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Self-force methods can be applied in calculations of the scatter angle in two-body hyperbolic
encounters, working order by order in the mass ratio (assumed small) but with no recourse to a weak-
field approximation. This, in turn, can inform ongoing efforts to construct an accurate model of the general-
relativistic binary dynamics via an effective-one-body description and other semianalytical approaches.
Existing self-force methods are to a large extent specialized to bound, inspiral orbits. Here, we develop a
technique for (numerical) self-force calculations that can efficiently tackle scatter orbits. The method is
based on a time-domain reconstruction of the metric perturbation from a scalarlike Hertz potential that
satisfies the Teukolsky equation, an idea pursued so far only for bound orbits. The crucial ingredient in this
formulation is certain jump conditions that (each multipole mode of) the Hertz potential must satisfy along
the orbit, in a 1þ 1-dimensional multipole reduction of the problem. We obtain a closed-form expression
for these jumps, for an arbitrary geodesic orbit in Schwarzschild spacetime, and present a full numerical
implementation for a scatter orbit. In this paper, we focus on method development and go only as far as
calculating the Hertz potential; a calculation of the self-force and its physical effects on the scatter orbit will
be the subject of forthcoming work.

DOI: 10.1103/PhysRevD.104.024014

I. INTRODUCTION

The post-Minkowskian (PM) theory of two-body
dynamics in General Relativity has seen a rapid progress
in recent years, thanks in part to the introduction of
radically new approaches to the problem. These include
the effective-one-body method [1–4], effective-field-theory
treatments [5–8], and the use of dictionaries that translate
between quantum scattering amplitudes and classical
gravitational dynamics (“double copy”) [9–12]. A recent
milestone is the derivation of the conservative two-body
dynamics through 4PM order [OðG4Þ] using scattering-
amplitude methods [13], and there is also progress on the
description of radiative effects [13–15].
An alternative route to high-order PM calculations is

provided by black-hole perturbation theory, i.e., methods
that rely on an expansion in the mass ratio η of the binary,
without a weak-field approximation. The remarkable effec-
tiveness of such an avenue of approach was first noted
by Damour in Ref. [3]. At least for structureless point
particles, the 2PM conservative two-body dynamics can be
inferred in full simply from the scatter angle of geodesic
orbits on a Schwarzschild background (as a function of,
say, the orbit’s energy and impact parameter). Knowledge
of the OðηÞ backreaction correction to the scatter angle—
the so-called first-order self-force correction—determines
the full conservative dynamics through 4PM order (at any
mass ratio). A second-order self-force calculation would
achieve the same, to as high an order as 6PM. Furthermore,

since at each order in η the self-force results are “exact”
(they “contain all PM terms”), such results can provide a
useful benchmark against which to assess the performance
of the PM series in the strong-field regime.
Thus, there is a motivation for self-force calculations in

scatter-orbit scenarios. Unfortunately, existing calculation
methods and codes are to a large extent tailored to tackle
bound-orbit or inspiral systems, which are relevant to
astrophysical extreme mass-ratio setups and whose study
remains the main driver of such calculations. These codes
cannot be immediately applied to scatter-type orbits. For
example, the most advanced self-force code [16] is based
on a procedure of metric reconstruction from discrete
frequency-mode solutions of the perturbation equations,
which crucially relies on the assumption that the orbit is
quasiperiodic. (Part of the issue is that the so-called “method
of extended homogeneous solutions” [17], which enables
the time-domain reconstruction of the metric perturbation
near the particle, works a priori only for bounded orbits.)
While these difficulties are unlikely insurmountable, existing
frequency-domain methods would require much further
development before they can be applied to scatter-type
orbits; see Refs. [18,19] for initial work.
Time-domain treatments offer an alternative route to

unbound-orbit calculations, bypassing some of the difficul-
ties. Reference [20] recently presented a first such
calculation, based on a numerical integration of the Lorenz-
gauge metric perturbation equations on a Schwarzschild
background, formulated as an initial-value problem in
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1þ 1 dimensions. This work did not consider scatter-type
orbits but considered the special case of a particle falling
from rest at infinity, eventually (radiation ignored) getting
trapped on an unstable circular orbit around the
Schwarzschild black hole. The method could be further
developed to tackle scatter orbits, but significant hurdles
remain. In particular, the Lorenz-gauge formulation admits
certain nonphysical, linearly growing gauge modes that
develop generically in numerical evolutions and are hard
to control [21]. These were tamed in Ref. [20] by exploiting
the asymptotic periodicity of the special “zoom-whirl” setup,
but it remains unclear how to handle the problem in the case
of hyperboliclike scattering, where similar tricks cannot be
used. Furthermore, the Lorenz-gauge formulation involves a
rather unwieldy coupled set of partial differential equations,
which impacts on computational precision and cost.
In this paper, we develop an alternative time-domain

method and illustrate its implementation for scatter orbits.
The method is based on metric reconstruction from a
scalarlike Hertz potential, which satisfies the Teukolsky
equation. The equation is solved as an evolution problem
in the time domain, and the metric perturbation is then
reconstructed from the solution (and additional, trivial
perturbation pieces) in a gauge suitable for self-force
calculations [22] (the “no-string” radiation gauge, to be
reviewed in Sec. II). This procedure circumvents the main
pitfalls of the Lorenz-gauge method: one has to solve a
single, simple hyperbolic equation, and one encounters no
problematic gauge modes.
The central idea behind our method is not new: it was

introduced by one of us with Giudice in Ref. [23], where,
however, it was fully developed and implemented only for
circular (geodesic) orbits. Here, we formulate the method
for arbitrary (geodesic) orbits and implement it numerically
for scatter orbits. We go as far as computing the Hertz
potential along the scatter orbit, in order to demonstrate the
applicability of our method and explore its performance.
We do not proceed here to calculate the self-force and its
effects on the scatter angle; this we hope to accomplish
soon in subsequent work.
We begin in Sec. II with a review of metric

reconstruction for a point-particle source in a no-string
gauge, specializing to a Schwarzschild background and
casting the procedure in a form suitable for a time-domain
implementation. In Sec. III, we then formulate an initial-
value problem for the (no-string) Hertz potential. In the
no-string construction, the spacetime outside the central
black hole is split into two vacuum domains, r > RðtÞ and
r < RðtÞ, where r and t are Schwarzschild coordinates and
r ¼ RðtÞ along the particle’s trajectory. The crucial ingre-
dient in our formulation are jump conditions that the Hertz
potential and its derivatives must satisfy on the (time-
dependent) 2-sphere r ¼ RðtÞ. These conditions are
derived in Sec. IV for an arbitrary timelike geodesic

trajectory. This is the main new result of the formulation
part of this work.
In Sec. V, we present a new code for numerical integration

of the Bardeen-Press-Teukolsky (BPT) equation in 1þ 1
dimensions on a Schwarzschild background. The code
employs a finite-difference scheme on a characteristic grid
based on Eddington-Finkelstein coordinates—a simple tried-
and-tested architecture that has worked reliably in many past
calculations of the Lorenz-gauge and scalar-field self-forces.
We demonstrate, however, how a naive implementation of
this standard scheme fails when applied to the Teukolsky
equation with spin parameter s ¼ �2, due to divergences
that develop at late time (an exponential divergence for
s ¼ þ2 and a∼t4 divergence for s ¼ −2). We attribute these
divergences to certain growing modes of the Teukolsky
equation. These modes violate the physical boundary con-
ditions, but since boundary conditions are not actively
imposed in our characteristic scheme, they are allowed to
grow. The problem persists even in vacuum evolutions. We
explain why the issue is not encountered in existing time-
domain Teukolsky codes based on hyperboloidal slicing
with compactification [24–26].
Here, restricting to the Schwarzschild case, we opt for a

simpler solution. We circumvent the problem of growing
modes by transforming to a new field variable (using a
time-domain version of the Chandrasekhar transformation),
which, in the vacuum case, satisfies the Regge-Wheeler
(RW) equation, for which the problem does not occur.
In Sec. VI, we reformulate our initial-value problem in
terms of the new variable and, in particular, derive the
necessary jump conditions for it on r ¼ RðtÞ.
In Sec. VII, we finally present a full numerical imple-

mentation of our method, for a scatter orbit. We evolve the
field equation for the RW-like variable and from it compute
(multipole mode by multipole mode) the no-string Hertz
potential along the scatter trajectory. We thus numerically
construct the necessary input for a calculation of the self-
force along the orbit.
We conclude in Sec. VIII by reviewing the extra steps

needed to carry our the calculation of the self-force from
the Hertz potential. We also discuss the prospects of
extending our method to the case of a Kerr background.
Throughout this work, we use units in which G ¼ 1 ¼ c

and adopt the metric signature ð−þþþÞ. For quantities
that arise in the Newman-Penrose formalism, we follow
the sign conventions of Ref. [27], as summarized in
Appendix A therein; for ease of reference, we review
the relevant details here, in Appendix A, specialized to the
Schwarzschild case.

II. REVIEW OF METRIC RECONSTRUCTION
IN A NO-STRING RADIATION GAUGE

In this section, we review essential results concerning
(i) the reconstruction of vacuum metric perturbations
from curvature scalars, (ii) the failure of a naive metric
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reconstruction in the presence of sources, and (iii) the
no-string reconstruction scheme for point-particle sources.
From a certain point, we will specialize to a Schwarzschild
background, introducing a decomposition of the various
fields into multipole modes but refraining from a further
frequency-mode decomposition and instead remaining in
the time domain. Our purpose here is to remind readers of
the relevant theory, introduce notation, and set up the
relevant technical background for the rest of the analysis.
We adopt the Kinnersley null tetrad eαa ¼ flα; nα;

mα; m̄αg [see Eq. (A1)], where boldface roman indices
run over 1;…; 4 and denote tetrad components: Aa ≔ eαaAα.
The legs eαa are all mutually orthogonal, except lαnα ¼ −1
and mαm̄α ¼ 1. An overbar denotes complex conjugation.
(Covariant) directional derivatives along the tetrad legs
are denoted Dl ¼ lα∇α, Dn ¼ nα∇α, Dm ¼ mα∇α, and
Dm̄ ¼ m̄α∇α (corresponding to the more customary but less
transparent D, Δ, δ, and δ̄, respectively).

A. Vacuum case

The reconstruction of vacuum metric perturbations from
curvature scalars was first prescribed in Ref. [28], but we
follow here the concise presentation by Wald [29]. In what
follows, hatted sans serif symbols (Ê; T̂;…) represent
linear differential operators on tensors.
Suppose hαβ is a solution of the vacuum Einstein’s

equation linearized about the Kerr metric:

Êh ≔ δGðhÞ ¼ 0: ð1Þ

Here, δGμν is the linearized Einstein tensor, thought of

as a differential operator Ê acting on hαβ, and we
have omitted tensorial indices for brevity. To this pertur-
bation there correspond Weyl curvature scalars Ψ0≕Ψþ
and ϱ−4Ψ4≕Ψ− [see Eq. (A3); ϱ ¼ −1=r for
Schwarzschild]. Ψ� are derived from hαβ via

T̂�h ¼ Ψ�; ð2Þ

where the operators T̂� are given explicitly in Eq. (A4).
Let Ŝ� be the operators that take the linearized Einstein’s
equation into the Teukolsky equations with spins �2,
respectively,

Ŝ�Êh ¼ Ô�Ψ�; ð3Þ

where Ô� is the Teukolsky operator given in Eq. (A6)
and Ŝ� can be read off the source side of the Teukolsky
equation (A5); these operators are given explicitly in
Eqs. (A9) and (A10). From (2) and (3), there follows
the operator identity

Ŝ�Ê ¼ Ô�T̂�: ð4Þ

Now, let Φ� be (any) solution of the adjoint1 vacuum
Teukolsky equation,

Ô†
�Φ�ð¼ Ô∓Φ�Þ ¼ 0: ð5Þ

Noting Ê is self-adjoint (Ê ¼ Ê†), we then have

ÊŜ†
�Φ� ¼ ðŜ�ÊÞ†Φ� ¼ ðÔ�T̂�Þ†Φ� ¼ T̂†

�Ô
†
�Φ� ¼ 0;

ð6Þ

where in the second equality we have used (4). Thus,
h� ≔ Ŝ†

�Φ� are (complex-valued) solutions of the vacuum
Einstein’s equation. A real-valued reconstructed solution is
given by

hrec� ≔ ReŜ†
�Φ�: ð7Þ

The explicit form of the reconstruction operator Ŝ†
� is given

in Eqs. (A12). It returns hrecþ in an ingoing radiation gauge
(IRG), and hrec− in an outgoing radiation gauge (ORG),

hrecþ1β ¼ 0 ðIRGÞ; hrec−2β ¼ 0 ðORGÞ; ð8Þ

with both perturbations being traceless.
For hrecþ and hrec− to each reproduce the original pertur-

bation h, we must have T̂�hrecþ ¼ Ψ� and T̂�hrec− ¼ Ψ�,
leading to

T̂�ReŜ
†
þΦþ ¼ Ψ� ðIRGÞ; ð9Þ

T̂�ReŜ
†
−Φ− ¼ Ψ� ðORGÞ: ð10Þ

These are the fourth-order “inversion” equations. A Hertz
potential Φþ satisfying both the adjoint Teukolsky equa-
tion (5) and either of the two inversion relations in (9) will
reproduce h up to some perturbation Δhþ that is in the
kernel of T̂þ; and a Hertz potential Φ− satisfying both (5)
and either of the two inversion relations in (10) will
reproduce h up to some perturbation Δh− that is in the
kernel of T̂−. That is,

h ¼ hrec� þ Δh�; ð11Þ

where

T̂�Δh� ¼ 0: ð12Þ

1For a linear operator L̂ taking an n-rank tensor field ϕ to an
m-rank tensor field ψ , the adjoint L̂† takes ψ to ϕ and satisfies
ðL̂†ψÞϕ ¼ ψðL̂ϕÞ (up to a divergence of an arbitrary vector field).
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Wald [30] explored the kernel of T̂�, and hence the space of
Δh�, for vacuum perturbations in Kerr. He found that Δh�
is spanned by pure gauge perturbations (which are also in
the kernel of Ê), in addition to exactly four types of
stationary and axially symmetric (algebraically special)
vacuum perturbations: a mass perturbation, an angular-
momentum perturbation, and perturbations away from Kerr
into the Kerr-NUT or the C-metric solutions.

B. Naive reconstruction with sources and its failure

The above procedure returns a solution to the vacuum
linearized Einstein’s equation (1). One may naively attempt
to generalize this method to the nonvacuum case as follows.
Suppose we wish to reconstruct a solution to

ðÊhÞαβ ¼ 8πTαβ; ð13Þ

where Tαβ is some (first-order, perturbative) source of stress
energy. It is tempting to try a Hertz potential that satisfies a
sourced equation of the form

Ô†
�Φ� ¼ S�; ð14Þ

in lieu of the vacuum equation (5). Here, the source S� is to
be determined from the condition that a metric perturbation
reconstructed via (7) is a solution to (13). By operating on
both sides of (14) with T̂†

� [the adjoint of the operator T̂
in (2)] and then using the adjoint of the operator
identity (4), one obtains the condition

Trec
αβ� ≔ ReðT̂†

�S�Þαβ ¼ 8πTαβ: ð15Þ

However, considering the form of the operators T̂†
� in

Eqs. (A14) and (A15), we immediately see that (15) has no
solutions for S�, in general. For instance, observe that Trec

αβ�
is traceless, while Tαβ need not be (and never is, in the case
of a mass particle source, of interest to us here). Also
observe that the tetrad components Trec

1βþ, T
rec
2β−, and T

rec
34� all

vanish identically, while the corresponding tetrad compo-
nents of Tαβ need not be zero. Thus, in general, our naive
reconstruction procedure fails in nonvacuum regions of
spacetime.
In recent work [31], Green et al. prescribed a modifi-

cation of the above naive approach, based on adding a
certain “corrector tensor” in Eq. (15) (together with a
“completion” piece Δh�), essentially to the effect of
balancing out the component content of the two sides of
the equation. They showed how, remarkably, the corrector
can be obtained by integrating a certain hierarchical set of
ordinary differential equations (ODEs) along null direc-
tions. There is ongoing work to demonstrate the appli-
cability of this method in practice.

