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The weak-field Schwarzschild and NUT solutions of general relativity are gravitoelectromagnetically
dual to each other, except on the positive z-axis. The presence of nonlocality weakens this duality and
violates it within a smeared region around the positive z-axis, whose typical transverse size is given by the
scale of nonlocality. We restore an exact nonlocal gravitoelectromagnetic duality everywhere via a
manifestly dual modification of the linearized nonlocal field equations. In the limit of vanishing nonlocality
we recover the well-known results from weak-field general relativity. Nonlocality, as a possible ultraviolet
completion of gravity, does not pose a fundamental impediment to duality structures at the linear level.
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I. INTRODUCTION

The formal similarities between general relativity and
electrodynamics were observed long ago by Einstein
himself and others: After the early work on the structure
of four-dimensional curvature by Bach [1], Rainich [2],
Einstein [3], Lanczos [4] (see also Ref. [5]) as well as Ruse
[6] in the 1920s-1940s, it was Matte [7] and Bel [8,9] who
sought to express the description of gravitational waves in a
language similar to vacuum electrodynamics. This frame-
work has since provided useful mathematical and con-
ceptual foundations for the study of gravitational waves,
and this field of research has been dubbed gravitoelectro-
magnetism (“GEM” in what follows) with many fruitful
applications in the context of classical general relativity
[10–13].
In a second step, GEM dualities allow the mapping of

gravitoelectric phenomena into gravitomagnetic ones, and
vice versa. They have been studied in a wide range of
publications; see Refs. [14–19] and references therein.
These dualities proved to be a useful tool that can simplify
calculations considerably, and it is hence no surprise that
they play an important role not only in electrodynamics, but
also black hole physics [20] as well as quantum field
theory, for example in double copy theory [21–23]. Since it
has recently been shown that scattering methods can be
employed to derive aspects of the full, nonlinear gravita-
tional theory [24,25]—in the spirit of Sakharov [26]—the
role of GEM dualities is under active investigation in that
context as well [27].

With GEM dualities playing a central role not only in
classical gravity but also in quantum field theoretical
considerations, it is natural to ask how GEM generalizes
to modified gravity theories. After all, GEM dualities prove
useful for the study of gravitational waves, which may very
well emanate from astrophysical regions with strong
gravitational fields, where such modifications of gravita-
tional theory are thought to become relevant. Moreover,
from the perspective of quantum field theory, general
relativity is not ultraviolet (UV) complete, so it is desirable
to consider duality structures of a modified gravitational
theory with improved UV behavior.
As is well known, higher-curvature gravity has UV-

improved behavior but is typically accompanied by ghosts
[28]. A certain class of nonlocal theories [29–34] sidesteps
this problem by introducing infinite-derivative kinetic
terms that do not introduce new poles in the propagator
and are hence devoid of ghost states. In the present paper
we would like to focus our attention on this class of infinite-
derivative nonlocal gravity.
Nonlocal theories of this type have received considerable

attention in the recent literature as well [35,36]. While a few
exact classical solutions have been found in the context of
gravitational waves [37,38] and cosmology [39,40], the
complexity of the nonlocal gravitational field equations has
so far prohibited a deeper study of the nonlinear regime; a
notable exception is the recent work on almost universal
spacetimes [41]. At the weak-field level, however, a
plethora of solutions has been constructed in the past years
[42–53]. The common feature of these linearized solutions
lies in two main aspects:

(i) At the location of sharp δ-shaped sources, such as
point particles, strings, or branes, the gravitational
field is smoothed out and manifestly regular.
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(ii) At distances much larger than the scale of non-
locality l, the solutions typically approach the
solution encountered in local theory.

For this reason we expect that GEM duality should be
asymptotically recovered in nonlocal theories. However, at
small distance scales this may not be the case, and this
paper is devoted to a test of this hypothesis.
We focus our attention on the well-known GEM duality

between the Schwarzschild solution [54,55]—which can be
regarded as the gravitational field of a point particle—and
the somewhat more enigmatic Taub–NUT solution [56,57]
—which may be interpreted as a semi-infinite rotating
string [58], but see also the related discussion in
Refs. [20,23,59–68]. Here, the Schwarzschild solution
serves as the archetypical gravitoelectric monopole,
whereas the Taub–NUT solution plays the role of the
gravitomagnetic monopole. Using their weak-field approx-
imations in nonlocal infinite-derivative gravity we ask: are
these geometries still dual to one another?
This paper is organized as follows: In Sec. II we briefly

introduce the framework for weak-field infinite-derivative
gravity and discuss the role of the Weyl tensor and Ricci
tensor in such theories. In Sec. III we introduce GEM
quantities for stationary spacetimes, define our notion of
GEM duality, and present the weak-field Schwarzschild
and NUT solutions in infinite-derivative gravity. Section IV
is devoted to a study of the putative GEM duality between
the two solutions. Evaluating the electric and magnetic
parts of the Weyl curvature we show that an exact GEM
duality is spoiled in the presence of nonlocality and
becomes exact everywhere except on the positive z-axis
when nonlocality vanishes. The duality can be made exact
in the local theory, and in the final part of Sec. IV we prove
that this remains true in the nonlocal case, and propose a
manifestly self-dual nonlocal model. Therein, any two
solutions that are dual in the local model are mapped into
dual nonlocal solutions, and this duality is applicable to a
wide range of stationary nonlocal infinite-derivative gravity
theories. In Sec. V we summarize our findings and address
potential future work.

