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There is a vast literature showing the connection between a deformed relativistic kinematics and a curved
momentum space and, in particular, how the former can be obtained from the geometrical properties of the
latter. However, there is not any mention about the geometry of a multiparticle system making manifest a
possible modification in the metric of one particle due to the presence of others. In this work, we explore
how a curved momentum metric depending on the particles involved in an interaction arises when
considering a process. We also show that the principle of relative locality obtained in doubly special
relativity from an action is achieved in this geometrical framework in a direct fashion. Moreover, this
formalism allows us to generalize this principle when a curvature of spacetime is present in a natural way.
Furthermore this geometrical setup allows us to define a new momentum dependent space-time coordinates
for a multiparticle system in which locality of interactions is recovered.
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I. INTRODUCTION

One of the challenges of theoretical physics nowadays is
the formulation of a quantum gravity theory (QGT). The
main difficulty in merging quantum field theory (QFT) and
general relativity (GR) is the different role that spacetime
plays in these theories: it is a static frame in QFT and a
dynamical entity in GR. One would expect that the classical
notion of spacetime should change when considering small
scales. A completely new structure would arise, leading to a
“quantum” spacetime, with novel properties we are not able
to imagine nowadays.
This is a matter of study in the last years. For example, in

loop quantum gravity [1,2], such a structure takes the
form of a spin foam [3–6], that can be interpreted as a
“quantum” spacetime, and in causal set theory [7–9] and
string theory [10–12], nonlocality effects appear [13,14].
A different proposal of a “quantum” (modular) spacetime
in the context of string theory was recently developed in
[15], which is fully consistent with Lorentz symmetry. All
these approaches differ completely from the notion of
Einstein spacetime [16], which is constructed via the
exchange of light signals. Moreover, if there is a “quantum”
spacetime, the propagation of massless particles with
different energies could vary, for example, through an
energy dependent velocity, and Einstein’s construction
looses sense. Furthermore, the description proposed by
Einstein is useless when nonlocality effects arise.

However, the aforementioned theories are not fully
satisfactory in the sense that they do not have well-defined
testable predictions, which might serve us as a guidance in
building a theory of quantum gravity. So, instead of starting
from a possible fundamental QGT, one could consider a
different approach starting by its low energy limit.
Since the structure of the spacetime should change for

high energies, also its usual symmetries of it would be
different. Regarding Lorentz invariance, there are two main
scenarios: one can consider that for high energies, a Lorentz
invariance violation (LIV) [17,18] can arise, or that this
symmetry is deformed, leading to the theories known as
deformed special relativity (DSR) [19]. These theories are
not formulated as a QGT but as its possible a low energy,
allowing us to explore possible phenomenological impli-
cations which might serve us as a guidance in building a
fundamental theory of quantum gravity.
LIV scenarios modify the kinematics of special relativity

(SR) with the introduction of a deformed dispersion
relation. New terms proportional to the inverse of a
high-energy scale (normally considered to be the Planck
scale) are added to the usual quadratic expression of SR.
However, in DSR theories, besides the possibility of a
deformed dispersion relation,1 there are some deformed
conservation laws for the momenta implying that the total
momentum of a system of two (or more) particles is not
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1This ingredient is not an essential element in the kinematics of
DSR. For example, in the so-called “classical basis” of κ-Poincaré
[20], the dispersion relation is the usual one of SR.
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derivable as the trivial sum of the initial momenta as in SR,
but involves instead additional terms depending on both
momenta and on the high-energy scale. Furthermore, in
order to have a relativity principle present in these theories,
it is mandatory to have deformed Lorentz transformations
for the multiparticle system, making the deformed
dispersion relation compatible with the conservation laws.
As commented above, a “quantum” spacetime could

induce some unexpected features in particle kinematics;
for example, the velocity of massless particles could depend
on their energy, or the interactions become nonlocal. The
first possible effect can be parametrized by a deformed
dispersion relation, an ingredient that appears in both LIV
and DSR scenarios. However, the lack of locality of
interactions is only present in DSR theories due to the
deformation of the conservation law of momenta, an
effect known as relative locality [21]. This can be easily
understood just regarding the momentum as the genera-
tors of translations in spacetime: since the totalmomentum is
a nonlinear function of the momenta of the particles,
translations are different for each particle involved in the
process.
The idea of a curved momentum space was first

proposed by Born [22] in the 1930’s in order to get rid
of the ultraviolet divergences appearing in QFT. But some
years ago, it started to be considered as a way to go beyond
SR. In this context, a different perspective of a deformation
of SR kinematics based on the Born geometry (studied
within string theory context in [23–25]) of a doubled phase
space has led to replacing the classical model of a free
relativistic particle by a metaparticle model [26], following
the metastring scenario proposed in [15]. Lorentz sym-
metry is in this case realized in a different way as a group of
transformations that leave the constraints, which define the
model invariant. The modified dispersion relation is iden-
tified from the poles of the momentum integral represen-
tation of the metaparticle quantum propagator instead of
directly considering the constraint in the classical action.
The loss of absolute locality associated with the modified
energy-momentum conservation law which defines the
interaction of particles in the classical model appears in
the model of metaparticles as due to the different notion of
spacetime for different metaparticles with different values
of the doubled momentum variables. The extension of the
metaparticle model to include interactions is an open
problem.
In the DSR context, it was rigorously shown that all the

ingredients of a relativistic deformed kinematics can be
obtained from a maximally symmetric momentum space
[27]. In particular, κ-Poincaré kinematics can be obtained
identifying the isometries (translations and Lorentz iso-
metries) and the squared distance of the metric with the
deformed composition law, deformed Lorentz transforma-
tions, and deformed dispersion relation, respectively
(the last two facts were previously contemplated in

Refs. [21,28]). In [29], the proposal of [27] was generalized
so allowing the metric to describe a curved spacetime, i.e., a
generalization of GR, including a deformed relativistic
kinematics, which leads to a metric in the cotangent bundle
depending on all the phase-space variables. This is a
generalization of previous works in the literature, in which
a metric that depends on the velocities (Finsler geometries)
[30–32] and momenta (Hamilton geometries) [33–35] were
regarded.
Following the relative locality idea, the study of the

propagation and interaction of particles considering a
curvature in both momentum and space-time spaces was
carried out in Ref. [36]. In that paper, an action with some
nonlocal variables (defined by the space-time tetrad) is
considered (differing from the approach of the aforemen-
tioned works in which the space-time coordinates are the
canonical conjugated variables of the momentum),
allowing them to generalize the relative locality action
[21] when a curvature in spacetime is present.
In another vein, in some recent works [37,38], it has been

shown that one can construct some noncommutative
coordinates in a two-particle system in such a way that
in these coordinates one recovers locality of interactions.
In [39], the relationship between a curved momentum space
and these generalized coordinates (in the one particle
system) was explored. In particular, it was shown that
the functions characterizing the noncommutative coordi-
nates can be identified with the (inverse of the) tetrad in a
momentum space metric.
In this work, we will see how one can describe an

interaction described by DSR kinematics in the geometrical
approach of [29,40], from which we can deduce the relative
locality principle. This forces us to consider a metric for the
phase space of two particles, depending in general on all the
momenta involved in the process. Moreover, we are able to
establish a relationship between this momentum metric and
the noncommutative coordinates of a two-particle system in
which the interactions are local. It is important to note that,
since the relative locality principle is derived from a
relativistic deformed kinematics, Lorentz covariance is
present in this loss of absolute locality of interactions
and then also in the geometrical construction proposed in
this work.
The structure of the paper is as follows. We start by

explaining how the principle of relative locality arises from
geometrical considerations for a flat spacetime in Sec. II. In
this section, we see that this defines a momentum metric
depending on all the momenta involved in the interaction.
In Sec. III, we observe that the construction of a metric in
the phase space of a two-particle system leads to a
definition of spacetime in which interactions are local.
We will apply this model to κ-Poincaré kinematics in
Sec. IV, showing how it is possible to extend this work to a
system of more than two particles, and to the most general
kinematics at first order in a Taylor expansion on the
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high-energy scale deforming the kinematics in Sec. V. In
Sec. VI, we show how to generalize the relative locality
principle for a curved spacetime. Finally, we see the
conclusions in Sec. VII.

