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Starting from the original Einstein action, sometimes called the Gamma squared action, we propose a
new setup to formulate modified theories of gravity. This can yield a theory with second order field
equations similar to those found in other popular modified gravity models. Using a more general setting the
theory gives fourth order equations. This model is based on the metric alone and does not require more
general geometries. It is possible to show that our new theory and the recently proposed fðQÞ gravity
models are equivalent at the level of the action and at the level of the field equations, provided that
appropriate boundary terms are taken into account. Our theory can also reproduce fðRÞ gravity, which is an
expected result. Perhaps more surprisingly, we show that this equivalence extends to fðTÞ gravity at the
level of the action and its field equations, provided that appropriate boundary terms are taken in account.
While these three theories are conceptually different and are based on different geometrical settings, we can
establish the necessary conditions under which their field equations are the same. The final part requires
matter to couple minimally to gravity. Through this work we emphasize the importance played by boundary
terms which are at the heart of our approach.
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I. INTRODUCTION

The field of modified or extended theories of gravity has
become a substantial area of research since the early 2000s.
Ever since, a plethora of new theories has been proposed
and studied. However, the history of modifications of the
original theory of general relativity (GR) can be traced back
to the 1920s. Shortly after GR was formulated it became
apparent that the geometrical framework underlying the
theory can be extended. Moreover, there was a parallel
development on unifying the different fundamental forces
into a single unified field theory, see [1,2].
These early geometrical attempts can all be studied

under the umbrella of metric-affine theories of gravity [3].
Theories of this type typically are invariant under local
Lorentz transformations and are also invariant under
arbitrary coordinate transformations. When the Levi-
Civita connection is replaced with the general affine
connection, the matter action should also depend on this
affine connection, thereby giving rise to possible source
terms for torsion and nonmetricity, in addition to the usual
matter source terms for curvature like in GR. In case of the
well-understood Einstein-Cartan theory [4] one finds that
mass couples to curvature while spin couples to torsion, see
also [5]. Note that matter couplings to nonmetricity can be
more problematic [6]. The field equations are second order

in the metric but are algebraic in torsion which is a result of
the specific action underlying the theory. By insisting on
second order field equations for the outset, the specific
form of the field equations is highly constrained [7].
The additional geometrical structure of metric-affine

theories allows for other, equivalent, formulations of GR,
the best known being the teleparallel equivalent of general
relativity (TEGR) [8–10]. For the present purpose, the most
interesting fact about TEGR is that the action is not
invariant under local Lorentz transformations but is pseu-
doinvariant. By this we mean that the action is invariant
up to a boundary term. As this boundary term does not
contribute to the resulting field equations these are then
invariant. This is also true for the so-called Einstein action
(or Gamma squared action) which differs from the usual
Einstein-Hilbert action by a boundary term. Actions con-
taining pseudoinvariant quantities will no longer yield
invariant field equations if nonlinear functions of such
quantities are considered, which brings us to another type
of modified theories.
One of the earliest works on fðRÞ gravity is probably

[11], where the stability of cosmological solutions was
studied. It was, however, much later when these theories
became popular, see [12–14]. These theories are invariant
under local Lorentz transformations and diffeomorphisms,
however, they lead to fourth order field equations in the
metric. The Ricci scalar contains second derivatives of the
metric so one would expect fourth order field equations
already in GR; however, these higher order terms enter the
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action as a boundary term and so do not contribute to the
field equations. If one were to separate the Ricci scalar into
two parts, one of which only contains first derivatives of the
metric, one would find a theory with second order equations,
however, such a theory is likely to have other shortfalls.
Many modified gravity models can be tightly constrained by
cosmological observations [15,16] with GR generally
emerging as the theory to provide the best fit to the data.
This is precisely the situation one arrives at when

considering modifications of TEGR [17–23]. Here we
are referring to the conventional formulation where the
spin connection is set to zero, but note that an alternative
approach does exist, see for instance [24].
The action of TEGR only contains first derivatives of the

tetrads and hence yields second order field equations.
Consequently fðTÞ also has second order field equations,
however, one now loses invariance under local Lorentz
transformations [25]. The modified action is no longer
pseudoinvariant as it does not differ from an invariant
action by a boundary term. Therefore, the field equations
are no longer invariant under arbitrary Lorentz transforma-
tions, however, there exists nonetheless a remnant sym-
metry [26,27] which affects the number of degrees of
freedom of fðTÞ gravity [28–32].
The important role played by boundary terms was

investigated in [33–35] where an arbitrary function depend-
ing on the torsion scalar T and the relevant boundary term B
was considered, fðT; BÞ gravity. Within this framework it is
possible to identify fðRÞ gravity as the unique Lorentz
invariant theory and to identify fðTÞ gravity as the unique
second order theory.
Similarly to TEGR one can construct another alternative

