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We continue to study the optical properties of the solar gravitational lens (SGL). The aim is prospective
applications of the SGL for imaging purposes. We investigate the solution of Maxwell’s equations for the
electromagnetic (EM) field, obtained on the background of a static gravitational field of the Sun. We now
treat the Sun as an extended body with a gravitational field that can be described using an infinite series of
gravitational multipole moments. Studying the propagation of monochromatic EM waves in this extended
solar gravitational field, we develop a wave-optical treatment of the SGL that allows us to study the caustics
formed in an image plane in the SGL’s strong interference region. We investigate the EM field in several
important regions, namely, (i) the area in the inner part of the caustic and close to the optical axis, (ii) the
region outside the caustic, and (iii) the region in the immediate vicinity of the caustic, especially around its
cusps and folds. We show that in the first two regions the physical behavior of the EM field may be
understood using the method of stationary phase. However, in the immediate vicinity of the caustic, the
method of stationary phase is inadequate, and a wave-optical treatment is necessary. Relying on the angular
eikonal method, we develop a new approach to describe the EM field accurately in all regions, including the
immediate vicinity of the caustics and especially near the cusps and folds. The method allows us to
investigate the EM field in this important region, which is characterized by rapidly oscillating behavior. Our
results are new and can be used to describe gravitational lensing by realistic astrophysical objects, such as
stars, spiral, and elliptical galaxies.
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I. INTRODUCTION

Most of the methods used to describe gravitational
lensing rely on a point mass model that only accounts
for the monopole component of the gravitational field of the
lens (see Ref. [1] and references therein). It is only for these
types of lenses that we may expect the appearance of the
Einstein rings or arcs for pointlike, compact sources of light
[2–6]. However, realistic lenses very rarely have sufficient
spherical symmetry for their gravitational fields to be
described effectively by the monopole model. Instead of
Einstein rings or arcs, these lenses yield Einstein crosses or
other, more complicated, images of compact lensed objects.
In addition to gravitational monopoles, quadrupole

gravitational lenses also received some attention in the
literature [4,7,8]. Typically, these attempts combine a
spherically symmetric main lens with other contributions,
so that the combined gravitational lensing potential may be
approximated as a spherically symmetric system weakly
perturbed by a quadrupole. It was recognized that such a
potential leads to formation of caustics [9–11]. Most of
these attempts (e.g., Ref. [12]) relied on the guidance from
the method of the stationary phase, which was used to
understand the lensing geometry and to estimate the
resulting light amplification.

It was long known that to describe gravitational lensing
by a complex distribution of matter, it is necessary to go
beyond the geometric optics approximation, Wentzel-
Kramers-Brillouin (WKB), and the stationary phase meth-
ods [13]. A wave-optical treatment is needed to treat the
highly oscillatory behavior observed near optical caustics
[14]. To address these concerns, we recently developed the
angular eikonal method [15], which provides a solution to
the problem of diffraction of electromagnetic (EM) waves
in the gravitational field of an extended body. In that
development, we went beyond a point mass approximation
and characterize the body’s internal matter distribution
using an infinite set of spherical harmonics. Such a
description is especially straightforward in the case of
a rotating axisymmetric body [15]. This new wave-
theoretical solution allows us to study gravitational lensing
in the presence of arbitrary gravitational multipole pertur-
bations of a monopole gravitational field. The new method
can describe a large class of astrophysical lenses.
In the present paper, we continue our study, using the

angular eikonal method, of rotating axisymmetric lenses,
the solar gravitational lens (SGL) in particular [1,16–20].
We place special emphasis on the caustic boundary of the
point-spread function (PSF) of the lens that characterizes
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its impulse response. Expressed in the form of zonal
harmonics, perturbations of the SGL’s PSF beyond the
monopole are dominated by the lowest order quadrupole
moment, which projects light from a point source in the
shape of a hypocycloid known as the astroid. The bounda-
ries of this astroid and, in particular, its cusps (vertices)
cannot be readily described using the language of geo-
metric optics as such methods are divergent in this region.
Our wave-theoretical description, in contrast, can be used
to characterize these regions with ease. We are also able to
recover previously known approximations for these regions
of interest that appeared in the literature.
This paper is organized as follows. In Sec. II, we

investigate the new diffraction integral in both the inner
part of the caustic and outside of it. We show that the
geometric optics approximation fails to describe the EM
field at the caustic. In Sec. IV, we develop a method to
study the EM field in the most interesting regions of the
caustic, namely, in the vicinity of the cusp singularities and
folds midway between cusps. We present a description of
light diffraction in the strong interference region of the
gravitational lens of the extended Sun. In Sec. V, we discuss
our results and the next steps in our investigation. In
Appendix, we study light amplification at the optical axis of
the SGL, accounting for all multipoles of the Sun’s
axisymmetric gravitational field.

II. EXTENDED SOLAR GRAVITATIONAL LENS

The presence of gravitational multipoles changes the
diffraction of light by a gravitational field. In Ref. [15], for
a high-frequency EMwave [i.e., neglecting terms∝ ðkrÞ−1]
and for r ≫ rg, we derive the EM field in the strong
interference region of the SGL near its optical axis, which is
set by the direction to a particular target.

A. Point-spread function of the extended SGL

Following Ref. [15], we use a heliocentric coordinate
system with its z axis aligned with the wave vector k, so
that k ¼ ð0; 0; 1Þ. We introduce a unit vector in the
direction of the impact parameter, nξ. We consider an
image plane located at distance z from the Sun, a point x
located in the image plane, and a unit vector in the direction
of the solar axis of rotation s:

nξ ¼ ðcosϕξ; sinϕξ; 0Þ; ð1Þ

x ¼ ρðcosϕ; sinϕ; 0Þ; ð2Þ

s ¼ðsin βs cosϕs; sin βs sinϕs; cos βsÞ: ð3Þ

In this geometry, up to terms of Oðρ2=z2Þ, the EM field in
the image plane takes the form

�
Eρ

Hρ

�
¼
�

Hϕ

−Eϕ

�

¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0BðxÞeiðkz−ωtÞ

�
cosϕ

sinϕ

�
; ð4Þ

with the remaining EM field components being negligibly
small, ðEz;HzÞ ¼ Oðρ=zÞ. We used the constant σ0 ¼
−krg ln krg=e − π

4
[16]. The quantity BðxÞ is the complex

amplitude of the EM field given as

BðxÞ ¼ 1

2π

Z
2π

0

dϕξ exp

�
−ik
� ffiffiffiffiffiffiffi

2rg
r

r
ρ cosðϕξ − ϕÞ

þ 2rg
X∞
n¼2

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs cos½nðϕξ − ϕsÞ�

��
:

ð5Þ

The quantity BðxÞ is the complex amplitude of the EM
field after it scatters on the gravitational field of an extended
lens with an axisymmetric gravitational field characterized
by multipoles using zonal harmonics. If the presence of the
gravitational multipoles can be neglected [i.e., by setting
Jn ¼ 0; n ≥ 2 in (5)], the result (5) reduces to the familiar
form, B0ðxÞ ¼ J0ðk

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ (see relevant discussion in

Refs. [1,15] and references therein), where J0 is the is the
Bessel function of the first kind [21]. Equation (5) is a new
diffraction integral that extends the previous wave-theo-
retical description of gravitational lensing phenomena to
the case of an extended lens with an axisymmetric
gravitational field. This result was originally obtained in
Ref. [15]. It offers a powerful new tool to study gravita-
tional lensing in the limit of weak gravitational fields, at the
first post-Newtonian approximation of the general theory of
relativity.
When applying these results to the SGL, we recognize

the fact that the Sun is an axisymmetric rotating body with
“north-south” symmetry. As such, its gravitational field is
characterized by even zonal harmonics J2n, with the odd
zonal harmonic coefficients being zero, J2nþ1 ¼ 0. The
zonal harmonic coefficients for the Sun are determined
using available tracking data from interplanetary space-
craft, yielding J2 ¼ ð2.25� 0.09Þ × 10−7 [22], and J4 ¼
−4.44 × 10−9, J6 ¼ −2.79 × 10−10, J8 ¼ 1.48 × 10−11

[23]. The J10 and higher zonal harmonics will have
negligible effect on the SGL’s diffraction pattern; thus,
they can be safely ignored.
Although the integral (5) deserves a dedicated study, our

focus here is its squared norm, known as the point-spread
function, which in the case of the SGL is given by

PSFðxÞ ¼ jBðxÞj2 ¼ BðxÞB�ðxÞ; ð6Þ

with B�ðxÞ being the complex conjugate of BðxÞ.
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The PSF characterizes the optical properties of the SGL
and its imaging capabilities. The PSF is derived from the
Poynting vector that is used to characterize the momentum
carried by an EM wave. To apply this approach to the SGL,
we use an overline and brackets to denote time averaging
and ensemble averaging and compute Sz as

SzðxÞ ¼
c
4π

h½ReE × ReH�zi

¼ c
4π

E2
02πkrghðRe½BðxÞeiðkz−ωtÞ�Þ2i; ð7Þ

with S̄ρ ¼ S̄ϕ ¼ 0 for any practical purposes [1,15].
Defining light amplification as usual [1,16,19], μzðxÞ ¼

SzðxÞ=jS0ðxÞj, where S0ðxÞ ¼ ðc=8πÞE2
0k is the Poynting

vector carried by a plane wave in a vacuum in flat
spacetime, we have the light amplification of the SGL
given by the following expression,

μzðxÞ ¼ 2πkrgPSFðxÞ; ð8Þ

where PSF is given by (6). Using zonal harmonic coef-
ficients, we have extended the PSF of the SGL from that of
a monopole, PSF0ðxÞ ¼ J20ðk

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ (as discussed in

Ref. [1]), to the PSF given by (6), which now includes
contributions from the axisymmetric gravitational field of
the Sun.
The result (6) determines the amplitude of the EM field

on the image plane in the strong interference region of the
SGL, describing light received on the image plane from a
point source at infinity. The integral given by (6) governs
the diffraction and interference of light that passes by the
vicinity of the Sun and characterizes the formation of
caustics that emerge in the image plane. This integral is
computable but rapidly oscillating, which makes it chal-
lenging to understand its properties and its behavior. The
study of this integral and its physical implications on image
formation is our main objective.