II. WEAK-FIELD NONLOCAL INFINITE-
DERIVATIVE GRAVITY

Let us work in Cartesian coordinates xμ ¼ ðt; xiÞ and
xi ¼ ðx; y; zÞ such that the Minkowski metric takes the
form

ds2 ¼ ημνdxμdxν ¼ −dt2 þ dx2 þ dy2 þ dz2: ð1Þ
Moreover, let us parametrize a perturbation hμν such that
the full metric is

gμν ¼ ημν þ hμν; gμν ¼ ημν − hμν: ð2Þ

For later convenience we also define the trace of the metric
perturbation,

h ¼ ημνhμν: ð3Þ

Last, let us define the totally antisymmetric tensor ϵμνρσ as
the volume element on Minkowski spacetime. To linear
order, the spacetime curvature is

Rμνρσ ¼ ∂ν∂ ½ρhσ�μ − ∂μ∂ ½ρhσ�ν;

Rμν ¼ ηρσRμρνσ

¼ ∂ρ∂ðμhνÞρ −
1

2
ð∂μ∂νhþ□hμνÞ;

R ¼ ημνRμν ¼ ∂ρ∂σhρσ −□h; ð4Þ
where we denoted the d’Alembert and Laplace operators

□ ¼ ημν∂μ∂ν ¼ −∂2
t þ△; △ ¼ ∂2

x þ ∂2
y þ ∂2

z : ð5Þ

With the geometric setup in place, let us now study the
weak-field model of nonlocal infinite-derivative gravity.

A. Field equations

Let us now briefly comment on the model of infinite-
derivative gravity [35,36]. The starting point to derive the
linearized nonlocal field equations is an action of the
form [36]

S ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p
dDx

�
Rþ 1

2
RμνρσO

μνρσ
αβγδR

αβγδ

�
; ð6Þ

where the operator Oμνρσ
αβγδ contains arbitrary (infinite) orders

of covariant derivatives ∇μ as well as covariant d’Alembert
operators□; if it is a purely local object without derivatives
one recovers the higher-curvature action considered byStelle
[28]. Substituting the small perturbation hμν in the above
action, and only keeping quadratic terms as justified by the
weak-field approximation, one arrives at the following form
(for more details see, e.g., Appendix A in Ref. [44]):

S ¼ 1

2κ

Z
dDx

�
1

2
hμνað□Þ□hμν − hμνað□Þ∂μ∂αhαν

þ hμνcð□Þ∂μ∂νh −
1

2
hcð□Þ□h

þ 1

2
hμν

að□Þ − cð□Þ
□

∂μ∂ν∂α∂βhαβ
�
: ð7Þ

The resulting field equations take the form

að□Þ½□hμν − 2∂ρ∂ðμhνÞρ�
þ cð□Þ½ημνð∂ρ∂σhρσ −□hÞ þ ∂μ∂νh�

þ að□Þ − cð□Þ
□

∂μ∂ν∂ρ∂σhρσ ¼ −2κTμν; ð8Þ

where κ ¼ 8πG stands for Einstein’s gravitational constant,
and parentheses denote symmetrization,
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∂ðμhνÞα ¼
1

2
ð∂μhνα þ ∂νhμαÞ: ð9Þ

One may verify that the field equations are consistent with
∂μTμν ¼ 0. The functions að□Þ and cð□Þ are called form
factors andparametrize the nonlocality of the field equations.
They are subject to the constraint

að0Þ ¼ cð0Þ ¼ 1; ð10Þ

which guarantees a proper Newtonian limit.

B. Ricci curvature

Using Eq. (4) the field equations can be recast in terms of
the Ricci curvature tensor as follows:

að□ÞRμν −
1

2
ημνcð□ÞR −

að□Þ − cð□Þ
2□

∂μ∂νR ¼ κTμν:

ð11Þ

Note that ∂μTμν ¼ 0 implies that

að□Þ∂μ

�
Rμν −

1

2
Rημν

�
¼ 0: ð12Þ

This corresponds to the usual contracted Bianchi identity
for the Einstein tensor (in the weak-field limit), since in
infinite-derivative nonlocal field theories discussed here we
assume that the form factors are strictly nonvanishing such
that they can be inverted.
For general að□Þ and cð□Þ the field equation (11) is not

algebraic in the Ricci tensor, unlike in general relativity. In
momentum space, however, it is possible to express the
Ricci tensor via the energy-momentum tensor directly,

