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We show that rotating black holes do not experience any tidal deformation when they are perturbed by a
weak and adiabatic gravitational field. The tidal deformability of an object is quantified by the so-called
“Love numbers,” which describe the object’s linear response to its external tidal field. In this work, we
compute the Love numbers of Kerr black holes and find that they vanish identically. We also compute the
dissipative part of the black hole’s tidal response, which is nonvanishing due to the absorptive nature of the
event horizon. Our results hold for arbitrary values of black hole spin, for both the electric-type and
magnetic-type perturbations, and to all orders in the multipole expansion of the tidal field. The boundary
conditions at the event horizon and at asymptotic infinity are incorporated in our study, as they are crucial
for understanding the way in which these tidal effects are mapped onto gravitational-wave observables. In
closing, we address the ambiguity issue of Love numbers in general relativity, which we argue is resolved
when those boundary conditions are taken into account. Our findings provide essential inputs for current
efforts to probe the nature of compact objects through the gravitational waves emitted by binary systems.
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I. INTRODUCTION

An important open problem in astrophysics today is how
black holes would respond to the perturbation sourced
by an external tidal field. The tidal response of a self-
gravitating object consists of a conservative part, which
describes how the object would deform, and a dissipative
part, which quantifies the amount of energy that would be
lost due to this tidal interaction. More precisely, the tidal
deformability of an object is characterized by the so-called
“Love numbers” [1–3], which quantify the induced
moments the object would acquire when the tidal environ-
ment is static. On the other hand, tidal dissipation arises due
to the viscosity of the object and is only present if the
environment varies with time in the object’s rest frame
[2,3]. These tidal effects encode information about the
object’s internal structure and appear at different post-
Newtonian (PN) orders in the phase of the gravitational
waves emitted when the object is part of a binary system.
More precisely, the tidal deformation of a body first appears
at 5PN order in the phase of a binary waveform [4–6], while
tidal dissipation of a rotating (nonrotating) body first
appears at 2.5PN (4PN) order [7–13]. Gravitational-wave
sources are often intrinsically dark—a precise measurement
of these tidal effects would not only offer us valuable
probes into the nature of known objects, such as neutron
stars [14–18], but could also provide hints for the existence
of new types of compact objects [19–24]. Black holes are
the simplest and most fascinating self-gravitating objects
[25–27]; a detailed understanding of their tidal effects is not

only of direct interest in astrophysics but could also provide
further insights into the foundational aspects of black holes
and gravity.
While the Love numbers of Schwarzschild black holes

have been shown to vanish [28–32], similar conclusions for
Kerr black holes have only been drawn in the small-spin
limit and for the few low-order multipolar perturbations
[33–35]. In the latter case, the results are limited because the
metric of an arbitrarily spinning black hole in a general tidal
environment is hard to derive [34,36]. Finding the Love
numbers through the metric has also been shown to suffer
from a drawback: the meaning of Love numbers seem to
depend on coordinate choices and are thus ambiguous
[34,37,38]. Recently, Ref. [39] attempted at computing
the Love numbers of the Kerr black hole through the
Weyl scalars of the Newman-Penrose formalism [40].
This approach is advantageous because the technical heft
of deriving the perturbed Kerr metric is now replaced by
solving the Teukolsky equation [41,42], which is a much
simpler task. As we shall see, the resolution to the ambiguity
issue described above lies in a careful consideration of the
boundary condition at asymptotic infinity, which is also
captured by the Teukolsky equation.
In this work, we compute the tidal deformation and

dissipation of rotating black holes through a detailed
examination of the ψ4 Weyl scalar [40] for the tidally
perturbed Kerr black hole. Our work crucially exploits the
separability of ψ4 on the Kerr background [41,42], which
allows us to solve for the black hole’s responses even when
the details of the perturbed metric are not fully known.
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We make no assumption about the spin of the black hole
and only assume that the external tidal field sources a linear
perturbation that is slowly varying with time; our results are
otherwise true for all spins and to all orders in the multipole
expansion of the linear external tidal field. We describe how
the black hole’s tidal deformation and dissipation directly
affect the outgoing flux at asymptotic infinity and ingoing
flux at the event horizon, respectively. Since these fluxes
are coordinate-invariant observables, the tidal effects that
we compute have unambiguous physical interpretations on
gravitational waveforms.
Through the Newman-Penrose formalism, the authors

