(i) ∂r and ∂r0 to be future directed, or
(ii) −∂r and −∂r0 to be future directed.

The coordinate transformation

ðτ″; r″Þ ≔ ð−τ;−rÞ

maps the first case into the second (and vice versa), hence,
without lack of generality we can assume that −∂r is a
future pointing vector field. It should be emphasized that in
doing so we allow for an arbitrary sign of the parame-
ters ða; l; m;ΛÞ.
The Killing orbits are (generically) two dimensional

surfaces endowed with the induced geometry

ds2 ¼ −
Q
Σ

�
ð1 − bAÞdτ − A

Pð0Þ dφ
�

2

þ P
Σ
sin2 θð

�
a − bρÞdτ − ρ

Pð0Þ dφ
�

2

; ð46Þ

The signature of the above is
(i) ð−;þÞ, if Q > 0,
(ii) ðþ;þÞ, if Q < 0,
(iii) ð0;þÞ, i.e., null, if Q ¼ 0.

If an orbit is timelike (or null) at a given point, than a vector
field

η ¼ ∂τ þ
Pð0Þ
ρðrcÞ

ða − bρðrcÞÞ∂φ; ð47Þ

where r ¼ rc is constant, is timelike (or null). Its time
orientation is encoded by the scalar product

gðηc;−∂rÞ ¼ −
Σ
ρ
< 0

hence it is always future pointing.
Let ri, i ¼ 1, 2, 3, 4 be the roots of the polynomial Q.

Then the surface of r ¼ ri determines a Killing horizon
(see [10]) developed by the Killing vector ηi with rc
replaced with corresponding ri. Similarly to the Kerr-
(anti–)de Sitter space time, all of the roots cannot have
the same sign. This follows from Viete’s formulae: because

FIG. 2. Global structure of the spacetime for Λ < 0. Each point
on the cylinder corresponds to a S2. Each circle corresponds to a
S3 although via different sections. Four rightmost, blue circles Hi
correspond to surfaces of constant r ¼ ri for i ¼ 1; 2; 3; 4, i.e.,
Killing horizons. Green, leftmost circle is S3 projected along the
orbit of ξ. The orbit is manifestly closed and timelike near both of
the I . Similarly the orbit of ξ− is shown orange. Points of
intersection of the orbits are circles. Future oriented (in the
direction of ∂−r) parts of lightcones are shown.
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there is no r3 term in Q the roots must sum to 0. Another
constraint is that ri ¼ 0 corresponds to singularity and not a
Killing horizon [10]. It also follows, that this Killing vector
is always future pointing.
In the very special case when

Λ ¼ 3

a2 þ 2l2 þ 2r2i
; ð48Þ

the coefficient at ∂φ of (47) vanishes. Then the horizon is
developed by our Killing vector ξ̄ itself. Hence, the null
generators are closed and the space of the null generators is
diffeomorphic to S2. The geometry induced thereon is the
limit of the metric tensor ð2Þq (21), it is nonsingular and
smooth. That case was discovered and described in detail in
[10] along with their relation to solutions of Type D
equation on Hopf bundle and isolated horizons [15,16]
Another nongeneric case is when the ratio of the

coefficient at ∂φ to 4l=PðπÞ is rational. Then the null
generators will be finite and each such a case requires
individual characterization. For a nonrational value of the
ratio, all the null generators are infinite and each of them is
dense in a 2-manifold contained in S3. The quotient space
of those null generators is non-Hausdorff and lacks a
differential structure.
We can introduce a coordinate

Ω ≔
1

r

valid for either r < 0 or r > 0. The metric tensor g can be
written as

g ¼ 1

Ω2

�
Λ
3

�
ð1 − bAÞdτ − A

Pð0Þ dφ
�

2

þ dθ2

P

þ P sin2 θ

�
bdτ þ dφ

Pð0Þ
�

2

− 2dΩ
�
ð1 − bAÞdτ − A

Pð0Þ dφ
�
þOðΩÞ

�
:

The surfaces of Ω ¼ 0, corresponding to r ¼ �∞, define
the future / past infinity equipped with an induced geometry