II. RELATIVE LOCALITY IN FLAT SPACETIME

In this section, we start by resuming the original proposal
of relative locality from the following action [21]:

Sð2Þ ¼
Z

0

−∞
dτ

X
i¼1;2

½xμ−ðiÞðτÞ _p−ðiÞ
μ ðτÞ þ N−ðiÞðτÞ½Cðp−ðiÞðτÞÞ −m2

−ðiÞ��

þ
Z

∞

0

dτ
X
j¼1;2

½xμþðjÞðτÞ _pþðjÞ
μ ðτÞ þ NþðjÞðτÞ½CðpþðjÞðτÞÞ −m2

þðjÞ�� þ ξμð0Þ½Pþ
μ ð0Þ − P−

μ ð0Þ�; ð1Þ

where _a ≐ ðda=dτÞ is a derivative of the variable a with
respect to the parameter τ along the trajectory of the
particle, x−ðiÞ (xþðjÞ) are the space-time coordinates of
the in-state (out-state) particles, p−ðiÞ (pþðjÞ) their four
momenta,m−ðiÞ (mþðjÞ) their masses,P− (Pþ) the total four
momentum of the in-state (out-state) defining the deformed
composition law, CðkÞ the function of a four momentum k
defining the deformed dispersion relation, ξμð0Þ are La-
grange multipliers that implement the energy-momentum
conservation in the interaction, and N−ðiÞ (NþðjÞ) are
Lagrange multipliers implementing the dispersion relation
of in-state (out-state) particles.
Applying the variational principle to the action (1), one

obtains the end (starting) space-time coordinates of the
trajectories of the in-state (out-state) particles,

xμ−ðiÞð0Þ ¼ ξνð0Þ ∂P−
ν

∂p−ðiÞ
μ

ð0Þ;

xμþðjÞð0Þ ¼ ξνð0Þ ∂Pþ
ν

∂pþðjÞ
μ

ð0Þ: ð2Þ

We see from the previous equation that only an observer
placed at the interaction point [ξμð0Þ ¼ 0] will see the
interaction as local [all xμJð0Þ coincide, being zero]. One can
choose the Lagrange multiplier ξμð0Þ so the interaction will
be local only for one observer, but any other, one will see
the interaction as nonlocal. This shows the loss of absolute
locality, effect baptized as relative locality.

A. Relative locality from geometry:
The right particle

We are going to obtain the relative locality principle from
the geometrical approach of a metric in the cotangent
bundle used in [29,40]. In [41], a line element in the
cotangent bundle is defined as

G ¼ gμνðx; kÞdxμdxν þ gμνðx; kÞδkμδkν; ð3Þ

where

δkμ ¼ dkμ − Nνμðx; kÞdxν: ð4Þ

Here, Nνμ are the so-called coefficients of the nonlinear
connection. In GR, the coefficients of the nonlinear con-
nection are given by

Nμνðx; kÞ ¼ kρΓ
ρ
μνðxÞ; ð5Þ

where Γρ
μνðxÞ is the affine connection. Then, when the

metric is such that it does not depend on the space-time
coordinates, these coefficients vanish, making that (3)
becomes

G ¼ gμνðkÞdxμdxν þ gμνðkÞdkμdkν: ð6Þ

It is important to note that x and k are canonically
conjugated variables, having then the usual structure of
Poisson brackets,

fkν; xμg ¼ δμν : ð7Þ

As we commented in the Introduction, the composition
law is defined as the isometries of the momentum metric,
i.e., [27],

gμνðqÞdqμdqν ¼ gμνðp ⊕ qÞdðp ⊕ qÞμdðp ⊕ qÞν; ð8Þ

which leads to

gμνðp ⊕ qÞ ¼ ∂ðp ⊕ qÞμ
∂qρ gρσðqÞ

∂ðp ⊕ qÞν
∂qσ : ð9Þ

Then, we can apply such transformation to the line
element of Eq. (6) for the flat space-time case for the sake
of simplicity (the curved space-time case will be considered
in Sec. VI). Since it is an isometry, we would have, in
principle,
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G ¼ gμνðkÞdxμdxν þ gμνðkÞdkμdkν
¼ gμνðϵ ⊕ kÞdxμdxν
þ gμνðϵ ⊕ kÞdðϵ ⊕ kÞμdðϵ ⊕ kÞν; ð10Þ

being ϵ the parameter of the translation. However, it is easy
to see that the previous equation cannot hold due to Eq. (9).
This means that the composition law is only an isometry for
the vertical line element but not for the whole line element
and in particular, not for the space-time line element. Then,
we need to consider that, in order to have an isometry of the
complete phase-space line element, the space-time coor-
dinates changes when applying a momentum translation,

G ¼ gμνðkÞdxμdxν þ gμνðkÞdkμdkν
¼ gμνðϵ ⊕ kÞdξμdξν
þ gμνðϵ ⊕ kÞdðϵ ⊕ kÞμdðϵ ⊕ kÞν: ð11Þ

Due to the relationship of Eq. (9) involving the compo-
sition law and the metric, one can find the following
differential equation:

∂xμ
∂ξρ ¼

∂ðϵ ⊕ kÞρ
∂kμ : ð12Þ

Then, one can solve it finding that

xμ ¼ ∂ðϵ ⊕ kÞρ
∂kμ ξρ þ const: ð13Þ

Without a loss of generality, one can set the constant to be
zero and then, one can particularize the previous equation
for a given phase-space point ½xð0Þ; kð0Þ�, obtaining

xμð0Þ ¼ ∂ðϵ ⊕ kð0ÞÞρ
∂kμð0Þ ξρð0Þ: ð14Þ

This shows that under an isometry in momentum space, the
space-time coordinates must also change in order to have
an isometry for the whole phase space.
Now, we are going to study what happens with space-

time coordinates when an interaction takes place. We start
by considering a 2–2 scattering process (for simplicity)
with two incoming particles with phase-space coordinates
ðy; pÞ and ðz; qÞ and two outgoing particles with phase-
space coordinates ðu; kÞ and ðw; lÞ. We consider that the
total momentum of the system of these two particles before
and after the interaction is given by

ðpð0Þ ⊕ qð0ÞÞμ ¼ ðkð0Þ ⊕ lð0ÞÞμ; ð15Þ

where 0 is representing the value of the momentum when
the interaction takes place. This total momentum is con-
served through a nonlinear composition law.