formulation of GR which is based on nonmetricity, instead
of torsion [36–41]. Some constraints on spacetime non-
metricity can be found in [42,43]. If we denote the relevant
nonmetricity scalar by Q it is natural to consider general-
ized theories which are called fðQÞ gravity [44–48].
Theories of this type are, by construction, invariant under
Lorentz transformations. Generally one works in the so-
called coincidence gauge [45,48–51] where it is important
to study the conservation equation carefully.
In GR the energy-momentum conservation equation is

implied by Noether’s theorem and follows from the
invariance of the Einstein-Hilbert action under arbitrary
coordinate transformations [52], see also [53–60]. From a
geometrical point of view, one generally argues that the
conservation equation is a consequence of the twice
contracted Bianchi identities, however, in modified theories
of gravity it is desirable to follow Noether’s approach. In
certain situations the Bianchi identity can appear in a
somewhat unusual form, as in fðQÞ gravity mentioned
above, but also in teleparallel gravity [61–63]. Also of
interest are the recently proposed minimally modified
theories [64,65] in which the theory is invariant under
spatial diffeomorphisms only.

When matter is coupled nonminimally to the gravita-
tional field [66–69] test particles do not necessarily follow
geodesic motion and one can also construct models where
the energy-momentum tensor is no longer conserved
[70–73]. Such models often have close links to approaches
where the theory is not fully invariant under all coordinate
transformations [74–77]. Theories which break local
Lorentz or diffeomorphism invariance can be motivated
by quantum gravity considerations. If we accept that
classical field theories like GR cannot be applied at length
scales where quantum effects dominate, then it becomes
natural to consider models that break certain symmetries
at small scales. The so-called Born-Infeld scheme [78] is
one of the simplest approaches to achieve this and has
been successfully implemented in fðTÞ gravity [17,79–82].
A completely different approach would be to reformulate
differential geometry to take into account an underlying
quantum structure [83].
Our model, which will be based on an arbitrary function

of two coordinate pseudoscalars, contains all of the above
issues to certain degrees and we will carefully address them.
While our theory is based on coordinate pseudoscalars, these
are scalars which are not invariant under diffeomorphisms,
we will nonetheless arrive at field equations which are
tensorlike. After discussing infinitesimal coordinate trans-
formations of our action, we are able to formulate a
consistent theory which reduces to GR in the appropriate
limit. When studying our model in a cosmological setting,
we find the same field equations that were derived in fðTÞ
gravity and in fðQÞ gravity. This observation leads the way
towards studying the equivalence of these theories. In
particular, when comparing the relevant field equations,
rewritten conveniently, one is tempted to declare their
equivalence at once. However, this would be premature as
various boundary terms need to be taken into account in
order to discuss these theories in a unified setting. The main
result of this work is to identify three boundary terms with
unusual properties that allows us to construct one general
family of modified gravity theories which will contain the
various aforementioned models as limiting cases.
Our paper is organized as follows: in Sec. II we discuss

the Einstein-Hilbert and the Gamma squared action
together with coordinate transformations. Section III
introduces our model, discusses its various properties
and establishes equivalence with fðRÞ in a certain limit.
The following Sec. IV contains the required details to
show the equivalence of our model with other modified
theories of gravity, a summary of this part is given in
Fig. 2. We move onto a discussion of our work in Sec. V.
A comprehensive Appendix is provided containing the
variations of the actions.

A. Notation

Throughout this paper the signature is ð−;þ;þ;þÞ,
Greek indices are spacetime indices taking values (0,1,2,3)
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and Latin indices denote tangent space indices. Our coframe
and frame fields or tetrads are defined via gμν ¼ eaμebνηab and
gμν ¼ Eμ

aEν
bη

ab with Eμ
aebμ ¼ δba and Eμ

aeaν ¼ δμν . g is the
determinant of the metric g ¼ det gμν and we denote e ¼
det eaμ so that e ¼ ffiffiffiffiffijgjp

. Round brackets denote symmetri-
zation and square brackets denote skew symmetrization:
tðμνÞ ¼ 1=2ðtμν þ tνμÞ and t½μν� ¼ 1=2ðtμν − tνμÞ. We set
G ¼ c ¼ 1 and use κ ¼ 8π as the gravitational coupling
constant.

II. THE EINSTEIN-HILBERT AND GAMMA
SQUARED ACTIONS

A. The actions

Let us begin with the standard Einstein-Hilbert action of
general relativity,

SEH½gμν� ¼
1

2κ

Z
R

ffiffiffiffiffiffi
−g

p
d4x; ð2:1Þ

where R stands for the Ricci scalar or curvature scalar. The
square brackets indicate explicitly the dynamical variables
of the theory. It has been known since the formulation of
GR that the Ricci scalar R can be rewritten as a “bulk” term
G and a boundary or surface term B. Using this decom-
position, the Einstein-Hilbert action becomes

SEH½gμν� ¼
1

2κ

Z
R

ffiffiffiffiffiffi
−g

p
d4x ¼ 1

2κ

Z
ðGþBÞ ffiffiffiffiffiffi

−g
p

d4x:

ð2:2Þ

The bulk term G is quadratic in the connection coefficients
or Christoffel symbol components and first order in the
metric derivatives