Rμν ¼
�
1

ak
δαμδ

β
ν þ ck

a2k − 3akck
ημνη

αβ

þ ak − ck
a2k − 3akck

kμkν
k2

ηαβ
�
κTαβ; ð13Þ

where we defined ak ¼ að−k2Þ and ck ¼ cð−k2Þ for
convenience, and k2 denotes the square of the 4-
momentum.
This implies that even at the linearized level, the

interpretation of the Ricci curvature as the “matter curva-
ture” is no longer valid in nonlocal theories of the above
type. In particular, the above considerations also show that
Ricci flat spacetimes, Rμν ¼ 0, are always vacuum space-
times, Tμν ¼ 0, but the converse is no longer true: it appears
possible to construct vacuum spacetimes that have non-
vanishing Ricci curvature.
From now on we shall focus on a special class of

nonlocal theories where

að□Þ ¼ cð□Þ: ð14Þ

Then the field equations (11) simplify to

að□Þ
�
Rμν −

1

2
ημνR

�
¼ κTμν; ð15Þ

such that the Ricci curvature can be expressed as

Rμν ¼ a−1ð□Þ
�
Tμν −

1

2
ημνT

�
: ð16Þ

Recall that in the local theory one has a ¼ 1 and hence the
Ricci tensor and the energy-momentum tensor are linked
algebraically. In nonlocal theories, even at the linear level,
this is no longer the case. The inverse operator a−1ð□Þ
always exists in nonlocal theories of this class since að□Þ
has no zeroes. In the literature it has been shown that this
inverse operator can act as a smearing operator on sharply
localized objects, mostly in the static case but also in the
time-dependent case [45,53].
This allows for the tentative interpretation of the Ricci

curvature as the “smeared out matter curvature” in this class
of nonlocal theories. Moreover, this emphasizes the special
role of the Weyl curvature in this class of theories as the
only part of curvature that is not directly specified by the
field equations. In this linear setting, the Weyl tensor can be
written as

Cμνρσ ¼ Rμνρσ − ημ½ρRσ�ν þ ην½ρRσ�μ þ
1

3
Rημ½ρησ�ν; ð17Þ

where square brackets denote antisymmetrization,

ημ½ρησ�ν ¼
1

2
ðημρησν − ημσηρνÞ: ð18Þ

The Weyl tensor can hence be interpreted as the difference
between the full Riemann curvature and the smeared out
matter curvature, and for that reason we shall refer to the
Weyl tensor as the “vacuum curvature.”

C. GFN model for nonlocal theories

In what follows we will focus our considerations on so-
called GFN theory wherein

að□Þ ¼ cð□Þ ¼ exp ½ð−l2
□ÞN �; N ∈ N; ð19Þ

and l > 0 denotes the scale of nonlocality. Clearly this
form factor satisfies að0Þ ¼ 1, which also guarantees that
one recovers the local theory in the limit l → 0. In the time-
independent case, which we study in this paper, this
simplifies further to

að△Þ ¼ exp ½ð−l2
△ÞN �; N ∈ N; ð20Þ
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with the final form of the field equations

exp ½ð−l2
△ÞN �

�
Rμν −

1

2
ημνR

�
¼ κTμν: ð21Þ

It is well known that in this case the field equations can be
interpreted as the local Einstein equations with a smeared
matter source,

Rμν −
1

2
ημνR ¼ κTeff

μν ;

Teff
μν ≡ exp ½−ð−l2△ÞN �Tμν: ð22Þ

As has been shown in the literature, if Tμν describes a
sharply concentrated matter distribution, then the effective
energy-momentum tensor is smeared out [69]. In order to
formalize this notion somewhat, as well as for later
convenience, let us introduce the concept of a smeared δ
function and a smeared Heaviside function as follows:

δðdÞl ðxÞ≡ exp ½−ð−l2
△ÞN �δðdÞðxÞ;

θlðxÞ≡ exp ½−ð−l2
△ÞN �θðxÞ: ð23Þ

Note that these functions are related via

∂xθlðxÞ ¼ δð1Þl ðxÞ; ð24Þ

which follows from the formal identity ∂xθðxÞ ¼ δð1ÞðxÞ
which can be verified in the distributional sense within an
integral. In the limiting case of l → 0 one recovers

lim
l→0

δðdÞl ðxÞ ¼ δðdÞðxÞ; lim
l→0

θlðxÞ ¼ θðxÞ ð25Þ

In the simplest case of N ¼ 1 one finds the expressions

δðdÞl ðxÞ ¼ 1

ð4πl2Þd=2 e
−x2=ð4l2Þ;

θlðxÞ ¼
1

2

�
1þ erf

�
x
2l

��
; ð26Þ

and one may verify that they satisfy Eqs. (24) and (25). Let
us mention that this smeared δ-function appears in the
definition of static nonlocal Green functions,

að△Þ△GdðxÞ ¼ −δðdÞðxÞ;
⇔ △GdðxÞ ¼ −δðdÞl ðxÞ: ð27Þ

Due to spherical symmetry Gdðx − yÞ is a function of r ¼
jx − yj and hence in what follows we may abbreviate
Gdðx − yÞ ¼ GdðrÞ. Last, let us note that the static Green
functions are related via [44]

Gdþ2ðrÞ ¼ −
1

2πr
∂GdðrÞ
∂r : ð28Þ

This allows a successive construction of nonlocal static
Green functions from just two “seed functions,” and for a
more in-depth reference on nonlocal spatial Green func-
tions we refer to Ref. [47]. In the simplest case of N ¼ 1 a
sufficient set of seed functions is

G3ðrÞ ¼
1

4πr
erf

�
r
2l

�
; ð29Þ

G4ðrÞ ¼
1

4π2r2
½1 − e−r

2=ð4l2Þ�: ð30Þ

III. STATIONARY WEAK-FIELD METRICS

In the present paper we are interested in gravitoelec-
tromagnetic properties of stationary geometries, which are
defined by the presence of a timelike Killing vector ξ ¼ ∂t
such that

Lξhμν ¼ 0; ð31Þ

where Lξ denotes the Lie derivative along ξ.