We firstly consider that the particle with momentum q in
the initial state corresponds to the one with momentum l
after the interaction. This is a very particular case used in
order to illustrate the feature of relative locality. As we will
see in Sec. II B, this simple implementation leads to some
problems for the left particle, forcing us to consider a more
general scenario in Sec. II C.
The crucial assumption we are going to consider is that,

in an interaction, the initial and final points for each particle
are depicted by isometries in phase space of the kind of
Eq. (11). Then, the momentum of each particle changes
through the momentum composition law (defined as
isometry in momentum space), and the space-time coor-
dinates changes according to it, as we saw in Eq. (14).
Then, the phase-space line element for the right particle
(with momentum q before the interaction and l after it) is

gμνðqÞdzμdzν þ gμνðqÞdqμdqν
¼ gμνðlÞdwμdwν þ gμνðlÞdlμdlν: ð16Þ

In order to make things easier, we can define an inter-
mediate state with phase-space coordinates ½ξ; ðp ⊕ qÞ�
between the previous line elements, making that

gμνðqÞdzμdzν þ gμνðqÞdqμdqν
¼ gμνðp⊕ qÞdξμdξν þ gμνðp⊕ qÞdðp⊕ qÞμdðp⊕ qÞν
¼ gμνðk⊕ lÞdξμdξν þ gμνðk⊕ lÞdðk⊕ lÞμdðk⊕ lÞν
¼ gμνðlÞdwμdwν þ gμνðlÞdlμdlν; ð17Þ

where ξ and ðp ⊕ qÞ are canonical conjugated variables
and also ξ and ðk ⊕ lÞ, since Eq. (15) holds.
Applying the same procedure of Eq. (14), we can relate

the coordinates zμ with ξμ: if ξρð0Þ is the vertex of the
interaction, i.e., a given particular coordinate defining
where the interaction takes place, then the zμð0Þ coordi-
nates of the right-ingoing particle corresponding to such
vertex is

zμð0Þ ¼ ∂ðpð0Þ ⊕ qð0ÞÞρ
∂qμð0Þ ξρð0Þ; ð18Þ

and in a similar way, for the right-outgoing particle
coordinates after the interaction,

wμð0Þ ¼ ∂ðkð0Þ ⊕ lð0ÞÞρ
∂lμð0Þ ξρð0Þ: ð19Þ

This is the same result obtained in [21] for one of the
particles. We are going to see that for the other particle
involved in the interaction this result cannot be obtained in
a direct way.
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B. Relative locality from geometry: The left particle

One could naively look for a similar derivation of the
relative locality principle for the left particle, imposing

gμνðpÞdyμdyν þ gμνðpÞdpμdpν

¼ gμνðp⊕ qÞdξμdξν þ gμνðp⊕ qÞdðp⊕ qÞμdðp⊕ qÞν
¼ gμνðk⊕ lÞdξμdξν þ gμνðk⊕ lÞdðk⊕ lÞμdðk⊕ lÞν
¼ gμνðkÞduμduν þ gμνðkÞdkμdkν: ð20Þ

However, in order to obtain the relation between the zμ and
ξμ, we have used Eq. (8), making use explicitly of the
isometry condition of the composition law (9). A similar
equation for the momentum of the left particle cannot be
addressed since

gμνðp ⊕ qÞ ≠ ∂ðp ⊕ qÞμ
∂pρ

gρσðpÞ
∂ðp ⊕ qÞν

∂pσ
; ð21Þ

which does not hold due to the nonsymmetricity of the
composition law. This impedes us to obtain the expected
result,

yμð0Þ ¼ ∂ðpð0Þ ⊕ qð0ÞÞρ
∂pμð0Þ

ξρð0Þ: ð22Þ

Therefore, we need to propose a more general scenario
than the one considered above.

C. Relative locality from geometry: Metric in phase
space for two particles

Instead of regarding a line element for each particle
separately, we can consider a line element for the whole
phase space of both particles at the same time. While this
could seem strange, note that the Lorentz transformation of
the right particle in κ-Poincaré kinematics depends on the
left momentum [42], implying that one must regard the
Lorentz transformations of the two-particle system as a
transformation in the whole phase space,

J αβ ¼ yμJ αβ
μ ðpÞ þ zμJ̃ αβ

μ ðp; qÞ: ð23Þ

Then, we propose a line element in phase space of the
form (for flat spacetime),

G2 ¼ GμνðPÞdXAdXB þGABðPÞdPAdPB; ð24Þ

where GABðPÞ is an eight-dimensional metric,

GABðPÞ ¼
�
gLLμν ðp; qÞ gLRμν ðp; qÞ
gRLμν ðp; qÞ gRRμν ðp; qÞ

�
; ð25Þ

XA ¼ ðyμ; zμÞ, PA ¼ ðpμ; qμÞ, and A, B run from 0 to 7.
Explicitly, this line element can be written as

G2 ¼ gLLμν ðp; qÞdyμdyν þ 2gLRμν ðp; qÞdyμdzν
þ gRRμν ðp; qÞdzμdzν þ gμνLLðp; qÞdpμdpν

þ 2gμνLRðp; qÞdpμdqν þ gμνRRðp; qÞdqμdqν: ð26Þ

In order to be a symmetric metric, their components
satisfy

gLLμν ðp; qÞ ¼ gLLνμ ðp; qÞ; gLRμν ðp; qÞ ¼ gRLνμ ðp; qÞ;
gRRμν ðp; qÞ ¼ gRRνμ ðp; qÞ: ð27Þ

Since we are considering only two particles in the initial
state, and this is a classical model, we have also two
particles in the final state, with phase-space coordinates
ðu; kÞ and ðw; lÞ. We want that the relative locality con-
ditions (18), (22) are satisfied. Then, we assume that the
phase-space line element (24) is the same before and after
the interaction,

G2 ¼ GABðPÞdXAdXB þ GμνðPÞdPAdPB

¼ GABðKÞdVAdVB þ GABðKÞdKAdKB; ð28Þ

where VA ¼ ðuμ; wμÞ and KA ¼ ðkμ; lμÞ. In particular, we
can define an intermediate stated as we did in Eq. (17),

GABðPÞdXAdXBþGABðPÞdPAdPB

¼ 2gμνðp⊕ qÞdξμdξνþ2gμνðp⊕ qÞdðp⊕ qÞμdðp⊕ qÞν
¼ 2gμνðk⊕ lÞdξμdξνþ2gμνðk⊕ lÞdðk⊕ lÞμdðk⊕ lÞν
¼GABðKÞdVAdVBþGABðKÞdKAdKB: ð29Þ