Λ
3

�
ð1 − bAÞdτ − A

Pð0Þ dφ
�

2

þ dθ2

P

þ P sin2 θ

�
bdτ þ dφ

Pð0Þ
�

2

of the signature depending on Λ in the known way.
Applying a similar procedure to the metric tensor (39)
one arrives at

g0 ¼ 1

Ω2

�
Λ
3

�
ð1 − bAÞdτ0 − A0

PðπÞ dφ
0
�

2

þ dθ02

P

þ Psin2θ0
�
bdτ0 þ dφ0

Pð0Þ
�

2

− 2dΩ
�
ð1 − bAÞdτ0 − A0

PðπÞ dφ
0
�
þOðΩÞ

�
;

which on the surfaces Ω ¼ 0 gives the following geometry

Λ
3

�
ð1 − bAÞdτ0 − A0

PðπÞ dφ
0
�

2

þ dθ02

P

þ P sin2 θ0
�
bdτ0 þ dφ0

PðπÞ
�

2

:

There are still two discrete degrees of freedom we have
not discussed yet. The first one is the causal orientation.
The second would be using the outgoing Eddington-
Finkelstein coordinates

dv ≔ dt −
ρ

Q
dr; dϕ̃ ≔ dϕþ a

Q
dr; ð49Þ

rather than incoming ones (3). However, the latter is
equivalent to ðv; a; lÞ → ð−v;−a;−lÞ. Of course, there is
still the symmetry of reversing signs of both: the r
coordinate and mass ðr;mÞ → ð−r −mÞ.
The schematics of global structure summarizing the

above constructions and conventions is shown in Figs. 1
and 2 for positive and negative values of cosmological
constant, respectively.

VI. SUMMARY

The result of this paper is a 4 dimensional family
[parametrized by the quadruple ðm; a; l;ΛÞ] of globally
defined spacetimes that are locally isometric to the
Kerr-NUT-(anti) de Sitter metric tensors (1), however, they
do not suffer the singularities along the axis θ ¼ 0 and
θ ¼ π. The spacetime manifold is obtained by gluing the
manifolds

S1 ×R × ðS2nfpπgÞ ð50Þ

parametrized by ðτ; r; θ;φÞ, and

S1 ×R × ðS2nfp0gÞ ð51Þ

parametrized by ðτ0; r0; θ0;φ0Þ, together with the transfor-
mation (37). The coordinates ðθ;φÞ and ðθ0;φ0Þ are the
standard spherical coordinates on S2, while the variables τ
and τ0 parametrize circles. The points p0 and pπ are the
poles of S2 corresponding θ ¼ 0 and θ0 ¼ π.
For every choice of the parameters ðm; a; l;ΛÞ, the

spacetime metric tensor is defined by (33) and (39), with
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the functionsQ, Σ, ρ, P > 0 and A defined by (1). The only
possible singularity of our spacetime metric tensor may be
caused (depending on the ratio l=a, see (45)) by vanishing
of the function Σ. The singularity has a similar character to
that of Kerr spacetime—in particular it does not restrict the
domain of the r coordinate −∞ < r < ∞. What is new
about our result, is the simultaneous presence of the Kerr
parameter a ≠ 0, the NUT parameter l ≠ 0 and the cos-
mological constant Λ ≠ 0.
An underlying structure for the construction was the

assumed isometric action of the group U(1) that makes the
spacetime a principal fiber bundle

R × S3 → R × S2

(modulo the possible singularities discussed above). The
key element of our method was determining a suitable
candidate Killing vector field in the Kerr-NUT–(anti–)de
Sitter metric tensor (1) that could become a generator of
that nonsingular action of U(1) on R × S3. We have
achieved that by studying the geometry of the spaces of
non-null orbits of each Killing vector field of the Kerr-
NUT–(anti–)de Sitter spacetime, and selecting those that
induce nonsingular 3-geometry.
We studied the global structure of the constructed

spacetimes. Depending on the value of the cosmological
constant Λ, our spacetime is asymptotically de Sitter or

anti–de Sitter. We derive the conformal geometry of the
conformal infinity and find it is nonsingular as well
(topologically, the conformal infinities are two copies of
3-sphere). In particular, in the case Λ > 0 the signature of
the infinity is ðþ þ þÞ and a spacetime neighborhood
seems to be hyperbolic. The spacetime contains up to four
Killing horizons corresponding to the roots of the function
Q. Generically, the null generators of the horizons are
infinite curves and each of them densely covers a 2-surface.
Hence the space of the null generators is not a differentiable
2-dimensional manifold. For special values of ðm; a; l;ΛÞ
[see (30)] the null generators of one of the horizons
coincide with the fibers of the bundle (51). Then, the
horizon is projectively nonsingular, that is the space of the
null generators has a nonsingular geometry diffeomorphic
to S2 [10].
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