B. Caustics of the solar gravitational field

Numerical investigations of (6) reveal that the PSF of the
SGL produces caustics in the image plane in the strong
interference region [15]. In particular, the quadrupole zonal
harmonic coefficient J2 produces the well-known astroid
caustic,1 while other multipoles contribute in the form of
hypocycloid caustics.2

This appears to be the consequence of the complex
amplitude (5) behaving as a system of harmonic oscillators
with various spatial frequencies, defined by the individual
zonal harmonics. This leads to the formation of several
areas of interest in the image plane. Specifically, i) in the
case when ρ is small, the integral is dominated by the

contribution from the zonal harmonics; as ρ gets larger, the
contribution from the monopole term and the zonal
harmonics become comparable in frequency, resulting in
constructive interference that manifests itself in the form of
sharp contours that we recognize as the caustic boundary;
and as ρ grows further, contributions from the zonal
harmonics diminish—as the monopole term reasserts its
dominance, the system settles to the familiar monopole
pattern [1] (also see discussion in Secs. V. D.–V. E.
of Ref. [15]).
The curve produced by a fixed point P on the circum-

ference of a small circle of radius b rolling around the
inside of a large circle of radius a > b produces a
hypocycloid with well-established properties [24]. Our
numerical analysis shows that individual zonal harmonics
in the complex amplitude of the EM field given by (5) lead
to corresponding versions of the PSF whose caustic
boundaries are in the shape of appropriate hypocycloids.
To each zonal harmonic coefficient Jn, there corresponds a
unique hypocycloid. It is natural to ask how we can recover
this observed shape of the caustic boundaries directly from
the integral (5). Specifically, given a general parametric
form of the equations for a caustic,

x ¼ ða − bÞ cosϕþ b cos

��
a − b
b

�
ϕ

�
; ð9Þ

y ¼ða − bÞ sinϕ − b sin

��
a − b
b

�
ϕ

�
; ð10Þ

what are the hypocycloid radii (see footnote 2) a and b
corresponding to the zonal harmonic coefficient Jn
from (5)?
For convenience, we define

α ¼ k

ffiffiffiffiffiffiffi
2rg
r

r
; βn ¼ 2krg

Jn
n

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs; ð11Þ

transforming the complex conjugate of the EM complex
amplitude Bðρ;ϕÞ from (5) as [keeping in mind the
definitions (1)–(3)]:

B�ðρ;ϕÞ ¼ 1

2π

Z
2π

0

dϕξ exp

�
i

�
αρ cosðϕξ − ϕÞ

þ
X∞
n¼2

βn cos½nðϕξ − ϕsÞ�
��

: ð12Þ

We anticipate the caustic boundary to be characterized
by a divergent expression describing light amplification. To
identify such conditions, we use the method of stationary
phase and consider the phase φðρ;ϕÞ of the integral in (12)
that is given as

1https://mathworld.wolfram.com/Astroid.html.
2https://mathworld.wolfram.com/Hypocycloid.html.
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φðρ;ϕÞ ¼ αρ cosðϕξ − ϕÞ þ
X∞
n¼2

βn cos½nðϕξ − ϕsÞ�: ð13Þ

The amplification factor that is determined by the method
of stationary phase is proportional ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=φ00p

, where φ00 is
the second derivative of the phase φ with respect to ϕξ.
Therefore, the conditions that result in the vanishing of φ00
would indicate the vicinity of the caustic. Computing the
needed derivative,

d2φðρ;ϕÞ
dϕ2

ξ

¼−
�
αρcosðϕξ−ϕÞþ

X∞
n¼2

n2βncos½nðϕξ−ϕsÞ�
�
;

ð14Þ

we see that the nth caustic is formed when the amplitudes
of the terms in (14) are equal. With the βn terms being fixed
by a particular lens geometry, this condition is satisfied for
specific values of ρ:

αρ¼ n2βn ⇒ αρn ¼ n2βn ⇒ ρn ¼ n2
βn
α
: ð15Þ

We note that to form the needed caustic with the least
possible number of revolutions around the angle ϕ, the ratio
between the hypocycloid radii a and b must be given as

a
b
¼ 2n
n−1

: ð16Þ

Each caustic is formed in 2ðn − 1Þπ revolutions around the
angle ϕ, moving counterclockwise.3

The ratio (16) and Eqs. (9)–(10) allow us to write the
equations for the nth caustic as

xn ¼ b

��
2n
n−1

−1

�
cosϕþ cos

��
2n
n−1

−1

�
ϕ

��
; ð17Þ

yn ¼ b

��
2n
n−1

−1

�
sinϕ− sin

��
2n
n−1

−1

�
ϕ

��
: ð18Þ

Both these values have maxima at ð2n=ðn − 1Þ − 1Þ þ 1 ¼
2n=ðn − 1Þ. This prompts us to reexpress (17) and (18)
using a=b ¼ 2n=ðn − 1Þ:

xn ¼ b
2n
n−1

·
1

2n

�
ðnþ1Þcosϕþðn−1Þcos

��
nþ1

n−1

�
ϕ

��
;

ð19Þ

yn ¼ b
2n
n− 1

·
1

2n

�
ðnþ 1Þ sinϕ− ðn− 1Þ sin

��
nþ 1

n− 1

�
ϕ

��
:

ð20Þ

We recognize that the maximum amplitude of the two
equations above, b½2n=ðn − 1Þ�, is just ρn. This allows us,
using (15), to write

ρn ¼ b
2n

n − 1
¼ a ¼ n2

βn
α

⇒ b ¼ nðn − 1Þ βn
2α

: ð21Þ

At this point, we may identify the hypocycloid radii a
and b from (9) and (10) as

a ¼ ρn ¼ n2
βn
α
; b ¼ nðn − 1Þ βn

2α
; ð22Þ

with the relationships between them at the caustic given by
(16). As a result, we may write the parametric equations
that determine the shape of the nth caustic as

xn ¼ n2
βn
α
·
1

2n

�
ðnþ 1Þcosϕþðn− 1Þcos

��
nþ 1

n− 1

�
ϕ

��
;

ð23Þ

yn ¼ n2
βn
α
·
1

2n

�
ðnþ 1Þ sinϕ− ðn− 1Þ sin

��
nþ 1

n− 1

�
ϕ

��
;

ð24Þ
with the angle ϕ varying as ϕ ∈ ½0; 2ðn − 1Þπ�. Figure 2
shows normalized caustics corresponding to the model
given by (23) and (24), showing precise agreement with
Fig. 1. It is remarkable that we can now identify these
caustics by reading their parameters directly off the
integral (12).
Therefore, using α and βn from (11), the amplitude of the

nth caustic, ρn, is given as

ρn ¼ n2
βn
α

¼ n
ffiffiffiffiffiffiffiffiffi
2rgr

p
Jn

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
n
sinnβs: ð25Þ

With the known values of the solar multipole moments
J2 from Ref. [22], and J4, J6, and J8 from Ref. [23],
expression (25) yields the following amplitudes of the
corresponding caustics for the largest multipole moments:

ρ2 ¼ 2
ffiffiffiffiffiffiffiffiffi
2rgr

p
J2

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
2

sin2βs

¼ 287.39 m

�
650 AU

r

�1
2

sin2βs; ð26Þ

ρ4 ¼ 4
ffiffiffiffiffiffiffiffiffi
2rgr

p
J4

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
4

sin4βs

¼ 9.56 m

�
650 AU

r

�3
2

sin4βs; ð27Þ3Equivalently, we may form the same caustic with the ratio of
a=b ¼ 2n=ðnþ 1Þ, moving clockwise.
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ρ6 ¼ 6
ffiffiffiffiffiffiffiffiffi
2rgr

p
J6

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
6

sin6βs

¼ 0.76 m

�
650 AU

r

�5
2

sin6βs; ð28Þ

ρ8 ¼ 8
ffiffiffiffiffiffiffiffiffi
2rgr

p
J8

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
8

sin8βs

¼ 0.05 m

�
650 AU

r

�7
2

sin8βs: ð29Þ

(a) (b)

FIG. 2. Caustics corresponding to Fig. 1, plotted using (23)–(24). From top left, clockwise: (a) J2, J4, J6, and J8 and (b) monopole
(degenerate caustic), J3, J5, and J7.

FIG. 1. Even and odd caustics representing individual contributions of the multipoles of a gravitational field to the PSF of the
extended axisymmetric gravitational lens, obtained through numerical integration of PSF ¼ jBðxÞj2 with BðxÞ from (5). From top
left, clockwise: (a) J2, J4, J6, and J8; (b) monopole, J3, J5, and J7. The images represent a PSF calculated using λ ¼ 400 nm. For
each of the Jn images, the value of Jn sinn βs ¼ 2 × 10−9 was used with all other Jm≠n ¼ 0, to facilitate visual comparison of their
respective contributions. All other parameters are characteristic of the Sun with a 12 × 12 m image plane area at 650 astronomical
units (AU). (Adapted from Ref. [15].)
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Even in the equatorial plane of the Sun, βs ¼ 1, we see
that only J2, J4, and J6 introduce significant contributions
with observable consequences if the image plane is
sampled using a resolution of approximately 1 m. We note
that for many targets, βs < 1; thus, the magnitudes of the
expressions (26)–(29) will be further suppressed by the
appropriate powers of sinn βs, further reducing their
contributions.

III. EM FIELD NEAR THE OPTICAL AXIS
AND OUTSIDE THE CAUSTIC

In Sec. II B, we realized that the size of the nth caustic in
the solar equatorial plane is directly proportional to the size
of the appropriate multipole moment, Jn. In the case of the
Sun, the astroid caustic set by the solar quadrupole is most
prominent. Thus, it is instructive to study the PSF of the
Sun by investigating the properties of the quadrupole
caustic. The complex amplitude of the EM field corre-
sponding to the quadrupole may be obtained from (12)
by setting βn ¼ 0; n ≥ 3, which results in the following
expression:

B�
2ðρ;ϕÞ ¼

1

2π

Z
2π

0

dϕξ exp½iðαρ cosðϕξ − ϕÞ

þ β2 cos½2ðϕξ − ϕsÞ�Þ�: ð30Þ

Figure 3 show the magnitude and phase of the complex
amplitude B�ðxÞ given by (30). Our objective is to inves-
tigate the behavior of this integral in various regions of the
quadrupole caustic.
First, we note that ϕs simply represents a rotation of the

image plane; thus, we can set ϕs ¼ 0 without loss of
generality. We then investigate the behavior of the complex

phase under the integral sign in (30) by writing it in the
form

φ2ðρ;ϕÞ ¼ β2ðcos2ϕ̄ξ cos2ϕ− sin2ϕ̄ξ sin2ϕÞ þ αρcos ϕ̄ξ;

ð31Þ

where, for convenience, we introduced a new variable ϕ̄:

ϕ̄ξ ¼ ϕξ − ϕ: ð32Þ

Even in the special case of Jn≠2 ¼ 0 and ϕs ¼ 0, the
integral (30) is new, not explored in the literature.
Therefore, we opt to devote our efforts to study its
properties. Our goal is to investigate the behavior of this
integral for specific values of ϕ while allowing the distance
from the optical axis, ρ, to vary. Specifically, we will
investigate two cases: ϕ ¼ 0 and ϕ ¼ π

4
.

The behavior of the integral (30) along these directions is
shown in Fig. 4. We note the high-frequency content in
the inner part of the caustic, which settles down to the
monopole pattern in the regions beyond the cusp and the
fold for angles ϕ ¼ 0 and ϕ ¼ π

4
, correspondingly. Notice

the magnitude difference between the size of the cusp and
the fold. Also, seen in Fig. 4 is the highly oscillating
behavior of the integral in the inner part of the casuistic.
This behavior increases toward the caustic, forming sharp
peaks at the cusps and folds. Moving outside the caustic,
the magnitude of the oscillations sharply decreases immedi-
ately after crossing the caustic boundary. In that region, the
magnitude and the frequency of the oscillations diminish,
ultimately approaching the concentric pattern of the
monopole PSF.
To embark on our investigation, we use (23) and (24), to

present parametric equations that determine the structure of
the quadrupole (i.e., astroid) caustic:

x2 ¼
4β2
α

·
1

4
ð3 cosϕþ cos 3ϕÞ ¼ 4β2

α
cos3 ϕ; ð33Þ

y2 ¼
4β2
α

·
1

4
ð3 sinϕ − sin 3ϕÞ ¼ 4β2

α
sin3 ϕ: ð34Þ

Therefore, by setting ϕ ¼ 0, we can investigate the
behavior of the PSF computed using (30) as ρ increases
from the optical axis (where ρ ¼ 0) toward the cusp region
(where αρ ¼ 4β2 or ρ ¼ 4β2=α) and beyond (for
ρ > 4β2=α). Similarly, in the case of ϕ ¼ π

4
, we will be

able to investigate the behavior of the integral (30) in the
valley between the cusps where the fold is formed. This,
will allow us to investigate the PSF as we move from the
optical axis (ρ ¼ 0) toward the fold region in the valley
(ρ ¼ 2β2=α) and beyond (for ρ > 2β2=α).
To aid with numerical evaluations of the terms involved,

we estimate the magnitudes of α and β2 to be

FIG. 3. The magnitude (top) and phase (bottom, illustrated
using the red-yellow-green-cyan-blue-magenta-red cycle of col-
ors of the rainbow corresponding to π=3 increments in phase) of
the complex amplitude BðxÞ for the quadrupole (astroid) caustic.
These images correspond to a 8 × 8 m area in the image plane
of the SGL at 650 AU, with J2 sin2 βs ¼ 2 × 10−9, λ ¼ 5000 nm.
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α ¼ k

ffiffiffiffiffiffiffi
2rg
r

r
¼ 48.97 m−1

�
1 μm
λ

��
650 AU

r

�1
2

; ð35Þ

β2 ¼ krgJ2

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
2

sin2βs

¼ 3518.34 rad

�
1 μm
λ

��
650 AU

r

�
sin2βs; ð36Þ

thus, we have 4β2=α ¼ ρ2 ¼ 287.39 m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 AU=r

p
sin2βs,

as given by (26). Therefore, the size of the quadrupole
caustic of the SGL is primarily determined by the angle βs
and the heliocentric distance to the image plane.