The factor 2 appears since we are asking for the two
particles to have the same vertex of the interaction.
Otherwise, we do not obtain the SR limit for which
interactions are local.
This problem can be simplified if we use an eight-

dimensional tetrad to depict the metric (25),

ΦA
Bðp; qÞ ¼

�φðLÞα
ðLÞμðp; qÞ φðLÞα

ðRÞμðp; qÞ
φðRÞα
ðLÞμðp; qÞ φðRÞα

ðRÞμðp; qÞ

�
; ð30Þ

such that

GABðPÞ ¼ ΦC
Aðp; qÞηCDΦD

B ðp; qÞ; ð31Þ

where
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ηCD ¼
�
ηαβ 0

0 ηαβ

�
: ð32Þ

It is easy to obtain the relationship between this tetrad
and the components of the metric (25),

gLLμν ðp; qÞ ¼ φðLÞα
ðLÞμðp; qÞηαβφðLÞβ

ðLÞνðp; qÞ
þ φðRÞα

ðLÞμðp; qÞηαβφðRÞβ
ðLÞνðp; qÞ;

gLRμν ðp; qÞ ¼ gRLνμ ðp; qÞ
¼ φðLÞα

ðLÞμðp; qÞηαβφðLÞβ
ðRÞνðp; qÞ

þ φðRÞα
ðLÞμðp; qÞηαβφðRÞβ

ðRÞνðp; qÞ;
gRRμν ðp; qÞ ¼ φðLÞα

ðRÞμðp; qÞηαβφðLÞβ
ðRÞνðp; qÞ

þ φðRÞα
ðRÞμðp; qÞηαβφðRÞβ

ðRÞνðp; qÞ: ð33Þ

Therefore, the momentum part of line element part of
Eq. (29) will be satisfied if

φα
μðp ⊕ qÞ ¼ ∂ðp ⊕ qÞμ

∂pν
φðLÞα
ðLÞνðp; qÞ

þ ∂ðp ⊕ qÞμ
∂qν φðLÞα

ðRÞνðp; qÞ;

φα
μðp ⊕ qÞ ¼ ∂ðp ⊕ qÞμ

∂pν
φðRÞα
ðLÞνðp; qÞ

þ ∂ðp ⊕ qÞμ
∂qν φðRÞα

ðRÞνðp; qÞ: ð34Þ

Since we want to recover the metric for a single particle
when there is only one momentum, we impose

φðLÞα
ðLÞνðp; 0Þ ¼ φα

μðpÞ; φðLÞα
ðRÞνð0; qÞ ¼ φðRÞα

ðLÞνðp; 0Þ ¼ 0;

φðRÞα
ðRÞνð0; qÞ ¼ φα

μðqÞ; ð35Þ

being φα
μðpÞ the (inverse of the) tetrad in momentum space,

gμνðkÞ ¼ φα
μðkÞηαβφβ

νðkÞ: ð36Þ

Then, the desired relative locality condition (22) for the
left particle can be obtained from the space-time part of the
line element of Eq. (29). In terms of tetrads, one can obtain
from Eq. (29),

φα
νðp ⊕ qÞ ¼ ∂yμ

∂ξν φ
ðLÞα
ðLÞμðp; qÞ þ

∂zμ
∂ξν φ

ðLÞα
ðRÞμðp; qÞ

¼ ∂yμ
∂ξν φ

ðRÞα
ðLÞμðp; qÞ þ

∂zμ
∂ξν φ

ðRÞα
ðRÞμðp; qÞ: ð37Þ

Therefore, due to the conditions (34), one can see that the
previous equation is satisfied if

∂yμ
∂ξν ¼

∂ðp ⊕ qÞν
∂pμ

;
∂zμ
∂ξν ¼

∂ðp ⊕ qÞν
∂qμ ; ð38Þ

which is consistent with Eqs. (18), (22).

III. DEFINITION OF SPACETIME
FROM GEOMETRY

We have seen how to introduce a metric in the phase
space of two particles in order to recover the relative
locality principle. In this section, we will see that this
geometrical construction of such metric leads us to a new
definition of spacetime.

A. Features of noncommutative spacetime

We can now define from the space-time part of the line
element (6), some new space-time coordinates as a function
of the (inverse of the) momentum tetrad,

x̃α ¼ xμφα
μðkÞ: ð39Þ

We can consider now the propagation of a free massless
particle in these noncommutative coordinates,

ds2 ¼ dxμgμνðkÞdxν ¼ dxμφα
μðkÞηαβφβ

νðkÞdxν ¼ 0: ð40Þ

Then, since _k ¼ 0 along the trajectory, we have

dx̃αηαβdx̃β ¼ 0: ð41Þ

This means that in these coordinates there is an absence
of a momentum dependence on times of flight for massless
particles. This fact was previously pointed out in [43].2 In
that paper, it is shown that, since “physical” distance (the
one defined in terms of the noncommutative coordinates)
traveled by a massless particle depends on its own
momentum, there is a cancellation of effects, making that
there is not an energy dependent time of arrival for photons.
Now we can wonder what kind of noncommutativity can

arise from this definition of spacetime. In particular, a very
interesting example is the one in which they close the κ-
Minkowski algebra [27],

fx̃μ; x̃νg ¼ 1

Λ
ðnμx̃ν − nνx̃μÞ; ð42Þ

where nμ is a fixed temporal vector (1,0,0,0).
Note that this definition of spacetime differs from the one

obtained in Hopf algebras, which in this geometrical setting
would correspond to the generators of translations in
momentum space (generators of the composition law).3

2See also [39,44,45] for a different perspective of the same
result.

3See [39] for a more complete discussion.
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B. Noncommutative spacetime and locality
of interactions

One can define a generalized spacetime, depending on
all the phase-space variables of the two-particle system, in
such a way that the space-time part of line element (24) can
be rewritten as

ds22 ¼ dỹαηαβdỹβ þ dz̃αηαβdz̃β; ð43Þ

being

ỹα ¼ yμφðLÞα
ðLÞμðp; qÞ þ zμφðLÞα

ðRÞμðp; qÞ;
z̃α ¼ yμφðRÞα

ðLÞμðp; qÞ þ zμφðRÞα
ðRÞμðp; qÞ; ð44Þ

and where we have used that momenta are constant since
we are considering that the metric does not depend on the
space-time coordinates. This defines some noncommuta-
tive coordinates in which interactions are local: from what
we saw in the previous section, it is easy to check that

ỹαð0Þ ¼ z̃αð0Þ ¼ ξ̃αð0Þ ¼ ξμð0Þφα
μðp ⊕ qÞ: ð45Þ

This a more general case of the one considered in [38], in
which the noncommutative space-time coordinates in
which interactions are local were defined as

ỹα ¼ yμφα
μðpÞ þ zμφðLÞα

ðRÞμðqÞ;
z̃α ¼ yμφðRÞα

ðLÞμðpÞ þ zμφα
μðqÞ: ð46Þ

In [38], it was also pointed out that there is not an
unequivocal way to define these φ’s functions given a
relativistic deformed kinematics, even in the restricted case
it was considered. Here, starting from a completely general
setup, there are even more possible choices. In the next
subsection, we will give a way to select these functions in
order to eliminate this ambiguity.

C. New geometrical constraints to spacetime

As commented in [38,39], there are different ways to
implement locality of interactions given a kinematics even
in the one-particle system, despite imposing that they form
a κ-Minkowski algebra. However, when considering this
geometrical approach, it is natural that, given a deformed
relativistic kinematics, the φ of one particle must be the
(inverse of the) tetrad corresponding to the metric which
has the Lorentz transformations of the one-particle system
as the Lorentz isometries (as it was noted in [39]).
Moreover, we can follow this approach and select the φ’s

functions of the two-particle system in such a way that the
Lorentz transformations of the two-particle system are the
isometries of the eight-dimensional metric. As we will see,

this is a really strong condition that determines completely
the noncommutative spacetime of a two-particle system.