C. Point-particle source

A more acute question is whether the standard vacuum
reconstruction procedure works in vacuum regions of
spacetime in the presence of sources elsewhere. It has
long been known, from analysis of the point-particle source
example [32], that this was not the case; a perturbation hrec�
reconstructed as in Eq. (7) (with or without a completion
piece Δh�) develops singularities in the vacuum region
away from the particle. This can be appreciated already
from the simple example of a static particle in flat space—
see Sec. V C. of Ref. [32] or the more detailed analysis in
Sec. VI of Ref. [22]. What one finds is that hrec� exhibits
stringlike singularities that emanate from the particle along
radial null directions. By adjusting the residual gauge
freedom (within the class of radiation gauges), one can
arrange to confine the string to either outgoing or ingoing
directions, but no choice of a radiation gauge can rid of the
strings altogether. The leading-order singular form of the
string is described in Table I of Ref. [22]. The singularly is
sufficiently strong that the perturbation field fails to be
(absolutely) integrable over a two-dimensional surface
intersecting the string, with the result that a multipole
decomposition of the field is not even well defined. Thus, a
mode-by-mode reconstruction procedure cannot work in
the entire vacuum part of spacetime containing the string.
It should be presumed that an analysis based on the new
corrector-tensor method of Ref. [31] would reproduce this
basic picture when applied to the point-particle case.
Let us describe the situation more precisely, using

some new notation that will serve us through the rest of
this work. We are interested in the case of a pointlike
particle of mass μ, moving outside a Kerr black hole (to be
specialized to Schwarzschild further below) with mass
M ≫ μ. We assume the particle’s stress energy is given
by the distribution

Tαβ ¼ μ

Z
∞

−∞
uαuβδ4ðxα − xαpðτÞÞð−gÞ−1=2dτ; ð16Þ

where xαpðτÞ describes the particle’s timelike worldline
(τ being proper time), uα ≔ dxαp=dτ, and, as usual, indices
are lowered using the background metric gαβ with deter-
minant g. In Boyer-Lindquist coordinates (and a slight
notational abuse), we write xαpðtÞ ¼ ðt; RðtÞ; θpðtÞ;φpðtÞÞ,
so that RðtÞ is the radial location of the particle at time t.
We denote by S the 2þ 1-dimensional closed surface
r ¼ RðtÞ; this is a 2-sphere through the particle at each
given time. The surface S splits the exterior of the black
hole into two disjoint regions, r > RðtÞ and r < RðtÞ,
which we call S> and S<, respectively.
As we have described, a reconstructed radiation-gauge

metric hrec� generically exhibits a string singularity in both
S> and S<: it is a “full-string” solution, in the terminology
of Ref. [22]. It is not known how to calculate the physical
self-force in such a pathological gauge, so the full-string

OLIVER LONG and LEOR BARACK PHYS. REV. D 104, 024014 (2021)

024014-4



reconstruction is not useful in the present context. As also
described, there is away to choose a radiation gauge such that
the string is confined to S> and the reconstructed perturba-
tion, denoted here h<�, is regular (smooth) anywhere in S<.
Similarly, there is a choice of radiation gauge for which the
string is confined to S<, and the perturbation, denoted h>�, is
regular (smooth) anywhere in S>. These are the two “half-
string” solutions. Reference [22] showed how the physical
self-force may be computed from either of the two half-string
solutions using a procedure that involves taking a directional
(radial) limit to the particle from its “regular” side. This
procedure may be suitable for frequency-domain calcula-
tions, where one could (in principle) integrate the relevant
radial ODE from boundary conditions either on the event
horizon or at infinity, toward the particle, working in the
regular side of spacetime. However, the half-string recon-
structions are not suitable for time-domain calculations,
where one evolves the field equations as partial differential
equations (PDEs) on the full exterior of the black hole.
This brings us to the no-string reconstruction, first

advocated in a series of papers by Friedman and collab-
orators [33–35] and later formulated in detail (and received
its name) in Ref. [22]. The idea is simple: take the two
regular sides of the two one-string solutions and glue
them together at S. The resulting, no-string perturbation is
given by

hnos� ¼ h<�ΘðRðtÞ − rÞ þ h>�Θðr − RðtÞÞ; ð17Þ

where Θð·Þ is the Heaviside step function. The perturbation
hnos� is regular (smooth) in both S< and S>, where it solves
the linearised vacuum Einstein’s equations. On S itself, hnos�
is not a vacuum solution, even away from the particle and
even when allowing arbitrary completion pieces Δhαβ in
and out of S [see Sec. VI.B.1 of Ref. [22], where it is shown
that, at least in the flat-space example, the completed no-
string solution differs from a vacuum solution by a singular
perturbation with a distributional support (a delta function)
on S]. However, this failure of the no-string solution to be
regular—or even a valid solution—on S turns out to be
inconsequential in practice. Reference [22] obtained a
formulation of the physical self-force, complete with a
practical mode-sum formula, from a no-string metric
perturbation. This formulation requires information about
the perturbation field (and its derivatives) only in the one-
sided radial limits r → RðtÞ�, which avoid S. It is this
formulation that forms the basis for Ref. [16]’s calculation
of the gravitational self-force for generic orbits in Kerr
spacetime, using a frequency-domain method.
Importantly for us here, the no-string reconstruction also,

in principle, enables calculations in the time domain. The
idea is to solve the relevant evolution equation in each of
the two vacuum regions S< and S>, with suitable jump
conditions across S. In our method, we solve directly for
the Hertz potential in the two vacuum regions—Φ<

� in

S< and Φ>
� in S>—with suitable jump conditions that

relate between Φ<
� and Φ>

� on S. The key ingredient in this
formulation is, indeed, the particular jumps necessary for
Φ≷

� to reproduce the no-string perturbation via

h≷� ≔ ReŜ†�Φ
≷
�: ð18Þ

The derivation of the required jumps, for generic geodesic
orbits in a Schwarzschild geometry, will be described
in Sec. IV.
First, however, we present a formulation of the evolution

problem for Φ≷
� via a 1þ 1-dimensional (1þ 1D) decom-

position, henceforth specializing to the Schwarzschild case.

III. 1 + 1D EVOLUTION SCHEME FOR THE
NO-STRING HERTZ POTENTIAL

A. Multipole decomposition

We recall the IRG fields Φ≷
þ and ORG fields Φ≷

− have
spin weights s ¼ −2 and s ¼ þ2, respectively. We thus
expand Φ≷

� in s ¼∓ 2 spin-weighted spherical harmonics,

Φ� ¼ Δ�2

r

X∞
l¼2

Xl
m¼−l

ϕlm
� ðt; rÞ∓2Ylmðθ;φÞ; ð19Þ

where for the time being we omit the labels ≷ for brevity.
The normalization factor Δ�2=r, where Δ ≔ rðr − 2MÞ, is
introduced (following Ref. [23]) to regulate the behavior of
the time-radial fields ϕlm

� at infinity and on the horizon: it is
such that the physical solutions (satisfying physical boun-
dary solutions) generally approach constant nonzero values
at both ends. The spherical basis functions ∓2Ylm can be
derived from standard spherical harmonics Ylmðθ;φÞ via

�2Ylm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s �∂2Ylm

∂θ2 −
�
cos θ � 2m

sin θ

� ∂Ylm

∂θ
þ
�
m2 � 2m cos θ

sin2θ

�
Ylm

�
: ð20Þ

They satisfy the differential equation

1

sin θ
∂
∂θ

�
sin θ

∂sYlm

∂θ
�
þ
�
−
m2 þ 2ms cos θ

sin2θ

− s2cot2θ þ sþ ðl − sÞðlþ sþ 1Þ
�

sYlm ¼ 0; ð21Þ

and the symmetry relation

�2Ȳlm ¼ ð−1Þm∓2Yl;−m: ð22Þ

We also note the symmetry under reflection by the
equatorial plane,
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�2Ylmðθ;φÞ ¼ ð−1Þl�2Ȳl;−mðπ − θ;φÞ; ð23Þ

to become useful further below.
For our derivation of the jump conditions across S (in

Sec. IV below), we will also need a decomposition of the
Weyl scalars in the same basis. Recalling Ψ� have spin
weights s ¼ �2, we introduce

Ψ� ¼ Δ∓2

r

X∞
l¼2

Xl
m¼−l

ψlm
� ðt; rÞ�2Ylmðθ;φÞ: ð24Þ

In what follows, we frequently drop the labels l; m off
of ϕlm

� and ψlm
� for notational economy; it should be

remembered that Φ and Ψ are the full four-dimensional
fields, while ϕ and ψ are the corresponding 1þ 1D
reductions.

B. Bardeen-Press-Teukolsky equation in 1 + 1D

With the substitution (19), the adjoint vacuum BPT
equation (5) separates into l; m modes, with each modal
function ϕ�ðt; rÞ satisfying the 1þ 1D wave equation

ϕ�
;uv þUsðrÞϕ�

;u þ VsðrÞϕ�
;v þWsðrÞϕ� ¼ 0; ð25Þ

with s ¼∓ 2 for ϕ�. Here,

UsðrÞ ¼ −
sM
r2

; VsðrÞ ¼
sf
r
; ð26Þ

WsðrÞ ¼
f
4

�ðlþ sþ 1Þðl − sÞ
r2

þ 2ð1þ sÞM
r3

�
; ð27Þ

with

f ≔ 1 − 2M=r ¼ Δ=r2: ð28Þ

We have introduced here the Eddington-Finkelstein
null coordinates v ¼ tþ r� and u ¼ t − r�, where
r� ¼ rþ 2M ln½r=ð2MÞ − 1�. Our convention is that, when
acting on a function of u and v, ∂u and ∂v are always taken
with fixed v and fixed u, respectively.
Similarly, in vacuum, the modal functions ψ�ðt; rÞ of the

Weyl scalars satisfy the 1þ 1D BPT equations

ψ�
;uv þ UsðrÞψ�

;u þ VsðrÞψ�
;v þWsðrÞψ� ¼ 0; ð29Þ

with s ¼ �2 for ψ�.

C. Inversion relations in 1 + 1 dimensions

In our method, we solve for the (modal) Hertz potential ϕ
directly, making use of neither the BPT equation (29) for ψ,
nor the inversion relations that link ψ to ϕ. However, we
will make use of the inversion relations in deriving jump

conditions for ϕ across S (this will be done in Sec. IV), and
for that purpose, we need these relations in a 1þ 1D form.
The inversion relations for Φþ and Φ− were given in

Eqs. (9) and (10), respectively. We recall there are two
alternative relations for each of the two gauges, one linking
(each of) Φ� to Ψþ and another linking them to Ψ−. In the
Schwarzschild case, the relations read

D4
lΦ̄þ ¼ 2Ψþ; ð30aÞ

Δ2D̃4
nΔ2Φ̄− ¼ 32Ψ− ð30bÞ

(“radial” inversion) and

ð̄−1ð̄0ð̄1ð̄2Φ̄þ − 12M∂tΦþ ¼ 8Ψ−; ð31aÞ

ð1ð0ð−1ð−2Φ̄− þ 12M∂tΦ− ¼ 8Ψþ ð31bÞ

(“angular” inversion). The differential operatorsDl and D̃n,
whose general definition is given just below Eq. (A6), are,
in the Schwarzschild case,

Dl ¼ ð2=fÞ∂v; D̃n ¼ −ð2=fÞ∂u: ð32Þ

The operators ðs and ð̄s are the “spin raising” and “spin
lowering” angular operators defined in Eq. (A7), whose
action on sYlmðθ;φÞ is described in Eq. (A8).
To separate the radial inversion relations (30) into

multipole modes, we first take the complex conjugate
of (19) to obtain

Φ̄� ¼ Δ�2

r

X
l;m

ϕ̄l;−m
� ð−1Þm�2Ylm; ð33Þ

where use was made of the symmetry relation (22). The
expansions (33) and (24) then separate Eqs. (30) to give, for
each l; m, the fourth-order ODEs

rΔ2D4
lðΔ2ϕlmþ =rÞ ¼ 2ð−1Þmψ̄l;−m

þ ; ð34aÞ

rD̃4
nðϕlm

− =rÞ ¼ 32ð−1Þmψ̄l;−m
− : ð34bÞ

These relations can be written in a tidier form when the
perturbation possesses a symmetry of refection about the
equatorial plane, as in the setup to be considered in this
paper: a particle source moving in the equatorial plane of
the Schwarzschild black hole. In this case, we have the
symmetry relation

ψ̄l;−m
� ¼ ð−1Þlψlm

� ; ð35Þ

which follows from the following argument. First, we note
that under the reflection transformation θ → π − θ (with
fixed t; r;φ) the tetrad legs lα and nα remain invariant,
while mα → −m̄α and m̄α → −mα [see Eqs. (A1)].
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Inspecting Eqs. (A3), we see this implies Ψ� → Ψ̄�,
assuming the perturbed Weyl tensor Cαβγδ is invariant
under such reflection. Thus, using (23), we have

Ψ�ðθÞ ¼ Ψ̄�ðπ − θÞ ¼ Δ∓2

r

X
l;m

ψ̄lm
� �2Ȳlmðπ − θÞ

¼ Δ∓2

r

X
l;m

ψ̄l;−m
� ð−1Þl�2YlmðθÞ; ð36Þ

and a comparison with (24) then leads to (35). Using (35),
we now write the 1þ 1D radial inversion relations (34) in
their final form,

rΔ2D4
lðΔ2ϕlmþ =rÞ ¼ 2pψlmþ ; ð37aÞ

rD̃4
nðϕlm

− =rÞ ¼ 32pψlm
− ; ð37bÞ

where

p ≔ ð−1Þlþm ð38Þ

is the “parity” factor. We note (37) implies the 1þ 1D
Hertz potentials share the same refection symmetry as the
1þ 1D Weyl scalars2:

ϕ̄l;−m
� ¼ ð−1Þlϕlm

� : ð39Þ

Let us next separate the angular inversion formulas (31).
Using (A8) with (33) and (39), we have

ð̄−1ð̄0ð̄1ð̄2Φ̄þ ¼ Δ2

r

X
l;m

pλ2ϕlmþ −2Ylm; ð40aÞ

ð1ð0ð−1ð−2Φ̄− ¼ Δ−2

r

X
l;m

pλ2ϕlm
− þ2Ylm; ð40bÞ

where

λn ≔
ðlþ nÞ!
ðl − nÞ! : ð41Þ

With this substitution, Eqs. (31) separate to give, for each
l; m, the first-order ODEs

∂tϕ
lm
� ∓ pαϕlm

� ¼∓ 2

3M
ψlm∓ ; ð42Þ

where

α ¼ λ2
12M

: ð43Þ

We note that it is obviously possible to solve (42) in
closed form in terms of a time integral involving ψ∓ (this
was the main result of Ref. [36]). That, however, would not
serve our purpose here. Recall that the inversion relations
(42) are only valid in vacuum and cannot be used (despite
temptation) to relate the distributional contents of ψ∓ on S
to these of the no-string Hertz potentials ϕ�. The idea,
instead, is to use the inversion relations evaluated in the two
vacuum domains S> and S< in order to get information
about the jumps in ϕ� across S, given the known jumps
in ψ∓. As we show in the next section, with some further
manipulation [which also involves the radial inversion
relations (37)], this procedure can completely determine
the jumps in ϕ� and all of their derivatives on S.3

We also note the relation (42) means that (given ψ∓)
all time derivatives of ϕ� are determinable algebraically
from ϕ� itself. For example, taking ∂t of (42) and then
substituting for ∂tϕ back from Eq. (42), we find

∂ttϕ� ¼ α2ϕ� ∓ 2

3M
ð∂tψ∓ � pαψ∓Þ: ð44Þ

Taking ∂r of (42) similarly determines ∂trϕ� algebraically
from ϕ� and ∂rϕ�. With the help of the vacuum BPT
equation (25), we can then iteratively express ∂rrϕ� and all
higher derivatives of ϕ� algebraically in terms of ϕ� and
∂rϕ� alone. The significance of this in the context of this
work is as follows: it means we need only to determine the
jumps across S of ϕ� and of its first r derivative; the jumps
in all t, r, and mixed derivatives to all orders are obtainable
algebraically from these two alone.