G ¼ gμνðΓλ
μσΓσ

λν − Γσ
μνΓλ

λσÞ: ð2:3Þ

We note for future reference that the term in the bracket is
not symmetric by construction: however, it is clear that only
its symmetric part contributes to the action due to gμν. As
the Christoffel symbols appear in the geodesic equation,
they can be seen as the gravitational force terms which
determine the motion of test particles. This is similar to the
Faraday tensor in the Lorentz force equation. It is thus
natural to consider a Lagrangian quadratic in these quan-
tities which makes G an appealing choice. The boundary
term B is second order in the metric derivatives,

B ¼ 1ffiffiffiffiffiffi−gp ∂ν

�∂μðggμνÞffiffiffiffiffiffi−gp
�

¼ 1ffiffiffiffiffiffi−gp ∂σð
ffiffiffiffiffiffi
−g

p
BσÞ ¼ ∇σBσ;

ð2:4Þ

where we introduce the notation

Bσ ¼ gμνΓσ
μν − gσνΓλ

λν: ð2:5Þ

Before continuing let us make some remarks: at this point,
we are working in curved spacetime with vanishing torsion
and vanishing nonmetricity so that the general affine
connection is the usual Levi-Civita one. Note that neither
G nor B transform like scalars under general coordinate
transformations (diffeomorphisms) as they are not true
scalars. We will refer to such scalars as pseudoscalars. It is
only when combining these two objects into the Ricci
scalar that one retrieves a true scalar, an object invariant
under general coordinate transformations. For this reason,
one has to be careful when working with these quantities.
Nonetheless, it is convenient to refer to Bσ as the boundary
vector despite is nonvectorial nature. Since the termB takes
the form of a total derivative, it will not appear in the Euler-
Lagrange equations provided we are working on a manifold
without boundary. In the presence of boundaries we would
assume variations to vanish on those boundaries.
Consequently, the Einstein field equations derived from

the Einstein-Hilbert action (2.2) arise solely from the G
term containing only first derivatives. It is common to refer
to this as the Einstein action or the Gamma squared action:

SE½gμν� ¼
1

2κ

Z
G

ffiffiffiffiffiffi
−g

p
d4x: ð2:6Þ

As already touched upon, this action is manifestly non-
covariant since G is not a true scalar under general
coordinate transformations. However, the action is diffeo-
morphism invariant up to a boundary term, in which case
one often speaks of pseudoinvariance. We will look at this
explicitly shortly, as the results will be useful in the
following sections.
For completeness Appendix A contains the derivation

of the Einstein field equations when working directly with
SE½gμν�, along with the minimally coupled matter action
describing the matter fields Smatter½gμν;Φ�. Some of the
results contained in that Appendix will be required for
subsequent calculations. Let us introduce the following two
nontensorial objects:

Mμν
λ ≔

δG
δΓλ

μν
¼ 2gρðνΓμÞ

λρ − gμνΓρ
ρλ − gρσδðνλ Γ

μÞ
ρσ; ð2:7Þ

Eμνλ ≔ Mfλμνg ¼ Mλμν þMνλμ −Mμνλ

¼ 2gρμgνσΓλ
ρσ − 2gλðμgνÞσΓρ

ρσ þ gμνgλρΓσ
σρ − gμνgρσΓλ

ρσ:

ð2:8Þ

The first object naturally follows from the variation of the
bulk termGwith respect to the connection. The second one
has the same linear index combination that appears in the
definition of the Christoffel symbol. The notation f� � �g
with three indices is sometimes called the Schouten
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bracket, see [84]. Both terms (2.7) and (2.8) are symmetric
over their first two indices, which follows directly from the
symmetry of the connection. Note that using definition
(2.7) we can write the bulk term as

G ¼ 1

2
Mμν

λΓλ
μν: ð2:9Þ

The boundary vector defined in Eq. (2.5) can be obtained
by either of the following contractions, Eμ

μ
σ ¼ −2Bσ.

B. Coordinate transformations

Let us determine how the newly introduced objects
transform under infinitesimal coordinate transformations
xμ → x̂μ ¼ xμ þ ξμðxÞ, where ξ is assumed to be small,
jξμj ≪ 1. To first order in ξμ, we have the following
relations:

∂x̂μ
∂xν ¼ δμν þ ∂νξ

μ;
∂xμ
∂x̂ν ¼ δμν − ∂νξ

μ: ð2:10Þ

Using the above, along with the usual transformation laws,
the metric and Christoffel symbol transform as