IV. APPLICATION TO
κ-POINCARÉ KINEMATICS

In this section, we apply our method for constructing a
metric for a two-particle system to the kinematics of κ-
Poincaré, and we see how this procedure can be generalized
to three particles, being this easily generalizable to any
number of particles.

A. Simple basis of κ-Poincaré

In [38], a really simple basis of κ-Poincaré kinematics
was found. The composition law reads

ðp ⊕ qÞμ ¼ pμ þ ð1 − p0=ΛÞqμ: ð47Þ

The Lorentz transformations for the left particle are

J ij
0 ðkÞ ¼ 0; J ij

k ðkÞ ¼ δjkki − δikkj;

J 0j
0 ðkÞ ¼ −kjð1 − k0=ΛÞ;
J 0j

k ¼ δjkð−k0 þ ðk20 − k⃗2Þ=2ΛÞ þ kjkk=Λ; ð48Þ

while for the right one,

J̃ 0i
0 ðp; qÞ ¼ ð1 − p0=ΛÞJ 0i

0 ðqÞ;
J̃ 0i

j ðp; qÞ ¼ ð1 − p0=ΛÞJ 0i
j ðqÞ − ðδijp⃗ · q⃗ − pjqiÞ=Λ;

J̃ ij
0 ðp; qÞ ¼ J ij

0 ðqÞ; J̃ ij
k ðp; qÞ ¼ J ij

k ðqÞ: ð49Þ

In order to have a relativity principle, the total momenta
of the system for two observers must be related by a
Lorentz transformation, and then the next equation holds

ðp ⊕ qÞ0μ ¼ ðp0 ⊕ q̃Þμ; ð50Þ

where

p0
μ ¼pμþ ϵαβJ

αβ
μ ðpÞ; q̃μ ¼ qμþ ϵαβJ̃

αβ
μ ðp;qÞ: ð51Þ

From Eq. (50), given the Lorentz transformations of
Eq. (51), one can check that the following expression
holds [27]:

J αβ
μ ðp ⊕ qÞ ¼ ∂ðp ⊕ qÞμ

∂pν
J αβ

ν ðpÞ

þ ∂ðp ⊕ qÞμ
∂qν J̃ αβ

ν ðp; qÞ; ð52Þ

having then the relativity principle present in a relativistic
deformed kinematics.
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The momentum metric with these isometries can be
defined by a tetrad which satisfies Eq. (42),

φα
μðkÞ ¼ δαμð1 − k0=ΛÞ: ð53Þ

One can obtain the Casimir as the squared distance of the
metric constructed with the previous tetrad,

CðkÞ ¼ −Λ2arcsec2
�

2ðk0 − ΛÞΛ
−k20 þ k⃗2 þ 2ðk0 − ΛÞΛ

�
: ð54Þ

As it was shown in [38], this basis can be obtained from
the well-known bicrossproduct basis [42] considering the
change of momentum basis kμ → k̂μ,

ki ¼ k̂i; ð1 − k0=ΛÞ ¼ e−k̂0=Λ; ð55Þ

being the hatted variables the one corresponding to the
bicrossproduct basis. This particular basis will be used in
the following due to its simplicity both on the kinematics
and the corresponding metric.
Due to the associativity of the composition law, there is a

simple way to define the kinematics for more than two
particles. In particular, for a system of three particles
(which will be useful in the following), the generalization
of the composition law (47) is given by

ðk ⊕ ðp ⊕ qÞÞμ ¼ kμ þ ð1 − k0=ΛÞðp ⊕ qÞμ; ð56Þ

and the Lorentz transformations are

k0μ ¼ kμ þ ϵαβJ
αβ
μ ðkÞ; p̃μ ¼ pμ þ ϵαβJ̃

αβ
μ ðk; pÞ;

q̃μ ¼ qμ þ ϵαβJ̃
αβ
μ ðk ⊕ p; qÞ: ð57Þ

It is easy to see that these transformations satisfy the
generalization of Eq. (52) for three particles,

J αβ
μ ðk ⊕ ðp ⊕ qÞÞ ¼ ∂ðk ⊕ ðp ⊕ qÞÞμ

∂kν J αβ
ν ðkÞ

þ ∂ðk ⊕ ðp ⊕ qÞÞμ
∂pν

J̃ αβ
ν ðk; pÞ

þ ∂ðk ⊕ ðp ⊕ qÞÞμ
∂qν J̃ αβ

ν ðk ⊕ p; qÞ:

ð58Þ

This can be generalized for any number of particles in an
easy way.

B. Metric for the two-particle system

As it was shown in [27], when considering a tetrad
satisfying (42) and the associative composition law of
κ-Poincaré, the following relation between tetrad and
composition law is satisfied:

φμ
νðp ⊕ qÞ ¼ ∂ðp ⊕ qÞν

∂qρ φμ
ρðqÞ: ð59Þ

Then, for the particular case of κ-Poincaré, the right
particle satisfies the relative-locality condition (18). This
allows us to consider a simplified version of the eight-
dimensional tetrad (30),

Φα
μðp; qÞ ¼

�
φðLÞα
ðLÞμðp; qÞ φðLÞα

ðRÞμðp; qÞ
0 φα

μðqÞ

�
; ð60Þ

having then that the second equation of (34) is automati-
cally satisfied.
Now we can impose that the Lorentz transformations

(23) must be an isometry of the metric,

GABðPÞdXAdXB þGABðPÞdPAdPB

¼ GABðP0ÞdX0AdX0B þ GABðP0ÞdP0
AdP

0
B; ð61Þ

where X0A ¼ ðy0μ; z̃μÞ, being

y0μ ¼ yμ þ ϵαβfyμ; yρJ αβ
ρ ðpÞ þ zρJ̃ αβ

ρ ðp; qÞg;
z̃μ ¼ zμ þ ϵαβfzμ; yρJ αβ

ρ ðpÞ þ zρJ̃ αβ
ρ ðp; qÞg; ð62Þ

and P0
A ¼ ðp0

μ; q̃μÞ, both defined in (51).
Using this and the conditions (34)–(35), we obtain the

following expressions for the tetrad components of (60)
when using the kinematics described at the beginning of
this section:

φðLÞα
ðLÞμðp;qÞ ¼ δαμϕ

L
1 ðp;qÞ þ nαnμϕL

2 ðp;qÞ þ
nαqμ
Λ

ϕL
3 ðp;qÞ

þ qαnμ
Λ

ϕL
4 ðp;qÞ þ

qαqμ
Λ2

ϕL
5 ðp;qÞ;

φðLÞα
ðRÞμðp;qÞ ¼ δαμϕ

R
1 ðp; qÞ þ nαnμϕR

2 ðp; qÞ þ
nαqμ
Λ

ϕR
3 ðp;qÞ

þ qαnμ
Λ

ϕR
4 ðp;qÞ þ

qαqμ
Λ2

ϕR
5 ðp;qÞ; ð63Þ

being

ϕL
1 ðp;qÞ ¼ 1− p0=Λ;

ϕL
2 ðp;qÞ ¼

2ð1− p0=ΛÞðq20 − q⃗2Þ
q⃗2 − ðq0 − 2ΛÞ2 ;