A. PSF in the direction of the cusp

When ϕ ¼ 0, the phase (31) takes the form

φ2ðρ;0Þ¼2β2

�
cosϕ̄ξþ

αρ

4β2

�
2

−β2

�
1þ2

�
αρ

4β2

�
2
�
: ð37Þ

We investigate the resulting integral (30) using the method
of stationary phase and compute

dφ2ðρ; 0Þ
dϕξ

≡ φ0
2ðρ; 0Þ ¼ −4β2 sin ϕ̄ξ

�
cos ϕ̄ξ þ

αρ

4β2

�
; ð38Þ

d2φ2ðρ; 0Þ
dϕ2

ξ

≡ φ00
2ðρ; 0Þ

¼ −8β2
��

cos ϕ̄ξ þ
αρ

16β2

�
2

−
1

2
−
�

αρ

16β2

�
2
�
:

ð39Þ

The phase is stationary when φ0
2ðρ; 0Þ ¼ 0, which yields

four solutions:

ϕ̄ξ ¼ 0; π; and cos ϕ̄ξ ¼ −
αρ

4β2
;

sin ϕ̄ξ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
αρ

4β2

�
2

s
: ð40Þ

These solutions lead to the following expressions for
φ00
2ðρ; 0Þ, and φ2ðρ; 0Þ:

φ00
2ðρ; 0Þjϕ̄ξ¼0 ¼ −4β2

�
1þ αρ

4β2

�
;

φ2ðρ; 0Þjϕ̄ξ¼0 ¼ β2 þ αρ; ð41Þ

φ00
2ðρ; 0Þjϕ̄ξ¼π ¼ −4β2

�
1 −

αρ

4β2

�
;

φ2ðρ; 0Þjϕ̄ξ¼π ¼ β2 − αρ; ð42Þ

FIG. 4. Cross sections of the J2 (i.e., astroid) caustic. We use Eq. (30) to plot the SGL PSF in a 8 × 8 m region in the image plane at
650 AU and for J2 sin2 βs ¼ 2 × 10−9, λ ¼ 2000 nm. Left: for the direction of the cusp, ϕ ¼ 0. Right: in the direction of the fold, ϕ ¼ π

4
.

The image scale is 8 × 8 meters. Horizontal axis is in meters; vertical axis is dimensionless.
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φ00
2ðρ; 0Þjcos ϕ̄ξ

¼ 4β2

�
1 −

�
αρ

4β2

�
2
�
;

φ2ðρ; 0Þjcos ϕ̄ξ
¼ −β2

�
1þ 2

�
αρ

4β2

�
2
�
: ð43Þ

As we see, the second pair of solutions (40) results in the
identical solutions (43). Thus, in the solution for B�, we
need to account for this solution twice.
Considering solutions (41)–(43), we see that they depend

on the distance, ρ, from the optical axis. In fact, we can see
that for solutions (42) and (43), the second derivatives
φ00
2ðρ; 0Þ change signs as ρ reaches the cusp at ρ ¼ 4β2=α.

The caustic boundary at the cusp marks a phase transition
in the overall solution for the complex amplitude of the EM
field B�. This makes it necessary to consider the behavior
of B� for ρ separately in the following two regions:

(i) the inner caustic, where 0 ≤ ρ < 4β2=α, and

(ii) for the outer caustic, for ρ > 4β2=α.
There is another important observation that one can make
by studying solutions (41)–(43), namely, the second deri-
vates given by (42) and (43) are divergent at the cusp or
when ρ ¼ 4β2=α. This divergence indicates the limits of the
typical formulation of the method of stationary phase when
dealing with the integrals with coalescing saddles in the
regions when their phase highly oscillates [13,25]. This
explains that no tools used for geometric optics may be
used to describe the EM field behavior in those regions
[26]. To deal with these regions, one needs to use different
methods that we will discuss in Sec. IV.
Solutions (41)–(43) may now be used to derive in the

following results for the complex amplitude by applying
the method of stationary phase in the regions with a well-
constrained behavior. Thus, for the region 0 ≤ ρ < 4β2=α,
the solution for the complex amplitude B� takes the form

B�
2ðρ; 0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πβ2ð1 − ð αρ

4β2
Þ2Þ

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

αρ

4β2

r
eiðβ2þαρ−π

4
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αρ

4β2

r
eiðβ2−αρ−π

4
Þ þ 2e−iðβ2þ2β2ð αρ

4β2
Þ2−π

4
Þ
�
: ð44Þ

This results in the following expression for the PSFðρ; 0Þ ¼ B�
2ðρ; 0ÞB2ðρ; 0Þ:

PSFðρ; 0Þ ¼ 1

4πβ2ð1 − ð αρ
4β2

Þ2Þ
�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
αρ

4β2

�
2

s
cos 2αρ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

αρ

4β2

r
cos

�
2β2

�
1þ αρ

4β2

�
2

−
π

2

�
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αρ

4β2

r
cos

�
2β2

�
1 −

αρ

4β2

�
2

−
π

2

��
: ð45Þ

Expression (45) allows us to evaluate the magnitude of
the PSF on the optical axis. This can be done by setting
ρ ¼ 0, which yields

PSFð0; 0Þ ¼ 2

πβ2
cos2

�
β2 −

π

4

�
: ð46Þ

Thus, compared to the monopole PSF [which on the optical
axis results in the value of PSF0 ¼ J20ð0Þ ¼ 1], the
presence of the quadrupole reduces the magnitude of the
PSF on the optical axis by the value given by (46).
Figure 5 presents the behavior of the PSF of the SGL in

the direction toward the cusp, ϕ ¼ 0. The model (45)
represents well both the magnitude and the frequency
content of the PSF in the interior. We can see that this
model also captures well the nonlinear behavior (namely,
quadratic in αρ) of the phase. The model that was
developed using the method of stationary phase works
very well until the very last oscillation before reaching the
peak of the cusp. Beyond the peak, the inflection point of
the average amplitude marks the location where the second
derivative of the two solutions (41)–(43) vanishes and the

approximation (45) diverges. This region requires the
wave-optical treatment that is developed in Sec. IV.
In Appendix, we compute the value of the PSF in

the presence of other multipoles. As we recall, the spheri-
cally symmetric (monopole) PSF was given by J20ðαρÞ,
which in the limit ρ → 0 yielded 1. As seen from the result
(46) and (A10), in the case of a non-negligible quadrupole
contribution, the intensity of the EM field at the optical axis
is attenuated by a factor of ð2=πβ2Þcos2ðβ2− π

4
Þ from (46).

Clearly, in the case when other multipoles are also
present, this value of the PSF at the optical axis is further
reduced by a factor of J20ðαρÞJ20ðβ2ÞJ20ðβ4Þ…J20ðβ2nÞ. In the
case when β2; β4;…:β2n are large, we may use the
asymptotic behavior of the Bessel functions [21] and
present the PSF at the optical axis (i.e., for ρ¼0)
as ð2=πβ2Þ cos2ðβ2 − π

4
Þð2=πβ4Þ cos2ðβ4 − π

4
Þ…ð2=πβ2nÞ×

cos2ðβ2n − π
4
Þ, where β2n are multipole terms defined similar

to that of a quadrupole in (A2). Depending on the value of the
angle βs, which controls the values of β2n [see (11)], light
intensity on the optical axis may be significantly reduced by
the multipoles with most of the light deflected within the
caustic region, preferentially in the direction of the cusps.
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For the region outside the cusp, where ρ > 4β2=α, the solution for the complex amplitude B� takes the form

B�
2ðρ; 0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πβ2ðð αρ4β2Þ2 − 1Þ

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αρ

4β2
− 1

r
eiðβ2þαρ−π

4
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αρ

4β2
þ 1

r
eiðβ2−αρþπ

4
Þ þ 2e−iðβ2þ2β2ð αρ

4β2
Þ2þπ

4
Þ
�
: ð47Þ

This results in the following expression for the PSFðρ; 0Þ ¼ B�
2ðρ; 0ÞB2ðρ; 0Þ:

PSFðρ; 0Þ ¼ 1

4πβ2ðð αρ4β2Þ2 − 1Þ
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

− 1

s
cos2

�
αρ −

π

4

�
þ αρ

4β2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

− 1

s
þ 2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αρ

4β2
− 1

r
cos
�
2β2

�
αρ

4β2
þ 1

�
2
�
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αρ

4β2
þ 1

r
sin
�
2β2

�
αρ

4β2
− 1

�
2
��

: ð48Þ

Result (48) allows us to compute the magnitude of the PSF
in the regions beyond the caustic, ρ ≫ 4β2=α, that yields

PSFðρ; 0Þ ¼ 2

παρ
cos2

�
αρ −

π

4

�
: ð49Þ

This solution is also shown in Fig. 5. We can see that in the
regions beyond the caustic boundary, at large distances
from the optical axis, the PSF regains the properties of the
monopole [1].