D. Initial/boundary-value formulation

Our strategy is to solve the 1þ 1D vacuum hyperbolic
equation (25) directly as a time evolution problem from
initial data outside the black hole. The fields ϕ≷

þ are to be
evolved on the respective vacuum domains S≷, with
suitable jump conditions imposed on the timelike interface
S (cf. Fig. 1 for an illustration of this setup with character-
istic initial data). In principle, it suffices to impose the
jumps in the field and in its first normal derivative at S. The
solution is then uniquely determined once boundary con-
ditions are imposed at null infinity (past or future, I�) and
on the event horizon (past or future, H�).
The specific form of boundary conditions for ϕ≷

þ
is inherited from that of the reconstructed no-string

2More precisely, Eqs. (37) alone imply (39) only up to
homogeneous solutions of (37). However, no homogeneous
solution of (37) satisfies the BPT equations as required, so such
solutions can be excluded.

3Here, we use S to represent the curve r ¼ RðtÞ in the r, t
plane, while in Sec. II it was introduced as the 2þ 1D sphere
r ¼ RðtÞ in spacetime. Throughout this work, we will continue to
use S in both ways; the relevant meaning in each instance should
be clear from the context. A similar remark applies to S< and S>.
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metric hrec� . For the applications we have in mind (e.g., a
self-force calculation), it is the retarded (hereafter “physi-
cal”) perturbation that we are after, i.e., the one corre-
sponding to the boundary conditions of having no radiation
coming in from I− or out of H−. These requirements can
be translated into asymptotic conditions on the behavior of
ϕ>
� at infinity and of ϕ<

� on the horizon (we are assuming
here an orbit that does not plunge into the black hole, so
that S does not cross the horizon). This analysis was carried
out in Ref. [23], and we quote the results here. For a
monochromatic physical perturbation that has the asymp-
totic form approximately e−iωu=r at Iþ (in a suitable
Lorentzian frame) and e−iωv on Hþ (in a suitable hori-
zon-regular frame), for some frequency ω > 0, the corre-
sponding Hertz potential modes admit

ϕ>
�ðr → ∞Þ ∼ e−iωu ðphysicalÞ;

ϕ<
�ðr → 2MÞ ∼ e−iωv ðphysicalÞ: ð45Þ

Note ϕ� generically approach constant nonzero values at
Iþ (r → ∞ with constant u) and on the Hþ (r → 2M with
constant v). To achieve this convenient behavior was the
purpose of introducing the radial prefactors in Eq. (33).
For the interpretation of numerical results in Sec. V, it

will be useful to also have at hand the asymptotic behavior
of “nonphysical” monochromatic modes, which corre-
spond to waves coming in from I−, hrec� ∼ e−iωv=r, or to
waves coming out of H−, hrec� ∼ e−iωu. For such solutions,
the asymptotic analysis in Ref. [23] finds

ϕ>
�ðr → ∞Þ ∼ r∓4e−iωv ðnonphysicalÞ;

ϕ<
�ðr → 2MÞ ∼ Δ∓2e−iωu ðnonphysicalÞ: ð46Þ

The main missing ingredient in the above formulation
is the jump conditions across S. We proceed, in the next
section, with a derivation of these conditions for generic
geodesic orbits.

IV. JUMP CONDITIONS FOR THE NO-STRING
HERTZ POTENTIAL

Reference [23] sketched a method for obtaining the
jumps across S for a generic geodesic orbit in Kerr
spacetime, but the actual jumps were only calculated for
circular orbits in the Schwarzschild case. In the general case
(and even in the Schwarzschild limit), the method requires
the solution of a complicated set of coupled fourth-order
ODEs for the jumps in ϕ and in ϕ;r along the orbit. There
was no attempt to solve these equations (neither analyti-
cally nor numerically), except in the circular-orbit case,
where they reduce to algebraic equations.
Here, we describe a different method for obtaining the

jumps and apply it to generic orbits in the Schwarzschild
case. The method yields a single first-order ODE for the
jump in ϕ along the orbit, which can be solved in closed

form. The jumps in all partial derivatives of ϕ, at any order,
are then obtained algebraically from that solution. There
were two key advances that made possible this much
simpler and more effective approach: first, we have found
a way of utilizing both radial and angular inversion
formulas in tandem, in a particular way that simplifies
the calculation. Second, we have observed certain algebraic
simplifications that were overlooked (by one of us)
in Ref. [23].
We consider here only the IRG Hertz potential Φþ (as

also in Ref. [23]), but the jumps for the ORG potential Φ−
can be worked out in just the sameway. We henceforth omit
the label þ for notational economy, taking Φ≡Φþ and
ϕlmðt; rÞ≡ ϕlmþ ðt; rÞ. We let the interface S be described
by the smooth function r ¼ RðtÞ and denote the jump in
ϕðt; rÞ across S by

½ϕ� ≔ lim
ϵ→0

½ϕ>ðt; RðtÞ þ ϵÞ − ϕ<ðt; RðtÞ − ϵÞ�: ð47Þ

The jumps in other 1þ 1D fields are similarly defined:
½ϕ;r�, ½ϕ;t�, ½ψ��, etc. We think of ½ϕ� as a function of
coordinate time t along the orbit and note the relation

_½ϕ� ¼ ½ϕ;t� þ _R½ϕ;r�; ð48Þ

where an overdot denotes d=dt.
In what follows, we assume that the jumps across S of

the modal Weyl scalars ψlm
� ðt; rÞ and of their first three

derivatives are already known and are given. These jumps
can be obtained in a straightforward way from the source of
the Teukolsky equation. We carry out this calculation in
Appendix B for generic (geodesic) orbits and for both ψ−
and ψþ (as both will be needed in our approach even if we
restrict to the IRG potential ϕþ).

A. Expressions for ½ϕ;t� and ½ϕ;r� in terms of ½ϕ�
Our task is to express each of ½ϕ;r� and ½ϕ;t� in terms of

[ϕ] alone (and possibly the known jumps in the Weyl
scalars). Substitution in (48) would then give a first-order
ODE for ½ϕ�. The second half of this task can be
accomplished immediately thanks to the angular inversion
formula (42). We obtain

½ϕ;t� ¼ pα½ϕ� − 2

3M
½ψ−�: ð49Þ

The jump ½ψ−� is given in Eq. (B17) of Appendix B, and

recall α ¼ λ2=ð12MÞ. To obtain ½ϕð�Þ
;r � in terms of ½ϕ� is

harder and utilizes the fourth-order radial inversion (37),
using a procedure we now describe.
First, we write (37a) more explicitly in terms of

coordinate derivatives. Using Dl ¼ 2ðr2=ΔÞ∂v (taken with
fixed u), a calculation yields

OLIVER LONG and LEOR BARACK PHYS. REV. D 104, 024014 (2021)

024014-8



∂4
vϕþ 2

r2
ð3r − 5MÞ∂3

vϕþ 1

r4
ð9r2 − 26Mrþ 15M2Þ∂2

vϕ

þ 1

2r5
ð6r2 − 21Mrþ 16M2Þ∂vϕ ¼ p

8r8
ψþ: ð50Þ

We now act with ∂u (fixed v) on both sides of (50) and use
the vacuum BPT equation (25) to substitute for each mixed
derivative ϕ;uv in terms of ϕ;u, ϕ;v, and ϕ. In the resulting
expression, we then substitute for ∂4

vϕ from Eq. (50). We
arrive at a third-order ODE of the form

X3
n¼0

ÂnðrÞ∂n
vϕ ¼

X1
n¼0

B̂nðrÞ∂n
uψþ; ð51Þ

where ÂnðrÞ and B̂nðrÞ are certain (rational) functions.
Notably, no u derivatives occur on the lhs. Repeating this
procedure with a second application of ∂u, this time
replacing ∂3

vϕ from Eq. (51), yields a second-order ODE
of the form

X2
n¼0

ÃnðrÞ∂n
vϕ ¼

X2
n¼0

B̃nðrÞ∂n
uψþ; ð52Þ

with some other (rational) functions ÃnðrÞ and B̃nðrÞ.
Again, we find that no u derivatives occur on the lhs.
One last application of ∂u reduces the inversion relation to a
first-order differential equation, which, however, is now a
PDE, since (it turns out) it features both ϕ;u and ϕ;v. We
can, however, reduce this to an ODE by first converting
to r� and t derivatives using ϕ;v ¼ 1

2
ðϕ;t þ ϕ;r� Þ and

ϕ;u ¼ 1
2
ðϕ;t − ϕ;r� Þ, and then eliminating ϕ;t using the

angular inversion relation (42). This leads to a first-order
ODE for ϕ, which has the form

ϕ;r� þ AðrÞϕ ¼ p
X3
n¼0

BnðrÞ∂n
uψþ þ BðrÞψ−: ð53Þ

An explicit calculation gives

AðrÞ ¼ −αþ 2M½ð2λ1 − 3Þr − 6M�
r2ðλ1r − 6MÞ ð54Þ

for odd-parity modes (p ¼ −1) and

AðrÞ ¼ αþM½4r3α2ð2λ1 þ 3Þ þ 2r2αλ1ðλ1 þ 4Þ þ λ21ð3r − 2MÞ�
r2½2α2r2ðλ1rþ 6MÞ þMλ1ð6αrþ λ1Þ�

ð55Þ

for even-parity modes (p ¼ þ1). The other radial coefficients in Eq. (53) are found to be given by

B0 ¼ λ1f3rðλ2r2 þ 3Mλrþ 6M2Þ=CðrÞ;
B1 ¼ ½18αλMr4 þ 8M2r3αð9 − 7λÞ þM2r2ð4λ3 − 9λ2 − 31λþ 24Þ þ 2M3rðλþ 3Þð7λ − 13Þ þ 12M4ðλþ 5Þ�=CðrÞ;
B2 ¼ 12Mr2½αλr3 − αðλ − 5ÞMr2 þ 2ð1 − 2MαÞMr − 4M2�=CðrÞ;
B3 ¼ 4Mr3½αr2ðλrþ 6MÞ þ 3Mrf�=CðrÞ;
B ¼ −4f3M2r2½6αr4ðα2r2 þ λÞ − r3λðλ2 − 4Þ þ 9Mr2ð1 − 6MαÞ − 36M2ðr −MÞ�=CðrÞ; ð56Þ

with

C ¼ 18M3f3r4α½−2α2r4 − λr2 þ 2Mrðλ − 1Þ þ 6M2�:
ð57Þ

Here, we have introduced

λ ≔ λ2=λ1 ¼ ðlþ 2Þðl − 1Þ; ð58Þ

and we remind the reader that λ1 ¼ lðlþ 1Þ and
α ¼ λ2=ð12MÞ.
Using Eq. (53), we can finally express the jump ½ϕ;r� � ¼

fðRÞ½ϕ;r� in terms of the jump ½ϕ� (and the known jumps in
the Weyl scalars ψ�):

½ϕ;r� � ¼ −AðRÞ½ϕ� þ p
X3
n¼0

BnðRÞ½∂n
uψþ� þ BðRÞ½ψ−�:

ð59Þ

B. First-order ODE for ½ϕ� and its solution

Substituting (49) and (59) in (48) now gives a simple
first-order ODE for ½ϕ� as a function along the orbit,

_½ϕ� þ ðAðRÞ _R� − pαÞ½ϕ� ¼ F ; ð60Þ

where _R� ¼ _R=fðRÞ. The source term here is
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F ¼p _R�
X3
n¼0

BnðRÞ½∂n
uψþ�þ

�
_R�BðRÞ−

2

3M

�
½ψ−�: ð61Þ

Equation (60) admits simple homogeneous solutions,
given by (any constant multiple of)

½ϕ�h ¼
�
Rðλ1R − 6MÞ
ðR − 2MÞ2

�
× e−αðt−R�Þ ð62Þ

for odd-parity modes or

½ϕ�h ¼
�
R3λ2λ1 þ 6MR2λ2 þ 36M2Rλþ 72M3

RðR− 2MÞ2
�
× eαðt−R�Þ

ð63Þ

for even-parity modes. The general inhomogeneous solu-
tion of (60) reads

½ϕ� ¼ ½ϕ�h
Z

t

t0

F ðt0Þ
½ϕ�h

dt0; ð64Þ

where t0 is an a priori arbitrary integration constant. We
determine t0 from the physical requirement that ½ϕ� remains
bounded for t → �∞. Observing that ½ϕ�h blows up like
e�αt at t → �∞ (þ for even parity modes and − for odd-
parity modes), while F ðtÞ is at worst polynomial in t, it is
easy to see that the requirement of boundedness neces-
sitates t0 ¼ �∞ for p ¼ �1. Hence, the unique physical
solution of (60) is

½ϕ� ¼ ½ϕ�h
Z

t

�∞

F ðt0Þ
½ϕ�h

dt0 ðfor p ¼ �1Þ: ð65Þ

Equation (65) gives the jumps across S that the no-string
Hertz potential modes must satisfy, for an arbitrary orbit in
Schwarzschild spacetime. (It requires as input the jumps in
the modes of the Weyl scalars, which in Appendix B we
give explicitly specialized to geodesic orbits, but given the
Weyl scalar jumps, there is no further assumption on
whether the orbit is geodesic.) This is one of the main
results of this paper.
We recall that the jumps in the field’s derivatives, ½ϕ;t�

and ½ϕ;r� (or ½ϕr� �), can be obtained algebraically from ½ϕ�,
using Eqs. (49) and (59), respectively. In principle, knowl-
edge of the jumps in the field and its first derivatives should
suffice in our formulation. However, in practice, it is also
useful to have at hand the jumps in higher derivative, which
eases the formulation of finite-difference schemes that have
high-order convergence properties. Once the jumps in the
field and its first derivatives are known, it is straightforward
to obtain the jumps in higher derivatives in an iterative
manner using the procedure described in the last paragraph
of Sec. III C [the paragraph containing Eq. (44)]. The
application of this procedure up to third derivatives is

illustrated in Appendix B 3 (as applied to modes of the
Weyl scalars).

C. Large-R asymptotics for scatter orbits

We were not able to evaluate the integral in (65)
analytically for a generic orbit, but it is straightforward
to compute ½ϕ�ðtÞ numerically for any given geodesic orbit.
In practice, we find it easier to obtain ½ϕ� by (numerically)
solving the first-order ODE (60). For the class of scatter
orbits of interest to us in this paper, we need to integrate the
equation over −∞ < t < ∞. We choose to do so forward in
time for odd-parity modes but backward in time for even-
parity modes, in each case going “against&quot; the
direction of exponential growth of the homogeneous
solutions (62) and (63). This prevents the growth of
nonphysical modes from numerical error. We now derive
the leading-order asymptotic form of ½ϕ� at t → �∞. One
of these two asymptotic values will be used as an initial
value for the ODE solver, and the other will be used to
check the result of the numerical integration.
We consider a timelike scatter geodesic orbit in

Schwarzschild spacetime, parametrized by specific energy
E > 1 (“gamma factor”) and angular momentum L (a
more detailed description of such orbits will be given in
Sec. VII A below). We let

_R∞ ≔ �j _Rðt → �∞Þj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p

E
ð66Þ

be the “velocity at infinity” (with respect to coordinate
time t), so that _R∞ is negative (positive) for the inbound
(outbound) asymptotic states. We formally expand ½ϕ� as a
power series in 1=R at large RðtÞ and seek to obtain the
leading term of that expansion.
To this end, we first obtain the large-R asymptotic form

of F in Eq. (61). Using as input the asymptotic expressions
derived in Appendix B 4 for ½ψ−� and ½∂n

uψþ� (n ¼ 0;…; 3),
a direct calculation leads to

F ¼ c0R−3 þOðR−4Þ; ð67Þ

where

c0 ¼
4πμð1þ _R∞Þ

3λ2
½iðL=MÞλ2ð∂θ −mÞ−2Ȳlm

þ 6E _R∞ð∂θθ − 2m∂θ þ ðm2 − 2ÞÞ−2Ȳlm�: ð68Þ

Here, all angular functions are evaluated at θ ¼ π=2 and
φ ¼ φin (or φ ¼ φoutÞ, with φin (φout) being the asymptotic
value of the particle’s azimuthal phase at t → −∞
(t → þ∞). Equation (68) takes a neater form when written
in terms of spin-0 spherical harmonics. With the aid of (20),
we find
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c0 ¼
4πμð1þ _R∞Þ

3M
ffiffiffiffiffi
λ2

p ½ð6ME _R∞ − imλLÞȲ − iλLȲθ�; ð69Þ

where Ȳ ≔ Ȳlmðπ2 ;φin=outÞ and Ȳθ ≔ ∂θȲlmðπ2 ;φin=outÞ.
The asymptotic form of ½ϕ� can now be obtained either

by evaluating (65) with the asymptotic form (67) or directly
from the ODE (60) using a power-law ansatz. Either way,
we arrive at

½ϕ�R→∞ ¼ −
16πμ

λ3=22

�
1þ _R∞

1 − _R∞

�
½6M _R∞EȲ

þ iλLðȲθ −mȲÞ�R−3 þOðR−4Þ: ð70Þ

We note Ȳθ ¼ 0 for even-parity modes and Ȳ ¼ 0 for odd-
parity modes. Our result (70) can be checked against the
m ¼ 0, circular-orbit expression given in Eq. (87) of
Ref. [23], by setting _R∞ ¼ 0, r0 ¼ R, Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
and

Yθ ¼ −λȲθ=
ffiffiffiffiffi
λ2

p
. We find an agreement.