ϕL
3 ðp;qÞ ¼ −

ϕL
4 ðp;qÞ

1− q0=Λ
¼ −2ϕL

5 ðp;qÞ ¼
4ðp0 −ΛÞΛ

q⃗2 − ðq0 − 2ΛÞ2 ;

ϕR
1 ðqÞ ¼ −q0=Λ;

ϕR
2 ðqÞ ¼ −2ϕR

3 ðqÞ ¼ −
2ðq20 − q⃗2Þ

q⃗2 − ðq0 − 2ΛÞ2 ;

ϕR
4 ðqÞ ¼ −2ϕR

5 ðqÞ ¼
4ðq0 −ΛÞΛ

q⃗2 − ðq0 − 2ΛÞ2 : ð64Þ
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Note that all the functions ϕR depend only on the second momentum.
This completely determine the metric (25) in the two-particle system,

gLLμν ðpÞ ¼ ð1 − p0=ΛÞ2ημν;
gLRμν ðp; qÞ ¼ gLRνμ ðp; qÞ

¼ 2nμnν
ðp0 − ΛÞðq20 − q⃗2ÞðΛ − q0Þ
Λ2ð4ΛðΛ − q0Þ þ q20 − q⃗2ÞÞ þ ð2qμqν − 4nνqμÞ

ðp0 − ΛÞðΛ − q0Þ
Λ2ð4ΛðΛ − q0Þ þ q20 − q⃗2ÞÞ

− nμqν
ðp0 − ΛÞð4q0Λ − 3q20 − q⃗2Þ
Λ2ð4ΛðΛ − q0Þ þ q20 − q⃗2ÞÞ þ ημν

q0ðp0 − ΛÞ
Λ2

;

gRRμν ðp; qÞ ¼
�
1 −

2q0
Λ

−
2q20
Λ2

�
ημν þ ðnνqμ þ nμqνÞ

2Λðq20 þ q⃗2Þ þ q0ðq20 − q⃗2 − 4Λ2Þ
Λ2ð4ΛðΛ − q0Þ þ q20 − q⃗2Þ

− 4nμnν
ðq20 − q⃗2Þðq0 − ΛÞ

Λð4ΛðΛ − q0Þ þ q20 − q⃗2Þ þ qμqν
ð4q0Λ − 3q20 − q⃗2Þ

Λ2ð4ΛðΛ − q0Þ þ q20 − q⃗2Þ : ð65Þ

Therefore using Eqs. (34) and (61), one can define,
without ambiguity, the spacetime of a two-particle system
given that the noncommutativity for the one-particle
system is κ-Minkowski. The crucial ingredient which
eliminates this ambiguity in defining the spacetime of a
two-particle system of [38] is the strong condition (61),
which imposes that the Lorentz transformations in the two-
particle system are the isometries of the eight-dimensional
metric.

C. Metric for more than two particles

For an interaction involving more than two particles in
the initial state (and then also in the final one, since we are
considering a classical model), the previous study can be
generalized in a simple way when the composition law is
associative. We will study the particular case of three
particles the procedure, being able to be generalized to any
number of particles.
Since we have to consider the line element of three

particles [with momenta k, p, q and total momentum
ðk ⊕ p ⊕ qÞ], we will use a generalization of the tet-
rad (60),

Φα
μðk;p;qÞ¼

0
BBB@
φð1Þα
ð1Þμðk;p;qÞ φð1Þα

ð2Þμðk;p;qÞ φð1Þα
ð3Þμðk;p;qÞ

0 φð2Þα
ð2Þμðp;qÞ φð2Þα

ð3ÞμðqÞ
0 0 φð3Þα

ð3ÞμðqÞ

1
CCCA:

ð66Þ

We take the tetrad of the two last particles p, q to be
independent of the momentum k identifying

φð2Þα
ð2Þμðp; qÞ ¼ φðLÞα

ðLÞμðp; qÞ; φð2Þα
ð3ÞμðqÞ ¼ φðLÞα

ðRÞμðqÞ;
φð3Þα
ð3ÞμðqÞ ¼ φα

μðqÞ: ð67Þ

Now Eq. (29) is generalized to

GABðPÞdXAdXB þ GABðPÞdPAdPB

¼ 3gμνðp ⊕ qÞdξμdξν
þ 3gμνðp ⊕ qÞdðp ⊕ qÞμdðp ⊕ qÞν; ð68Þ

where now the indexes A, B, run from 0 to 11 and XA and
PA represent the phase-space coordinates of a system of
three particles. The factor 3 appears since we are consid-
ering three particles involved in the interaction. This leads
to the generalization of Eq. (34) for the tetrads for the first
particle (with momentum k),

φα
μðk ⊕ p ⊕ qÞ ¼ ∂ðk ⊕ p ⊕ qÞμ

∂kν φð1Þα
ð1Þνðk; p; qÞ

þ ∂ðk ⊕ p ⊕ qÞμ
∂pν

φð1Þα
ð2Þνðk; p; qÞ

þ ∂ðk ⊕ p ⊕ qÞμ
∂qν φð1Þα

ð3Þνðk; p; qÞ: ð69Þ

Then, we can solve order by order the Eqs. (69) and the
generalization of (61) for three particles for the kinematics
described in Sec. IVA obtaining (up to the second order in
the inverse of the high-energy scale)
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φð1Þα
ð1Þμðk; p; qÞ ¼ δαμ

�
1 −

k0
Λ

�
−
pαpμ

2Λ2
þ nαpμ

Λ

�
1 −

k0 þ p0 þ q0
Λ

�
−
pαnμ
Λ

�
1 −

k0
Λ

�
−
pαqμ
Λ2

þ nαnμ
ðp⃗þ q⃗Þ2 − ðp0 þ q0Þ2

2Λ2
−
pαqμ
Λ

þ nαqμ
Λ

�
1 −

k0 − q0
Λ

�
−
qαnμ
Λ

�
1 −

k0 þ p0

Λ

�
−
qαqμ
2Λ2

;

φð1Þα
ð2Þμðp; qÞ ¼ −δαμ

�
p0

Λ
þ p0q0 − p⃗ · q⃗

Λ2

�
−
pαpμ

2Λ2
þ pαnμ

Λ
þ nαnμ

p2
0 þ 2p0q0 − p⃗2 − 2p⃗ · q⃗

2Λ2
þ pαqμ

Λ
−
nαqμ
Λ

p0

Λ
;

φð1Þα
ð3Þμðp; qÞ ¼ δαμ

�
−
q0
Λ

þ p0q0 − p⃗ · q⃗
Λ2

�
þ nαnμ

q20 − q⃗2

2Λ2
−
qαpμ

Λ2
þ qαnμ

Λ
−
qαqμ
2Λ2

: ð70Þ

We can see that there is not an easy way to extend the
tetrad for the two-particle system to a generic multiparticle
system. However, following this prescription, one can
generalize this construction for a system with any number
of particles.