A. Gravitoelectromagnetic duality

Using this Killing vector we may define the electric and
magnetic part of the Weyl tensor as follows [8,9,19,70]:

Eij ¼ Cμiνjξ
μξν ¼ Ctitj;

Bij ¼
1

2
ϵμiρσCρσ

νjξ
μξν ¼ 1

2
ϵtiρσCρσ

tj: ð32Þ

It follows from the antisymmetry in the pairs of indices of
the Weyl tensor and the ϵ-symbol that these tensors have no
timelike components. Moreover, by the fundamental sym-
metry properties of the Weyl tensor these tensors are
symmetric and tracefree,

E½ij� ¼ B½ij� ¼ 0; ηijEij ¼ ηijBij ¼ 0: ð33Þ

Therefore, they each encompass five independent compo-
nents which encode the ten independent tensorial compo-
nents of the four-dimensional Weyl tensor.
Suppose now that one calculates Eij and Bij for a Weyl

tensor Cμνρσ. We define a duality transformation

C̃μνρσ ¼
1

2
ϵμν

αβCαβρσ; ð34Þ

which maps the Weyl tensor into its left dual. Calculating
the electric and magnetic pieces for this left dual of the
Weyl tensor one finds
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Ẽij ≡ C̃titj ¼ Bij; ð35Þ

B̃ij ≡ 1

2
ϵtiρσC̃

ρσ
tj ¼ −Eij; ð36Þ

which follows from the four-dimensional relation1

ϵμναβϵ
αβρσ ¼ −2δρ½μδ

σ
ν�: ð37Þ

This implies that, up to a sign, a duality transformation (34)
maps gravitoelectric and gravitomagnetic quantities into
each other.2

We can use this observation to define duality between
two distinct geometries hμν and h̃μν in a strict sense.
Calculate Eij and Bij for a metric hμν, and Ẽij and B̃ij

for a metric h̃μν. Then, the metrics hμν and h̃μν are dual to
each other if

Eij ¼ B̃ij; Bij ¼ −Ẽij: ð38Þ

Since we are interested in weak-field stationary metrics, let
us make the ansatz

hμνdxμdxν ¼ ϕdt2 þ 2Aidxidtþ hijdxidxj; ð39Þ

where ∂tϕ ¼ ∂tAi ¼ ∂thij ¼ 0 due to Eq. (31). It is also
useful to define the quantities

ϵijk ¼ ϵtijk; Fij ¼ ∂iAj − ∂jAi; R̄ ¼ δijRij: ð40Þ

Then, the electric and magnetic parts of the Weyl tensor can
be written as

Eij ¼ −
1

2

�
∂i∂j −

1

3
δij△

�
ϕþ 1

2

�
Rij −

1

3
R̄δij

�
; ð41Þ

Bij ¼
1

4
ð∂jϵi

klFkl − ϵij
l∂mFmlÞ ¼

1

4
∂ðiϵjÞklFkl: ð42Þ

Clearly, Eij is symmetric and tracefree. Bij is also tracefree
since ∂ ½iFjk� ¼ 0 by construction, and it is symmetric
because its antisymmetric part vanishes:

8B½ij� ¼ ð∂jϵi
kl − ∂iϵj

kl − 2ϵij
l∂kÞFkl

¼ ð∂jϵi
kl − ∂iϵj

kl − 2ϵij
a∂bδl½aδ

k
b�ÞFkl

¼ ð∂jϵi
kl − ∂iϵj

kl − 2ϵij
a∂bϵcabϵ

clkÞFkl ¼ 0; ð43Þ

where we have employed the three-dimensional identity
ϵcabϵ

cij ¼ þδi½aδ
j
b�. Note that in case of spherical symmetry

one has hij ¼ ψδij and hence one can further simplify the
structure of Eij. One finds

Eij ¼ −
1

4

�
∂i∂j −

1

3
δij△

�
ðϕþ ψÞ: ð44Þ

B. Schwarzschild and NUT solutions

Let us now apply this formalism to study the GEM
duality properties of weak-field solutions in nonlocal
infinite-derivative gravity. In what follows we will consider
the gravitational fields of a point particle (“Schwarzschild
solution”) and that of a spinning semi-infinite string (“NUT
solution”). In the derivation we assume the Lorenz
gauge ∂μh

μ
ν ¼ 1

2
∂νh.

1. Schwarzschild solution

The weak-field Schwarzschild geometry is sourced by
the distributional energy-momentum tensor

TSCHW
μν ¼ mδtμδ

t
νδ

ð3ÞðxÞ; ð45Þ
which describes a static particle of massm > 0 at rest in the
coordinate origin. Since the energy-momentum tensor is
proportional to a three-dimensional δ-function, the solution
of Eq. (21) is proportional to the nonlocal three-dimen-
sional static Green function. For N ¼ 1 it takes the form
[35,36,46,47]

hSCHWμν dxμdxν ¼ ϕdt2 þ ψðdx2 þ dy2 þ dz2Þ;

ϕ ¼ ψ ¼ κmG3ðrÞ ¼
2Gm
r

erf

�
r
2l

�
: ð46Þ

As has been discussed elsewhere in great detail, this
solution is manifestly regular at r ¼ 0 and one asymptoti-
cally recovers the weak-field Schwarzschild solution of
linearized general relativity as r=l → ∞. Since the solution
is given by the nonlocal Green function directly, it can
readily be generalized to different GFN theories.