of Ref. [39] claimed that the tidal deformability of
rotating black holes do not vanish for nonaxisymmetric
perturbations—a result which is in direct tension with
Ref. [36], which showed that the Love numbers of non-
axisymmetric quadrupolar perturbations are zero for a
slowly rotating black hole. In this work, we resolve this
issue by showing that so-called “nonvanishing Love
numbers” found by Ref. [39] are not associated to the
conservative tidal deformability of the Kerr black hole but
are instead dissipative effects of the black hole. In particu-
lar, the “Love numbers” computed in Ref. [39], which are
purely imaginary quantities, do not vanish for a static
external tidal field because the black hole’s rotational
motion sources a relative time dependence with the static
environment. In other words, in the corotating frame of the
Kerr black hole, a static tidal field would be perceived to
rotate at a frequency that is proportional to the black hole
spin, which therefore induces tidal dissipation.
Notation and conventions.— We use the ð−;þ;þ;þÞ

metric convention and work in units of G ¼ c ¼ 1. We
adopt the ingoing-Kerr coordinates fv; r; θ;ϕg, in which
the line element of the Kerr black hole with mass M and
specific angular momentum a is

ds2 ¼ −ðΔ − a2sin2θÞdv2=Σþ 2dvdr

− 2asin2θdrdϕ − 4Marsin2θdvdϕ=Σ

þ Σdθ2 þ ½ðr2 þ a2Þ2 − Δa2sin2θ�sin2θdϕ2=Σ; ð1Þ

where Δ ¼ ðr − rþÞðr − r−Þ;Σ ¼ r2 þ a2 cos2 θ, and
r� ¼ M � ðM2 − a2Þ1=2 are the inner and outer horizons
of the black hole. The sum

P
lm includes the total angular

momentum numbers l ≥ 2 and the azimuthal numbers
jmj ≤ l. The index I ¼ fE;Bg labels quantities of electric
and magnetic character, respectively, and

P
I represents the

sum over both types of quantities. We follow the normali-
zation convention of Refs. [28,43] for the tidal moments
and their multipole expansions.

II. THE ψ4 WEYL SCALAR

The ψ4 curvature invariant of the Newman-Penrose
formalism [40] describes the two transverse polarizations
of the gravitational waves that propagate towards

asymptotic infinity [44]. For a Kerr black hole immersed
in a weak gravitational field, the Teukolsky equation
[41,42] separates ρ4ψ4, where ρ≡ −ðr − ia cos θÞ, into a
set of coupled angular and radial ordinary differential
equations. Denoting the mode frequency and azimuthal
number by ω and m, the separable form reads

ρ4ψ4 ¼
X
lm

e−iωvþimϕR̄lmðrÞ−2SlmðθÞ; ð2Þ

where R̄ is the radial function, −2Slm is the spin-weighted
spheroidal harmonic with spin parameter s ¼ −2 [41,42],
and l is the total angular momentum number. Importantly,
the separable form (2) is true for any linear gravitational
perturbation on the Kerr background. The precise nature
of the perturbation is encoded in the sizes of the mode
amplitudes, which we have implicitly absorbed into the
definition of R̄.
The Teukolsky equation must be supplemented with the

appropriate boundary conditions at the event horizon,
r ¼ rþ, and at asymptotic infinity, r → ∞. Near the event
horizon, the radial behavior of ψ4 is [45]

ψ4 ∼ Y inðr − rþÞ2 þ Youtðr − rþÞ−2iPþ ; r → rþ; ð3Þ

where Y in and Yout are integration constants, and Pþ≡
ðam − 2rþMωÞ=ðrþ − r−Þ. To impose the “purely
ingoing” boundary condition at the horizon, we set
Yout ¼ 0. On the other hand, the radial behavior of ψ4 at
asymptotic infinity scales as [45]

ψ4 ∼ Zin=r5 þ Zoute2iω½rþ2M log r�=r; r → ∞; ð4Þ

where Zin and Zout are integration constants. Since the tidal
perturbation is sourced in the region between r ¼ rþ and
r → ∞, only the outgoing waves at asymptotic infinity
carry information about the black hole’s tidal responses.
This condition requires Zin ¼ 0. The coefficients Y in and
Zout give rise to fluxes of energy and angular momentum
that flow into the black hole horizon and out towards
asymptotic infinity, respectively [45].