ĝμνðx̂Þ ¼ gμν − ∂μξ
λgλν − ∂νξ

λgμλ þOðξ2Þ; ð2:11Þ

ĝμνðx̂Þ ¼ gμν þ ∂λξ
μgλν þ ∂λξ

νgμλ þOðξ2Þ; ð2:12Þ

Γ̂γ
μνðx̂Þ ¼ Γγ

μν þ ∂λξ
γΓλ

μν − ∂μξ
λΓγ

νλ − ∂νξ
λΓγ

μλ

− ∂μ∂νξ
γ þOðξ2Þ: ð2:13Þ

The terms on the right-hand sides are functions of the
original coordinates xμ.
Using these transformations in our definition of G (2.3),

and dropping the higher order ξ terms, one finds through
simple computation

Ĝðx̂Þ ¼ ĝμνðΓ̂λ
μσΓ̂σ

λν − Γ̂σ
μνΓ̂λ

λσÞ
¼ gμνðΓλ

μσΓσ
λν − Γσ

μνΓλ
λσÞ

− ð2gμðαΓβÞ
μγ − gαβΓλ

λγ − gμνδðβγ ΓαÞ
μνÞ∂α∂βξ

γ

¼ G −Mαβ
γ∂α∂βξ

γ; ð2:14Þ

with Mαβ
γ defined in (2.7). A similar calculation for the

boundary vector (2.5) leads to

B̂σðx̂Þ ¼ Bσ þ ∂ηξ
σBη − ∂ν∂νξ

σ þ ∂σ∂λξ
λ; ð2:15Þ

and for the full boundary term (2.4) we find

B̂ðx̂Þ ¼ Γ̂λ
λσB̂

σ þ ∂̂σB̂
σ

¼ Bþ ð2gμðαΓβÞ
μγ − gαβΓλ

λγ − gμνδðβγ ΓαÞ
μνÞ∂α∂βξ

γ

¼ BþMαβ
γ∂α∂βξ

γ: ð2:16Þ

Equations (2.14) and (2.16) of course imply that Ĝþ B̂ ¼
Gþ B as expected. This follows from the fact that
R ¼ Gþ B is the Ricci scalar.
For completeness we also compute the infinitesimal

coordinate transformations for the three-index objects
Mαβ

γ and Eρσ
γ . For the former we find

M̂αβ
γ ¼ Mαβ

γ þ ∂λξ
αMλβ

γ þ ∂λξ
βMαλ

γ − ∂γξ
λMαβ

λ

− 2∂ðα∂γξ
βÞ þ gαβ∂λ∂γξ

λ þ gμνδðβγ ∂μ∂νξ
αÞ;

ð2:17Þ

while the latter gives

Êρσ
γ ¼ Eρσ

γ − Eρη
γ∂σξ

η − Eση
γ∂ρξ

η þ Eρσ
η∂ηξ

γ − 2∂ρ∂σξ
γ

þ 2δγðρ∂σÞ∂λξ
λ − gρσ∂γ∂λξ

λ þ gρσ∂λ∂λξ
γ: ð2:18Þ

Using the calculations above, we can state the Lie
derivatives.1 For the metric and the connection we get
the well-known [84–86] results,

Lξgμν¼gμν− ĝμν¼∂λgμνξλþ∂μξ
λgλνþ∂νξ

λgμλ¼2∇ðμξνÞ;

ð2:19Þ

and

LξΓ
γ
μν ¼ Γγ

μν − Γ̂γ
μν ¼ ∂λΓ

γ
μνξλ − ∂λξ

γΓλ
μν þ ∂μξ

λΓγ
νλ

þ ∂νξ
λΓγ

μλ þ ∂μ∂νξ
γ

¼ ∇μ∇νξ
γ þ Rρμν

γξρ: ð2:20Þ

Interestingly the Lie derivative of the connection is a
tensorial quantity which follows from the fact that the
difference of two connections is always a tensor. This will
not be true for our objectsG andB though because we have
products of Gammas that cannot be rewritten in terms of
covariant derivatives or other tensors. Consequently, for the
bulk term G we have

LξG ¼ ξμ∂μGþMαβ
γ∂α∂βξ

γ; ð2:21Þ

and for the boundary term B

1Specifically, LξTðxÞ ¼ limϵ→0
1
ϵ ðTðxÞ − T̂ðxÞÞ, where ϵ has

previously been absorbed into the definition of ξμ and T̂ðxÞ
represents the transformed object pulled back to the original
coordinates xμ. For brevity we omit all factors of ϵ and simply
write LξTðxÞ ¼ TðxÞ − T̂ðxÞ, which we understand to mean the
former definition.
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LξB ¼ ξμ∂μB −Mαβ
γ∂α∂βξ

γ: ð2:22Þ

Let us note that these relations can be derived in two
equivalent ways. First, one can derive the transformation
property under infinitesimal coordinate transformations and
compute their difference. Second, one could use the known
expressions for the Lie derivative and apply those directly.
Finally, we also state the relevant expression for M

which reads

LξMαβ
γ ¼ ξμ∂μMαβ

γ − 2∂λξ
ðαMβÞλ

γ þ ∂γξ
λMαβ

λ

þ 2∂ðα∂γξ
βÞ − gαβ∂λ∂γξ

λ − gμνδðβγ ∂μ∂νξ
αÞ:

ð2:23Þ

Similarly for E one arrives at

LξEρσ
γ ¼ ξμ∂μEρσ

γ þ 2Eηðργ∂σÞξη − Eρσ
η∂ηξ

γ þ 2∂ρ∂σξ
γ

− 2δγðρ∂σÞ∂λξ
λ þ gρσ∂γ∂λξ

λ − gρσ∂λ∂λξ
γ:

ð2:24Þ

The right-hand sides of Eqs. (2.21)–(2.24) are all non-
tensorial. However, this is not immediately obvious as one
might also not immediately identify LξΓ to be tensorial.
The easiest way to see is to recall that G is quadratic in
the Christoffel symbol components, so that symbolically
LξΓ2 ∼ ΓLξΓ which cannot be a tensor as it is a product of
a tensor and a connection.