2. NUT solution

The weak-field NUT solution, in its massless limit, is
sourced by the following energy-momentum tensor:

TNUT
μν ¼ −δtðμδ

i
νÞn

j
i∂jδ

ð1ÞðxÞδð1ÞðyÞθðzÞ; ð47Þ

where nij ¼ −nji is an antisymmetric tensor with

n≡ nxy ¼ −nyx: ð48Þ
The solution of Eq. (21) can be found analytically in the
case of N ¼ 1 [52]. Here we rewrite it in terms of the
smeared δ-function and Heaviside function as follows:

1This is the tensorial equivalent of the relation ⋆⋆ ¼ −1 one
encounters for the Hodge dual acting on differential forms on
Lorentzian manifolds. It gives rise to an almost complex structure
and allows the notion of duality.

2In general relativity, this transformation maps the mass to the
NUT parameter, and the angular momentum to the rotational
parameter of the NUT solution [19].

NONLOCALITY AND GRAVITOELECTROMAGNETIC DUALITY PHYS. REV. D 104, 024018 (2021)

024018-5



hNUTμν dxμdxν ¼ 2Axdxdtþ 2Aydydt;

Ai ¼ κn
ϵijkxjLk

ρ2
V; Lμ ¼ δμz ;

V ¼ 1

4π
þ zG3ðrÞ − 2l2θlðzÞδð2Þl ðρÞ; ð49Þ

The third term in V is interesting since it corresponds to a
smeared positive z-axis; it vanishes identically in the local
limit due to the l2-prefactor. The compact and universal
form of this solution suggests that it may be possible to
construct this metric for other GFN theories as well.3 The
metric reduces to the general relativistic expression as
ρ=l → ∞, and one recovers the previously found metric of
a slowly spinning string as z → þ∞ [50].

IV. GRAVITOELECTROMAGNETIC
SCHWARZSCHILD–NUT DUALITIES

As we have shown above, in nonlocal GFN theories the
Ricci tensor can be interpreted as a smeared matter
curvature. Its tensorial structure is hence dictated by those
of the energy-momentum tensor. In analogy to the local
case we hence study the duality properties of the Weyl
tensor alone. This step sets GFN theories apart from
(i) higher-derivative theories (even at the linear level) as
well as (ii) nonlocal models at the nonlinear level, where
such an interpretation of the Ricci curvature is in general
not possible.

A. Broken duality

With the weak-field solutions at our disposal, we can
now determine if they are dual to each other in the sense of
Eq. (38). The electric and magnetic parts of their respective
Weyl tensors via Eq. (44) and (42) are

ESCHW
ij ¼ −

κm
2

�
∂i∂jG3ðrÞ þ

1

3
δijδ

ð3Þ
l ðrÞ

�
; ð50Þ

BNUT
ij ¼ þ κn

2
½δijLk∂k − ð3þ xk∂kÞLði∂jÞ

þ xði∂jÞLk∂k�
V
ρ2

; ð51Þ

BSCHW
ij ¼ ENUT

ij ¼ 0: ð52Þ

One may verify that these tensors are indeed tracefree. The
difference of the magnetic Schwarzschild part and the
electric NUT part is zero (because both expressions vanish
identically), but the difference between the electric
Schwarzschild part and the magnetic NUT part for n → m
takes the form

Ξij ≡ ESCHW
ij ðmÞ − BNUT

ij ðn → mÞ

¼ κm
2

�
Lði∂jÞθlðzÞ −

1

3
δijδ

ð1Þ
l ðzÞ

�
δð2Þl ðρÞ ≠ 0: ð53Þ

According to our definition of GEM duality (38), the above
relation implies that these solutions are not dual to one
another. If the duality was exact, then one would have
Ξij ¼ 0. Because it does not vanish, the GEM duality
between the Schwarzschild and massless NUT solution is
broken at the linear level in the nonlocal theory.
In the local theory, however, the situation is different.

Utilizing the relations (25) in the limiting case of l → 0 one
finds instead

Ξl→0
ij ¼ κm

2

�
Lði∂jÞθðzÞ −

1

3
δijδðzÞ

�
δð2ÞðρÞ; ð54Þ

which is a distributional quantity that is nonvanishing on
the positive z-axis. This corresponds to the sometimes
overlooked fact that in weak-field general relativity the
Schwarzschild and NUT solution are only dual to each
other away from the positive z-axis, as was pointed out
some time ago by Argurio and Dehouck [17].
This calculation justifies the interpretation of the scale of

nonlocality as a regulator, since the distributional quantities
only appear in the local limit l → 0. Hence, even if physics
turns out to be ultimately local, “nonlocal regularization”
may simply serve as a tool.