In Sec. VI, for reasons that will become clear there, we
will require also the asymptotic forms of the jumps ½ϕ;v�
and ½ϕ;vv�. The jump ½ϕ;v� ¼ 1

2
ð½ϕ;t� þ ½ϕ;r� �Þ is obtained

using Eqs. (49) and (59) with the known asymptotic
expressions for ½ϕ�, ½ψ−� and ½∂n

uψþ�. The result is

½ϕ;v�R→∞ ¼ 4μπEð1þ _R∞Þffiffiffiffiffi
λ2

p ȲR−3 þOðR−4Þ: ð71Þ

The asymptotic form of ½ϕ;u� is obtained in a similar way.
The jump ½ϕ;vv�, in turn, can be written in terms of lower-
derivative jumps as explained in the last paragraph of
Sec. III C, and substituting the asymptotic expressions
already obtained for these, one finds

½ϕ;vv�R→∞ ¼ −
4μπEð2þ _R∞Þffiffiffiffiffi

λ2
p ȲR−4 þOðR−5Þ: ð72Þ

V. TIME-DOMAIN EVOLUTION OF THE
TEUKOLSKY EQUATION: PROBLEM OF

GROWING MODES

A. Numerical method

Our aim, in the remainder of this paper, is to demonstrate
the applicability of our strategy with an end-to-end numeri-
cal implementation. First, in this section, we implement a
simple finite-difference Teukolsky solver based on 1þ 1D
characteristic evolution in u, v coordinates. The basic
architecture of the code is similar to that of the one
developed in Ref. [23], but our new code can handle
any orbit (Ref. [23] had circular orbits hardwired into it)
and can evolve both the IRG (s ¼ −2) and the ORG
(s ¼ þ2) Hertz potentials (Ref. [23] dealt only with
s ¼ −2). We have produced two identical implementations,

one in Mathematica and another in C++, to enable
cross-checks.
The numerical domain is depicted in Fig. 1. We use a

fixed characteristic mesh, with uniform grid-cell dimen-
sions h × h, where h is a small fraction of M (typically
approximately M=10 to approximately M=100 in our test
runs). Characteristic initial data are set on two initial rays
v ¼ v0 and u ¼ u0 (see the figure), chosen so that S
intersects the initial vertex ðv0; u0Þ. The data are evolved
using a finite-difference version of Eq. (25) that has a
local discretization error of Oðh4Þ, leading to a quadratic
convergence globally (i.e., the accumulated error scales
like h2). Our finite-difference scheme is precisely identical
to the one used in Ref. [23] (as detailed in Appendix B
therein) when applied to circular orbits. A detailed descrip-
tion of our scheme for generic orbits is provided in
Appendix C (as applied to the modified version of the
field equation that we end up solving in practice; see
below). The appropriate jump conditions across S are
implemented at the level of the finite-difference formula
when it is applied to grid cells containing a segment of S, as
detailed in Appendix C 2. Our code takes as input the spin
s ¼ �2; modal numbers l, m; and orbital trajectory RðtÞ
(as well as a range of numerical parameters such as h and

FIG. 1. Sketch of the 1þ 1D characteristic grid used in our
numerical evolution of the no-string Hertz potentials ϕlm

� ðt; rÞ
outside a Schwarzschild black hole. The grid lines are uniformly
spaced in Eddington-Finlkelstein coordinates u, v. Initial con-
ditions are set on the rays u ¼ u0 and v ¼ v0. The dashed line
represents the particle’s worldline (or, equivalently, the 1þ 1D
reduction of the surface S interfacing between the vacuum
regions S≷) for a typical hyperbolic orbit. The evolution proceeds
along successive u ¼ const rays, with appropriate jump con-
ditions imposed across S.
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the coordinate ranges) and returns the Hertz potential
modes ϕþ

lmðt; rÞ (IRG) or ϕ−
lmðt; rÞ (ORG).

The physical initial data for the evolution are not known
in general, so we start with fictitious data on v ¼ v0
and u ¼ u0. Specifically, we set ϕ>ðv; u0Þ≡ 0 and
ϕ<ðv0; uÞ≡ 0 and let the field be sourced by the imposed
jumps along S. This produces an outburst of “junk”
radiation at the initial vertex ðv0; u0Þ. We expect such junk
radiation to decay in time (with an inverse power law
approximately t−2l−3, theoretically [37]), leaving behind
the desired physical solution at late time. The early, junk-
contaminated part of the data is discarded.
Since our characteristic numerical domain has no time-

like boundaries, there is no need to impose boundary
conditions and no way to actively control violations away
from the desired retarded solution. This is not a problem
when all other (“nonphysical”) vacuum solutions of the
field equation decay at late time but can become a problem
when there exist nonphysical solutions that fail to decay or,
worse, grow at late time. Past implementations of 1þ 1D
characteristic schemes for the scalar field equation (e.g.,
Ref. [38]), electromagnetic vector potential [39], Regge-
Wheeler-Zerilli equations (e.g., Ref. [40]), and the Lorenz-
gauge metric perturbation equations (e.g., [41]) show no
signs of such troublesome modes. In these cases, the
numerical solutions always appear to converge to the true,
physical solution at late time.4 As we demonstrate below,
the situation with the jsj ¼ 2 Teukolsky equation is less
fortunate: in our simple u, v-coordinate-based evolution,
nonphysical modes of the equation, seeded by numerical
error, will grow unbounded at late time, spoiling the
evolution. We will discuss the origin of the problem and
suggest ways around it.
Why was the problem not identified already in Ref. [23],

which used the same numerical method? Our new code,
when run with a circular-orbit source and s ¼ −2, does
reproduce the numerical results of Ref. [23] in the early
stage of the evolution, before the onset of growth. We no
longer have access to the code used in Ref. [23], but it
appears that the evolutions performed in that study were
simply too short to reveal the problem: the calculation of
the Hertz potential along circular orbits did not require very
long runs, and evolutions were always terminated before
the relatively slowly growing mode (approximately t4 for
s ¼ −2; see below) had a chance to manifest itself in the
data. Calculations for scatter orbits require much longer
evolutions, so here we must deal with the problem. The
problemmust be dealt with anyway if one is interested in an
ORG reconstruction ðs ¼ þ2Þ, where, as discussed below,
the blowup is exponential.

In what follows, we illustrate the problem of growing
modes with numerical examples and describe the range of
tests we performed to understand its origin. We then discuss
possible remedies. Since the issue arises already in vacuum
evolutions—indeed, it is more easily seen in the absence of
a particle source—we restrict the discussion in the rest of
this chapter to the vacuum case.

B. Case s= − 2 (vacuum)

Figure 2 shows a typical output from an s ¼ −2
numerical evolution in vacuum, i.e., setting all jumps
across S to zero. We seed the evolution with a narrow
Gaussian pulse near the initial vertex at ðu0; v0Þ ¼
ð−9M; 9MÞ [corresponding to ðt; rÞ ∼ ð0; 7.12MÞ] and
evolve out to ðu; vÞ ¼ ð104M; 104MÞ. After the initial
spike of radiation (not shown in the figures), the field
decays with characteristic quasinormal ringing. However,
at around t ∼ 250M, the solution becomes dominated by a
noisy component, whose amplitude appears to grow
approximately like approximately t4. The growth seems
to continue indefinitely towards future timelike infinity
(t → ∞ with fixed r > 2M), but the solution settles to a
finite value approaching null infinity (v → ∞ with fixed u)
and also approaching the event horizon (u → ∞ with
fixed v). A similar behavior is observed for all values of
l and m and irrespectively of the choice of compact initial
data. The evolution up to the onset of growth is numerically
stable, and the solution there converges quadratically in
grid spacing h, as expected. The growing component,
however, is not numerically stable; it displays noisy
features on grid-size scale, and its amplitude appears to

101 102 103 104
10 16

10 13

10 10

10 7

10 4

t /M

t 4

102 103 104
10 14

10 11

10 8

10 5

10 2

v /M

v 4

101 102 103 104

10 14
10 12
10 10
10 8
10 6
10 4

u/M

u 4

FIG. 2. Results from evolution of the ðl; mÞ ¼ ð2; 0Þ mode of
the vacuum 1þ 1D BPT equation with s ¼ −2. The evolution is
seeded with a narrow Gaussian near ðt; r�Þ ∼ ð0; 9MÞ. We show,
on a log-log scale, the field amplitude jϕ−

20j sampled along slices
of constant r� ¼ 10M (top), u ¼ 500M (lower left) and v ¼
500M (lower right). The dashed lines (const × t4, const × v4 and
const × u4, respectively) are shown for reference.

4Sole exceptions known to us are certain monopole and dipole
gauge modes of the Lorenz-gauge metric perturbations, which
grow linearly in time [21].
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increase with decreasing h (finer resolution). The approx-
imately t4 behavior, however, seems to be persistent and
universal.
We have performed a series of tests in attempt to

understand these results. First, as mentioned, we have tried
a variety of initial data, including a point seed at the initial
vertex, smooth Gaussians of various configurations, and
data corresponding to an exact static solution of the BPT
equation. Second, we have tried a range of alternative
finite-difference formulas and stepping schemes. Third, we
have used our code to solve for the Weyl scalar modes
ψ−ðt; rÞ with jump conditions on S corresponding to a
circular geodesic orbits (the necessary jump conditions are
derived in Appendix B); we have done so both with “zero”
initial data and with data corresponding to an exact static
solution (for an m ¼ 0 mode). In all these tests, the t4

growing mode developed just the same. Fourth, we note
that the troublesome t4 behavior is observed [42] also in the
application to the Teukolsky equation of the recently
introduced approach by O’Toole et al. [43], in which the
Green’s function (rather than the field itself) is evolved
from exact characteristic initial data. Finally, we observe
that we are, in fact, able to successfully suppress the t4

growth (albeit at considerable computational cost) using
our Mathematica implementation with very high working
precision. All this supports the conclusions that (i) the t4

behavior has a genuine dynamical origin and (ii) the t4

component is seeded by numerical roundoff error.
We suggest that the t4 mode represents nonphysical

incoming radiation sourced by numerical roundoff error
near Iþ. This can be seen from the following heuristics.
First, recall from Eqs. (45) and (46) the asymptotic form
of monochromatic s ¼ −2 solutions in the “wave zone”
(r ≫ M with v ≫ u): ϕ ∼ e−iωu for physical solutions
(purely outgoing waves) and ϕ ∼ r−4e−iωv for nonphysical
solutions representing purely incoming waves. More gen-
erally, the time-domain solutions are superpositions of such
monochromatic modes and have the forms ϕ ∼ FðuÞ
(physical) and ϕ ∼ r−4GðvÞ (nonphysical) for some func-
tions FðuÞ and GðvÞ that depend on the initial data. [These
forms can be confirmed more directly by substituting
the Ansätze ϕ ¼ rαFðuÞ and ϕ ¼ rβGðvÞ into the BPT
equation (25) and solving at leading order in M=r under
the wave-zone assumptions F0ðuÞ ≫ FðuÞ=r and G0ðvÞ ≫
GðvÞ=r, to obtain α ¼ 0 and β ¼ −4.] Consider an out-
going ray u ¼ const shortly after the start of the evolution.
The field on this ray is composed mostly of outgoing
radiation ϕ ∼ FðuÞ, which approaches a constant value
at large v. However, the roundoff error in the numerical
data along this ray will inevitably source a small compo-
nent of nonphysical high-frequency incoming radiation
ϕ ∼ r−4GðvÞ. Since the sourcing field is asymptotically
constant at v → ∞, the amplitude of the seeded incoming
radiation is also expected to be asymptotically constant
on the u ¼ const ray, i.e., r−4jGðvÞj ∼ const for v → ∞.

This implies jGðvÞj ∼ v4 ∼ ðtþ rÞ4 at large v, and it
follows that the incoming-wave component has an ampli-
tude jϕj ∼ v4=r4 ∼ ðtþ rÞ4=r4. At fixed r, this will exhibit
a ∼t4 growth, at least in the wave zone where our heuristic
analysis applies. (To show that this wave-zone behavior
might lead to a t4 growth elsewhere at late time, as evident
in the numerical data, would require a more detailed
asymptotic matching analysis, which we have not
attempted.)
This heuristic description explains the results of our

various experiments. The t4 behavior arises dynamically
from roundoff error seeds, so it is persistent, universal,
and independent of initial data. The amplitude of the t4

component can be suppressed by increasing the precision
of the floating-point arithmetic, which reduces the roundoff
error. For a fixed floating-point precision, increasing the
grid resolution (decreasing h) enhances the amplitude of
the incoming radiation component, by seeding more of its
modes at higher frequencies.
It is also possible to explain why the t4 growth does not

appear to plague other time-domain treatments of the
s ¼ −2 Teukolsky equation reported in the literature.
In the 2þ 1-dimensional (2þ 1D) Cauchy evolution
approach of Khanna et al. (legacy of Refs. [44,45] and
many works since), boundary conditions are actively
imposed, which presumably suppress the growth of the
unphysical component. In the compactified hyperboloidal
slicing approaches of Refs. [24–26], we suspect it is the
compactification of Iþ that averts the problem, since
the wave zone for incoming waves is vastly under resolved
on the compactified grid. In contrast, our simple u, v-
coordinate-based approach resolves the wave zone equally
well for both outgoing and incoming waves. Unfortunately,
as we have seen, the resolution of incoming waves near null
infinity is harmful in our case.

C. Case s= + 2 (vacuum)

Figure 3 shows a typical output from an s ¼ þ2 numeri-
cal evolution in vacuum. Again, we start with a narrow
Gaussian near the initial vertex at ðu0; v0Þ ¼ ð−9M; 9MÞ
and this time evolve out to ðu; vÞ ¼ ð103M; 103MÞ. In this
case, after a short phase of quasinormal decay (harder to
discern on the semilogarthmic scale of Fig. 3), there
commences a rapid exponential growth, ϕ ∼ exp½t=ð2MÞ�.
Again, the growth seems to continue indefinitely toward
future timelike infinity (t → ∞ with fixed r > 2M), but the
solution settles to finite values toward Iþ andHþ. A similar
behavior is observed for all values of l andm and all choices
of initial data we have tried, and the blowup exponent
ð1=2MÞ seems universal. The growing component is not
numerically stable, increasing in amplitude with decreasing
h (finer resolution). We have performed similar tests to
the ones described above for s ¼ −2 and with similar
results: The exponential growth is persistent and universal
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and can be moderated (in amplitude) only with high-
precision arithmetic.
We again argue that the culprit is a nonphysical growing

solution of the BPT equation seeded by roundoff error, this
time an exponential mode of the s ¼ þ2 equation. We can
see this most instructively from a simple asymptotic
analysis near the horizon, as follows. Working at leading
order in Δ and assuming ϕ, ϕ;u, and ϕ;v are all of the same
order in Δ near the horizon [this is true of the r → 2M
asymptotic expressions in Eq. (45) and (46)], the BPT
equation (25) reduces to

ϕ;uv − kϕ;u ¼ 0; ð73Þ

in which k ≔ s=ð4MÞ and where we have retained the s
dependence to enable us to compare the situation between
the two spin values. The general solution is

ϕ ¼ C1ðuÞekv þ C2ðvÞ; ð74Þ

where C1ðuÞ and C2ðvÞ are arbitrary functions. Solutions
of the form ϕ ¼ C2ðvÞ represent physical perturbations that
are purely ingoing at the horizon [compare with Eq. (45)],
while solutions of the form ϕ ¼ C1ðuÞekv represent non-
physical perturbations coming out of the past horizon
[compare with Eq. (46), noting Δs ∼ ð2MÞ2se2kr� ∼
ð2MÞ2sekv near the horizon]. For s ¼ þ2, the nonphysical
solution blows up exponentially in v along the horizon,
while for s ¼ −2, it is exponentially suppressed.
The situation now mirrors what we had near null infinity

for the s ¼ −2 growth: as the main physical perturbation,
of the form ϕ ¼ C2ðvÞ, reaches the horizon, roundoff error
along the incoming ray seeds a nonphysical component
∼C1ðuÞekv, which, for s ¼ þ2, blows up exponentially
along the horizon. The predicted rate of exponential growth

is consistent with that observed in the numerical data:
approximately esv=ð4MÞ ¼ ev=ð2MÞ. To understand the
propagation of this exponential growth into other areas
of the black hole’s exterior would require a detailed
asymptotic matching analysis, but it would not be
surprising to find a similar exponential growth in time
anywhere outside the black hole, as seen in the numerics.
We note the fortunate situation in the s ¼ −2 case, where
all nonphysical modes are exponentially suppressed in a
dynamical manner, with no need to actively impose
boundary conditions.
There are in the literature several successful time-domain

numerical methods for the s ¼ þ2 Teukolsky equation
(e.g., Refs. [26,46–48]), all incorporating horizon-
penetrating coordinates in some form. The use of such
coordinates (effectively a compactification of our u, v
coordinates) under-resolves any outgoing component of the
perturbation field near the horizon, thereby avoiding the
problem encountered here.