III. TIDAL PERTURBATIONS AND RESPONSES

In a gravitational system, an object responds to its
external tidal field by developing induced mass and current
moments. In Newtonian gravity, the linear response of a
nonrotating object to a slowly varying tidal field is
described by [2]

δQlm ¼ −N lr
2lþ1
0 ½2klmElm − τ0νlm _Elm þ � � ��; ð5Þ

where N l ≡ ðl − 2Þ!=ð2l − 1Þ!!, δQlm are the induced
mass moments, Elm are the electric-type tidal moments
[43], overdot denotes time derivative, and the ellipses
represent dynamical tides, which are suppressed by higher
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powers in time derivatives. The first term in (5) character-
izes the tidal deformability of the object in the static limit,
ω ¼ 0, and the constants klm are the (dimensionless) Love
numbers. The second term describes the energy lost from
the tidal environment to the object, with the dissipation
numbers νlm encoding the object’s viscosity and τ0
describing the viscosity-induced delay time.
The induced moments (5) contribute to the total gravi-

tational potential at the exterior of the object. In Fourier
space, the potential is U ¼ −M=rþ ΔU, where [2]1

ΔU ¼
X
lm

Elmrl

ðl − 1Þl
�
1þ FlmðωÞ

�
r0
r

�
2lþ1

�
Ylmðθ;ϕÞ;

ð6Þ

r0 is the radius of the object, Ylm is the scalar spherical
harmonic, and Flm is the response function of the non-
rotating object [11,46,47],

FlmðωÞ ¼ 2klm þ iωτ0νlm þOðω2Þ: ð7Þ

The real and imaginary parts of Flm capture the tidal
deformation and dissipation of the object, respectively
[11,47]. The radial dependence of (6) consists of two distinct
components: i) a characteristic “growing” term rl, which
arises due to the contribution of the external tidal perturba-
tion to U, and ii) a “decaying” term r−l−1, which is sourced
by the object’s linear responses. In general relativity, the tidal
field is also characterized by the magnetic-type moments,
Blm [43], to which there is no Newtonian analog. In that
case, the induced current moments, the corresponding
magnetic Love numbers [28,29], and the magnetic dissipa-
tion numbers can be defined similarly as (5).
In addition to quantifying the strength of the perturba-

tion, the moments Elm and Blm also define the character-
istic scales of the tidal environment [43,48]. In particular,
the radius of curvature of the environment scales as
R ∼ jElmj−l ∼ jBlmj−l,2 while its typical variational time-
scale is ∼ω−1, cf. (5) and (7). The length scale R restricts
the validity of the multipole expansion of the tidal field to
the interval r < R (see more discussion below). For
instance, for binary systems in circular orbits, R and
ω−1 are of the order of the binary separation.

IV. PERTURBED SPHERICALLY SYMMETRIC
SPACETIMES

Before discussing ψ4 for tidally perturbed black holes,
it is instructive to first investigate the same quantity
for the perturbed Schwarzschild spacetime. This is because
Birkhoff’s theorem [49,50] implies that the Schwarzschild
metric holds for all spherically symmetric objects, includ-
ing those with nonvanishing linear responses (7). The
corresponding Weyl scalar therefore offers us a convenient
way of understanding the way in which the constants klm
and νlm appear in ψ4.
Using the perturbed Schwarzschild metric derived in

Ref. [28], we compute the Weyl scalar for a perturbed
spherical spacetime, ψSph

4 , by projecting the Weyl tensor
onto the Kinnersley null tetrad [51]. Since the metric in
Ref. [28] was derived in the static limit, the corresponding
Weyl scalar would not encode dissipative effects of the
spherical object. Fortunately, this limitation can be circum-
vented for Schwarzschild black holes, which we shall
discuss below. We find that

ψSph
4 ðω ¼ 0Þ ¼

X
I

X
lm

MI
lm−2Ylmðθ;ϕÞ

× rl−2
�
GlðrÞ þ 2kIlm

�
r0
r

�
2lþ1

DlðrÞ
�
;

ð8Þ

where I ¼ fE;Bg labels quantities associated to Elm and
Blm; the constants Mlm scale linearly3 in the tidal
moments and are given by

ME
lm ¼ ClElm; MB

lm ¼ iðlþ 1ÞClBlm=3; ð9Þ

with Cl ≡ 4−1½ðlþ 1Þðlþ 2Þ=ðl − 1Þl�1=2; and −2Ylm is
the s¼−2 spin-weighted spherical harmonic [53,54]. From
dimensional analysis, we have Mlmrl−2 ∼ r−2ðr=RÞl: the
multipole expansion (8) is therefore only valid in the r < R
interval, cf. Fig. 1. The radial functions Gl and Dl scale as
1þOðM=rÞ at large distances, r ≫ M (see their exact
expressions below). By comparing the large-distance
limit of (8) with the Newtonian potential (6), we see that
the rl−2Gl term and the Dl− dependent term displays
the characteristic growing rl−2ð1þ � � �Þ and decaying
r−l−3ð1þ � � �Þ behavior of the tidal and response term,
respectively.4 Crucially, unlike the Newtonian case,

1For notational simplicity, we drop the Dirac delta δðω ¼ 0Þ
for the static terms.