B. Exact duality

As just seen, in weak-field general relativity the GEM
quantities exhibit distributional character on the positive z-
axis. The study is hence mathematically more involved
since, in principle, one would be required to employ
distributional calculus to make sense of derivatives of
distributions as encountered in Eq. (55). However, in the
nonlocal theory this is not the case, and all functions
encountered are smooth and differentiable for finite l > 0.
At any rate, in both setups there is no exact duality.
In the local weak-field theory, Bunster et al. [15] propose

a modified set of gravitational equations that is manifestly
invariant under duality transformations similar to (34),
albeit applied to the full Riemann tensor,

R̃μνρσ ¼
1

2
ϵμν

αβRαβρσ: ð55Þ

Let us call this model the “BCHPmodel” after its inventors.
In spirit, this is similar to the inclusion of magnetic
monopoles into the Maxwell equations; see Edelen [71]
and references therein. Within this BCHP model, as
Argurio and Dehouck demonstrate [17], the weak-field
Schwarzschild–NUT duality becomes exact everywhere,
including the positive z-axis. Here we would like to extend
this conclusion to our nonlocal GF1 model. This step is

3Formally it is possible to derive the NUT solution for any
GFN theory, see Appendix.
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nontrivial since the GEM duality is manifestly violated by
nonlocality.
In the BCHP model, just as in general relativity, the

fundamental variable is the metric tensor. There are,
however, two sources of gravity. The energy-momentum
tensor Tμν as well as an additional symmetric tensor Θμν

which may be viewed as a gravitomagnetic monopole
source. The gravitational equations take the form

Gμν ¼ κTμν; ð56Þ

3Rμ½ναβ� ¼ −κϵναβγΘγ
μ; ð57Þ

Rμν½αβ;γ� ¼ 0: ð58Þ

These equations are manifestly invariant under the trans-
formation ðR; R̃; T;ΘÞ → ðR̃;−R;Θ;−TÞ. This is a duality
at the level of the field equations, not to be confused with
the duality between solutions discussed earlier. Because the
equations remain form-invariant under this transformation
we call these equations “self-dual,” and we may also write
the equivalent expression

G̃μν ¼ κΘμν; ð59Þ

3R̃μ½ναβ� ¼ þκϵναβγTγ
μ; ð60Þ

R̃μν½αβ;γ� ¼ 0: ð61Þ

Here, G̃μν denotes the Einstein tensor derived from the dual
tensor R̃μνρσ. However, note that in the above Rμνρσ does not
admit the interpretation as a Riemannian curvature tensor
because it does not satisfy the algebraic Bianchi identity as
per Eq. (57).
In order to interpretΘμν as a proper source term, it should

be conserved. This can be achieved by expressing it as a
divergence of an auxiliary object Φμν

ρ such that

Θμ
ν ¼ −

1

2κ
∂αΦαμ

ν; Φμν
ρ ¼ −Φνμ

ρ: ð62Þ

The antisymmetry of Φμν
ρ implies the conservation law

∂μΘμ
ν ¼ 0. Then, the object Rμνρσ is related to the

curvature tensor (called rμνρσ in this section) via

Rμνρσ ≡ rμνρσ þ δRμνρσ;

δRμνρσ ≡ 1

4
ϵμναβð∂ρΦ̄αβ

σ − ∂σΦ̄αβ
ρÞ;

Φ̄μν
ρ ≡Φμν

ρ þ
1

2
ðδμρΦν − δνρΦμÞ; Φν ¼ Φνα

α: ð63Þ

Recall that Gμν in Eq. (56) is the Einstein tensor calculated
from Rμνρσ. For our present discussion we simply note that
the curvature tensor is modified by the presence of a

putative conserved Θμν monopole source. Just as the
Schwarzschild solution is sourced by the energy-
momentum tensor

Tμν ¼ mδtμδ
t
νδ

ð3ÞðxÞ; ð64Þ

in the BCHP model the NUT solution is sourced by

Θμν ¼ nδtμδtνδð3ÞðxÞ: ð65Þ

In order to check whether this mathematical setup solves
the duality problem, we may simply calculate the contri-
bution of the additional curvature term δRμνρσ to the
electromagnetic pieces of the Weyl tensor. To that end,
the monopole source (65) corresponds to

Φzt
t ¼ −Φtz

t ¼ 2κnδð1ÞðxÞδð1ÞðyÞθðzÞ: ð66Þ

Since the nonlocal GFN theory, at the linear level, is
equivalent to the local theory with smeared out sources,
in what follows we consider the influence of the source

Θeff
μν ¼ nδtμδtνδ

ð3Þ
l ðxÞ; ð67Þ

mediated via

Φeff zt
t ¼ −Φeff tz

t ¼ 2κnδð1Þl ðxÞδð1Þl ðyÞθlðzÞ: ð68Þ

The resulting contributions to the electric and magnetic
parts of the Weyl tensor can be readily computed:

δEij ≡ Πkl
ijδRtktl ¼ 0; ð69Þ

δBij ≡ 1

2
Πkl

ijϵtkρσδR
ρσ

tl

¼ κn
2

�
Lði∂jÞθlðzÞ −

1

3
δijδ

ð1Þ
l ðzÞ

�
δð2Þl ðρÞ; ð70Þ

where we defined the projection operator

Πkl
ij ¼ δkðiδ

l
jÞ −

1

3
ηijη

kl; ð71Þ

which extracts the symmetric and traceless part of a rank-2
tensor.4 This result for δBij precisely coincides with the
discrepancy Ξij found in Eq. (53) and thereby manifestly
restores the exact GEM duality.
The same is true for the local case, as already worked out

by Argurio and Dehouck [17]. We can recover their
solution via the limiting procedure

4We did not calculate the full Weyl tensor for the modified
Riemann tensor Rμνρσ since it violates the equality Rμ½νρσ� ¼ 0 and
has hence more irreducible pieces.
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δBl→0
ij ¼ κn

2

�
Lði∂jÞθðzÞ −

1

3
δijδ

ð1ÞðzÞ
�
δð2ÞðρÞ; ð72Þ

which is a distributional quantity nonvanishing only on the
positive z-axis. Let us emphasize that in our nonlocal GF1
model no such distributional quantities appear.
This construction shows that nonlocality, at the linear

level, exacerbates the violation of GEM duality into regions
away from the positive z-axis. However, as we just
demonstrated, it can be restored precisely by the same
procedure that is required in the local case.