B. PSF in the direction of the fold

In the direction of the caustic fold at ϕ ¼ π
4
, the phase

(31) takes the form

φ2

�
ρ;
π

4

�
¼ −2β2 cos ϕ̄ξ

�
sin ϕ̄ξ −

αρ

4β2

�
: ð50Þ

Again, we investigate the resulting integral (30) using the
method of the stationary phase. For that, we compute

dφ2ðρ; π4Þ
dϕξ

≡ φ0
2

�
ρ;
π

4

�

¼ 4β2

��
sin ϕ̄ξ −

αρ

8β2

�
2

−
1

2
−
�
αρ

8β2

�
2
�
; ð51Þ

d2φ2ðρ;π4Þ
dϕ2

ξ

≡φ00
2

�
ρ;
π

4

�
¼ 8β2 cos ϕ̄ξ

�
sin ϕ̄ξ−

αρ

8β2

�
: ð52Þ

The phase is stationary when φ0
2ðρ; π4Þ ¼ 0, which yields

sin ϕ̄ξ ¼
1

2

�
αρ

4β2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s �
: ð53Þ

FIG. 5. Behavior of the PSF of the SGL in the region near the optical axis in the direction toward the cusps, with parametrization
corresponding to that of Fig. 4, left. Blue, as given by (37) [or, effectively, (30) with ϕ ¼ 0 and ϕs absent.] The red line shows the interior
of the caustic modeled by (45). Green lines show the exterior region, as modeled by (48). Thick gray vertical bars indicate the caustic
boundary. Horizontal axis is in meters; vertical axis is dimensionless.
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As we see, at the optical axis, where ρ ¼ 0, this solution
yields two acceptable solutions of sin ϕ̄ξ ¼ �1=

ffiffiffi
2

p
. Thus,

both of these solutions will be used. Using the result (53),
we compute

cos2ϕ̄ξ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð αρ
4β2

Þ2 þ 2
q

∓ 3αρ
4β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð αρ
4β2

Þ2 þ 2
q

∓ αρ
4β2

: ð54Þ

Results (53) and (54) yield the following expressions for
sin ϕ̄ξ and cos ϕ̄ξ,

sinϕ̄ξ¼
1

2

�
αρ

4β2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ2

s �
; cosϕ̄ξ¼�A−; ð55Þ

sinϕ̄ξ¼
1

2

�
αρ

4β2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ2

s �
; cosϕ̄ξ¼�Aþ; ð56Þ

where the quantity A� is given as

A� ¼

2
641
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð αρ
4β2

Þ2 þ 2
q

� 3αρ
4β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð αρ
4β2

Þ2 þ 2
q

� αρ
4β2

3
75

1
2

: ð57Þ

Substituting (55)–(57) in (52) and (50), we obtain the
following four pairs of expressions for φ00

2ðρ; π4Þ and
φ2ðρ; π4Þ:

φ00
2þ

�
ρ;
π

4

�
¼ ∓4β2

��
αρ

4β2

�
2

þ 2

�1
2

Aþ;

φ2þ

�
ρ;
π

4

�
¼ �β2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
þ 3αρ

4β2

�
Aþ; ð58Þ

φ00
2−

�
ρ;
π

4

�
¼ �4β2

��
αρ

4β2

�
2

þ 2

�1
2

A−;

φ2−

�
ρ;
π

4

�
¼ ∓β2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
−
3αρ

4β2

�
A−: ð59Þ

As we see, the pair of solutions (59) holds a clue on the
critical behavior in the vicinity of the cusp. We observe that
as ρ increases, the quantity A− vanishes at the fold and for
the regions beyond the fold this pair of solutions becomes
imaginary. This transition happens whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

αρ

4β2

�
2

þ 2

s
−
3αρ

4β2
¼ 0 ⇒ ρ ¼ 2β2

α
; ð60Þ

which occurs for ρ ¼ 2β2=α. According to (33) and (34),
this is exactly the position of the caustic boundary in the
direction of the fold, ϕ ¼ π

4
.

Considering solutions (58) and (59), we see that they
depend on the distance, ρ, from the optical axis. In fact, we
see that the solutions (59) depend on A−, which becomes
imaginary as ρ reaches the fold at ρ ¼ 2β2=α. So, the caustic
boundary represents a phase transition in the solution for the
complex amplitude of the EM field B�. As we did near the
cusp in Sec. III A, we must therefore separately consider
the behavior of B� for ρ in the following two regions:

(i) the inner caustic, where 0 ≤ ρ < 2β2=α, and
(ii) the outer caustic, for ρ > 2β2=α.

Similar to the discussion in Sec. III A, we observe that the
method of stationary phase is not applicable in the vicinity of
the fold or when ρ → 2β2=α. Investigating this region
requires different approximation methods, discussed in
Sec. IV.
In the meantime, we may now compute the complex

amplitude of the EM field. For the region 0 ≤ ρ < 2β2=α,
the solution for the complex amplitude B� takes the form

B�
2

�
ρ;
π

4

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πβ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð αρ
4β2

Þ2 þ 2
qr �

1ffiffiffiffiffiffiffi
Aþ

p cos

�
β2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
þ 3αρ

4β2

�
Aþ −

π

4

�

þ 1ffiffiffiffiffiffiffi
A−

p cos

�
β2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
−
3αρ

4β2

�
A− −

π

4

��
: ð61Þ

Note that at ϕ ¼ π
4
, the complex amplitude B� (61) is a real-valued function, yielding the following expression for the

PSFðρ; π
4
Þ ¼ B2

2ðρ; π4Þ:

PSF
�
ρ;
π

4

�
¼ 1

2πβ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð αρ
4β2

Þ2 þ 2
q �

1ffiffiffiffiffiffiffi
Aþ

p cos

�
β2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
þ 3αρ

4β2

�
Aþ −

π

4

�

þ 1ffiffiffiffiffiffiffi
A−

p cos

�
β2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
−
3αρ

4β2

�
A− −

π

4

��
2

: ð62Þ
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Figure 6 presents the behavior of the PSF of the SGL in
the direction toward the fold, ϕ ¼ π

4
. Expression (62) allows

us to compute the magnitude of the PSF on the optical axis.
This can be done by setting ρ ¼ 0, which yields

PSF
�
0;
π

4

�
¼ 2

πβ2
cos2

�
β2 −

π

4

�
; ð63Þ

which is identical to (46), as expected.
As we approach the caustic boundary in the direction of

the fold, the amplitude of B� determined with the method of
stationary phase diverges as A− vanishes at ρ ¼ 2β2=α.
Outside the caustic boundary, ρ > 2β2=α, the solution for
A− becomes imaginary. Therefore, in the region outside the
caustic boundary, the overall solution for the complex
amplitude B� is given only by (58), which results in

B�
2

�
ρ;
π

4

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πβ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð αρ
4β2

Þ2 þ 2
qr 1ffiffiffiffiffiffiffi

Aþ
p

× cos

"
β2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ 2

s
þ 3αρ

4β2

!
Aþ −

π

4

#
:

ð64Þ
This result yields in the following expression for the
PSFðρ; π

4
Þ ¼ B�

2ðρ; π4ÞB2ðρ; π4Þ:

PSF
�
ρ;
π

4

�
¼ 1

2πβ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð αρ
4β2

Þ2þ2
q 1

Aþ

×cos2
"
β2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αρ

4β2

�
2

þ2

s
þ3αρ

4β2

!
Aþ−

π

4

#
:

ð65Þ

Expression (65) allows us to compute the magnitude of
the PSF in the region beyond the caustic fold, ρ ≫ 2β2=α,
which yields

PSF
�
ρ;
π

4

�
¼ 2

παρ
cos2

�
αρ −

π

4

�
; ð66Þ

which is identical to (49). This is yet another confirmation
that in the regions beyond the caustic boundary, the
PSF regains the properties of that given by the monopole
at large distances from the optical axis [1]. Figure 6
presents the behavior of the PSF of the SGL in the region
beyond the fold in the direction ϕ ¼ π

4
, together with the

approximations given by (50) in the caustic interior, and by
(65) outside. As ρ gets larger, the PSF slowly decreases,
ultimately matching the behavior of the monopole
PSF (66).

IV. EM FIELD AT THE CAUSTIC BOUNDARY

As was shown in the preceding section, the method of
stationary phase fails at the caustic boundary, leading to
singularities. As an outcome of this, methods relying on the
geometric optics approximation are inadequate to describe
the light amplification at the caustic. On the other hand, the
caustic describes the region with the most light intensity. In
the case of the astroid caustic formed by the quadrupole, the
caustic boundary is characterized by four cusps connected
by four folds, with smooth transitions between these
regions. Here, we develop a wave-optical treatment of
light propagation to describe these regions.
To begin, we note that there are no closed form

expressions that may be used to analytically evaluate
(12). A way to study its behavior in the most interesting

FIG. 6. Behavior of the PSF of the SGL in the direction toward the fold, ϕ ¼ π
4
, as given by (50) [or, effectively, (30) with ϕ ¼ π

4
and ϕs

is absent.] The parametrization corresponds to that of Fig. 4, right. The interior is well modeled by (62) (red), while the behavior of the
exterior is captured well by (65) (green). Thick gray vertical bars indicate the fold regions. Horizontal axis is in meters; vertical axis is
dimensionless.
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cases (i.e., the cusps, the folds between the cusps, etc.) is to
develop an approximation that allows us to reduce this
integral in the regions of interest to one of the canonical
integrals describing cuspoid catastrophes [27,28]. The
phases of such canonical integrals may be given in the
form of φkðt;xÞ ¼ tkþ2 þPk

m¼1 xmt
m. Special cases of

such integrals involve the k ¼ 1 fold catastrophe, the k ¼ 2
cusp catastrophe, and the k ¼ 3 swallowtail catastrophe.
Several such integrals may be used for our purposes.
Our first objective is to identify a coordinate trans-

formation that may allow us to present (12) in the form of
the Pearcey integral [25,29],

Peðx; yÞ ¼
Z

∞

−∞
eiðt4þxt2þytÞdt; ð67Þ

which corresponds to the case of k ¼ 2 and is used to
describe the structure of an EM field in the neighborhood of
a cusp. Similarly, we will attempt to recover a result in the
form of the Airy function AiðxÞ,

AiðxÞ ¼ 1

2π

Z
∞

−∞
eið

1
3
t3þxtÞdt; ð68Þ

which corresponds to the case of k ¼ 1 and is used to
describe the field in the vicinity of the folds between
the cusps.
To achieve these goals, we use (23) and (24) for n ¼ 2 to

define the shift of the coordinate system toward the J2
caustic. We introduce a planar coordinate system at the
caustic, ρ̃, such that ρ̃ increases moving inward, toward the
center of the astroid. Specifically, we introduce the coor-
dinate transformation, ðx; yÞ ¼ ðx2; y2Þ þ ρ̃, that is given as

x ¼ 4β2
α

cos3 ϕ − ρ̃ cosϕ; ð69Þ

y ¼ 4β2
α

sin3 ϕ − ρ̃ sinϕ: ð70Þ

Next, as we are interested in the properties of the SGL,
we consider only zonal harmonics with even n. Our
objective is to consider the relative contributions of each
of the multipoles to the intensity at the J2 cusp.
Also, as we consider the PSF that is computed as

PSF ¼ Bðx; yÞB�ðx; yÞ, where B�ðx; yÞ is the complex
conjugate of the amplitude Bðx; yÞ, we may work with
B�ðx; yÞ. With these assumptions, we transform the phase
of the complex conjugate amplitude, B�ðx; yÞ, from (12) as

φðϕ̄ξ;ϕÞ ¼ β2ðcos 2ϕ̄ξ cos 2ϕ − sin 2ϕ̄ξ sin 2ϕ − sin 4ϕ sin ϕ̄ξÞ þ ðβ2ð3þ cos 4ϕÞ − αρ̃Þ cos ϕ̄ξ

þ
X∞
n¼2

1

n
β2nðcos½2nϕ̄ξ� cos½2nϕ� − sin½2nϕ̄ξ� sin½2nϕ�Þ; ð71Þ

where we used ϕ̄ξ ¼ ϕξ − ϕ from (32).