2Strictly speaking, this scaling only applies to tidal environ-
ments that have typical variational length scales that are com-
parable toR and typical velocities that are close to unity [43,48].
In this work, we make this notational simplification to ease power
counting.

3In general, the perturbed metric also consists of terms
involving nonlinear couplings between Elm and Blm; see, e.g.,
Refs. [43,52]. Nevertheless, these nonlinearities will be ignored
in this work, as we are only interested in the linear response of the
object to these tidal moments.

4The potential (6) and the Weyl scalar (8) differ by an overall
scaling of r−2 because the Weyl tensor consists of two derivatives
acting on the metric.
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klm in (8) includes both the electric-type and magnetic-type
Love numbers.

V. TIDAL EFFECTS OF THE SCHWARZSCHILD
BLACK HOLE

Although the Schwarzschild solution (8) cannot be
extended towards r → rþ of a Kerr black hole, it fully
describes the near-horizon behavior of a nonrotating
black hole. We therefore discuss how the Love numbers
of Schwarzschild black holes [28,29] are determined
from (8). As we shall see, the analysis presented here is
directly applicable to the Kerr black hole below. To this
end, it is convenient to introduce the alternative coordinate
y≡ r=2M − 1, such that the event horizon is mapped to
y ¼ 0.5 The growing term in (8), expressed in this new
coordinate, is

rl−2Gl ¼ gly2ð1þ yÞ−22F1ð2 − l;lþ 3; 3;−yÞ; ð10Þ

where 2F1 is the hypergeometric function and gl≡ffiffiffi
π

p
2−2l−1ð2MÞl−2Γðlþ 3Þ=Γðlþ 1=2Þ. Since the hyper-

geometric function in (10) is a finite polynomial of degree
l − 2 [55], this solution is proportional to y2 in the y → 0
limit, which is exactly the asymptotic structure of the
ingoing wave at the horizon, cf. (3). On the other hand, the
explicit expression for Dl is more complicated and has
been relegated to the Appendix. For our purposes, it
suffices to note that Dl diverges logarithmically as
y → 0. The purely ingoing boundary condition at the event
horizon therefore forces the static response terms in (8) to
vanish identically. This is only possible if the Love
numbers of Schwarzschild black holes are all zero [28–32].

While (8) does not shed light on the tidal dissipation
of a general spherical object, the dissipative effects of the
Schwarzschild black hole can be determined through the
Teukolsky equation [41,42], as this equation also describes
perturbations with finite frequencies. In this case, we find
that the radial part of the Weyl scalar of the perturbed
Schwarzschild black hole is

ψSchw
4 ∝ y2ð1þ yÞ−22F1ð2 − l;lþ 3; 3þ 2iP̃þ;−yÞ;

ð11Þ

where P̃þ ≡ −2Mω (see the Appendix for the derivation,
where we explain how the P̃þ term arises from a careful
treatment of the Weyl scalar’s behavior at the event
horizon). The solution (11) clearly reduces to (10) in the
static limit. In addition, it encodes the dissipation numbers
of Schwarzschild black holes, which can be extracted by
expanding (11) in the y ≫ 1 limit. The resulting asymptotic
series is (see the Appendix for a discussion on the analytic
structure of this series)

ψSchw
4 ∝ yl−2

�
ð1þ � � �Þ þ y−2l−1ð1þ � � �Þ

×
Γðlþ 3ÞΓð−2l − 1ÞΓðlþ 1þ 2iP̃þÞ
Γð2lþ 1ÞΓð−lþ 2ÞΓð−lþ 2iP̃þÞ

�
; ð12Þ

where ellipses here denote terms that are suppressed by
positive powers of y−1. Comparing (12), (8), and (6), we
conclude that the Schwarzschild black hole’s response
function is given by the coefficient of the decaying terms
shown explicitly in (12), which can be rewritten as

FI;Schw
lm ¼ −iP̃þ

ðl − 2Þ!ðlþ 2Þ!
ð2lÞ!ð2lþ 1Þ!