C. A nonlocal BCHP model

Based on the successful application of the local BCHP
model to the weak-field sector with smeared sources, we
would like to propose the following nonlocal generalization
of the BCHP model:

fð△ÞGμν ¼ κTμν; ð73Þ

3fð△ÞRμ½ναβ� ¼ −κϵναβγΘ
γ
μ; ð74Þ

Rμν½αβ;γ� ¼ 0: ð75Þ

Here, fð△Þ is a nonlocal operator that satisfies fð0Þ ¼ 1
and is formally given as a power series of the Laplace
operator. Equivalently, due to their manifest GEM duality,
we may write the field equations as

fð△ÞG̃μν ¼ κΘμν; ð76Þ

3fð△ÞR̃μ½ναβ� ¼ þκϵναβγTγ
μ; ð77Þ

R̃μν½αβ;γ� ¼ 0: ð78Þ

Based on our previous considerations, the following metric
is a manifestly self-dual solution in this framework:

hμνdxμdxν ¼ ϕðdt2 þ dx2 þ dy2 þ dz2Þ
þ 2Axdxdtþ 2Aydydt;

ϕ ¼ 2Gm
r

erf

�
r
2l

�
; Ai ¼ κn

ϵijkxjLk

ρ2
V;

V ¼ 1

4π
þ zG3ðrÞ − 2l2θlðzÞδð2Þl ðρÞ; Lμ ¼ δμz :

ð79Þ

It is sourced by the expressions

Tμν ¼ mδtμδ
t
νδ

ð3ÞðxÞ; Θμν ¼ nδtμδtνδð3ÞðxÞ: ð80Þ

Interestingly, the restoration of GEM duality did not require
any change in the structure of the metric functions or the
source terms, and has solely been accomplished by a

modification of the field equations. The price to pay was
the interpretation of Rμνρσ as a curvature tensor: since it no
longer satisfies the algebraic Bianchi identity, it may
perhaps be regarded as a torsionful curvature tensor
[72]; see also Ref. [73].
Even though the explicit considerations of this paper are

devoted to an understanding of the linearized
Schwarzschild and NUT solutions, it is clear from the
manifestly self-dual form of the nonlocal BCHP equations
that similar relations hold for many other nonlocal sol-
utions. In fact, two static solutions that are dual in the local
BCHP model remain dual in the nonlocal extension.

D. Harnessing duality structures

In this last section we would like to briefly mention
possible applications where the duality structures can be
harnessed. To that end, recall that solutions with a given
Θμν-source can always be mapped into solutions of the
regular Einstein equations with a Tμν-source. In other
words, the modification term δRμνρσ, as per Eq. (56),
can be moved to the right-hand side and viewed as a
contribution to the energy-momentum tensor,

δTμν ¼ −
1

4κ
ð∂νϵμαβγΦαβγ − ϵμαβγ∂αΦβγ

ν

þ ϵμναβ∂αΦβ − ημνϵαβγδ∂αΦβγδÞ: ð81Þ

Is this contribution always symmetric? The answer is yes, if
and only if Θμν is symmetric, which we assume throughout
in accordance with Ref. [15]. The easiest way to prove this
is from considering the cyclic Bianchi identity (57), from
which one may derive an antisymmetric part of the
Riemann tensor

Rμναβ − Rαβμν ¼ δRμναβ − δRαβμν

¼ −
κ

2
ðϵμναλΘλ

β − ϵμνβλΘλ
α

− ϵαβμλΘλ
ν þ ϵαβνλΘλ

μÞ: ð82Þ

Note that the above expression vanishes for a pure Riemann
tensor rμναβ, which is why this contribution is proportional to
the gravitomagnetic source termΘμν. It induces a potentially
antisymmetric part to the Ricci tensor according to

δR½μα� ¼ ηνβðδRμναβ − δRαβμνÞ ¼ −κϵμαγδΘγδ: ð83Þ

However, since Θμν ¼ Θνμ, this antisymmetric part of the
Ricci tensor modification vanishes. This constitutes an
important consistency check of the resulting effective
Einstein equations.
We can use this duality structure as follows. Start with

the energy-momentum tensor Tμν of a seed metric, of which
the solution to the nonlocal Einstein equations is known.
Then, by means of the duality, set Θμν ¼ Tμν and use the
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relations above to determine the resulting energy-momen-
tum tensor from that choice. The solution of the resulting
nonlocal Einstein equation will yield the dual solution for
the original seed metric.
In the context of our previous example, we began with a

point particle solution where Tμν ∼ δtμδ
t
νδ

ð3ÞðxÞ. The weak-
field solution is the nonlocal Schwarzschild metric. Then,
one may stipulate instead a monopole source of the same
form, Θμν ∼ δtμδ

t
νδ

ð3ÞðxÞ, which gives rise to nonvanishing
components δTti with i ¼ x, y. Then, the resulting Einstein
equations are solved by the massless NUT solution. Hence
the interesting features of the BCHP model and its nonlocal
extension therefore lie in the clever distribution of matter
sources in the field equations, whereas the differential
properties of the field equations remain essentially
unchanged.
While a systematic survey of self-dual nonlocal solutions

is beyond the scope of this paper we believe that the tools
presented here serve as an ideal starting point for such
inquiries.