A. PSF in the vicinity of the cusp
of the astroid caustic

We can now use the phase (71) to evaluate the integral
(12) in the two cases of interest, the cusp and the fold. To be
specific, we will evaluate these expressions at the cusp
located at ϕ ¼ 0, and the fold defined by ϕ ¼ π

4
. By setting

in (71) ϕ ¼ 0, we obtain the expression for the phase of a
complex conjugate of the amplitude B from (12) as

φ2ðϕ̄ξ; 0Þ ¼ β2 cos 2ϕ̄ξ þ ð4β2 − αρ̃Þ cos ϕ̄ξ: ð72Þ

We might consider substituting this expression in (12)
and evaluating the resulting integral using the method of
stationary phase. However, the conventional method of
stationary phase fails here, as the second derivative of the
phase is zero, producing divergent results. This is
the common issue with highly oscillating integrals from
the family of canonical integrals describing the cuspoid
catastrophe.
Thus, we need to find other ways to approximate the

integral (12) in the region of interest. To this effect, we

expand the phase (72) in the vicinity of stationary points
and approximate the resulting expression for the phase
retaining only the leading terms with respect to powers of
ϕ̄ξ. To implement the new approach, we identically present
(12) in a more convenient form

φ2ðϕ̄ξ;0Þ¼ 2β2

�
cosϕ̄ξþ1−

αρ̃

4β2

�
2

−β2−2β2

�
1−

αρ̃

4β2

�
2

;

ð73Þ

where we separated ϕ̄ξ-dependent terms and those that are
independent of this quantity.
Next, we consider the stationary points of the J2 caustic

only. The stationary points are given by computing the first
derivative dφ2ðϕ̄ξ; 0Þ=dϕξ. Equating it to 0, we have the
equation

φ2ðϕ̄ξ; 0Þ
dϕξ

¼ −4β2
�
cos ϕ̄ξ þ 1 −

αρ̃

4β2

�
sin ϕ̄ξ ¼ 0: ð74Þ

Equation (74) has two solutions: cos ϕ̄ξþ1−αρ̃=4β2 ¼ 0

and sin ϕ̄ξ ¼ 0. As we are interested in evaluating the
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behavior of the integral (12) as the distance ρ̃ from the cusp
changes, the second solution is of no interest. Considering
the first solution, we see that for small ρ̃, it behaves as
cos ϕ̄ξ ¼ −1þOðαρ̃=4β2Þ. Thus, at the vicinity of the
cusp, most of the contribution to the phase comes from the
area where ϕ̄ξ ≈ π, that is also suggested by the second
solution.
We also compute the second derivative of the phase

φ2ðϕ̄ξ; 0Þ as

d2φ2ðϕ̄ξ; 0Þ
dϕ2

ξ

¼ −8β2
��

cos ϕ̄ξ þ
1

4

�
1 −

αρ̃

4β2

��
2

−
1

2
−
�
1

4

�
1 −

αρ̃

4β2

��
2
�
: ð75Þ

Evaluating this expression for the two solutions ϕ̄ξ ¼
f0; πg identified above, we see that in the case ϕ̄ξ ¼ 0,

the second derivative is finite everywhere in the vicinity of
the cusp. However, in the case when ϕ̄ξ ¼ π, the second
derivative (75) vanishes at the origin, ρ̃ ¼ 0, thus indicating
the presence of the cusp.
These observations allow us to consider behavior of

the phase (71) around the point ϕ̄ξ ¼ π, that is the
direction toward the cusp. To proceed, we introduce a
new variable ϕ̃ξ:

ϕ̄ξ ¼ π þ ϕ̃ξ: ð76Þ

At this point, we can use the complete phase at the
caustic given by (71) and develop the needed approxima-
tion. For that, we substitute (76) in (71) and expand the
result in a power series of the small angle ϕ̃ξ, retaining only
leading terms,

φðϕ̃ξ;ϕÞ ¼ αρ̃þ β2ðsin2 2ϕþ 2 sin2 ϕ cos 2ϕ − 3Þ − 8β2 sin3 ϕ cosϕϕ̃ξ

þ
�
−
1

2
αρ̃þ 4β2 sin4 ϕ

�
ϕ̃2
ξ þ β2 sin 2ϕ

�
1þ 2

3
sin2 ϕ

�
ϕ̃3
ξ

þ
�
−

1

24
αρ̃þ β2

�
1

2
− sin2 ϕ −

1

3
sin4 ϕ

��
ϕ̃4
ξ þ

X∞
n¼2

β2n cos½2nðϕ̃ξ þ π þ ϕÞ� þOðϕ̃5
ξÞ; ð77Þ

where, for convenience, we are not yet transforming the
multipolar term.
As we are interested in studying the behavior of

the phase in the vicinity of the cusp, we perform addi-
tional expansion of expression (77) with respect to a
small angle ϕ, while treating it to be of the similar
order as ϕ̃ξ, namely, ϕ ∼ ϕ̃ξ. This is the result of these
manipulations:

φðϕ̃ξ;ϕÞ ¼
1

2
β2 · ϕ̃

4
ξ þ 2β2ϕ · ϕ̃3

ξ −
1

2
αρ̃ · ϕ̃2

ξ − 8β2ϕ
3 · ϕ̃ξ

þ
X∞
n¼2

β2n cos½2nðϕ̃ξ þ π þ ϕÞ� þ w0; ð78Þ

where the constant w0 has the form w0 ¼
αρ̃þ β2ðsin2 2ϕþ 2 sin2 ϕ cos 2ϕ − 3Þ.
Combining the definitions used to introduce the

variables ϕ̄ξ and ϕ̃ξ, given by (32) and (76), correspond-
ingly, we have ϕ̃ξ ¼ ϕξ − π − ϕ. Recognizing this fact
and remembering that the angle ϕ is small, we transform
(78) as

φðϕξ;ϕÞ ¼
�
1

2
β2 þ

X∞
n¼2

2

3
n4β2n

�
ðϕξ − πÞ4

−
�
1

2
αρ̃þ 3β2ϕ

2 þ
X∞
n¼2

2n2β2n

�
ðϕξ − πÞ2

þ ðαρ̃ − 4β2ϕ
2Þϕðϕξ − πÞ þ w0 −

1

2
αρ̃ϕ2

þ 13

2
β4ϕ

4 þ
X∞
n¼2

β2n: ð79Þ

For the sake of simplicity, we introduce the constants β�2
and φ0:

1

2
β�2 ¼

�
1

2
β2 þ

X∞
n¼2

2

3
n4β2n

�
;

φ0 ¼ w0 −
1

2
αρ̃ϕ2 þ 13

2
β4ϕ

4 þ
X∞
n¼2

β2n: ð80Þ

We also introduce a rescaled distance ρ̄ given by
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ρ̄ ¼ ρ̃þ
X∞
n¼2

4n2
β2n
α

: ð81Þ

Finally, we introduce a new variable, u:

1

2
β�2ðϕξ − πÞ4 ¼ u4 ⇒ u ¼ ðϕξ − πÞ

�
1

2
β�2

�1
4

;

ϕξ ¼ π þ u

�
1

2
β�2

�
−1
4

: ð82Þ

These notations and definitions allow us to transform the
phase (79):

φðu;ϕÞ ¼ u4 −
ðαρ̄þ 6β2ϕ

2Þffiffiffiffiffiffiffi
2β�2

p u2 þ ðαρ̄ − 4β2ϕ
2Þϕ

ð1
2
β�2Þ

1
4

uþ φ0:

ð83Þ

Wemay now substitute these results into the integral (12)
that describes the complex conjugate amplitude of the EM
field. In the vicinity of the cusp, this amplitude then takes
the form

B�
2ðρ̄;ϕÞ ¼

1

ð1
2
β�2Þ

1
4

eiφ0

2π

Z
∞

−∞
du

× exp

�
i

�
u4 −

ðαρ̄þ 6β2ϕ
2Þffiffiffiffiffiffiffi

2β�2
p u2

þ ðαρ̄ − 4β2ϕ
2Þϕ

ð1
2
β�2Þ

1
4

u

��
; ð84Þ

where, given the magnitude of β2 given by (36), we
extended the integration limits �πð1

2
β�2Þ

1
4 → �∞.

In this expression, we recognize the Pearcey integral
(67), which is well studied in the context of the cuspoid
catastrophe [27,29,30]. In terms of the Pearcey integral, the
complex amplitude of the EM field takes the form

B�
2ðρ̄;ϕÞ ¼

1

ð1
2
β2 þ

P∞
n¼2

2
3
n3β2nÞ14

eiφ0

2π
Peðx̄; ȳÞ; ð85Þ

where x̄ and ȳ are given by

x̄ ¼ −
1
2
αρ̃þ 3β2ϕ

2 þP∞
n¼2 2n

2β2n

ð1
2
β2 þ

P∞
n¼2

2
3
n4β2nÞ12

;

ȳ ¼ ðαρ̃ − 4β2ϕ
2Þϕ

ð1
2
β2 þ

P∞
n¼2

2
3
n4β2nÞ14

: ð86Þ

As a result, the PSF in the direction of the J2 cusp is
given as

PSFðρ̃;ϕÞ¼B�
2ðρ̃;ϕÞB2ðρ̃;ϕÞ

¼ 1

ð1
2
β2þ

P∞
n¼2

2
3
n4β2nÞ12

1

ð2πÞ2 jPeðx̄; ȳÞj
2: ð87Þ

Figure 7 shows the comparison between the PSF in the
direction of the cusp, ϕ ¼ 0, as given by the complete
diffraction integral (72) [or, effectively, (30) with ϕ ¼ 0
and ϕs absent] and the PSF modeled by (84). As we can
see, the Pearcey integral appears to correctly model the
averaged PSF not only at the caustic boundary but also
inside and outside of it. The high-frequency behavior of the
PSF (with the approximate spatial frequency of the
monopole PSF) is averaged out; the lower-frequency
behavior that emerges due to the quadrupole remains.
The Pearcey integral fails only near the central region
where the complete diffraction integral shows elevated light
levels due to the residual effects of the monopole PSF, not
completely canceled out by the quadrupole; this elevation is
not captured by the Pearcey integral. Despite this good
agreement between the complete diffraction integral and
the Pearcey integral, we need to offer a word of caution: this
good agreement exists only in the direction of the cusp,
ϕ ¼ 0.
The square of the Pearcey integral reaches its maximum

of jPeðx̄; 0Þj2 ≃ 6.94 at the point x̄ ¼ −2.19; ȳ ¼ 0. Thus, if
only J2 is considered, the largest value of the PSF estimated
at that point is

PSFcusp ≲
ffiffiffiffiffiffiffiffi
2

πβ2

s
1

π
; ð88Þ

which is occurring at the position that is by ρ̃ ¼
2.19ð1

2
β2Þ12= 1

2
α ¼ 3.75 mðλ=1 μmÞ12j sin βsj closer to the

optical axis as measured from the caustic boundary at
the cusp, at ρ2 ¼ 4β2=α; cf. Eq. (26).
We note that the caustic does not correspond to the

position of the maximum intensity of the PSF on the image
plane at a particular heliocentric distance. The Pearcey
integral approximation, shown in Fig. 7, compared against
the position of the caustic boundary, shows that the
boundary corresponds to the integral’s last inflection point.
This position appears to mark the transition from a region
dominated by the caustic pattern to a region dominated by
the concentric Airy pattern characteristic of the monop-
ole PSF.
Considering the presence of other zonal harmonics

shown in (86) and (87), and treating βs ¼ 1 (i.e., the
source is at the solar equator—the most conservative case),
we find that the maximum of the PSF increases by a factor
of approximately 1.22. The shape of the peak at the cusp
widens and its maximum moves closer to the optical axis
by approximately 8.36 m, driven by the contribution from
the octupole, J4. However, for βs ¼ 0.1, the change in the
PSF peak is negligible; it shifts toward the optical axis only
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by approximately 0.36 m. It appears that, although J2
produces the most pronounced effect on the position and
the shape of the cusp, the contribution from the octupole,
J4, must also be considered for high-resolution image
reconstruction. Contributions of other solar zonal harmon-
ics are negligible.