Yl
j¼1

½j2 þ 4P̃2þ�: ð13Þ

The real part of (13) is zero—as discussed above, the
Love numbers of nonrotating black holes vanish

FIG. 1. Illustration of the different regions of ψ4 for a rotating black hole perturbed by an external tidal field. The near region encodes
the purely ingoing boundary condition at the event horizon r ¼ rþ, while the far region captures the outgoing waves at asymptotic
infinity r → ∞. The tidal perturbation is sourced in the intermediate region, which captures neither of those conditions. The widths of
the regions are determined by two length scales: i): the radius of curvature of the tidal environment, R, beyond which the multipole
expansion of the tidal field breaks down, and ii) the radius Nrþ, where N > 1 is a constant value, suitably chosen such that the Kerr
background is well described by the Schwarzschild metric at larger distances.

5As we elaborate in the Appendix, the y coordinate (and the z
coordinate, which is introduced later for the Kerr black hole) is
useful because it allows us to organize the Teukolsky equation in
terms of the poles of the differential equation. This organization is
especially convenient because it makes clear the terms in the
equation that capture the physics of the event horizon.
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identically. Substituting P̃þ ¼ −2Mω into (13), we find
that the response function is proportional to iωð2MÞ, which
is exactly the structure of the imaginary part of (7), with
τ0 ¼ 2M being the black hole light crossing time. The
imaginary part of (13) therefore represents the dissipation
numbers of the Schwarzschild black hole. This expression
correctly reproduces known results in the literature for the
few low-order dissipation numbers [note our different
choice of normalization in (5)] [10,11,56].

VI. TIDAL EFFECTS OF THE Kerr
BLACK HOLE

The solution (11) is only valid in the “intermediate
region” of a tidally perturbed rotating black hole, which we
define as the interval Nrþ < r < R, where N is a constant
greater than order unity, cf. Fig. 1. This is because (11) does
not capture the boundary conditions at r ¼ rþ and r → ∞.
To parametrize the full radial behavior of ψ4, we introduce
the function, R, through the ansatz,

ρ4ψ4 ¼
X
I

X
lm

MI
lme

−iωvþimϕRI
lmðrÞ−2SlmðθÞ: ð14Þ

In the adiabatic limit, ω → 0, the angular function

−2Slmeimϕ ¼ −2Ylm þOðaωÞ is well approximated by
the spin-weighted spherical harmonic. Comparing the
ansatz (14) with (8), we see that the former contains an
additional dependence on θ through the ρ4 factor, which
becomes purely radial in the Schwarzschild limit. This
factor is included in our ansatz because we want (14) to
mimic the separable form (2) as closely as possible. In fact,
they are identical up to the redefinition MR → R̄: the tidal
moments only affect the amplitudes of the perturbation
modes. The identification between (14) and (2) is important
because, as we emphasized above, the separable form (2)
applies to any form of linear gravitational perturbation
[41,42]. Our ansatz must therefore be true for a rotating
black hole immersed in the tidal environment, with R
satisfying the Teukolsky equation.
The Love numbers and dissipation numbers of the Kerr

black hole are determined through the solution of ψ4 in the
“near region,” which is the interval rþ < r < R that
encapsulates the boundary condition at the event horizon,
cf. Fig. 1. Introducing the z≡ ðr − rþÞ=ðrþ − r−Þ coor-
dinate, we find that the radial part of the near zone ψ4 is
(see footnote 5 and the Appendix)

ψ4 ∝ ½zðrþ − r−Þ þ rþ − ia cos θ�−4
× z2ð1þ zÞ22F1ð2 − l;lþ 3; 3þ 2iPþ;−zÞ: ð15Þ

This solution is the rotational generalization of its
Schwarzschild analog (11). This can be seen most trans-
parently by setting a ¼ 0, in which case Pþ ¼ P̃þ, the first
line of (15) becomes proportional to ð1þ zÞ−4, and the

y and z coordinates coincide. The response function of the
Kerr black hole can therefore be derived by following the
same prescription as above, to which we obtain6

FI;Kerr
lm ¼ −iPþ

ðl − 2Þ!ðlþ 2Þ!
ð2lÞ!ð2lþ 1Þ!