D. Mitigation

Although initially surprising to us, it is clear that a
standard unigrid characteristic evolution based on u, v
coordinates does not work well for either s ¼ þ2 or
s ¼ −2 Teukolsky equations. A remedy based on the
use of very high-precision arithmetic is clearly impracti-
cable. The preceding discussion and evidence from the
literature suggest that compactification of the two asymp-
totic domains (Iþ andHþ) can offer a solution that is both
computationally efficient and practicable. This has already
been achieved, e.g., by Harms et al. [26], using asymp-
totically null compactified spacelike slices. It is perceivable
that the same could also be achieved within the convenient
framework of a fully double-null architecture. This
approach is worth exploring.
Here, we choose to apply a different strategy. Instead of

tackling the BPT equation directly, we will introduce a
transformation of the Hertz potential to a new field variable,
which satisfies a field equation free of the above difficul-
ties. From the preceding discussion, it is clear that the
culprit term in the BPT equation (in both s ¼ −2 and
s ¼ þ2 cases) is the one involving ϕ;t, so we seek a
transformation that eliminates that term. The simplest such
transformation is a time-domain version of the familiar
Chandrasekhar transformation [49], which takes solutions
of the BPT equation to solutions of the Regge-Wheeler
(RW) equation. As we have mentioned, the RW equation
evolves without a problem on a simple uniform mesh based
on u, v coordinates (see, e.g., Ref. [40]), so this approach
would require no radical architectural changes to our
numerical method.
In the next section, we reformulate the 1þ 1D no-string

evolution problem in terms of a RW-like variable. Then, in
Sec. VII, we demonstrate a full numerical calculation of the
Hertz potential for a scatter orbit.
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FIG. 3. Results for the evolution of the ðl; mÞ ¼ ð2; 0Þmode of
the vacuum 1þ 1D BPT equation with s ¼ þ2. Other details are
as in Fig. 2, except here the scale is semilogarithmic. The dashed
lines are for reference.
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VI. REFORMULATION IN TERMS
OF A RW-LIKE VARIABLE

Let the field Xðt; rÞ be a solution of the vacuum Regge-
Wheeler equation

X;uv þ
f
4

�
λ1
r2

−
6M
r3

�
X ¼ 0; ð75Þ

where, recall, f ¼ 1–2M=r and λ1 ¼ lðlþ 1Þ. Then, as
can be easily checked,

ϕþ ¼ 1

4r
D̃2

nðrXÞ ¼ f−2
�
X;uu −

r − 3M
r2

X;u

�
ð76Þ

and

ϕ− ¼ f2r3

4
D2

lðrXÞ ¼ r4
�
X;vv þ

r − 3M
r2

X;v

�
ð77Þ

are solutions of the vacuum BPTequation (25) with s ¼ −2
and s ¼ þ2, respectively. This means that we can use the
RW variable X as a generating function for both the IRG
Hertz potential ϕþ and ORG Hertz potential ϕ− in each of
the vacuum regions S≷. The advantage, of course, is that
the RW equation (75), unlike the BPT equation (25), does
lend itself to a straightforward characteristic evolution in u,
v coordinates. The idea now would be to formulate a
suitable characteristic initial-value problem for the RW
variable X, from which the no-string Hertz potential ϕ≷

þ (or
ϕ≷
− ) can be obtained by applying the transformation (76)

[or (77)] to vacuum RW solutions X≷ in the corresponding
vacuum domains S≷. To achieve this, X must satisfy
appropriate jump conditions along S and suitable boundary
conditions at Iþ and Hþ.

A. Boundary conditions

Let us consider boundary conditions first. In both
asymptotic regions r → ∞ and r → 2M, monochromatic
solutions of the RW equation (75) are superposition
of modes X ∼ e−iωu and X ∼ e−iωv (with some generally
nonzero constant coefficients at leading order). The
“retarded” monochromatic solution has the behavior
X ∼ e−iωu near Iþ and e−iωv near Hþ. It it easily seen
that this retarded solution generates the physical IRG Hertz
potential ϕþ ∼ e−iωu near Iþ and the physical ORG Hertz
potential ϕ− ∼ e−iωv nearHþ [here, we recall Eq. (45)]. It is
harder to show that the retarded RW solution necessarily
generates the physical field ϕþ near Hþ or the physical
field ϕ− near Iþ (this would require a higher-order
asymptotic analysis), but we can circumvent this with
the following observation: from Eq. (46), we see that
nonphysical modes of the IRG potential ϕþ diverge (like
Δ−2) near Hþ and that the nonphysical modes of the ORG
potential ϕ− diverge (like r4) near Iþ. Thus, in either case,

a nonphysical Hertz potential announces its presence
loudly in the form of a strong asymptotic divergence.
This is a point made already in Ref. [23]: a solution ϕþ that
is regular (bounded) at Hþ is automatically the physical
one, and so is a solution ϕ− that is regular (bounded) at Iþ.
We can establish a posteriori that our numerical solutions
ϕ<þ or ϕ>

− satisfy physical boundary conditions simply by
checking they are bounded.
In summary, we propose that the required vacuum RW

solutions on S> and S< are the ones satisfying standard,
retarded boundary conditions at Iþ and Hþ, respectively.
For the IRG potential ϕþ, this is guaranteed on S> and can
be easily checked a posteriori on S<. For the IRG potential
ϕ−, this is guaranteed on S< and can be easily checked
a posteriori on S>.

B. Jumps across S

It remains to translate the jumps in ϕ and its derivatives
across S, obtained in Sec. IV, to jumps in X and its
derivatives there. For brevity, we only discuss here the IRG
case, but jumps for the ORG case can be obtained in a
similar manner.
We could not find an explicit inverse of the trans-

formation (76), but (given ϕþ) it is easy to obtain two
independent algebraic relations between X, X;u, and X;v,
which will suffice for our purpose. First, taking ∂v of (76)
and using (75) and (76) to substitute for X;uv and X;uu,
respectively, leads to

X;u ¼
f

rðλrþ 6MÞ ð3MX − 8Mr2ϕþ − 4r4ϕþ;vÞ; ð78Þ

where, recall, λ ¼ ðlþ 2Þðl − 1Þ. Second, taking ∂vv
of (76), then using the u and v derivatives of the RW
equation (75) to replace for X;uvu and X;uvv, and finally
using (75) and (76) again to replace for X;uv and X;uu,
we obtain

X;v ¼ −
�
αþ 3Mf

rðλrþ 6MÞ
�
X þ 8Mrðλþ 3Þ

3ðλrþ 6MÞϕþ

þ 4r3½λrþ ðλþ 9ÞM�
3Mðλrþ 6MÞ ϕþ;v þ

4r4

3M
ϕþ;vv: ð79Þ

By applying Eqs. (78) and (79) in both vacuum sides of S
in the limit to S, we obtain relations between the jumps
½X;u� and ½X;v� on the one hand and the jumps [X], ½ϕþ�,
½ϕþ;v� and ½ϕþ;vv� (the latter three assumed known) on
the other hand; these relations are obtained by simply
replacing X ↦ ½X�, etc., in Eqs. (78) and (79), and setting
r ↦ RðtÞ there.
Now, along the orbit, we also have the relation

½ _X� ¼ ½X;t� þ _R�½X;r� �; ð80Þ
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where, recall, an overdot denotes d=dt. Using ½X;t� ¼
½X;v� þ ½X;u� and ½X;r� � ¼ ½X;v� − ½X;u� and substituting
½X;u� and ½X;v� from Eqs. (78) and (79), we thus obtain a
simple first-order ODE for the jump [X] along the orbit, of
the form [compare with (60)]

_½X� þ ðAXðRÞ _R� þ αÞ½X� ¼ FX: ð81Þ

The coefficient AX here is given by

AX ¼ αþ 6MðR − 2MÞ
R2ðλRþ 6MÞ ; ð82Þ

and the sourcing function FX involves the known jumps in
the Hertz potential and its derivatives,

FX ¼ 8M½6MðfR − _RÞ þ RðλðfR þ _RÞ þ 6 _RÞ�
3fRðλRþ 6MÞ ½ϕþ�

þ 4R2

3MfRðλRþ 6MÞ ½6M
2ðfR − _RÞ

þ λRðM þ RÞðfR þ _RÞ þ 6MRðfR þ 2 _RÞ�½ϕþ;v�

þ 4R4ðfR þ _RÞ
3MfR

½ϕþ;vv�; ð83Þ

where fR ≔ fðRÞ ¼ 1–2M=R.
Equation (81) admits simple homogeneous solutions,

given by (any constant multiple of)

½X�h ¼
�
λþ 6M

R

�
e−αðtþR�Þ: ð84Þ

Note that all these homogeneous solutions (except the
trivial zero one) blow up exponentially at t → −∞. There is
a unique particular solution of the full inhomogeneous
equation (81) that remains bounded; it is given by

½X� ¼ ½X�h
Z

t

−∞

FXðt0Þ
½X�h

dt0: ð85Þ

This describes the jump in the RW variable needed for it to
reproduce the no-string Hertz potential.
In practice, we find it easier to calculate [X] not from

Eq. (85) but via a numerical integration of the first-order
ODE (81). It is best to integrate forward in time from
t → −∞, going against the direction of exponential growth
of the homogeneous solutions (84), in order to prevent the
growth of such nonphysical modes from numerical error.
For this integration, we need an initial condition at
t → −∞, which in the case of a scatter orbit corresponds
to R → ∞ (with _R∞ < 0). The condition is obtained from a
simple asymptotic analysis of the ODE (81): assuming [X]

has a power-law behavior at infinity, we have _½X� ≪ ½X� at

large R, so the derivative term in (81) may be dropped at
leading order. Then, using the R → ∞ limits AX → α and

FX → −
16πμE
3M

ffiffiffiffiffi
λ2

p ð1þ _R∞ÞȲ ð86Þ

[obtained with the help of Eqs. (70)–(72)], we arrive at

½X�R→∞ ¼ −
64πμE

λ3=22

Ȳlm

�
π

2
;φin=out

�
; ð87Þ

which applies with φin for t → −∞ and with φout for
t → þ∞. In our implementation, we use (87) to set the
initial value of [X] at t → −∞,5 integrate the ODE (81)
forward in time, and then use (87) again to check the result
of integration at t → þ∞. Figure 4 illustrates the result of
applying this procedure along a particular strong-field
scatter orbit (the one depicted in Fig. 5 further below).
Once we have [X], it is straightforward to get jumps in

derivatives of the field, also needed for our 1þ 1D
evolution scheme. This can be done algebraically. From
Eqs. (78) and (79), one immediately gets ½X;u� and ½X;v�,
and using the RW equation (75), one gets ½X;uv�. The jump
½X;uu� is subsequently obtained from the transformation
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FIG. 4. The modulus of the jump ½Xlm� in the no-string field
Xlm along the geodesic scatter orbit depicted in Fig. 5, for the
ðl; mÞ ¼ ð2; 0Þ and (2,2) modes. This is obtained by numerically
integrating the first-order ODE (81) forward in time with the
initial condition (87) at large negative t and φin ¼ 0. As a check,
the solution approaches the asymptotic value given in (87) with
φout ≃ 481° (obtained by integrating the geodesic equation). The
inset plot demonstrates this for the real part of ½X22�, with dashed
lines indicating the analytical asymptotic values. This jump
function inputs into our 1þ 1D characteristic evolution scheme,
whose application is illustrated in Sec. VII.

5In practice, we impose our boundary condition at a suffi-
ciently large negative value of t with φin calculated at the start
point by integrating the geodesic equation (89) from t ¼ −∞.
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equation (76), and ½X;vv� can be found from the v derivative
of Eq. (79). The jumps in the third and higher derivative can
be found recursively in a similar manner.

VII. NUMERICAL IMPLEMENTATION FOR
SCATTER ORBITS

We now present a full implementation of our method for
a strong-field geodesic scatter orbit. Our code takes as input
the parameters of the geodesic orbit, along with multipolar
numbers l; m, and returns the generating-function fields
X≷
lmðt; rÞ and the IRG no-string modal Hertz-potential

fields ψ≷
lmðt; rÞ. In what follows, we first review hyperbolic

geodesic orbits in Schwarzschild spacetime, then describe
the details of our numerical algorithm, and finally present a
sample of numerical results.

A. Hyperbolic-type geodesic orbits

In Schwarzschild spacetime, we consider a timelike
geodesic orbit that starts and ends at infinity. We set our
Schwarzschild coordinates so that the orbit lies in the
equatorial plane, θ ¼ π=2. The orbit is then described by
the two functions r ¼ RðtÞ and φ ¼ φpðtÞ, which satisfy

_R ¼ � fR
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

fRðR2 þ L2Þ
R2

r
; ð88Þ

_φp ¼ fRL
R2E

; ð89Þ

where (recall) an overdot denotes d=dt. Here, we have
parametrized the geodesic orbit with the two constants of
motion E and L, respectively, the specific energy and
angular momentum. For a scatter orbit E > 1, and without
loss of generality, we have taken L > 0, and, correspond-
ingly, _φp > 0. The sign in (88) switches from − to þ at the
periastron, where _R ¼ 0. The particle scatters back to
infinity (and does not fall into the black hole) if and only
if L > LcritðEÞ, where

Lcrit ¼ M

�
27E4 þ 9ζE3 − 36E2 − 8ζEþ 8

2ðE2 − 1Þ
�

1=2

; ð90Þ

with ζ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9E2 − 8

p
. The function LcritðEÞ is monotonically

increasing, so the minimum possible value of L is
LcritðE → 1Þ ¼ 4M.
An alternative, more physically intuitive parametrization

is provided by the initial incoming speed at infinity,

v∞ ≔ j _Rðt → −∞Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p

E
; ð91Þ

and impact parameter,

b ≔ lim
t→−∞

RðtÞ sin jφpðtÞ − φinj ¼
Lffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − 1
p ; ð92Þ

where φin ≔ φpðt → −∞Þ. Note E ¼ ð1 − v2∞Þ−1=2, so E is
the usual gamma factor at infinity. For a scatter orbit, we
need b > bcrit ¼ LcritðEÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
. The function bcritðEÞ is

monotonically decreasing, so the minimal possible value of
b is bcritðE → ∞Þ ¼ 3

ffiffiffi
3

p
M ≃ 5.196M.