C. Diffeomorphism invariance

As shown in Appendix A the variation of the Einstein
action with respect to the metric leads to

δSE½gμν� ¼
1

2κ

Z
δgμνGμν

ffiffiffiffiffiffi
−g

p
d4x: ð2:25Þ

Let us now consider the variation of the action under
a diffeomorphism generated by the infinitesimal vector
field ξ, denoted by δξ. The most direct approach is to make
use of the Lie derivatives introduced in the previous
subsection, thus we find

δξSE½gμν� ¼
1

2κ

Z
Lξð

ffiffiffiffiffiffi
−g

p
GÞd4x ¼ 1

2κ

Z
Lξð

ffiffiffiffiffiffi
−g

p ÞGþ ffiffiffiffiffiffi
−g

p
LξðGÞd4x

¼ 1

2κ

Z
1

2

ffiffiffiffiffiffi
−g

p
gμνðLξgμνÞGþ ffiffiffiffiffiffi

−g
p

LξðGÞd4x

¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p ð∇μξ
μÞGþ ffiffiffiffiffiffi

−g
p ð∂μðGÞξμ þMαβ

γ∂α∂βξ
γÞd4x

¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p ∂μξ
μGþ ffiffiffiffiffiffi

−g
p

Γμ
μνξνGþ ffiffiffiffiffiffi

−g
p ∂μGξμ þ ffiffiffiffiffiffi

−g
p

Mαβ
γ∂α∂βξ

γd4x

¼ 1

2κ

Z
∂μð

ffiffiffiffiffiffi
−g

p
ξμGÞ þ ffiffiffiffiffiffi

−g
p

Mαβ
γ∂α∂βξ

γd4x: ð2:26Þ

Using integration by parts we can rewrite the final term
as follows:

Mαβ
γ∂α∂βξ

γ ¼ boundary terms

þ 1ffiffiffiffiffiffi−gp ∂α∂βð
ffiffiffiffiffiffi
−g

p
Mαβ

γÞξγ; ð2:27Þ

where we use the generic expression “boundary terms” for
all terms which appear that do not contribute to the equations
of motion. Throughout this paper we are working on
manifolds without boundaries. Should one wish to general-
ize these results to manifolds with boundaries, one could for
instance assume that all variations vanish on that boundary.
Alternatively, one could subtract suitable boundary terms
from the action. We will not discuss the latter.
It is interesting to note that the final term of (2.27) is in

fact proportional to the twice contracted Bianchi identities,
albeit written in an unusual way that is not manifestly

covariant [61,63,87]. This result is perhaps expected as we
are working with general relativity after all. Hence, we find
that upon integrating by parts twice

δξSE½gμν� ¼ boundary terms

þ 1

2κ

Z
∂α∂βð

ffiffiffiffiffiffi
−g

p
Mαβ

γÞξγd4x ¼ 0; ð2:28Þ

where the last term vanishes identically. Therefore our
action is diffeomorphism invariant, up to boundary terms.
Unsurprisingly, the twice contracted Bianchi identity
appears just like it does when considering the diffeo-
morphism invariance of the usual Einstein-Hilbert action.
There is one subtle point to note though; here it is not seen
as a consequence of diffeomorphism invariance but the
reason for it.
The more elegant route leading to the same conclusion

would have been to take the variation of the action with
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respect to the metric to obtain the Einstein tensor (2.25),
then replace δξgμν with the Lie derivative and again use the
contracted Bianchi identity to show that this vanishes.
See for instance [88] where this is explicitly discussed.
However, this more convoluted method, calculating the Lie
derivatives explicitly, will be useful in the next section
when considering generalizations of the action and the
quicker route cannot be taken.
Before proceeding, recall that the variation of an arbi-

trary matter action is given by

δSmatter½gμν;Φ� ¼
Z

δLM

δgμν
δgμνd4xþ

Z
δLM

δΦ
δΦd4x;

ð2:29Þ
where Φ denotes the matter fields and LM is the matter
Lagrangian (density). Let us assume Φ satisfies the matter
equations of motion, which we will do throughout, such
that the second term vanishes,

δSmatter½gμν;Φ� ¼
Z

δLM

δgμν
δgμνd4x ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
Tμνδgμνd4x;

ð2:30Þ
with the metric energy-momentum tensor defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δLM½gμν;Φ�

δgμν
: ð2:31Þ

If we consider the variation resulting from an arbitrary
diffeomorphism we have

δξSmatter ¼
1

2

Z ffiffiffiffiffiffi
−g

p
TμνLξgμνd4x ¼

Z ffiffiffiffiffiffi
−g

p
Tμν∇μξνd4x

¼ boundary terms −
Z ffiffiffiffiffiffi

−g
p ∇μðTμνÞξνd4x:

ð2:32Þ
One generally assumes that the matter action is invariant
under coordinate transformations, which yields the con-
servation equation ∇μTμν ¼ 0. Likewise, assuming that the
total action Stotal ¼ SE þ Smatter is invariant (not necessarily
its individual parts) also yields the conservation equation
∇μTμν ¼ 0, as the twice contracted Bianchi identities
ensure the vanishing of the geometrical part. This final
statement is often referred to as Noether’s theorem of
general relativity [52]. We can write this as

δξStotal ¼
Z �

1

2κ
∂α∂βð

ffiffiffiffiffiffi
−g

p
Mαβ

γÞ −
ffiffiffiffiffiffi
−g

p ∇αTα
γ

�
ξγd4x;

ð2:33Þ

and note again its slightly unusual form compared with the
standard formulation.

III. THE MODIFIED EINSTEIN ACTION

A. f ðG;BÞ gravity
Generalizing the results of the previous section, it is

interesting to look at the class of theories where we
consider arbitrary functions of G and B, analogous to in
fðRÞ gravity. More closely related are theories of modified
teleparallel gravity, where the Lagrangian fðT; BÞ is a
function of the torsion scalar and its boundary term [25,33].
In this case T and B are not Lorentz invariant, but the
combination −T þ B gives the Ricci scalar, which of
course is both a Lorentz scalar and a coordinate scalar.
For our case with fðG;BÞ, as previously explained, the
individual terms G and B are not diffeomorphism invariant
except in the combination Gþ B ¼ R. We will look more
closely at the relation to other geometric formulations of
gravity in Sec. IV.
The fðG;BÞ class of theories encompasses both

general relativity and fðRÞ gravity for specific forms of
the function f. However, they also give room for deviations
by breaking the diffeomorphism symmetry present in those
two cases. Consequently, let us consider the following
gravitational fðG;BÞ action:

Sgrav½gμν� ¼
1

2κ

Z
fðG;BÞ ffiffiffiffiffiffi

−g
p

d4x: ð3:1Þ

Varying the action gives

δSgrav¼
1

2κ

Z �
δfðG;BÞ ffiffiffiffiffiffi

−g
p

−
1

2
fðG;BÞ ffiffiffiffiffiffi

−g
p

gρσδgρσ
�
d4x;

ð3:2Þ

where

δfðG;BÞ ¼ ∂fðG;BÞ
∂G δGþ ∂fðG;BÞ

∂B δB; ð3:3Þ

and G and B are defined in (2.3) and (2.4). To calculate
the variation we follow the same procedure as in
Appendix A, using the objects previously introduced,
Mμνλ (2.7) and Eμνλ (2.8). The full derivation is given in
Appendix B. The resulting gravitational field equations of
the total action are

∂f
∂G

�
Gρσ þ

1

2
gρσG

�
þ 1

2
Eρσ

γ∂γ

�∂f
∂G

�
−
1

2
gρσfðG;BÞ

þ 1

2

∂f
∂B gρσBþ gρσ∂μ∂μ

�∂f
∂B

�
− ∂ρ∂σ

�∂f
∂B

�

þ 1

2
gρσ∂μðgμνÞ∂ν

�∂f
∂B

�

þ 1ffiffiffiffiffiffi−gp ∂ðρð
ffiffiffiffiffiffi
−g

p Þ∂σÞ

�∂f
∂B

�
¼ κTρσ: ð3:4Þ
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The field equations (3.4) are symmetric, as they must be,
because we varied with respect to the metric. However, one
must be very careful now when considering coordinate
transformations. The left-hand side clearly contains terms
which are not covariant. Moreover, at this point no additional
assumptions were made about the matter action and its (non)
invariant properties. The lack of diffeomorphism invariance
(up to surface terms) at the level of the total action (3.1) plus
a matter action implies that we do not automatically have a
Bianchi-like identity. As we do not (yet) assume our matter
action Smatter½gμν;Φ� to be invariant under diffeomorphisms,
we cannot infer the usual covariant conservation∇μTμν ¼ 0.
We also note that should Tμν not be a true rank-two tensor,
such an equation would not be well defined.
Having said this, let us now make the following

observation. If we divide (3.4) by ∂f=∂G we can isolate
the Einstein tensorGρσ and move all remaining terms to the
right-hand side. This would yield an equation of the form

Gρσ ¼
κ

fG
Tρσ þ TðfÞ

ρσ ; ð3:5Þ

where fG ¼ ∂f=∂G and TðfÞ
ρσ stands for the collection of

all the remaining terms. This formulation has two impli-
cations: first, mathematical consistency requires that the
right-hand side has to be a rank-two tensor; second, the
twice contracted Bianchi identities imply that the right-
hand side must be covariantly conserved

∇ρGρσ ¼ 0 ⇒ ∇ρ

�
κ

fG
Tρσ þ TðfÞ

ρσ

�
¼ 0: ð3:6Þ

Perhaps unexpectedly, we arrived at a conservation equa-
tion. Note that we did not assume explicitly the diffeo-
morphism invariance of the total action. The next section
will clarify how this conservation equation emerged.