Yl
j¼1

½j2 þ 4P2þ�: ð16Þ

Remarkably, the real part of (16) vanishes identically: the
Love numbers of rotating black holes are zero. On the other
hand, the dissipation numbers in (16) are nontrivial
rotational generalizations of those in (13). For example,
unlike the Schwarzschild case, the Pþ ¼ ðam − 2rþMωÞ=
ðrþ − r−Þ factor in (16) implies that the Kerr black hole
would experience tidal dissipation even at ω ¼ 0, as the
black hole’s rotational motion sources the relative time
dependence with the static environment.7 In addition, Pþ
is not directly proportional to ω, which scales as three
powers in velocities for binary systems: tidal dissipation
of rotating black holes in this case is thus enhanced
by 1.5PN orders compared to that of non-rotating black
holes [7,8]. Furthermore, Pþ can be either positive or
negative: the response function (16) encodes the super-
radiance phenomenon that is characteristic of rotating black
holes [57–62]. Importantly, our result (16) is true for
all values of black hole spin, 0 ≤ a ≤ M; for both the
electric-type and magnetic-type perturbations, I ¼ fE;Bg;
and for all tidal moments in the multipole expansion,
l ≥ 2, jmj ≤ l.

VII. FROM TIDAL EFFECTS TO
GRAVITATIONAL-WAVE FLUXES

The near-zone solution (15)is limited to the r < R
interval because the multipole expansion breaks down at
larger distances. To map the black hole’s responses (16)
onto gravitational-wave observables, a matched asymptotic
expansion [59–64] between the near region and the “far
region” must be performed. The latter region lies in the
interval Nrþ < r < ∞, which includes the source of
perturbation and the outgoing boundary condition at
asymptotic infinity, cf. Fig. 1. Through these matching
computations, one can calculate various physical quantities,
including the gravitational-wave fluxes propagating
towards r → rþ and r → ∞ [45]. In fact, for extreme

6Our result (16) generalizes Eq. (23) of Ref. [39] to non-
vanishing values of ω. The apparent difference between the
functional form of our result and theirs is resolved by using the
identity Γðnþ kÞΓðn − kÞ ¼ ½πk= sinðπkÞ�Qn−1

j¼1ðj2 − k2Þ. Cru-
cially, while they interpreted their findings as Love numbers,
we show that the nonvanishing component in (16) are instead the
dissipation numbers of Kerr black holes.

7In other words, in the rest frame/corotating frame of the Kerr
black hole, a static tidal field would be perceived to rotate at a
frequency that is proportional to a and therefore induces tidal
dissipation, cf. (5).
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mass-ratio inspirals, these fluxes have been computed to
remarkable high orders in ω [65–70]. In that case, the Love
numbers leave their imprints on the flux emitted to
asymptotic infinity [4,5]. This is because the tidal defor-
mations of the binary components would source additional
mass and current moments, with the binaries’ orbital
motions inducing the necessary time dependences for these
moments to emit additional fluxes to asymptotic infinity.
On the other hand, the dissipation numbers of black holes
describe the absorptive nature of the event horizon and are
thus encoded in the flux flowing into the horizon [7,8].
These fluxes would also backreact on the orbital motion,
thereby affecting the binary’s conservative dynamics in a
nontrivial manner [65–70]. In any case, since these fluxes
are physically measurable quantities, the Love numbers
and dissipation numbers (16) that are encoded in them
have unambiguous physical interpretations on observable
waveforms.

VIII. LOVE NUMBERS ARE UNAMBIGUOUS

Our discussion above also offers a resolution to the
ambiguity issue of Love numbers in general relativity [38].
In Refs. [34,37,38], it was described how a class of
coordinate transformations, denoted here schematically
by r → r̄, would mix the tidal and response terms in
the perturbed metric of a generic object. Those trans-
formations would lead to different coefficients between the
r−l−1ð1þ � � �Þ and r̄−l−1ð1þ � � �Þ decaying terms, thereby
apparently changing the values of the Love numbers.
However, those studies only focused on the near region
but did not consider the far region.8 As a result, the
outgoing flux and the boundary condition at asymptotic
infinity were not taken into account. This is a subtle but
important shortcoming, because a coordinate transforma-
tion which is only performed in the near region, but not
consistently over the entire spacetime, implicitly alters the
asymptotic behavior of the outgoing waves at r → ∞.
Furthermore, a coefficient that appears before any decaying
term has no real physical interpretation unless it is matched
with observables. To resolve the ambiguity issue in those
studies, one must find the metric in the far region, perform

the coordinate transformation r → r̄ accordingly, and
match the far-zone solution with the near-zone solution.
By virtue of general covariance, the inferred values of the
Love numbers must remain unaltered. In short, we argue
that Love numbers in general relativity can be unambig-
uously defined when both the boundary conditions that
characterize the nature of the object and that of outgoing
waves at asymptotic infinity are considered.