V. METRIC FOR A GENERIC RELATIVISTIC
DEFORMED KINEMATICS

In Sec. II C, we proposed a systematic way to obtain the
metric in phase space for a system of two particles. In this
section, we are going to apply it to the most general
kinematics at first order in the high-energy scale obtained
in [46].
The deformed dispersion relation compatible with rota-

tional invariance as a function of the components of the
momentum is parametrized by two adimensional coeffi-
cients α1, α2,

CðpÞ ¼ p2
0 − p⃗2 þ α1

Λ
p3
0 þ

α2
Λ
p0p⃗2 ¼ m2; ð71Þ

while the deformed composition law is parametrized by
five adimensional coefficients β1, β2, γ1, γ2, γ3,

½p⊕ q�0 ¼p0þq0þ
β1
Λ
p0q0þ

β2
Λ
p⃗ · q⃗;

½p⊕ q�i ¼piþqiþ
γ1
Λ
p0qiþ

γ2
Λ
piq0þ

γ3
Λ
ϵijkpjqk; ð72Þ

where ϵijk is the Levi-Civita symbol.
The most general form of the Lorentz transformations in

the one-particle system is

½TðpÞ�0 ¼ p0 þ ðp⃗ · ξ⃗Þ þ λ1
Λ
p0ðp⃗ · ξ⃗Þ;

½TðpÞ�i ¼ pi þ p0ξi þ
λ2
Λ
p2
0ξi þ

λ3
Λ
p⃗2ξi

þ ðλ1 þ 2λ2 þ 2λ3Þ
Λ

piðp⃗ · ξ⃗Þ; ð73Þ

where ξ⃗ is the vector parameter of the boost, and the λi are
dimensionless coefficients.

The invariance of the dispersion relation under this
transformation, CðTðpÞÞ ¼ CðpÞ, requires the coefficients
of the deformed dispersion relation to be a function of those
of the boosts,

α1¼−2ðλ1þλ2þ2λ3Þ; α2 ¼ 2ðλ1þ2λ2þ3λ3Þ: ð74Þ

As we have mentioned previously, a modification in the
transformations of the two-particle system is needed in
order to have a relativity principle, making the deformed
Lorentz transformations to depend on both momenta.
Then, we are looking for a transformation such that
ðp; qÞ → ðTL

q ðpÞ; TR
pðqÞÞ, where

TL
q ðpÞ¼TðpÞþ T̄L

q ðpÞ; TR
pðqÞ¼TðqÞþ T̄R

pðqÞ: ð75Þ

When one considers the most general transformation in the
two-particle system and imposes that they are Lorentz
transformations and that they leave the deformed dispersion
relation invariant, one finally finds

½T̄L
q ðpÞ�0 ¼

ηL1
Λ
q0ðp⃗ · ξ⃗Þ þ ηL2

Λ
ðp⃗ ∧ q⃗Þ · ξ⃗;

½T̄L
q ðpÞ�i ¼

ηL1
Λ
p0q0ξi þ

ηL2
Λ
ðq0ϵijkpjξk − p0ϵijkqjξkÞ

þ ηL1
Λ
ðqiðp⃗ · ξ⃗Þ − ðp⃗ · q⃗ÞξiÞ;

½T̄R
pðqÞ�0 ¼

ηR1
Λ

p0ðq⃗ · ξ⃗Þ þ ηR2
Λ
ðq⃗ ∧ p⃗Þ · ξ⃗;

½T̄R
pðqÞ�i ¼

ηR1
Λ

q0p0ξi −
ηR2
Λ
ðp0ϵijkqjξk − q0ϵijkpjξkÞ

þ ηR1
Λ
ðpiðq⃗ · ξ⃗Þ − ðq⃗ · p⃗ÞξiÞ: ð76Þ

Using Eq. (52), one finds the following relations between
the coefficients of the composition law and those of the
deformed Lorentz transformations:

β1 ¼ 2ðλ1 þ λ2 þ 2λ3Þ; β2 ¼ −2λ3 − ηL1 − ηR1 ; ð77Þ
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γ1 ¼ λ1 þ 2λ2 þ 2λ3 − ηL1 ; γ2 ¼ λ1 þ 2λ2 þ 2λ3 − ηR1 ;

γ3 ¼ ηL2 − ηR2 : ð78Þ

The most general tetrad for one particle making the
corresponding metric invariant under the Lorentz trans-
formation of one particle (73) is

φα
μðkÞ ¼ δαμ

�
1þ ϵ1

k0
Λ

�
þ ϵ2

nαkμ
Λ

þ ϵ3
kαnμ
Λ

þ ϵ4k0
nαnμ
Λ

þ ϵ5
Λ
ϵασρνησμkρnν; ð79Þ

where

ϵ1 ¼ λ1 þ 2λ2 þ 2λ3; ϵ3 ¼ −ϵ2 þ λ1 þ 2λ2 þ 4λ3;

ϵ4 ¼ −2λ2 − 2λ3; ð80Þ

and ϵ2 and ϵ5 are free parameters.

We construct now the more general tetrad of two
particles at first order in the high-energy scale,

φðMÞα
ðNÞμ ðp; qÞ ¼ δαμ

�
δðMÞ
ðNÞ þ ϵðMÞ

ðNÞ1
p0

Λ
þ ϵðMÞ

ðNÞ2
q0
Λ

�

þ ϵðMÞ
ðNÞ3

nαpμ

Λ
þ ϵðMÞ

ðNÞ4
pαnμ
Λ

þ nαnμϵ
ðMÞ
ðNÞ5

p0

Λ

þ ϵðMÞ
ðNÞ6

nαqμ
Λ

þ ϵðMÞ
ðNÞ7

qαnμ
Λ

þ nαnμϵ
ðMÞ
ðNÞ8

q0
Λ

þ ϵðMÞ
ðNÞ9ϵ

ασρνησμpρnν þ ϵðMÞ
ðNÞ10ϵ

ασρνησμqρnν;

ð81Þ

where M, N can be L, R.
Therefore, using the procedure explained in Sec. II C,

one obtains the following expressions for the tetrads as a
function of the coefficients of the Lorentz transformations
of the two-particle system and the free coefficients of the
tetrad of one particle:

ϵðLÞðLÞ1 ¼ ϵ1; ϵðLÞðLÞ2 ¼ 0; ϵðLÞðLÞ3 ¼ ϵ2; ϵðLÞðLÞ4 ¼ ϵ3; ϵðLÞðLÞ5 ¼ ϵ4;

ϵðLÞðLÞ6 ¼ ϵ2 þ ηL1 − λ1 − 2λ2 − 2λ3; ϵðLÞðLÞ7 ¼ −ϵðLÞðLÞ6; ϵðLÞðLÞ8 ¼ 0; ϵðLÞðLÞ9 ¼ ϵ5; ϵðLÞðLÞ10 ¼ ϵ5 þ ηL2 ;

ϵðLÞðRÞ1 ¼ 0; ϵðLÞðRÞ2 ¼ ηR1 ; ϵðLÞðRÞ3 ¼ 0; ϵðLÞðRÞ4 ¼ 0; ϵðLÞðRÞ5 ¼ 0;

ϵðLÞðRÞ6 ¼ 0; ϵðLÞðRÞ7 ¼ −ηR1 ; ϵðLÞðRÞ8 ¼ 0; ϵðLÞðRÞ9 ¼ ηR2 ; ϵðLÞðRÞ10 ¼ 0;

ϵðRÞðLÞ1 ¼ ηL1 ; ϵðRÞðLÞ2 ¼ 0; ϵðRÞðLÞ3 ¼ 0; ϵðRÞðLÞ4 ¼ −ηL1 ; ϵðRÞðLÞ5 ¼ 0;