B. Conservation equation and invariance

Let us take a closer look at the diffeomorphisms of
action (3.1). As previously noted, the Einstein action was in
fact zero under diffeomorphisms, owing itself to the fact
that the action differed from a coordinate scalar by a
boundary term only. Clearly the modified action (3.1) does
not share this property, so it will not be invariant and it does
not differ from a coordinate scalar by a boundary term.
Let us proceed to calculate explicitly how this action

transforms under an infinitesimal coordinate transforma-
tion. We make use of our previous expressions (2.21)
and (2.22) to find

δξSgrav ¼
1

2κ

Z
Lξð

ffiffiffiffiffiffi
−g

p
fðG;BÞÞd4x

¼ 1

2κ

Z �
∇μξ

μfðG;BÞ

þ
�∂fðG;BÞ

∂G LξGþ ∂fðG;BÞ
∂B LξB

�� ffiffiffiffiffiffi
−g

p
d4x:

ð3:7Þ

This leads to

δξSgrav ¼
1

2κ

Z �
ð∂μξ

μ þ Γμ
μηξηÞfðG;BÞ þ

�∂fðG;BÞ
∂G ∂μGξμ þ ∂fðG;BÞ

∂B ∂μBξμ
�

þMαβ
γ∂α∂βξ

γ

�∂fðG;BÞ
∂G −

∂fðG;BÞ
∂B

�� ffiffiffiffiffiffi
−g

p
d4x

¼ boundary termsþ 1

2κ

Z
Mαβ

γ∂α∂βξ
γ

�∂fðG;BÞ
∂G −

∂fðG;BÞ
∂B

� ffiffiffiffiffiffi
−g

p
d4x: ð3:8Þ

Discarding the boundary term, and using an abbreviated
notation, we are left with

δξSgrav ¼
1

2κ

Z ffiffiffiffiffiffi
−g

p ðf;G − f;BÞMαβ
γ∂α∂βξ

γd4x; ð3:9Þ

analogous to Eq. (2.26). As before, we integrate by parts
twice and discard the boundary terms, which leads to

δξSgrav ¼
1

2κ

Z
∂α∂βð

ffiffiffiffiffiffi
−g

p
Mαβ

γðf;G − f;BÞÞξγd4x:

ð3:10Þ

If we also include the matter term δξSmatter as given
by (2.32), we have

δξStotal ¼ δξSgrav þ δξSmatter

¼
Z �

1

2κ
∂α∂β

� ffiffiffiffiffiffi
−g

p
Mαβ

γðf;G − f;BÞ
�

−∇αð
ffiffiffiffiffiffi
−g

p
Tα
γ Þ
�
ξγd4x: ð3:11Þ

If at this point one requires the total action to be invariant
under coordinate transformations, one finds a conservation
equation, namely the vanishing of the integrand of (3.11),
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similar to its GR analog given by (2.33). One can again
regard this equation as a consequence of Noether’s theo-
rem. Let us emphasize an important mathematical point
here: for the variational formulation to be well defined, in
terms of tensors, we must assume that the integrand of our
total action is indeed a well-defined scalar, up to possible
boundary terms. If the Lagrangian were a pseudoinvariant,
as it is for the Einstein action, our action would differ from
a true scalar by a boundary term which could be added
back into the action to yield a well-defined scalar without
affecting the resulting field equations.
This conservation equation (3.11) leads to various

interesting points to be addressed. First, let us assume that
the matter action is itself based on a true scalar Lagrangian
which then implies that the matter energy-momentum
tensor is independently conserved ∇αTα

γ ¼ 0. Requiring
δξStotal ¼ 0 then implies the additional equation

∂α∂βð
ffiffiffiffiffiffi
−g

p
Mαβ

γðf;G − f;BÞÞ ¼ 0; ð3:12Þ

which can be satisfied for all possible geometries if
f;G − f;B ¼ 0. This equation is easily integrated and one
finds that all functions of the form fðGþBÞ are general
solutions, assuming a sufficiently regular function f.
Recalling that this combination is in fact the Ricci scalar,
the unique coordinate scalar that can be constructed fromG
and B, we find the expected result that within the family of
fðG;BÞ theories fðRÞ gravity is the unique diffeomor-
phism invariant theory. We will show this result explicitly
in Sec. III C.
Second, let us also assume that fðG;BÞ ≠ fðGþBÞ.