IX. CONCLUSIONS

To summarize, we showed that the Love numbers of Kerr
black holes are all zero. We also derived the dissipation
numbers of Kerr black holes, which are shown in (16) for our
choice of normalization (5). In addition, we addressed the
ambiguity issue of Love numbers in general relativity, which
we argued is resolved when both the boundary conditions of
the perturbed object and that of outgoing waves at asymp-
totic infinity are taken into account. The imprints of the
Kerr black holes’ tidal effects on observables have, in fact,
already been computed in the literature [65–70]. Our results
are therefore free of coordinate ambiguity and have robust
physical interpretations on gravitational waveforms. Finally,
we note that the Teukolsky equation does not describe any
metric perturbation of Petrov type II class, i.e., a gravitational
perturbation that involves a nonlinear combination of trans-
verse, longitudal, and coulombic contributions [44]. In future
work, we hope to explore if the conclusions drawn in this
work would still hold for this more general type of
perturbation.
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APPENDIX: TECHNICAL DETAILS

1. The ψ4 Weyl scalar and the null tetrad

The ψ4 Weyl scalar of the Newman-Penrose formalism
[40] encapsulates the dominant behavior of the outgoing
gravitational waves at asymptotic infinity. Denoting the set
of null tetrad vectors by flμ; nμ; mμ; m̄μg, where lμ and nμ

are real, mμ is complex and m̄μ is its conjugate, ψ4 is
defined as

ψ4 ≡ Cμνρσnμm̄νnρm̄σ; ðA1Þ

where Cμνρσ is the Weyl tensor. In this work, we adopt
the Kinnersley null tetrad [51]. In the ingoing-Kerr coor-
dinates (1), these tetrad vectors are

8To the best of our knowledge, the far region has been largely
ignored in the tidal deformability literature. This is the case
presumably because ω is often set to zero at the onset of those
calculations. Such a procedure, while natural for computing the
static response, would inadvertently conceal the true boundary
condition at r → ∞. In particular, taking the adiabatic limit, with
the r coordinate held fixed, only formally extends the regime of
validity of the near-zone solution to R ∼ ω−1 → ∞, cf. Fig. 1.
Despite its enlarged radial interval, this near-zone solution can
never capture the only outgoing boundary condition at asymp-
totic infinity (4). Instead, this boundary condition can only be
described by the far-zone solution, which is obtained by rescaling
the radial Teukolsky equation (see the Appendix) with the x≡ ωr
coordinate, and keeping x fixed when solving for the equation in
the adiabatic limit [59–62].
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lμ ¼ ½2ðr2 þ a2Þ=Δ; 1; 0; 2a=Δ�;
nμ ¼ ½0;−Δ=ð2ΣÞ; 0; 0�;
mμ ¼ ½ia sin θ; 0; 1; i= sin θ�=½

ffiffiffi
2

p
ðrþ ia cos θÞ�; ðA2Þ

which satisfy the orthonormality relation lμnμ ¼ −mμm̄μ ¼
−1, while other inner products vanish.

2. The ψ4 Weyl scalar of a perturbed
spherical object

The quantity ψSph
4 in (8) is obtained through an explicit

computation of (A1). In this case, Cμνρσ is the Weyl tensor
of the perturbed Schwarzschild metric derived in Ref. [28],
and a is set to zero in the tetrad (A2). While the growing
function rl−2Gl can be expressed succinctly as (10), the
decaying function Dl is more complicated. In particular, in
the y ¼ r=2M − 1 coordinate,

Dl ¼ y2
�
d00l −

2l
1þ y

d0l þ
lðlþ 1Þ
ð1þ yÞ2 dl

�
; ðA3Þ

where prime denotes derivative with respect to y and
dl¼2½lðlþ1Þðlþ2Þ�−1½2F1ðl;lþ1;2lþ2;ð1þyÞ−1Þþ
ðl=2Þ2F1ðlþ1;lþ1;2lþ2;ð1þyÞ−1Þ�. Since the first
two arguments of the hypergeometric functions here are
positive integers, (A3) diverges logarithmically in the
y → 0 limit [55].