V. CONCLUSIONS

In this paper we have studied the fate of GEM duality for
weak-field nonlocal gravity. As a testing ground, we
considered the gravitational field of a point particle
(Schwarzschild solution, “gravitoelectric monopole”) and
a semi-infinite spinning string (massless NUT solution,
“gravitomagnetic monopole”). In the case of linearized
general relativity, these solutions are dual to each other
everywhere except on the positive z-axis, where the duality
is violated explicitly by distributional expressions. Since
the realm of violation coincides with the location of matter
sources, it may still be regarded as exact.
In this paper we showed that nonlocality smears this

violation of exact GEM duality to finite transverse dis-
tances away from the z-axis, the characteristic scale being
the scale of nonlocality l. In other words: nonlocality spoils
any exact GEM duality.
Viewed from a different perspective, the existence of δ-

sources in general relativity has long been an active field of
investigation; see the seminal work by Geroch and
Traschen [74], or the more recent discussion by Pantoja
and Rago [75]. Here we demonstrated that nonlocality can
serve as a regulator that turns distributional expressions (δ-
functions and derivatives thereof) into smooth functions.
We emphasized this feature by introducing a notion of
emergent δ-functions and Heaviside functions. In the
limiting case of l → 0, we recover the results of linearized
general relativity.
However, since the GEM duality is not exact even in

linearized general relativity due to distributional quantities
on the positive z-axis, Bunster et al. [15] developed a
manifestly dual set of gravitational field equations that

involves an additional gravitational source term. Applying
their model to the nonlocal setup with smeared matter
sources, we demonstrated that this procedure indeed solves
the duality problem in the class of nonlocal theories under
consideration in this paper. In our calculations we relied
heavily on the notion of effective δ-functions, which in the
mathematical literature are sometimes referred to as nas-
cent δ-functions: these functions depend on the scale of
nonlocality l > 0, and reduce to their usual behavior in the
limiting case of l → 0.
Last, guided by the successful adoption of the local

gravitational model by Bunster et al. to the nonlocal case,
we extended their field equations to a nonlocal model by
including infinite-derivative nonlocal form factors. We
demonstrated that this nonlocal model maps dual solutions
of the local theory into dual solutions of the nonlocal
theory, which significantly extends the conclusions from
the simple nonlocal Schwarzschild–NUT duality to far
more general scenarios. Finally, we commented on how this
self-duality structure of our nonlocal model can be
employed to construct dual solutions to well-known non-
local geometries.
Even though the considerations presented in this paper

are only applicable to the weak-field regime, they present
an important consistency check of nonlocal infinite-deriva-
tive gravity. Nonlocality, as a possible ultraviolet comple-
tion of gravity, does not pose a fundamental impediment to
duality structures at the linear level. In close proximity to
matter sources one may expect that the full, nonlinear
nonlocal theory will lead to further modifications of GEM
dualities, but we shall leave that discussion open for the
future.
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APPENDIX: DERIVATION OF THE NUT
SOLUTION

The NUT solution for weak-field nonlocal gravity has
been constructed via Laplace transform methods in
Ref. [52]. Here we would like to briefly delineate a possibly
simpler derivation of the NUT solution that simultaneously
extends to more general nonlocal theories of the GFN type.
Let us recall the energy-momentum tensor of the NUT
source,

TNUT
μν ¼ −δtðμδ

i
νÞn

j
i∂jδ

ð1ÞðxÞδð1ÞðyÞθðzÞ;
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with n ¼ nxy ¼ −nyx. Inserting the following ansatz into
the stationary field equations (21),

hNUTμν dxμdxν ¼ 2Axdxdtþ 2Aydydt; ðA1Þ

and differentiating with respect to z one finds

eð−l2△ÞN△A0
i ¼ nji∂jδ

ð3ÞðxÞ; A0
i ≡ ∂zAi: ðA2Þ

This is solved by a rotating solution, recently discussed in
Ref. [51], taking the form

A0
i ¼ −κnji∂jG3ðrÞ; r2 ¼ x2 þ y2 þ z2; ðA3Þ

eð−l2△ÞN
△G3ðxÞ ¼ −δð3ÞðxÞ: ðA4Þ

The form of G3ðrÞ is known for various N and has been
given in the literature, see e.g., Ref. [47]. The final solution
is hence obtained via integration over z,

Ai ¼ −κnij∂j

Z
z

−∞
dz̃G3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z̃2

q �
: ðA5Þ

In the simplest case for N ¼ 1 this integral can be
performed analytically and one precisely recovers
Eq. (49). Employing the recursion relation (28) for nonlocal
static Green functions one may write the equivalent

Ai ¼ 2πκ nijxj
Z

z

−∞
dz̃G5

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z̃2

q �
: ðA6Þ
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