For a scatter orbit, the equation _R ¼ 0 admits a single
real root outside the horizon, corresponding to the perias-
tron radius R ¼ Rmin. Given E and L, this radius can be
expressed in the convenient form [50]

Rmin ¼
6M

1 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12M2=L2

p
sin ðπ

6
− 1

3
arccos βÞ

; ð93Þ

where

β ¼ 1þ ð36 − 54E2ÞM2=L2

ð1 − 12M2=L2Þ3=2 : ð94Þ

It can be checked that, for any fixed E > 1, β is a
monotonically increasing function of L, varying between
β ¼ −1 for L ¼ LcritðEÞ and β ¼ þ1 for L → ∞; hence,
the expression in (93) is manifestly real, and Rmin increases
monotonically with L at fixed E and decreases monoton-
ically with E at fixed L. The smallest periastron distance
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FIG. 5. The sample scatter geodesic orbit used for our numeri-
cal illustration, with parameters given in Eqs. (102) and (103).
The orbit is plotted in the equatorial plane using Cartesian-like
coordinates ðx; yÞ ¼ ðr cosφ; r sinφÞ. The location of the inner-
most stable circular orbit (ISCO) is shown for reference. The
deflection angle of this strong-field orbit is δφ ≃ 301°.
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achievable is Rmin → 3M, for L → LcritðEÞ with E → ∞.
Without loss of generality, we set t ¼ 0 at the periastron
passage, i.e., take Rð0Þ ¼ Rmin.
Another convenient parametrization of scatter orbits

employs the eccentricity, e > 1, and (a-dimensionalized)
semilatus rectum, p > 6þ 2e, defined from

Rmin ¼
Mp
1þ e

; R− ¼ Mp
1 − e

; ð95Þ

where R− is the negative root of _R ¼ 0. [For a scatter orbit,
i.e., one with E > 1 and L > LcðEÞ, _R ¼ 0 admits three
real roots: Rmin, R−, and (say) R3 (in addition to the trivial
root at R ¼ 2M), satisfying R− < 0 < R3 < 2M < Rmin.]
The relations with E and L are

E2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; L2 ¼ p2M2

p − 3 − e2
: ð96Þ

In terms of e and p, the radial motion takes the convenient
Keplerian-like form

RðtÞ ¼ Mp
1þ e cos χðtÞ : ð97Þ

The “anomaly” parameter χ increases monotonically in t
along the orbit, running over χ ∈ ð−χ∞; χ∞Þ for t ∈
ð−∞;∞Þ, with χ∞ ¼ arccosð−1=eÞ and χ ¼ 0 at the
periastron passage. The relations tðχÞ and φpðχÞ can be
determined by integrating

dt
dχ

¼ Mp2

ðp − 2 − 2e cos χÞð1þ e cos χÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

p − 6 − 2e cos χ

s
;

ð98Þ

dφp

dχ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p − 6 − 2e cos χ

r
; ð99Þ

with the initial conditions tð−χ∞Þ ¼ −∞ [or tð0Þ ¼ 0] and
φpð−χ∞Þ ¼ φin. Finally, defining the scatter (or deflection)
angle by δφ ≔ φout − φin − π, one obtains, using Eq. (99),

δφ ¼
Z

χ∞

−χ∞

dφp

dχ
dχ − π ¼ 2k

ffiffiffiffiffiffiffiffi
p=e

p
El1

�
χ∞
2

;−k2
�
− π;

ð100Þ

where k ≔ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=ðp − 6 − 2eÞp

and El1 is the incomplete
elliptic integrals of the first kind,

El1ðφ; kÞ ¼
Z

φ

0

ð1 − ksin2xÞ−1=2dx: ð101Þ

For the numerical demonstration to be presented below,
we have picked a sample strong-field scatter geodesic with

v∞ ¼ 0.2 and b ¼ 21M; ð102Þ

corresponding to

Rmin ≃ 4.9228M; E ≃ 1.02062; L ≃ 4.28661M;

e ≃ 1.1948; p ≃ 10.9351 and δφ ≃ 301°:

ð103Þ

The orbit is depicted in Fig. 5.

B. Numerical algorithm

Our method is based on a characteristic numerical
evolution in u, v coordinates, as described in Sec. VA—
only here we are evolving the RW equation (75) instead of
the BPT equation, and we impose suitable jump conditions
along S (see Fig. 1) compatible with the no-string IRG
solution for our sample scatter orbit. A detailed description
of our finite-difference scheme is given in Appendix C,
where we also explain how the jump conditions are
incorporated into the scheme so as to achieve a (global)
quadratic rate of numerical convergence. Here, we lay out
the main steps of the numerical algorithm:
Input. The code takes as input the two orbital parameters

v∞ and b; the orbital radius r ¼ Rinit at the start (and end)
of the numerical evolution; the field’s multiple numbers
l; m; and the finite-difference interval h ≔ Δu ¼ Δv.
Step 1: Calculate geodesic orbit. Given v∞ and b, the

code calculates E and L and from these e and p, as well as
Rmin. The functions RðtÞ and φpðtÞ are then derived in the
range Rmin ≤ R ≤ Rinit by numerically integrating _R and _φp

as obtained from Eqs. (97)–(99), with initial conditions
Rð0Þ ¼ Rmin and φpð−∞Þ ¼ 0. The code also calculates
ttot, the time it takes the particle to get from Rinit back to
Rinit after being scattered.
Step 2: Set characteristic grid. The code then prepares

a 2 × 2 array of u, v coordinate values representing the
nodes of the characteristic mesh shown in Fig. 1. For
the initial rays, we take v0 ¼ −ttot=2þ R�

init and u0 ¼
−ttot=2 − R�

init with R�
init ≔ r�ðRinitÞ. This is so that the

initial vertex ðu; vÞ ¼ ðu0; v0Þ is crossed by the particle at
ðt; rÞ ¼ ð−ttot=2; RinitÞ. The stepping interval is set at h, and
the grid’s dimensions are taken such that the final character-
istic rays are at u ¼ ttot=2 − R�

init and v ¼ ttot=2þ R�
init—so

that the particle crosses the upper vertex at ðt; rÞ ¼
ðttot=2; RinitÞ on its way out. Finally, the coordinate values
of all intersections of the orbit with grid lines are calculated
and stored.
Step 3: Obtain ½ϕ� along the orbit. Using the analytical

expressions in Appendix B, we calculate the jumps in the
Weyl scalars ψ� and their derivatives along the orbit, for
the l; m mode in question. Specifically, we compute ½ψ−�
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and ½∂n
uψþ� for n ¼ 0;…; 3, and from these, using (61), we

analytically construct the source function F ðtÞ in Eq. (60).
We next numerically integrate the first-order ODE (60)
with the initial condition (70), to obtain the jump ½ϕþ� in the
Hertz potential along the orbit. From ½ϕþ�, we algebraically
obtain also ½ϕþ;v� and ½ϕþ;vv� using the procedure described
in the last paragraph of Sec. IV. B.
Step 4: Obtain ½X� along the orbit. We now construct

the source function FX using Eq. (83) and then numeri-
cally solve the first-order ODE (81) for [X] with the
initial condition (87). From [X], we algebraically obtain
also ½X;v�, ½X;u�, ½X;vv�, ½X;uv�, and ½X;uu�, using the
procedure described in the last paragraph of Sec. VI. B.
The jump values are computed at all intersections of the
particle’s worldline with grid lines and stored as vector
datasets.
Step 4: Obtain the generating function X≷

lm. We evolve
the RW equation (75) using the second-order-convergent
finite-difference scheme described in Appendix C. The
scheme requires as input the field jumps calculated in the
previous step at intersections of the worldline with
grid lines. The evolution starts with zero initial data along
v ¼ v0 and u ¼ u0 and proceeds along successive lines of
u ¼ const. The outcome is a finite-difference approxima-
tion to the generating field X in each of the vacuum regions
S> and S<.
Step 5: Derive the Hertz potential ϕ≷

lm. Given X, the
Hertz potential mode ϕ is calculated in each of the two
vacuum regions using Eq. (76), where derivatives are taken
numerically.
Output. In principle, the code can make available the

Hertz potential ϕ anywhere in the computational domain.
For our initial tests and for the purpose of illustration in this
paper, we output both X and ϕ as functions of t along the
orbit (on either of its sides) and as functions of u along the
final v ¼ const ray (approximating J þ).

C. Sample results

All of the results displayed here are for the orbit shown in
Fig. 5, with parameters given in Eqs. (102) and (103). In all
of the figures shown below, we have set μ ¼ 1 and M ¼ 1
for convenience; as a result, in particular, t, R, and h are
expressed in units of M.
Figure 6 demonstrates the behavior of the field X>

lm
along the worldline of the particle, for a sample of l; m
values (the field X<

lm has a similar behavior). The evolution
begins when the incoming particle is at Rinit ¼ 100M and
ends when the outflying particle is back at 100M.
We have performed convergence tests to confirm that our

code exhibits a quadratic global convergence rate in h, as it
is designed to do. An example is shown in Fig. 7. The
global rate of convergence is very sensitive to the imple-
mentation details of the jump conditions in the finite-
difference scheme (see Appendix C), so the observed

quadratic convergence provides important reassurance that
these jumps are implemented correctly.
As can be seen in Fig. 6, initially the data are contami-

nated by spurious waves, which, however, decay over time
to reveal the true, physical solution. The decay appears
faster for higher values of l, as expected from theory.
Figure 8 illustrates how, reassuringly, the “clean” part of the
data appears to be insensitive to the value of Rinit, up to a
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FIG. 7. Convergence test for the ðl; mÞ ¼ ð2; 2Þ numerical
solution. The inset shows a detail from the jX>

22j (green) curve in
Fig. 6, for a sequence of runs with decreasing grid spacing,
h ¼ f1

8
; 1
16
; 1
32
gM. The main plot quantifies the convergence rate;

it shows the ratio R ≔ jX>
8 − X>

16j=jX>
16 − X>

32j as a function of t
along the orbit, where a subscript 8 (for example) denotes a
calculation with grid spacing h ¼ M=8. A ratio of R ¼ 4 is
indicative of quadratic convergence.
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FIG. 6. The RW field Xlm along the particle’s worldline for the
orbit shown in Fig. 5 and a sample of ðl; mÞ values. Here, we
show jX>

lmðt; RðtÞÞj as a function of time t (lower scale) and
orbital radius R (upper scale). Curves are labeled with their ðl; mÞ
values, with l ¼ 8 data shown amplified by a factor ×600. The
periastron location at t ¼ 0 is indicated with a vertical line. The
early part of the data is contaminated by initial junk radiation, and
it is to be discarded.
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small decaying difference. As the figure demonstrates,
using Rinit as a control parameter enables us in practice
to evaluate the level of residual contamination from
initial junk.
Figure 9 shows the no-string IRG Hertz potential ϕ>

22

derived from X>
22, as a function along the orbit. Notable

physical features include (i) the small lag between the peak

of the field and the periastron passage and (ii) the small
undulation in the field amplitude not long after periastron
passage. (Both features are visible already at the level of the
generating function X and are numerically stable.) The
periastron lag has been observed before in calculations
along eccentric orbits (see, e.g., Ref. [41]); it is attributed to
the effect of “tail” contributions to the self-field, which
peak in amplitude soon after periastron. The undulation, we
suggest, is a weak manifestation of the quasinormal-mode
excitation phenomenon observed in self-field calculations
for highly eccentric orbits [52,53]. Both features are
associated with tail contributions to the self-field and are
less visible at larger l, where the “direct” part of the field
is more dominant. We have not conducted here a more
detailed study of the above physical features.
Finally, Fig. 10 shows the behavior of ϕ>

22 near I
þ, as a

function of retarded time u. The periastron lag and
postperiastron undulation are also visible in the radiation
field in this domain.

VIII. CONCLUSION

The main results of this work are threefold. First, we
have provided the details of a practical method for a time-
domain calculation of the Hertz potential for point-particle
metric perturbations in Schwarzschild spacetime. The main
ingredients were jump conditions that the Hertz potential
must satisfy along the particle’s worldline (in a 1þ 1D
multipolar reduction of the problem), which we derived in
explicit form for generic geodesic orbits. Second, consid-
ering the numerical implementation strategy, we have
demonstrated that a straightforward approach based on
evolution of the Teukolsky equation in u, v coordinated
does not work (even for vacuum problems) and explained
the reason for that failure. Third, we have proposed a way
around the problem and demonstrated its applicability with
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FIG. 8. Numerical results for jX>
22j on the particle’s worldline,

as calculated with Rinit ¼ 100M (blue) and with Rinit ¼ 200M
(orange). The comparison illustrates how, reassuringly, the clean
portion of the data is insensitive to Rinit, up to a small error that
dies off in time. The inset displays the relative difference between
the two curves, showing a t−4 falloff at late time, consistent with
the theoretically predicted t−l−2 decay rate for compact vacuum
perturbation along a curve r ¼ R ∝ t (see, for instance, Eq. (89)
of Ref. [51]).
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FIG. 9. The modulus of the no-string IRG Hertz potential ϕ>
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along the particle’s worldline. The field falls off as X ∼ t−2 at
large R. The inset shows the same data rescaled by a factor
ðR=MÞ2. The field exhibits the lagging peak and postperiastron
undulation features discussed in the text. (The multiplication by
R2 makes more distinct the undulation feature, only barely visible
in the main plot.)
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by a factor ðu=MÞ2 to again highlight the postperiastron undu-
lation feature.

OLIVER LONG and LEOR BARACK PHYS. REV. D 104, 024014 (2021)

024014-20



an end-to-end numerical calculation of the Hertz potential
for a scatter orbit.
The specific application that motivates this work is the

calculation of self-force effects on scatter orbits, and in
particular the self-force correction to the scatter angle. This
calculation we intend to report in forthcoming work. Let us
review here the additional steps necessary toward such a
calculation, starting from the baseline of the computational
method and code developed here:

(i) Given the Hertz potential, the no-string radiation-
gauge metric perturbation is reconstructed (mode by
mode) via Eq. (7). This involves taking two deriv-
atives of the numerical variables ϕlm (and hence
four derivatives of Xlm) along the orbit, on either
side of it. For the eventual self-force calculation,
one requires the gradient of the metric perturbation,
which therefore requires three derivatives of ϕlm
(and hence five derivatives of Xlm). The computa-
tional implications are discussed further below.

(ii) One has to separately compute the “completion” piece
of the metric perturbation, which is not accounted for
by the Hertz potential [27,54]. In the Schwarzschild
problem, this corresponds precisely to the determi-
nation of the l ¼ 0, 1 perturbation modes. Of these,
the axially symmetricmodes ðl; mÞ ¼ ð0; 0Þ and (1,0),
which describe mass and angular-momentum pertur-
bations, are easily determinable using the results of
Ref. [27]. The modes ðl; mÞ ¼ ð1;�1Þ, which regu-
late the center-of-mass location, require amore careful
analysis, similar to the one performed in Ref. [20] for
marginally bound orbits.

(iii) Once all the modes of the metric perturbation and
its gradient are available, the self-force along the
orbit is straightforwardly obtained via the no-string
radiation-gauge version of the mode-sum formula,
prescribed in Ref. [22]. It is also easy to separately
extract the dissipative and conservative components
of the self-force, utilizing the symmetries of the
geodesic scatter orbit about the periastron point (see,
e.g., Sec. 8.1 of Ref. [55]).

(iv) One can then calculate the self-force correction to
the scatter angle (say, at fixed initial velocity v∞ and
impact parameter b) as certain integrals of the self-
force along the orbit. The relevant formulas are
straightforwardly derived from the geodesic equa-
tions with a self-force term. Additional physical
quantities, such as the time delay induced by the
self-force, or the integrated particle’s spin precession
and tidal-field invariants, may also be calculated,
though the latter two would require evaluating
higher derivatives of the metric perturbation. The
self-force information allows calculation of all these
effects with or without dissipation.