B. PSF in the vicinity of the fold in the
valley between the cusps

Similarly to the discussion in Sec. IVA, we begin with
the PSF in the vicinity of the fold of the quadrupole
caustic. By setting in (71) ϕ ¼ π

4
, we obtain the expression

for the phase of a complex conjugate of the amplitude B
from (12) as

φ2

�
ϕ̄ξ;

π

4

�
¼ −2β2 cos ϕ̄ξ

�
sin ϕ̄ξ −

�
1 −

αρ̃

2β2

��
: ð89Þ

Next, we consider the stationary points of the J2 caustic.
The stationary points are given by computing the first
derivative dφ2ðϕ̄ξ; π4Þ=dϕξ that is done as

dφ2ðϕ̄ξ; π4Þ
dϕξ

¼ 4β2

��
sin ϕ̄ξ −

1

4

�
1 −

αρ̃

2β2

��
2

−
1

2
−
�
1

4

�
1 −

αρ̃

2β2

��
2
�
: ð90Þ

Equating this expression to zero, we determine the
stationary points and those with highly oscillating behavior,
indicating the presence of the fold. Thus, at the fold, where

ρ̃ ¼ 0, equation dφ2ðϕ̄ξ; π4Þ=dϕξ ¼ 0 yields two equations
to determine ϕ̄ξ, namely, sin ϕ̄ξ ¼ 1 and sin ϕ̄ξ ¼ − 1

2
,

yielding ϕ̄ξ ¼ π
2
and ϕ̄ξ ¼ − π

6
. To identify the appropriate

solution that indicates the presence of the fold, we need to
study the behavior of the second derivative of the phase
d2φ2ðϕ̄ξ; π4Þ=dϕ2

ξ , that is computed from (90) as

d2φ2ðϕ̄ξ;
π
4
Þ

dϕξ
¼ 8β2 cos ϕ̄ξ

�
sin ϕ̄ξ −

1

4

�
1 −

αρ̃

2β2

��
: ð91Þ

Considering (91) at the fold, ρ̃ ¼ 0, we substitute the
solutions ϕ̄ξ ¼ π

2
and ϕ̄ξ ¼ − π

6
and consider the behavior of

the second derivative. We see that ϕ̄ξ ¼ − π
6
results in a

regular behavior of the second derivative. However, the
solution ϕ̄ξ ¼ π

2
causes the second derivative to vanish at

the fold, ρ̃ ¼ 0. Thus, in the vicinity of the fold, most of the
contribution to the phase comes from the area where ϕ̄ξ ≈ π

2
.

This observation allows us to consider behavior of the
phase (71) around the point ϕ̄ξ ¼ π

2
. To proceed, we

introduce a new variable ϕ̃ξ in accord with

ϕ̄ξ ¼
π

2
þ ϕ̃ξ: ð92Þ

Similarly to the approach we took to derive (77), we will
use the complete phase at the caustic given by (71) and
develop the needed approximation. For that, we substitute
(92) in (71) and expand the result in the power series of the
small angle ϕ̃ξ, retaining only the leading terms, which
yields

FIG. 7. Behavior of the PSF of the SGL in the vicinity of the caustic cusp, at ϕ ¼ 0, as modeled by (84). The caustic boundary is
marked by a thick gray vertical bar at the origin of the coordinate system. The parametrization corresponds to that of Fig. 4, left, but a
shorter wavelength (250 nm) is used to better illustrate the high spatial frequency oscillations modulating the caustic pattern. Horizontal
axis is in meters; vertical axis is dimensionless. Note that the optical axis is to the right of this image, ∼2.55 m from the origin.
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φðϕ̃ξ;ϕÞ ¼ −β2ðcos 2ϕþ sin 4ϕÞ
þ ðαρ̃þ β2ð2 sin 2ϕ − cos 4ϕ − 3ÞÞϕ̃ξ

þ 1

2
β2ð4 cos 2ϕþ sin 4ϕÞϕ̃2

ξ

þ 1

6
ð−αρ̃þ β2ð3þ cos 4ϕ − 8 sin 2ϕÞÞϕ̃3

ξ

þOðϕ̃4
ξÞ; ð93Þ

where we do not account for the presence of the multipolar
terms, as their contribution at the fold is negligible.
Next, we are interested to study the behavior of the

complex amplitude in the small vicinity of the central fold
that is around ϕ ¼ π

4
. To do that, we rotate the coordinates

by introducing the small angle ϕ̄ ≪ 1,

ϕ ¼ π

4
þ ϕ̄; ð94Þ

transforming (93) while expanding the result in terms of the
small parameter ϕ̄:

φðϕ̃ξ; ϕ̄Þ ¼ −
�
β2 þ

1

6
αρ̃

�
· ϕ̃3

ξ − 6β2ϕ̄ · ϕ̃2
ξ þ αρ̃ϕ̃ξ

þ 6β2ϕ̄þOðϕ̃4
ξÞ: ð95Þ

Using the definitions of ϕ̄ξ, ϕ̃ξ, and ϕ̄, given by (32),
(92), and (94) correspondingly, we have ϕ̃ξ ¼ ϕξ − 3π

4
− ϕ̄.

Recognizing this relationship between the angles and

remembering that the angle ϕ̄ is small, we transform
(95) as

φðϕξ; ϕ̄Þ ¼ −
�
β2 þ

1

6
αρ̃

��
ϕξ −

3π

4

�
3

−
�
3β2 −

1

2
αρ̃

�
ϕ̄

�
ϕξ −

3π

4

�
2

þ ðαρ̃ − 3β2ϕ̄
2Þ
�
ϕξ −

3π

4

�
þ w1

þOðϕ̃4
ξÞ; ð96Þ

where the constant w1 is given as w1 ¼ ð6β2 − αρ̃Þϕ̄.
We note that expression (96) bears close resemblance to

the phase of the Airy integral (68). To present it in that
form, we need to depress the cubic structure in (96). This
can be done by introducing yet another transformation
of variables ϕξ − 3π

4
¼ ϕ̂ξ − ½ðβ2 − 1

6
αρ̃Þ=ðβ2 þ 1

6
αρ̃Þ�ϕ̄,

which yields

φðϕ̂ξ;ϕÞ¼−
�
β2þ

1

6
αρ̃

�
ϕ̂3

ξ þαρ̃ϕ̂ξþφ2þOðϕ̃4
ξÞ; ð97Þ

where the constant φ2 is given as φ2 ¼ 6β2½ðβ2 − 1
6
αρ̃Þ=

ðβ2 þ 1
6
αρ̃Þ�ϕ̄.

Finally, we introduce the variable u, needed to
integrate (12):

�
β2 þ

1

6
αρ̃

�
ϕ̂ 3

ξ ¼
1

3
u3 ⇒ u ¼

�
ϕξ −

3π

4
þ
��

β2 −
1

6
αρ̃

�	�
β2 þ

1

6
αρ̃

��
ϕ̄

��
3β2 þ

1

2
αρ̃

�1
3

;

ϕξ ¼
3π

4
−
��

β2 −
1

6
αρ̃

�	�
β2 þ

1

6
αρ̃

��
ϕ̄þ u

�
3β2 þ

1

2
αρ̃

�
−1
3

: ð98Þ

These notations and definitions allow us to transform the
phase (97) as

φðu; 0Þ ¼ −
1

3
u3 þ αρ̃

ð3β2 þ 1
2
αρ̃Þ13 uþ φ2: ð99Þ

Wemay now substitute these results into the integral (12)
that describes the complex conjugate amplitude of the
EM field. As a result, in the vicinity of the fold of the
quadrupole caustic, this amplitude takes the form

B2ðρ̃;ϕÞ¼
1

ð3β2þ 1
2
αρ̃Þ13

eiφ2

2π

Z
∞

−∞
du

×exp

�
i

�
1

3
u3−

�
3β2þ

1

2
αρ̃

�
−1
3

αρ̃u

��
; ð100Þ

where we recognize that, given the magnitude of β2
given by (36), we can extend the integration limits
−3π

4
ð3β2þ1

2
αρ̃Þ13→−∞ and 5π

4
ð3β2 þ 1

2
αρ̃Þ13 → þ∞ with-

out introducing a significant additional error.
This integral is the well-known Airy integral AiðxÞ (68),

with

x ¼ −
�
3β2 þ

1

2
αρ̃

�
−1
3

αρ̃: ð101Þ

As a result, when β2 ≫ jαρ̃j, i.e., in the vicinity of the
caustic boundary, the PSF in the direction of the fold of the
astroid (i.e., J2) caustic can be given as

PSFðρ̃;ϕÞ ¼ B�
2ðρ̃;ϕÞB2ðρ̃;ϕÞ

¼ ð3β2Þ−2
3Aiðð−3β2Þ−1

3αρ̃Þ2: ð102Þ
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In the immediate neighborhood of the caustic fold at
ϕ ¼ π

4
, the result is independent of the angle ϕ. It is

driven by the simple combinations of the parameters
(101). While our model reproduces the overall behavior
of the integral (30), the high-frequency content is missing.
Similar to the Pearcey integral characterizing the behavior
in the direction of the cusps, we note that the high spatial
frequency contribution (characteristic of the monopole) is
effectively averaged in the vicinity of the caustic by this
approximation.
The square of the Airy function reaches its maximum of

AiðxÞ2 ≃ 0.287 at x ¼ −1.02. The maximum of the PSF
estimated at that point is

PSFfold ≲ 0.287ð3β2Þ−2
3: ð103Þ

For the SGL, this maximum occurs at the distance of
ρ¼ 1.02ð3β2Þ13=α¼ 0.44 mðλ=1 μmÞ23ðr=650 AUÞ16j sin2

3 βsj
closer to the optical axis as measured from the caustic
boundary at the fold, at ρ2 ¼ 2β2=α; cf. Eq. (26).
Thus, once again, we see that the peak intensity of the

astroid caustic is not exactly at the fold of the caustic, but at

a small distance, ρ ∼ 3
2
β

1
3

2=α, toward the optical axis. In
general, we observe that the caustic boundary corresponds
to the position of the last inflection point in the PSF with its
high spatial frequency component averaged. This indeed
marks the point of transition from a PSF dominated by the
caustic to a PSF dominated by the concentric Airy pattern
of the monopole.

C. Properties of the caustic boundary

The caustic boundary separates two fundamentally dis-
tinct regions of the PSF. The exterior of the boundary is
dominated by the concentric pattern that we recognize as
being characteristic of the monopole PSF. In contrast, the
interior is characterized by a pattern that is determined by
the multipole moments.
We recognize two distinct spatial wavelengths. The short

wavelength that is representative of the monopole pattern
far outside the caustic boundary also survives in the
interior, but only as a pattern that modulates a dominant,
longer-wavelength oscillation that characterizes the interior
region.
As we observe looking at Figs. 7 and 8, the caustic

boundary is located at the last inflection point of this
longer-wavelength oscillation. Inside this region, the oscil-
latory behavior of the PSF is dominated by the multipole
moments; outside this boundary, the pattern rapidly settles
down to that of the monopole PSF.
The caustic boundary itself is characterized by a rapidly

oscillating amplitude. This is visually demonstrated in
Fig. 9, in which the astroid caustic boundary is super-
imposed on a three-dimensional representation of the
magnitude of the PSF. We easily recognize the concentric
pattern, familiar from the monopole PSF, rapidly emerging
outside the caustic boundary. Just inside the boundary,
however, we encounter the maxima of the PSF, most
pronounced in the cusp regions.
Finally, it is instructive to look again at Fig. 10 (adapted

from Ref. [15]). This color figure demonstrates the extent to
which the caustic pattern depends on wavelength. We note

FIG. 8. Behavior of the PSF of the quadrupole SGL. The actual PSF, shown in blue, is as prescribed by (89) [or, effectively, from (30)
with ϕ ¼ π

4
and ϕs absent.] The PSF, as modeled by (100), is shown in red. To highlight the relationship between the approximation and

the high spatial frequency oscillations of the actual PSF, a different parametrization is used: J2 sin2 βs ¼ 2 × 10−7, with λ ¼ 1 μm.
Horizontal axis is in meters; vertical axis is dimensionless. Note that the optical axis is to the right of this image, ≈127.4 m from the
origin. As in Fig. 7, the caustic boundary is marked by a thick gray vertical bar at the origin of the coordinate system.
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that the cusps are dominated by white; the location of the
cusps is independent of wavelength, and the magnitude of
the signal is much larger than any wavelength-dependent
oscillations that modulate it. Elsewhere, in contrast, the
colors of the rainbow emerge as the spatial wavelengths of
the various oscillating patterns that we see depend on k.