ϵðRÞðLÞ6 ¼ 0; ϵðRÞðLÞ7 ¼ 0; ϵðRÞðLÞ8 ¼ 0; ϵðRÞðLÞ9 ¼ −ηL2 ; ϵðRÞðLÞ10 ¼ 0;

ϵðRÞðRÞ1 ¼ 0; ϵðRÞðRÞ2 ¼ ϵ1; ϵðRÞðRÞ3 ¼ ϵ2 þ ηR1 − λ1 − 2λ2 − 2λ3; ϵðRÞðRÞ4 ¼ −ϵðRÞðRÞ3; ϵðRÞðRÞ5 ¼ 0;

ϵðRÞðRÞ6 ¼ ϵ2; ϵðRÞðRÞ7 ¼ ϵ3; ϵðRÞðRÞ8 ¼ ϵ4; ϵðRÞðRÞ9 ¼ ϵ5; ϵðRÞðRÞ10 ¼ ϵ5 þ ηR2 : ð82Þ

It is important to note that with this construction, we
have two free parameters, ϵ2 and ϵ5. They can be fixed by
imposing a particular algebra for the one-particle system.
For example, the noncommutative coordinates defined in
(39) satisfy the κ-Minkowski algebra (42) when ϵ5 ¼ ηL2 ¼
ηR2 ¼ 0 and ϵ2 ¼ 1þ ϵ1.
Then, we see that the way in which we obtained the

principle of relative locality can be used for any kinematics
(in a genericway order by order in an expansion series on the
high-energy scale): following the systematic way described
in Sec. II C, one can define a metric in phase space for a
system of interacting particles with any kinematics, in
particular, for the interesting cases of Snyder kinematics
[47] and the so-called hybrid models [48].
Also, it is important to note that one cannot obtain the

most general kinematics from the geometrical approach of
[27]. However, using this geometrical approach for a

multiparticle system defining an eight-dimensional momen-
tum dependent metric, one is able to use any kind of
composition law and Lorentz transformations satisfying
the relativity principle. This procedure allows us to define,
for a given relativistic kinematics, the spacetime of a
multiparticle system without ambiguity. Moreover, there
is a crucial difference between both approaches. The
construction of [27] allows us to define in a simple way a
family of relativistic kinematics (in which the generators of
Lorentz transformations and translations close an algebra),
with a deformed composition law, a deformed Casimir, and
deformed Lorentz transformations in the two-particle sys-
tem.The aimof the here presented approach is not to define a
relativistic kinematics but, given any deformed kinematics
(even the ones that are not obtained in [27]), to construct the
metric which implements the principle of relative locality,
and then, the spacetime of a multiparticle system.

GEOMETRY OF MULTIPARTICLE SYSTEMS WITH A … PHYS. REV. D 104, 024017 (2021)

024017-11



VI. RELATIVE LOCALITY
IN CURVED SPACETIME

We can obtain the relative locality principle for a curved
spacetime as we did in Sec. II for the flat case. As showed
in [29], the isometries in momentum space when the metric
depends also on the space-time coordinates are defined by a
modified composition (⊕̄),

ðp⊕̄qÞμ ¼ eνμðξÞðp̄ ⊕ q̄Þν; ð83Þ

where p → p̄μ ¼ ēνμðξÞpν, q → q̄μ ¼ ēνμðξÞqν, being ēμλðxÞ
is the inverse of the space-time tetrad eλνðxÞ, satisfy-
ing ēμλðxÞeλνðxÞ ¼ δμν .
Then, we apply this transformation on line element (3),

G ¼ gμνðx; kÞdxμdxν þ gμνðx; kÞδkμδkν
¼ gμνðξ; ϵ⊕̄kÞdξμdξν
þ gμνðξ; ϵ⊕̄kÞδðϵ⊕̄kÞμδðϵ⊕̄kÞν; ð84Þ

where δkμ¼dkμ−Nνμðx;kÞdxν and δðϵ⊕̄kÞμ ¼ dðϵ⊕̄kÞμ−
Nνμðξ; ðϵ⊕̄kÞÞdξν.
The difficulty that arises here is that the composition law

depends also on the space-time coordinates, making it
impossible to find a simple relation between the variables
ðx; kÞ and ½ξ; ðϵ⊕̄kÞ� as we did in Sec. II. The only way in
which this relationship can be obtained is by considering a
particular geometry, from which a differential equation
involving the space-time coordinate will arise, leading to
the analog version for a curved spacetime of (38). Also, one
can realize that, since everything is defined through a
metric in the cotangent bundle, all the previous results are
invariant under space-time diffeomorphisms (see [29,40]
for a discussion about diffeomorphisms in a cotangent
bundle metric).
It is important to note that, while the result in flat

spacetime can be derived from the action (1), the case for a
curved spacetime has not a direct derivation. This is due to
the fact that the composition law depends on the vertex of
the interaction, which in the action is regarded as a
Lagrange multiplier and not as a free parameter.
Notice also that this realization of relative locality in

curved spacetime is completely different from the one
obtained in [36]. In that paper, it was considered an action
and introduced some nonlocal variables (defined by the
space-time tetrad). In this case, we are able to describe the
relative locality principle in presence of a curvature on
spacetime with the canonical variables, as it is done for the
flat spacetime case.

VII. CONCLUSIONS

It is well known that a deformed relativistic kinematics
can be obtained from a curved momentum space. This

curved momentum space can be understood as a particular
metric in the cotangent bundle geometry, leading to a
momentum dependent space-time metric.
Relative locality of interactions was understood from an

action that involves the deformed composition law of
momenta. Here, we proposed a novel way to obtain this
principle from a geometrical point of view. Translations in
momentum space depicted by a deformed composition law
provoke modifications on the space-time coordinates when
regarding the line element in phase space. Then, since
during interactions, momenta change following this com-
position law, one can finally find the result of relative
locality. This forces us to consider a metric for the phase
space of two particles depending on all momenta involved
in the interaction.
From this metric, one can define some noncommutative

coordinates in a multiparticle system recovering locality of
interactions for all observers. While this construction was
found to be ambiguous in other works, our geometrical
perspective selects one particular implementation.
Since the relative locality principle is derived from a

deformed composition law, the results of this work cannot
be applied in general for LIV kinematics, in which the usual
relativistic addition law of momenta is considered.
Moreover, due to the fact that in DSR scenarios there is
a relativity principle, the geometrical construction proposed
here is invariant under deformed Lorentz transformations
compatible with the deformed composition law.
In this work, we have studied how to construct a metric

of two particles when considering a two-particle system for
the κ-Poincaré kinematics in particular, showing how this
work can be generalized for any relativistic kinematics.
Moreover, we have shown that the procedure can be
generalized for a system composed of more than two
particles. This construction is not straightforward, so that
the only way in which this can be done in general is in a
series power expansion in the high-energy scale para-
metrizing the momentum dependence of the metric.
We have also shown how to generalize the relative

locality principle for a generic curved spacetime. This can
be done thanks to our geometrical approach, since from an
action there is not a simple generalization it in order to take
into account a curvature on spacetime.
We hope to study some phenomenological consequences

of this geometrical implementation of relative locality and
go deeper in the notion of spacetime in future works.
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