3. The Teukolsky equation

As described in the main text, the radial function R in
(14) satisfies the Teukolsky equation. In the Kinnersley null
tetrad (A2), this equation reads

d2R
dr2

þ
�
2iPþ − 1

r − rþ
−
2iP− þ 1

r − r−
− 2iω

�
dR
dr

þ
�

4iP−

ðr − r−Þ2
−

4iPþ
ðr − rþÞ2

þ A− þ iB−

ðr − r−Þðrþ − r−Þ

−
Aþ þ iBþ

ðr − rþÞðrþ − r−Þ
�
R ¼ T

Δ
; ðA4Þ

where P�; A� and B� are

P� ≡ am − 2r�Mω

rþ − r−
; B� ≡ 2r�ω;

A� ≡ Elm − 2 − 2ðrþ − r−ÞP�ω

− ðr� þ 2MÞr�ω2; ðA5Þ

Elm ¼ lðlþ 1Þ þOðaωÞ is the angular eigenvalue, and T
represents a generic source of energy momentum [41,42]
[in Ref. [45], the −2ð2sþ 1Þiωr factor in the Teukolsky
equation should instead read 2ð2s − 1Þiωr. This error

has also been pointed out in, e.g., Ref. [13]]. We have
casted (A4) in a form whereby the poles of the differential
equation are clearly identifiable, cf. Fig. 1. Since analytic
solutions of (A4) cannot simultaneously capture both of
the boundary conditions at r ¼ rþ and r → ∞, approxi-
mate solutions in the near and far regions have to be
separately constructed. These solutions are obtained by
leveraging on the adiabatic limit, in which (A4) is
expanded perturbatively in the dimensionless parameter
Mω ≪ 1 [59,60]. From the virial theorem, we conclude
that theMω expansion is equivalent to an expansion in the
strength of the gravitational source T. For instance, for a
binary system, T=Δ ∼ μ=r ∼ ðMωÞ2=3qð1þ qÞ−1=3 [67],
where μ is the companion’s mass and q≡ μ=M is the
mass ratio.

4. Derivation of the near-zone solution

To solve for (A4) in the near region, we introduce the
coordinate z≡ ðr − rþÞ=ðrþ − r−Þ, such that the event
horizon is mapped to z ¼ 0. We then expand (A4) at
leading order in Mω while keeping z fixed, in order to
obtain the near-zone radial equation. The virial theorem
implies that we can simultaneously take T ¼ 0 at this order.
Importantly, since the Pþ factor appears as the coefficient
of the ðr − rþÞ−2 pole in (A4), it dominates the behavior of
the solution at the event horizon. It is therefore critical that
Pþ is held fixed in the Mω expansion, such that all of the
physics associated to the event horizon are preserved in
our perturbative expansion (see footnote 9 of Ref. [62] for
the same comment, though in a slightly different context).
All in all, we find that the near-zone radial equation at
leading order is

d2R
dz2

þ
�
2iPþ − 1

z
−
2iPþ þ 1

zþ 1

�
dR
dz

þ
�

4iPþ
ðzþ 1Þ2 −

4iPþ
z2

−
lðlþ 1Þ − 2

zð1þ zÞ
�
R ¼ 0: ðA6Þ

Imposing the purely ingoing boundary condition at the
horizon, and restoring the factor ρ−4 ¼ ½zðrþ − r−Þ þ rþ−
ia cos θ�−4, we obtain the near-zone solution of ψ4 in (15)).
This derivation trivially applies to the Schwarzschild
solution (11). Crucially, from the linear responses (13)
and (16), we see that the black hole’s tidal dissipation is
precisely encoded in Pþ (which we would have been blind
to for the Schwarzschild black hole had we set ω ¼ 0 in our
perturbative expansion).

5. The large-distance limit of the near-zone solution

The response function of the Kerr black hole is inferred
from the decaying terms in the asymptotic series of the
near-zone solution, cf. (12)) for its Schwarzschild analog.
A priori, it is not obvious that the decaying terms should be
present in the series. This is because the hypergeometric
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function 2F1ð2 − l;lþ 3; 3þ 2iPþ;−zÞ in 15, whose first
argument is a non-negative integer, is a polynomial of degree
l − 2 [55]. The near region would therefore naively seem to
only consist of growing terms but not decaying terms.
However, it is known in the literature [59–62] that, in

order to perform a matched asymptotic expansion between
the near and far regions, one must treat l as a general real
value in the asymptotic expansion before specializing it to
an integer, as we did in (12). The result of this procedure is
the presence of finite decaying terms, which are necessary
for completing the matching computation. One may view

the analytic continuation in l as a way of exploiting the
analytic properties of the hypergeometric function, in order
to construct two linearly-independent basis functions over
the entire radial interval [65–67]. In fact, this concept can
be formalized through the introduction of the so-called
“renormalized angular momentum number” [65–67], a key
quantity that has allowed for accurate matching computa-
tions at high perturbative orders. Ultimately, the validity of
the series (12), and its Kerr generalization, is justified by its
ability to capture all of the physics in the far region through
the matched asymptotic expansion.
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