We have noted above that a calculation of the metric
perturbation and self-force involves taking high-order

derivatives (fourth and fifth, respectively) of the numerical
evolution field Xlm. This is an obvious computational
disadvantage of our approach. It can be mitigated if a
method is employed that allows a direct evolution of the
Teukolsky equation for the Hertz potential ϕlm, which
would reduce the required number of derivatives to only 2
for the metric perturbation and 3 for the self-force. As
mentioned in Sec. V, there already exist such methods,
based on compactification of Iþ and the use of horizon-
penetrating coordinates—which appear to automatically
eliminate the problematic nonphysical growing solutions of
the Teukolsky equation. Existing codes employ asymptoti-
cally null (hyperboloidal) Cauchy slicing of the numerical
domain. We propose that, in our context, it might be
advantageous to retain the convenience and simplicity of a
fully double-null treatment, taking advantage of the domain
split across S. What we have in mind is a scheme where on
Sþ we use the original Eddington-Finklestein coordinate u
with a compactified v coordinate, while on S−, we use the
original v coordinate with a compactified u. The coordinate
discrepancy along S is then incorporated into the jump
conditions. We intend to explore this route in future work.
Since this work concentrates on basic method develop-

ment, we have not explored in detail the performance of our
code near the extremes of the parameter space for scatter
orbits. Relevant asymptotic domains of interest are that
of large Rmin (weak-field regime) and that of large v∞
(ultrarelativistic regime), where useful comparisons can be
made with analytical approximations. Preliminary experi-
ments suggest that, as expected, the performance of our
code gradually deteriorates with larger Rmin and/or larger
v∞. In large-Rmin runs, we are penalized by the longer
evolution time required, and in the large-v∞ case, the
slower decay of initial junk along the orbit requires a larger
value of Rinit (and again a longer run). We estimate,
nonetheless, that our current (admittedly suboptimal)
method and code can comfortably handle Rmin ≲ 50M
and v∞ ≲ 0.6. Note that we virtually have no limit on
how large the impact parameter b can be taken to be
(indeed, in the marginally bound case studied in Ref. [20]
via a similar time-domain method, one has b → ∞).
It is natural to ask about the prospect of an extension to

orbits in Kerr geometry. This has been discussed in some
detail in Ref. [23]. A 1þ 1D treatment of the Teukolsky
equation in Kerr is still possible, albeit with the additional
complication of coupling between l modes. The field
equation, together with jump conditions on S, can be
recast in a narrow band-diagonal matrix form and solved
for all l modes simultaneously (with a cutoff at a
sufficiently high lmax). The application of this mode-
coupling approach has been demonstrated in vacuum
problems [23,56], but it is yet to be applied with a particle
source, and the appropriate no-string jump conditions are
yet to be derived. In the Kerr case, there is no known way
of transforming to a RW-like variable in the time domain
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(the Sasaki-Nakamura formulation achieves that in the
frequency domain only), which further motivates an
approach based on a direct evolution of the Hertz potential
with a suitable form of domain compactification.
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APPENDIX A: BARDEEN-PRESS-TEUKOLSKY
EQUATION AND METRIC RECONSTRUCTION

We give here a more detailed technical account of the
background material presented in Sec. II, and in particular,
we give explicit expressions for the operators T̂�, Ô�,
and Ŝ� and their adjoints. Our sign conventions for the
Newman-Penrose formalism are adopted from Ref. [27];
Appendix A therein gives a useful summary.
In this paper, we use Kinnersley’s null tetrad basis on a

Schwarzschild background with metric gαβ and mass
parameter M. In Schwarzschild coordinates ðt; r; θ;φÞ,
the tetrad legs are given by

eα1 ¼ lα ¼
�
r2

Δ
; 1; 0; 0

�
;

eα2 ¼ nα ¼ 1

2

�
1;−

Δ
r2
; 0; 0

�
;

eα3 ¼ mα ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ

�
;

eα4 ¼ m̄α ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;−

i
sin θ

�
; ðA1Þ

where Δ ≔ rðr − 2MÞ and overbars denote complex con-
jugation.We have gαβeαae

β
b ¼ 0 for all a and b, exceptlαnα ¼

−1 and mαm̄α ¼ 1. The corresponding spin coefficients are
γabc ≔ gμλe

μ
aeνc∇νeλb. Up to trivial index permutations, the

only nonzero coefficients in the Schwarzschild case are

ϱ ≔ −γ314 ¼ −
1

r
;

μ ≔ −γ243 ¼ −
Δ
2r3

;

γ ≔ −
1

2
ðγ212 þ γ342Þ ¼

M
2r2

;

β ≔ −
1

2
ðγ213 þ γ343Þ ¼

cot θ

2
ffiffiffi
2

p
r
;

α ≔ −
1

2
ðγ214 þ γ344Þ ¼ −

cot θ

2
ffiffiffi
2

p
r
: ðA2Þ

TheWeyl curvature scalarsΨ0 andΨ4 are defined in terms of
the Weyl tensor Cαβγδ as

Ψ0 ¼ Cαβγδlαmβlγmδ;

Ψ4 ¼ Cαβγδnαm̄βnγm̄δ: ðA3Þ

BothΨ0 andΨ4 vanish in the Schwarzschild background, and
so, for the sake of economy but in a slight abuse of notation,
we use these symbols to represent the linear perturbations in
these quantities. We define Ψþ ≔ Ψ0 and Ψ− ≔ ϱ−4Ψ4 for
notational ease. In terms of the metric perturbation hαβ, we

have T̂�hαβ ¼ Ψ� [Eq. (2)], where the second-order differ-

ential operators T̂� are given by

ðT̂þÞαβ ¼
1

2
ðlðαmβÞmγlδ −mαmβlγlδ − lαlβmγmδ;

þmðαlβÞlγmδÞ∇δ∇γ;

ðT̂−Þαβ ¼
1

2
ðnðαm̄βÞm̄γnδ − m̄αm̄βnγnδ − nαnβm̄γm̄δ

þ m̄ðαnβÞnγm̄δÞ∇δ∇γ: ðA4Þ

Here, ∇α is the covariant derivative compatible with the
Schwarzschild background metric gαβ, and parenthetical
indices are symmetrized, as in AðαβÞ ¼ 1

2
ðAαβ þ AβαÞ.

The perturbation fields Ψ� satisfy the Teukolsky equa-
tion with spin parameter s ¼ �2, whose Schwarzschild
reduction is sometimes referred to as the Bardeen-Press
equation. Here, we refer to it as the Bardeen-Press-
Teukolsky equation. It has the form

Ô�Ψ� ¼ T �; ðA5Þ

where the differential operators on the left are

Ôþ ¼ Δ
�
Dl þ 2

r −M
Δ

��
D̃n þ 4

r −M
Δ

�
þ ð1ð̄2 − 6r∂t;

Ô− ¼ Δ
�
D̃n − 2

r −M
Δ

�
Dl þ ð̄−1ð−2 þ 6r∂t: ðA6Þ

Here, Dl ≔ lα∇α, Dn ≔ nα∇α, D̃n ≔ −ð2r2=ΔÞDn, and
we have introduced the “spin raising and lowering”
operators, respectively,

ðs ≔ −∂θ − i csc θ∂φ þ s cot θ;

ð̄s ≔ −∂θ þ i csc θ∂φ − s cot θ; ðA7Þ

whose action on spin-weighted spherical harmonics
sYlmðθ;φÞ is described by

ðssYlm ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm;

ð̄ssYlm ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm: ðA8Þ
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The source terms T � in (A5) are obtained from the energy-
momentum tensor Tαβ using

T þ ¼ ŜþTαβ ¼ 8πr2

× ½ðDm − 2βÞDmT11 − ðDl − 5ϱÞðDm − 2βÞT13

− ðDm − 2βÞðDl − 2ϱÞT13 þ ðDl − 5ϱÞðDl − ϱÞT33�;
ðA9Þ

T − ¼ Ŝ−Tαβ ¼ 8πr6

× ½ðDm̄ − 2βÞDm̄T22 − ðDn þ 2γþ 5μÞðDm̄ − 2βÞT24

− ðDm̄ − 2βÞðDn þ 2γþ 2μÞT24

þ ðDn þ 2γþ 5μÞðDn þ μÞT44�; ðA10Þ

where T11 ¼ Tαβeα1e
β
1, etc., and we have also introduced

Dm ≔ mα∇α and Dm̄ ≔ m̄α∇α,
As described in Sec. II, the metric reconstruction

procedure involves the operators adjoint to Ôþ, T̂þ, and
Ŝþ. These adjoint operators can be obtained by integrating
each operator against a suitable test function and manipu-
lating using integrations by parts. In this fashion, it is
straightforward to show that

Ô†
� ¼ Ô∓; ðA11Þ

i.e., solutions Φ� to the adjoint BPT equation with spin
s ¼ �2 are also solutions to the standard BPT equation
with spin s ¼∓ 2. For the metric reconstruction operators
[see Eq. (7)], a calculation gives

Ŝ†þ ¼ −2lαlβðDm þ 2βÞðDm þ 4βÞ
− 2lðαmβÞ½ðDm þ 4βÞðDl þ 3ϱÞ þ DlðDm þ 4βÞ�
þ 2mαmβðDl − ϱÞðDl þ 3ϱÞ; ðA12Þ

Ŝ†− ¼ −2r4½nαnβðDm̄ þ 2βÞðDm̄ þ 4βÞ
− nðαm̄βÞððDm̄ þ 4βÞðDn þ μ − 4γÞ
þ ðDn þ 4μ − 4γÞðDm̄ − 2βÞÞ
þ m̄αm̄βðDn þ 5μ − 2γÞðDn þ μ − 4γÞ�: ðA13Þ

Finally, for the “source reconstruction” operators [see
Eq. (15)], one finds

ðT̂†
þÞαβ ¼ −

1

2
lαlβðDm þ 2βÞðDm þ 4βÞ

þ 1

2
lðαmβÞ½DlðDm þ 4βÞ þ ðDm þ 4βÞðDl − ϱÞ�

−
1

2
mαmβðDl − ϱÞ2; ðA14Þ

ðT̂†
−Þαβ ¼ −

1

2
nαnβðDm̄ þ 2βÞðDm̄ þ 4βÞ

þ 1

2
nðαm̄βÞ½ðDn − 4γÞðDm̄ þ 4βÞ

þ ðDm̄ þ 4βÞðDn þ μ − 4γÞ�

−
1

2
m̄αm̄βðDn þ μ − 2γÞðDn þ μ − 4γÞ: ðA15Þ

APPENDIX B: JUMPS IN THE
WEYL-SCALAR MODES ψ�

lm

In this Appendix, we derive the jumps across S in the
Weyl-scalar modal fields ψ�

lmðt; rÞ and their first three
derivatives, for a generic geodesic orbit. We do so ana-
lytically, and for both spins s ¼ �2. These jumps are
necessary input for the calculation of the no-string Hertz-
potential jumps ½ϕ�� in Sec. IV. In our method, we require
both ½ψþ� and ½ψ−� for either ½ϕþ� (IRG potential) or ½ϕ−�
(ORG potential); cf. Eq. (60) with (61). At the end of this
Appendix, we derive asymptotic expressions for ½ψ�� at
large radii in the case of scatter orbits; these are used in the
asymptotic analysis of Sec. IV C.

1. BPT equation with a point-particle source

Let Ψþ ≡ Ψ0 and Ψ− ≡ r4Ψ4 be the Weyl scalars
associated with the physical metric perturbation sourced
by a geodesic point particle with stress-energy as in
Eq. (16). We recall our notation: μ is the particle’s mass,
and xμ ¼ xμpðτÞ describes its geodesic worldline, with
proper time τ and 4-velocity uα ≔ dxp=dτ. For conven-
ience, we set the Schwarzschild coordinates so that the
orbit lies in the equatorial plane (θp ≡ π=2) and write
RðτÞ≡ rpðτÞ. The conserved (specific) energy and angular
momentum of the orbit are E ¼ fRut and L ¼ r2uφ,
respectively, where fR ≔ 1 − 2M=R. The Schwarzschild
components of the 4-velocity are

uμp ¼ ðE=fR; ðE=fRÞ _R; 0; L=r2Þ; ðB1Þ

where an overdot denotes d=dt.
The Weyl scalars Ψ� satisfy the s ¼ �2 BPT

equations (A5), where the source T � is derivable from
Tαβ by means of Eqs. (A9) and (A10). Expanding both Ψ�
and T � in s ¼ �2 spherical harmonics, as in Eq. (24),
separates the BPT equation into modal equations for each
of the time-radial fields ψ�

lmðt; rÞ. The modal equations are
(dropping the indices lm for brevity)

ψ�
;uvþUsðrÞψ�

;uþVsðrÞψ�
;vþWsðrÞψ�¼T�ðt;rÞ; ðB2Þ

where the radial functions on the left are those given in
Eqs. (26) and (27), with s ¼ �2 for ψ�. The modal source
term T� can be written in the form
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T�ðt; rÞ ¼ s�0 ðtÞδ½r − RðtÞ� þ s�1 ðtÞδ0½r − RðtÞ� þ s�2 ðtÞδ00½r − RðtÞ�; ðB3Þ

where a prime denotes a derivative with respect to the argument, and the source functions s�n ðtÞ are certain functions along
the orbit. The explicit expressions for s�n ðtÞ are rather unwieldy, unfortunately, but they are essential within our method, so
we give them here. They are

sþ0 ¼ πμ

E
f−L2mf2RRðiφ̈p þm _φ2

pÞ þ 2LfR½iLmðð2þ yÞfR − ð1þ 2yÞ _RÞ þm2ERðfR − _RÞ� _φp

þ LfR½Lð1þ 2yÞ − 2imER�R̈þ ½−2iLEmþ 8L2y2=R − ðm2 − 2ÞE2R� _R2

þ 2fR½−ðL2=RÞyð6yþ 7Þ þ 2iLmEð1þ 3yÞ þ ðm2 − 2ÞE2R� _Rþ 12f2RðL2=RÞy
− f2R½2iLmEð1þ 4yÞ þ ðm2 − 2ÞE2R�gYþðtÞ þ πμf2RðfR − _RÞm½LfR _φp − EðfR − _RÞ�
þ 2iL½−fRRR̈ − _R2 þ 2fRð1þ 3yÞ _R − f2Rð1þ 4yÞ�gYþ

θ ðtÞ − πμERðfR − _RÞ2Yþ
θθðtÞ; ðB4Þ

sþ1 ¼ 2iπμLfRRðfR − _RÞ½ðfR − _RÞ½Yþ
θ ðtÞ þmYþðtÞ� −mfRðL=EÞ _φpYþðtÞ� þ πμðL2=EÞfR½−fRRR̈ − 2ð1þ 2yÞ _R2

þ 2fRð3þ 5yÞ _R − 4f2Rð1þ yÞ�YþðtÞ; ðB5Þ

sþ2 ¼ πμðL2=EÞf2RRðfR − _RÞ2YþðtÞ; ðB6Þ

and

s−0 ¼ −
πμ

4Ef2RR
9
fL2mf2RR

6ðm _φ2
p þ iφ̈pÞ − 2LmR5fR½EmR _Rþ fRðEmRþ iLð3 _Rþ 2 − 5yÞÞ� _φp

þ LfRR5ð3LfR − 2iEmRÞR̈þ R4½−12L2f2R þ ERðEðm2 − 2ÞRþ 2iLmð3 − 4yÞÞ� _R2

þ 2R4½−L2ð8 − 25yÞf2R þ ERðEðm2 − 2ÞRfR þ 2iLmð3 − 7yÞfRÞ� _R
þ R4½−4L2ð1 − 5yÞf3R þ ERðEðm2 − 2ÞRf2R þ 2iLmð3 − 8yÞf2RÞ�gY−ðtÞ
þ πμ

2f2RR
7
fmR4ðfR þ _RÞðEðfR þ _RÞ − LfR _φpÞ − iLR3ðfRRR̈ − ð3 − 4yÞ _R2 − 2fRð3 − 7yÞ _R

− ð3 − 8yÞf2RÞgY−
θ ðtÞ −

πEμðfR þ _RÞ2
4f2RR

3
Y−

θθðtÞ; ðB7Þ

s−1 ¼ iπμLðfR þ _RÞ
2fRR3

½ðfR þ _RÞ½Y−
θ ðtÞ −mY−ðtÞ�

þmfRðL=EÞ _φpY−ðtÞ� þ πμL2

4ER4
½−RR̈þ 6 _R2

þ 2ð5 − 13yÞ _Rþ 4fRð1 − 3yÞ�Y−ðtÞ; ðB8Þ

s−2 ¼ πμL2ðfR þ _RÞ2
4ER3

Y−ðtÞ: ðB9Þ

Here, we have introduced

y ≔
M
R
; Y�ðtÞ ≔ �2Ȳlm

�
π

2
;φpðtÞ

�
; ðB10Þ

with Y�
θ and Y�

θθ being the first and second derivatives of

�2Ȳlmðθ;φpðtÞÞ with respect to θ, evaluated at θ ¼ π=2.