This remains true outside the caustic boundary as well,
since the Airy pattern associated with the monopole PSF is
also wavelength dependent; this dependence is lost only if
we average the signal over an area that is significantly
larger than the spatial wavelength, as demonstrated in
Ref. [15].

D. Computing the PSF

In the preceding subsections, we presented a series of
approximations that shed light on the behavior of the PSF
of an axially symmetric gravitational lens, with special
emphasis on the dominating quadrupole moment. We also
established relationships with previously known results
from the literature.
In these discussions, we were able to make comparisons

between approximations and the true value of the PSF
because of the power of the angular eikonal integral (12).
Though this integral requires numerical evaluation, in the
vicinity of the optical axis, this evaluation can be accom-
plished using a modest number of integration steps. As a
result, Eq. (12) can be readily used to compute the PSF in the
presence of an arbitrary combination of the J2…J8 multi-
poles (higher multipoles could be included just as easily, but
for the SGL, they do not contribute significantly).
We implemented Eq. (12) in the form of a program in the

C++ language, calculating the PSF, that is to say, light from
a point source, projected by the SGL onto the image plane.
The program is parametrized by the location (relative to the
optical axis) and size of the area of interest in the image
plane and the desired resolution. Physical parameters

FIG. 9. Another view of the astroid caustic boundary (red), projected onto a surface plot of the PSF, which was generated using the
same parametrization as Fig. 4. We note that the magnitude of the PSF varies strongly along the caustic boundary.

FIG. 10. Wavelength dependence of the astroid caustic, shown
using colors of the rainbow. Adapted from Ref. [15].
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include the wavelength, the distance r from the Sun, and the
direction with respect to the solar axis of rotation, as
characterized by sin βs, with the angle βs defined by (3).
Additionally, the program allows us to manually adjust
the values of J2…8 individually, in order to explore the
magnitude of the relative contributions of these coeffi-
cients to image formation. The output of this program is a
binary array of floating-point numbers, representing light
intensity in the image plane sampled at the requested
resolution.
When only even-numbered zonal harmonics are present

(which is the case for the Sun), computational time can be
saved by calculating only one quadrant of the PSF; the
other three quadrants can then be obtained using appro-
priately rotated copies of the quadrant that was calculated.
A utility program that accomplishes this is one of sev-
eral utilities we developed for the postprocessing of
images using command-line pipelining. Finally, images
are converted from the floating-point representation to
standard formats using the open-source software package
ImageMagick, which has the ability to convert from user-
defined formats to standards such as JPEG or PNG.
To generate the three-dimensional Fig. 9, additional tools

were required, as off-the-shelf plotting software could not
readily render the caustic boundary onto the extruded three-
dimensional (3D) representation of the PSF. For this, we
employed standard graphics processing algorithms to
rotate, extrude, and project a precomputed representation
of the PSF, while superimposing the (also precomputed)
caustic boundary onto the resulting image. This utility joins
a growing library of short programs that we are construct-
ing to efficiently process various representations of the PSF
and the resulting images, for future study. The resulting
datasets can also be readily processed using the FFmpeg

software library of subroutines and utilities to create
animated presentations. Additional extensions, which
allow our software tools to represent the SGL far from
the optical axis, and which allow it to be convolved with
the PSF of an optical telescope to study the resulting
formation of the (partial or full) Einstein-ring around the
Sun, are also under development and will be used in our
future work.

V. CONCLUSIONS

In this paper, we studied the caustics formed by a
realistic gravitational lens using the angular eikonal
method, with particular attention paid to the case of the
solar gravitational lens, the SGL. As we remarked in
Ref. [15], nothing is perfect in our Universe, not even
the Sun. Its gravitational field is not perfectly spherically
symmetric. In this paper, we have studied the optical
properties of the axisymmetric SGL described in terms
of zonal harmonics and the caustics formed by the
diffraction of light in solar gravity field. To this end, we
developed a wave-optical treatment of light propagation in

the vicinity of the Sun. This work is important for our
ongoing efforts on studying the SGL as the means for
multipixel imaging of exoplanets [19,20] in the context of a
realistic space mission [31].
As we have demonstrated here, oblateness (i.e., non-

vanishing zonal harmonics) changes the structure and thus
the optical properties of the SGL. Its PSF is now given by a
set of superimposed caustics, each with a unique set of
cusps and folds. As a result, light from a point source is not
focused around a point [as in the case of the monopole with
PSF0ðxÞ ¼ J20ðk

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
ρÞ], but it is distributed over the

caustic region.
The approach presented here may used to quantify the

amount of light deposited at various locations in the image
plane. Specifically, we can determine

(i) how much light is deposited along the caustic
(including the cusps and folds),

(ii) how much light falls in the interior region of the
caustic, and

(iii) how much light is scattered outside the caustic
boundary.

These questions are key to the development of an improved
understanding of the optical properties of the SGL of a
realistic Sun. The methods developed in this paper can be
applied to study the caustic formed by zonal harmonics. In
the case of the Sun, the largest caustic contribution comes
from the quadrupole moment J2. This led us to focus our
studies on the astroid caustic in particular.
We considered diffraction of light in the gravitational

field of the Sun and also interference effects in the image
plane. The combination of diffraction and interference
leads to the formation of caustics in the image plane of
the SGL. Diffraction results in different optical paths taken
by light rays as they pass by the Sun, enveloping it on all
sides. Once these rays reach the image plane, they interfere
either constructively or destructively. Axial symmetry of
the solar gravitational field makes it possible to capture this
interference process using the formalism of the dimension-
less zonal harmonic coefficients Jn.
Using this formalism, we were able to describe the

caustic patterns projected by an extended gravitational
field, such as the Sun’s, in an image plane in the strong
interference region of the gravitational lens. It has been
known that the intensity of light in the inner and outer
regions of the caustic can be modeled using the methods of
the geometric optics, WKB, and stationary phase. Such
results can provide a reasonable approximation. However,
the EM field in the immediate vicinity of the caustic
boundary must be modeled using wave-optical methods.
In this paper, we developed a suitable approximate

solution that accurately describes the EM field everywhere
in the strong interference region, including the immediate
vicinity of the cusps and folds along the caustic boundary.
Our result is generic and can describe any combination
of axisymmetric multipoles (i.e., any gravitational field
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described using zonal harmonics4). We also demonstrated
that for the special case of the quadrupole moment, the
astroid caustic, our results easily replicate the well-known
Pearcy and Airy integrals, which describe the approximate
behavior of the gravitational lens near the projected cusps
and folds, from the diffraction catastrophe theory.
A similar approach may be used to study any Jn caustic,

as described by the diffraction integral (5). The Pearcey
(cusp) and Airy (fold) diffraction catastrophes are just the
first members of a hierarchy of wave patterns decorating
the caustic singularities classified by catastrophe theory.
The diffraction catastrophes are complicated, but useful
information is contained in scaling laws describing how the
intensity increases and the fringe spacings decrease as the
wavelength λ gets smaller. Considering (84), we see that for
the cusp, the intensity increases as λ−

1
2 and the fringes

shrink as λ
1
2 along the cusp and λ

3
4 across it. For the fold, we

examine (100), to see that the intensity increases as λ−
1
3 and

the fringes shrink as λ
2
3 across it. This information will be

useful for the study of imaging with the SGL.
The caustics that these processes form are aesthetically

pleasing because they represent the natural symmetries of
an axisymmetric gravitational field. Not only do the
patterns that form in the image plane possess information
on the optical properties of the lens, the opposite is also
true—this information may be used to reconstruct the lens.
This aspect of our approach may be of critical importance
for many areas of modern astrophysics, especially those
relying on gravitational microlensing to study the structure
and the composition of distant lensing objects in the
Universe.
The results presented here may be used to describe

gravitational lensing by realistic astrophysical lenses,
including stars, spiral, and elliptical galaxies. Description
of lensing with an elliptical mass distribution generally
faces challenges in evaluating the deflection angles and
magnification matrices, ultimately requiring numerical
efforts [32]. However, if the external gravitational potential
of an object may be given in the form of an infinite set of
zonal harmonics, the complex amplitude of the resulting
EM field is (5). Even that model may further be generalized
to describe a generic matter distribution with exterior
gravitational potential possessing a more complex structure
that may be captured by an infinite set of symmetric trace-
free multipole moments [15]. As a result, with the approach
presented here, the challenges above become manageable
in a semianalytical manner within a complete wave-optical
treatment. This applicability of our approach for general
astrophysics is important, and it is currently being
investigated.

Concerning imaging with the SGL, our results presented
here can be used to evaluate the amount of light that is
received in the image plane from extended objects such as
an exoplanet, which is the subject of our ongoing work.
Results, when available, will be reported elsewhere.
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APPENDIX: LIGHT AT THE
ASTROID CAUSTIC

1. Light near the optical axis

We study the properties of the SGL PSF. For illustrative
purposes, we consider only the quadrupole term in (5),
which, in this case, may be given in the following compact
form,

Bðρ;ϕÞ ¼ 1

2π

Z
2π

0

dϕξ exp½−iðαρ cosðϕξ − ϕÞ

þ β2 cos½2ðϕξ − ϕsÞ�Þ�; ðA1Þ

where, for convenience, we used the quantities defined in
(11) as

α ¼ k

ffiffiffiffiffiffiffi
2rg
r

r
; β2 ¼ krgJ2

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgr

p �
2

sin2βs: ðA2Þ

To evaluate the integral (A1), we use the Jacobi-Anger
expansion [21]:

e�izcosϕ

¼ J0ðzÞþ2
X∞
n¼1

ðJ2nðzÞcos2nϕ� iJ2n−1ðzÞsinð2n−1ÞϕÞ:

ðA3Þ

This expansion allows one to present the β2-term (or the
quadrupole term) in (A1) as

e−iβ2 cos½2ðϕξ−ϕsÞ� ¼ J0ðβ2Þ þ 2
X∞
n¼1

ðJ2nðβ2Þ cos½4nðϕξ −ϕsÞ�

− iJ2n−1ðβ2Þ sin½2ð2n− 1Þðϕξ −ϕsÞ�Þ:
ðA4Þ

Using this expression in (A1), we have

4Though the derivation is tedious, the approach can also be
extended to describe lensing by arbitrary weak monopole-
dominated gravitational fields, represented using zonal and tesseral
harmonics, i.e., unconstrained spherical harmonic coefficients.
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Bðρ;ϕÞ ¼ 1