Note that in Eqs. (B4)–(B9) we have not yet specialized
to a timelike geodesic. With such specification, the time
derivatives featuring in these expressions can be expressed
in terms of RðtÞ alone (as well as E and L), as follows:

_R ¼ �ðfR=EÞ½E2 − fRð1þ L2=R2Þ�1=2; ðB11Þ

R̈ ¼ f2Rð1 − 5yÞL2 þ yR2fRð2E2 − 3fRÞ
R3E2

; ðB12Þ

_φp ¼ fRL
R2E

; φ̈p ¼ −
2Lð1 − 3yÞ _R

ER3
: ðB13Þ

The sign in (B11) is (−) for the incoming leg of the orbit
and (þ) for the outgoing leg.
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2. Jumps in ψ� and their first derivatives

The jumps in the 1þ 1D Weyl-scalar fields ψ� are
determined by requiring that (B2) is satisfied as a distri-
butional equation, with the ansatz

ψ� ¼ ψ>
�ðt; rÞΘ½r − RðtÞ� þ ψ<

�ðt; rÞΘ½RðtÞ − r�
þ ψ�

δ ðtÞδ½r − RðtÞ�: ðB14Þ

Here, Θ½·� is the Heaviside step function, and ψ�
δ ðtÞ is to be

determined. Balancing the coefficients of Θ½r − RðtÞ� and
Θ½RðtÞ − r� implies that ψ>

�ðt; rÞ and ψ<
�ðt; rÞ are homo-

geneous solutions of (B2). The remaining terms are
supported on r ¼ RðtÞ only and are each proportional to
either δ, δ0, or δ00. We use the distributional identities

FðrÞδðr − RÞ ¼ FðRÞδðr − RÞ;
FðrÞδ0ðr − RÞ ¼ FðRÞδ0ðr − RÞ − F0ðRÞδðr − RÞ;
FðrÞδ00ðr − RÞ ¼ FðRÞδ00ðr − RÞ − 2F0ðRÞδ0ðr − RÞ

þ F00ðRÞδðr − RÞ ðB15Þ

[valid for any smooth function FðrÞ] to eliminate the r
dependence of the coefficients of each of these terms and
then compare the coefficient values across the two sides of
Eq. (B2), recalling the form of T� in Eq. (B3).
From the coefficient of δ00, we immediately obtain

ψ�
δ ðtÞ ¼ −

4s�2 ðtÞ
f2R − _R2

: ðB16Þ

The coefficient of δ0 then determines the jump,

½ψ��¼−
1

f2R− _R2

�
4s1ðtÞþ2 _ψ�

δ
_R

þ½−2fRðsð1−yÞþ3yÞþ2sð1−3yÞ _RþRR̈�ψ
�
δ

R

�
;

ðB17Þ

with s ¼ �2 for ψ�. Finally, comparing the coefficients of
δ gives a relation between the jumps ½ψ�

;t � and ½ψ�
;r �:

s�0 ðtÞ ¼ −
1

2
_R½ψ�

;t � −
1

4
ðf2R þ _R2Þ½ψ�

;r � þ P�ðtÞ; ðB18Þ

where

P� ¼ 1

4
ψ̈�
δ þ s

2R
ð1 − 3yÞ _ψ�

δ

þ ψ�
δ

4R2
½λfR þ 2þ s − s2 þ 2yð1þ s2 − 4sÞ

þ 8y2ðs − 2Þ − 2sð1 − 6yÞ _R�

þ ½ψ��
4R

½2fRðsð1 − yÞ þ yÞ − 2sð1 − 3yÞ _R − RR̈�;
ðB19Þ

with s ¼ �2 for P�. Recall λ ¼ ðlþ 2Þðl − 1Þ.
A second relation between ½ψ�

;t � and ½ψ�
;r � is obtained by

writing

½ _ψ�� ¼ ½ψ�
;t � þ _R½ψ�

;r �: ðB20Þ

Solving (B18) and (B20) as a simultaneous set then gives

½ψ�
;r � ¼

4ðP� − s�0 Þ − 2 _R½ _ψ��
f2R − _R2

; ðB21Þ

and

½ψ�
;t � ¼

−4ðP� − s�0 Þ _Rþ ðf2R þ _R2Þ½ _ψ��
f2R − _R2

: ðB22Þ

The corresponding jumps in the u and v derivatives are

½ψ�
;v� ¼

4ðP� − s�0 Þ þ ðfR − _RÞ½ _ψ��
2ðfR þ _RÞ ; ðB23Þ

½ψ�
;u� ¼

−4ðP� − s�0 Þ þ ðfR þ _RÞ½ _ψ��
2ðfR − _RÞ : ðB24Þ

Equations (B17), (B23), and (B24) give the jumps in ψ�
and its first derivatives for a generic geodesic orbit.

3. Jumps in the second and third derivatives of ψ�
We can get ½ψ�

;uv� directly from the vacuum BPT
equation,

½ψ�
;uv� ¼ −U�2ðRÞ½ψ�

;u� − V�2ðRÞ½ψ�
;v� −W�2ðRÞ½ψ��;

ðB25Þ

where the jumps ½ψ�
;v�, ½ψ�

;u� and ½ψ�� can be substituted for
from Eqs. (B23), (B24), and (B17). Then, ½ψ�

;uu� and ½ψ�
;vv�

can be obtained from the chain rules

½ _ψ�
;u� ¼ _v½ψ�

;uv� þ _u½ψ�
;uu�;

½ _ψ�
;v� ¼ _v½ψ�

;vv� þ _u½ψ�
;uv�; ðB26Þ
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where

_v ¼ 1þ _R=fR; _u ¼ 1 − _R=fR: ðB27Þ

The jumps in the third derivatives are obtained in a
similar fashion. First, we obtain ½ψ�

;uvu� and ½ψ�
;uvv� from the

u and v derivatives of the vacuum BPT equations. Then,
½ψ�

;uuu� and ½ψ�
;vvv� are determined from the appropriate

chain rule; e.g.,

½ψ�
;uuu� ¼

½ _ψ�
uu� − _v½ψ�

;uuv�
_u

; ðB28Þ

where the jumps on the right-hand side are known from
previous steps. We may proceed in this recursive manner to
determine the jumps in all higher derivatives. In the
calculation performed in this paper, we require jump
information only up to the third derivatives.

4. Large-R asymptotics for scatter orbits

For our asymptotic analysis in Sec. IV C (where we
derive initial conditions for the Hertz potential’s jump
equations), it is useful to have at hand the large-R
asymptotic form of the Weyl-scalar jumps calculated
above, in the case of a scatter orbit coming from infinity
(i.e., the class of geodesic scatter orbits described in
Sec. VII A). Specifically, we need the asymptotic forms
of ½ψ�� as well as ½ψþ

;u�, ½ψþ
;uu�, and ½ψþ

;uuu�.
As input for this calculation, we need the asymptotic

form of the source coefficients s�n in Eqs. (B4)–(B9).
Specializing to scatter geodesics and working at leading
order in y ¼ M=R (at fixed E, L), we find

sþn ¼ σþn RþOðR0Þ;
s−n ¼ σ−nR−3 þOðR−4Þ; ðB29Þ

for n ¼ 0, 1, 2. The coefficients needed for our purpose are
given explicitly by

σþ0 ¼ −μEπð1 − _R∞Þ2½ðm2 − 2ÞYþ þ 2mYþ
θ þ Yþ

θθ�∞;
σþ1 ¼∓ 2iμLπð1 − _R∞Þ2ðmYþ þ Yþ

θ Þ∞; ðB30Þ

and

σ−1 ¼ � 1

2
iμLð1þ _R∞Þ2ðmY− − Y−

θ Þ∞; ðB31Þ

where subscripts ∞ imply an evaluation at t → �∞,
depending on whether it is the in or out states being
considered. In the expressions for σþ1 and σ−1 , the upper sign
is for the out state ( _R∞ > 0), and the lower sign is for the in
state ( _R∞ < 0).

A straightforward leading-order calculation now gives

½ψþ� ¼ −4σþ1 E2RþOðR0Þ; ðB32Þ

½ψ−� ¼ −4σ−1E2R−3 þOðR−4Þ; ðB33Þ

as well as

½ψþ
;t � ¼ − _R∞½ψþ

;r � ¼ 4σþ0 E
2 _R∞RþOðR0Þ; ðB34Þ

½ψþ
;u� ¼

2σþ0
1 − _R∞

RþOðR0Þ; ðB35Þ

½ψþ
;uu� ¼ −

2σþ0 ð2 − 3 _R∞Þ
ð1 − _R∞Þ2

þOðR−1Þ; ðB36Þ

½ψþ
;uuu� ¼

σþ0 ½8ð1 − 2 _R∞Þ þ λð1þ _R∞Þ�
2ð1 − _R∞Þ2

R−1 þOðR−2Þ:

ðB37Þ

APPENDIX C: FINITE-DIFFERENCE SCHEME

In this Appendix, we detail the finite-difference (FD)
scheme employed in Sec. VII for solving the 1þ 1D
vacuum RW field equation (75), with jump conditions
on S corresponding to a no-string Hertz potential for a
scatter orbit. The basic architecture of our characteristic
evolution scheme was described in Sec. VA. Here, we
focus on the FD scheme itself, at the grid-cell level. In
deriving the scheme, we follow the method of Ref. [41]
(which itself builds on a long history of time-domain work
in the self-force literature, e.g., Refs. [38,57]).
Recall Fig. 1, which shows the 1þ 1D numerical grid,

based on u, v coordinates with uniform cell dimensions
h × h. Consider an arbitrary grid point c with coordinates
ðu; vÞ ¼ ðuc; vcÞ, and in reference to that point denote by
Xnk the value of the numerical field variable X at the grid
point with coordinates ðu; vÞ ¼ ðuc − nh; vc − khÞ. Our
goal is to prescribe a FD expression for X00 (the field at c),
given the values Xnk for all n; k > 0, assumed to have been
obtained in previous steps of the characteristic evolution.
We wish to achieve a global quadratic convergence, i.e., an
accumulated error in X that scales as h2. Since the total
number of grid points over which the error accumulates is
∝ h−2, this demands a local (single-point) FD error not
larger than Oðh4Þ in general.
Our grid is traversed by the curve S representing the

timelike geodesic trajectory of the particle. The curve is
fixed and known in advance, and the coordinates of all of its
intersections with grid lines are calculated in advance of the
numerical evolution. In reference to the grid cell C with top
vertex c, we distinguish between two scenarios: either C is
traversed by S (“particle cell”) or it is not (“vacuum cell”).
We deal with each of these two scenarios separately below.
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1. Vacuum cells

First, we consider the simpler case where the particle’s
worldline does not cross the integration cell. Then, a
sufficiently accurate FD approximation for X00 can be
written based on the three values X01, X10, and X11 alone:
integrating each of the two terms on the left-hand side of
the RW equation (75) over the grid cell C, we haveZ

C
X;uvdudv ¼ X00 − X01 − X10 þ X11 ðC1Þ

(exactly) andZ
C
WðrÞXdudv ¼ 1

2
h2WðrcÞðX01 þ X10Þ þOðh4Þ; ðC2Þ

where

WðrÞ ≔ f
4

�
λ1
r2

−
6M
r3

�
; ðC3Þ

and rc is the value of r at point c. The vacuum RWequation
then gives

X00 ¼ −X11 þ ðX01 þ X10Þ
�
1 −

h2

2
WðrcÞ

�
þOðh4Þ;

ðC4Þ

which we use as our FD formula for vacuum points.

2. Particle cells

The vacuum formula (C4) does not work for cells that are
traversed by the worldline, due to the discontinuity in the
field across S. The worldline splits C into two disjoint
vacuum regions, C> and C<, as shown in Fig. 11, which
displays the four possible scenarios. Since X is smooth on
each of the two vacuum regions, we can expand it piece-
wise in a Taylor series about point c, in the form

X≷ ¼
XN
iþj¼0

c≷ij
i!j!

ũiṽj þOðhNþ1Þ; ðC5Þ

where ũ ≔ u − uc, ṽ ≔ v − vc, and different expansion
coefficients apply on each side of S: c<ij are used in C

<, and
c>ij are used in C>. The idea now is to derive the values of

c≷ij based on a sufficient number of data points X≷
nk, plus the

analytically known jumps in X and its derivatives on S. We
note that, since the total number of particle cells scales as
h−1, it is acceptable for our local FD scheme to have an
error as great asOðh3Þ (but not greater) at each particle cell.
To achieve such accuracy we take N ¼ 2 in Eq. (C5),

leaving us with 12 coefficients c≷ij to determine. We use the
six data points fX00; X01; X10; X11; X02; X20g to supply six

constraints, and six additional constraints are obtained from
the known jumps f½X�; ½X;u�; ½X;v�; ½X;uu�; ½X;uv�; ½X;vv�g,
imposed at the point where the worldline exits the cell
C [i.e., referring to Fig. 11, either the point ðuf; vcÞ or the
point ðuc; vfÞ, depending on the case]. For example, in
cases UU and VU, we have the constraint

½X�ðuf;vcÞ ¼
X2
i¼0

ðc>i0 − c<i0Þ
i!

ũif þOðh3Þ; ðC6Þ

where ũf ¼ uf − uc. Solving the 12 simultaneous equa-

tions for c≷ij and then substituting these coefficients back
in (C5) gives an expression for X≷, accurate throughOðh2Þ
in the vicinity of point c [i.e., with an error Oðh3Þ], in
terms of the above six field points (which include the
unknown X00) and above six jumps.
Considering first the principal part of the RW equation,

we thus obtain

X≷
;uv ¼ c≷11 þOðhÞ

¼ h−2ðX00 − X01 − X10 þ X11 þ JA1 Þ þOðhÞ; ðC7Þ

where A ∈ fUU;VV;UV; VUg labels the case in question,
with

FIG. 11. A particle cell is traversed by the particle’s worldline
(dashed curve) in one of four possible ways: cases UU, VV, UV,
and VU, illustrated here. A different variant of the FD formula
applies in each case, as described in the text. The apex of the cell
is the point c at ðu; vÞ ¼ ðuc; vcÞ, and the particle exits the cell at
ðuf; vcÞ or ðuc; vfÞ, depending on the case. The vacuum portions
of the cell left and right of the worldline are C< and C>,
respectively.
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JUU
1 ¼ h½X;v� þ hðuc − ufÞ½X;uv�−

h2

2
ð2½X;uv� þ ½X;vv�Þ;

JVV1 ¼ −h½X;u�− hðvc − vfÞ½X;uv� þ
h2

2
ð2½X;uv� þ ½X;uu�Þ;

JUV
1 ¼ −½X� þ ðh− vc þ vfÞ½X;v�−

1

2
ðh− vc þ vfÞ2½X;vv�;

JVU1 ¼ ½X�− ðh− uc þ ufÞ½X;u� þ
1

2
ðh− uc þ ufÞ2½X;uu�:

ðC8Þ

For the term WX of the RW equation, we wish to obtain a
FD approximation that does not involve X00, and the form
of (C7) implies that we only require a leading-order, Oðh0Þ
approximation for this term. We choose to achieve this by
taking N ¼ 1 in Eq. (C5) and then solving for the six
coefficients c≷ij (iþ j ≤ 1) using the three data points
fX01; X10; X11g and three jumps f½X�; ½X;u�; ½X;v�g, again
evaluated at ðuf; vcÞ or ðuc; vfÞ. This gives

X≷ ¼ c≷00 þOðhÞ
¼ X01 þ X10 − X11 þ JA2 þOðhÞ; ðC9Þ

with

JUU
2 ¼ 0 ¼ JVV2 ; JUV2 ¼ ½X� ¼ −JVU2 : ðC10Þ

Hence,

WX≷ ¼ WðrcÞðX01 þ X10 − X11 þ JA2 Þ þOðhÞ: ðC11Þ

Imposing finally the vacuum RW equation
X;uv þWX ¼ 0, we obtain, using (C7) and (C11),

X00 ¼ ðX01 þ X10 − X11Þð1 − h2WðrcÞÞ − JA1

− h2WðrcÞJA2 þOðh3Þ; ðC12Þ

which is our FD formula for particle cells.
Note that our second-order-convergent FD scheme,

consisting of Eq. (C4) for vacuum cells with Eq. (C12)
for particle cells, requires as input only the three field data
points X01, X10, and X11 (as well as the known jumps).
This is convenient, as it means that at each characteristic
evolution step we require data on a single previously
calculated characteristic ray.
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