2π

Z
2π

0

dϕξ exp½−iðαρ cosðϕξ − ϕÞ þ β2 cos½2ðϕξ − ϕsÞ�Þ�

¼ 1

2π

Z
2π

0

dϕξe−iαρ cosðϕξ−ϕÞ
�
J0ðβ2Þ þ 2

X∞
n¼1

ðJ2nðβ2Þ cos½4nðϕξ − ϕsÞ� − iJ2n−1ðβ2Þ sin½2ð2n − 1Þðϕξ − ϕsÞ�Þ
�
:

ðA5Þ

We now recognize that

1

2π

Z
2π

0

dϕξe−iαρ cosðϕξ−ϕÞ ¼ J0ðαρÞ;
1

2π

Z
2π

0

dϕξe−iαρ cosðϕξ−ϕÞ cos½4nðϕξ − ϕsÞ� ¼ J4nðαρÞ cos½4nðϕ − ϕsÞ�;
1

2π

Z
2π

0

dϕξe−iαρ cosðϕξ−ϕÞ sin½2ð2n − 1Þðϕξ − ϕsÞ� ¼ −J2ð2n−1ÞðαρÞ sin½2ð2n − 1Þðϕ − ϕsÞ�; ðA6Þ

and rewrite (A5) as

Bðρ;ϕÞ¼ 1

2π

Z
2π

0

dϕξ exp½−iðαρcosðϕξ−ϕÞþβcos½2ðϕξ−ϕsÞ�Þ�

¼ J0ðαρÞJ0ðβ2Þþ2
X∞
n¼1

ðJ2nðβ2ÞJ4nðαρÞcos½4nðϕ−ϕsÞ�þ iJ2n−1ðβ2ÞJ2ð2n−1ÞðαρÞsin½2ð2n−1Þðϕ−ϕsÞ�Þ: ðA7Þ

Therefore, Bðρ;ϕÞ has the form

Bðρ;ϕÞ ¼
�
J0ðαρÞJ0ðβ2Þ þ 2

X∞
n¼1

J2nðβ2ÞJ4nðαρÞ cos½4nðϕ − ϕsÞ�
�

þ i

�
2
X∞
n¼1

J2n−1ðβ2ÞJ2ð2n−1ÞðαρÞ sin½2ð2n − 1Þðϕ − ϕsÞ�
�
: ðA8Þ

To derive the PSF, we need to square the expression (A8), which results in

B2ðρ;ϕÞ ¼
�
J0ðαρÞJ0ðβ2Þ þ 2

X∞
n¼1

J2nðβ2ÞJ4nðαρÞ cos½4nðϕ − ϕsÞ�
�

2

þ
�
2
X∞
n¼1

J2n−1ðβ2ÞJ2ð2n−1ÞðαρÞ sin½2ð2n − 1Þðϕ − ϕsÞ�
�

2

: ðA9Þ

Given the properties of the Bessel functions [21], we can
see that as we approach the optical axis, ρ → 0, the terms in
the expression (A9) behave as J0ðαρÞ→1 and JnðαρÞ → 0,
resulting in the following asymptotic behavior:

lim
ρ→0

B2ðρ;ϕÞ ¼ lim
ρ→0

fJ20ðαρÞJ20ðβ2Þ þOðJ2nðαρÞÞg

¼ J20ðβ2Þ ≃
2

πβ2
cos2

�
β2 −

π

4

�
: ðA10Þ

The PSF of the SGL in the spherically symmetric case (i.e.,
monopole) was given by J2ðαρÞ, which in the limit ρ → 0
yielded 1. As seen from the result (A10), in the case of a

non-negligible quadrupole contribution, the intensity of the
EM field on the optical axis is adjusted by a factor of
2=πβ2. In the case when other zonal harmonics are present,
this value is further reduced by J20ðαρÞJ20ðβ2Þ…J20ðβ2nÞ,
where β2n are the multipole terms defined similarly to that
of a quadrupole in (A2). Depending on the value of a
particular multipole, this behavior may be presented
as ð2=πβ2Þ cos2ðβ2 − π

4
Þð2=πβ4Þ cos2ðβ4 − π

4
Þ…ð2=πβ2nÞ×

cos2ðβ2n − π
4
Þ. Thus, the light intensity on the optical axis is

significantly reduced by the presence of multipole caustics,
with the majority of light being deposited in the interior
region of the caustic and, more notably, near the caustic
boundary.
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2. Light at the cusp

Using the Jacobi-Anger expansion [21] that was dis-
cussed in the preceding section, we may evaluate (A1)
directly at a cusp of the astroid caustic. As we discussed
earlier, the four cusps form when ðϕ − ϕsÞ ¼ k π

2
. For these

cusps, Eq. (A8) takes the form

Bðρ;ϕÞjϕ−ϕs¼kπ
2
¼
�
J0ðαρÞJ0ðβ2Þþ2

X∞
n¼1

J2nðβ2ÞJ4nðαρÞ
�
:

ðA11Þ

We note that along the directions toward the four cusps,
the complex amplitude Bðρ;ϕÞ is a real-valued function.
One important outcome from this observation is that there
are no wavelength-dependent phase terms and, thus, no
chromatic effects along these directions, which are char-
acterized by constructive interference.
Based on (33) and (34), the cusp is reached when

αρ ¼ 4β2, yielding the following expression for the PSF
at any of the four cusps of the astroid caustic [also from
(A9)]:

PSFcusp ¼
�
J0ðβ2ÞJ0ð4β2Þ þ 2

X∞
n¼1

J2nðβ2ÞJ4nð4β2Þ
�

2

:

ðA12Þ

Although expression (A12) is rather compact, it is not very
convenient for practical use; many terms would need to be
retained in the sum for useful accuracy. In fact, the typical
number of the required terms is n≳ β2.

3. Light in the vicinity of the cusp

To evaluate the behavior of the complex amplitude in
the regions near the cusps, we take (A1) and perform
the coordinate transformation to the caustic. For this,
without loss of generality, we set ϕs ¼ 0. Using parametric
equations describing the astroid caustic (33)–(34), we
transform (A1),

BðϕÞ ¼ 1

2π

Z
2π

0

dϕξ exp½−iβ2ðcosð2ϕξÞ þ 4 cosðϕξ − ϕÞ

− 2 sin 2ϕ sinðϕξ þ ϕÞÞ�; ðA13Þ

where the phase is equivalent to that for the β2 part of (71).
There is no closed form expression known for all the
possible values of ϕ along the caustic. Clearly, this integral
may be evaluated numerically. However, we can evaluate
this integral analytically in the small vicinity of the cusp. To
demonstrate this, we consider the cusp at ϕ ¼ 0 and expand
the phase of (A13) in the small vicinity of ϕ ¼ 0, while
treating the angles ϕ ≪ 1. Under these conditions, the
phase of (A13) transforms as

φðρ;ϕÞ ¼ −β2
�
cos 2ϕξ þ 4

�
1 −

3

2
ϕ2

�
cosϕξ þOðϕ3Þ

�

¼ −8β2
�
cos2

1

2
ϕξ −

3

4
ϕ2

�
2

þ 3ð1 − 2ϕ2Þβ2
þOðϕ3Þ; ðA14Þ

resulting in the following form of (A13):

BðϕÞ ¼ ei3ð1−2ϕ2Þβ2 1

2π

Z
2π

0

dϕξ exp

�
−i8β2

�
cos2

1

2
ϕξ −

3

4
ϕ2

�
2

þOðϕ3Þ
�
: ðA15Þ

Introducing the new variable 1
2
ϕξ ¼ u, we expand the integrand of (A15) in terms of small angle ϕ ≪ 1 and obtain the

following, valid to the order of Oðϕ3Þ,

BðϕÞe−i3ð1−2ϕ2Þβ2 ¼ 1

π

Z
π

0

du exp

�
−i8β2

�
cos2u −

3

4
ϕ2

�
2
�

¼ pFq

��
1

8
;
3

8
;
5

8
;
7

8

�
;
�
1

4
;
1

2
;
1

2
;
3

4
; 1
�
;−16β2

�
− 3iβ2 pFq

��
5

8
;
7

8
;
9

8
;
11

8

�
;
�
3

4
; 1;

5

4
;
3

2
;
3

2

�
;−16β2

�

þ 6β2

�
5β2 pFq

��
7

8
;
9

8
;
11

8
;
13

8

�
;

�
1;
5

4
;
3

2
;
3

2
;
7

4

�
;−16β2

�

þ i pFq

��
3

8
;
5

8
;
7

8
;
9

8

�
;

�
1

2
;
1

2
;
3

4
; 1;

5

4

�
;−16β2

��
ϕ2 þOðϕ3Þ: ðA16Þ

where pFq½fpg; fqg;−x� is the generalized hypergeometric function [21]. In the case of β2 ≫ 1, this expression may be
given in its asymptotic form:
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BðϕÞe−i3ð1−2ϕ2Þβ2 ¼ 1

2
ffiffiffiffiffiffiffiffi
πβ2

p cos

�
8β2 −

π

4

�

þ
ffiffiffi
π

2

r
1

32β
3
4

2

Γ
�
−
1

4

�
Γ
�
1

4

�
8Γ½3

8
�Γ½5

8
� þ iΓ½− 1

8
�Γ½1

8
�

Γ½− 1
8
�Γ2½1

8
�Γ½3

8
�Γ2½5

8
� þ

ffiffiffi
π

2

r
1

2β
1
4

2

Γ
�
1

4

�
Γ
�
3

4

�
Γ½1

8
�Γ½7

8
� − iΓ½− 3

8
�Γ½5

8
�

Γ½1
8
�Γ2½3

8
�Γ½5

8
�Γ2½7

8
�

þ
�
3

�
−

1

128

1ffiffiffiffiffiffiffiffi
πβ2

p þ i

ffiffiffiffiffi
β2
π

r ��
cos

�
8β2 −

π

4

�
− i sin

�
8β2 −

π

4

��

þ
ffiffiffi
π

2

r
3

16β
3
4

2

Γ
�
−
1

4

�
Γ
�
1

4

�
3Γ½− 3

8
�Γ½3

8
� − iΓ½− 1

8
�Γ½1

8
�

Γ2½− 3
8
�Γ½− 1

8
�Γ2½1

8
�Γ½3

8
� þ

ffiffiffi
π

2

r
3

16β
1
4

2

Γ
�
−
1

4

�
Γ
�
1

4

�
Γ½− 1

8
�Γ½1

8
� þ 8iΓ½− 3

8
�Γ½5

8
�

Γ2½− 1
8
�Γ½1

8
�Γ2½3

8
�Γ2½5

8
�

þ
ffiffiffi
π

2

r
3β

1
4

2Γ
�
1

4

�
Γ
�
3

4

�
Γ½1

8
�Γ½7

8
� þ iΓ½− 3

8
�Γ½5

8
�

Γ2½1
8
�Γ½3

8
�Γ2½5

8
�Γ½7

8
�
�
ϕ2 þOðϕ3Þ: ðA17Þ

Using this result, one may evaluate the magnitude of the PSF at the cusp of the caustic:

PSFcuspðϕÞ ≃
0.118ffiffiffiffiffi

β2
p þ

�
0.048

β
3
4

2

−
0.03

β
5
4

2

�
cos
�
8β2 −

3π

8

�
þ 0.03

β2
−
�
2β

1
4

2 cos
�
8β2 −

π

8

�
þ 0.05

�
ϕ2 þOðϕ3Þ: ðA18Þ

As a result, we see that at the cusp, the PSF reaches its largest value on the caustic, and then it decreases on both sizes
of the cusp. (Note that the PSF reaches its maximum not on the caustic boundary but inside, as discussed in Sec. IVA.)
The ϕ2-dependent term further suppresses the PSF in the region just outside the peak.
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