Moreover, we will maintain the assumption that the
matter action yields an independent conservation equation
∇αTα

γ ¼ 0. As before, for the total action to be invariant,
Eq. (3.12) has to be satisfied. In this case it is possible that
this term vanishes, however, it will depend both on the
metric and the coordinates used. A trivial example would
be the situation where G and B are both constants. In this
case, and other nontrivial cases, the gravitational action will
naively appear to be invariant under diffeomorphisms. This
situation is similar to that in fðTÞ gravity when so-called
“good tetrads” are considered [89,90]. An explicit example
is discussed when considering cosmology in Sec. III E.
Lastly, if we drop the assumption of the matter con-

servation equation, only the integrand of (3.10) has to
vanish to achieve diffeomorphism invariance of the total
action. This would allow us to study theories in which for
instance the dark matter energy density decreases over time
while the dark energy density, here modeled through the
contributions of fðG;BÞ, can increase over time.

C. Retrieving f ðRÞ gravity
If we take fðG;BÞ to be a function of the Ricci scalar

only, that is fðG;BÞ ¼ fðGþBÞ ¼ fðRÞ, we readily
recover the fðRÞ field equations. First we use that

∂fðGþ BÞ
∂G ¼ ∂fðGþ BÞ

∂B ¼ ∂fðRÞ
∂R : ð3:13Þ

With this simplification we can rewrite the left-hand side of
Eq. (3.4) as follows:

∂f
∂R

�
Gρσ þ

1

2
gρσGþ 1

2
gρσB

�
−
1

2
gρσfðRÞ

þ gρσ∂μ∂μ

�∂f
∂R

�
− ∂ρ∂σ

�∂f
∂R

�

þ ∂γ

�∂f
∂R

��
1

2
Eρσ

γ þ 1

2
gρσ∂μgμγ þ

1ffiffiffiffiffiffi−gp ∂ðρð
ffiffiffiffiffiffi
−g

p ÞδγσÞ
�
:

ð3:14Þ

Expanding the definition of Eρσ
γ (2.8), writing the partial

derivatives of the metric in terms of Christoffel symbols
and using Gþ B ¼ R gives

∂f
∂R

�
Gρσ þ

1

2
gρσR

�
−
1

2
gρσfðRÞ þ gρσ∂μ∂μ

�∂f
∂R

�

− ∂ρ∂σ

�∂f
∂R

�
þ ∂γ

�∂f
∂R

�
½Γγ

ρσ − gρσgμνΓ
γ
μν�: ð3:15Þ

The term in the first square bracket is the Ricci tensor Rρσ.
The other connection and partial derivative terms are
simply the covariant derivatives acting on ∂f=∂R, which,
unlike G and B, is a true coordinate scalar. To see this
more clearly, begin with the fðRÞ field equations [12,13]
given by

∂f
∂RRρσ þ ½gρσ□ −∇ρ∇σ�

∂f
∂R −

1

2
gρσfðRÞ; ð3:16Þ

and expand the derivative terms

½gρσ□ −∇ρ∇σ�f;R ¼ gρσgμνð∂μ∇ν − Γγ
μν∇γÞf;R −∇ρ∂σf;R

¼ ðgρσgμν∂μ∂ν − gρσgμνΓ
γ
μν∂γ − ∂ρ∂σ þ Γγ

ρσ∂γÞf;R:
ð3:17Þ

Comparison of (3.15) with the expressions above shows
that these are indeed the same, such that fðGþBÞ yields
the standard fðRÞ field equations. These are generally
fourth order, due to the second order terms in the Ricci
scalar (which are confined to the boundary in GR)
contributing to the equations of motion when fðRÞ is a
nonlinear function.

D. f ðGÞ gravity
Theories of the form fðGÞ, i.e., modifications of the

Einstein action (2.6), will produce second order equations
which are (in general) noncovariant when fðGÞ ≠ c1G.
Again, the fðGÞ field equations will depend on the
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coordinate system used. This means that solutions cannot
generally be transformed into solutions in other coordinates,
but we can find “preferred” sets of coordinates which lead to
interesting results: i.e., dynamics that differ from GR.
This approach is very similar to fðQÞ gravity [44] where

close links between the nonmetricity scalar Q and G were
already explored. The nonmetricity scalar depends on the
first partial derivatives of the metric and hence also yields
second order field equations. The difference between both
approaches will be discussed in greater detail when
boundary terms will be taken into account.
Interestingly, this approach was recently considered in

[91] where it was motivated by modified Newtonian
dynamics (MOND) and showed interesting links with
fðQÞ gravity. It was argued that a gravitational theory
might not be diffeomorphism invariant in the limit of small
accelerations where a modified theory can be employed to
explain flattened galactic rotation curves.
The fðGÞ field equations follow directly from (3.4) and

are given by

f0ðGÞ
�
Gρσ þ

1

2
gρσG

�
þ 1

2
f00ðGÞEρσ

γ∂γG

−
1

2
gρσfðGÞ ¼ κTρσ: ð3:18Þ

One can immediately see that in this compact form, where
the Christoffel symbols are contained within the object
Eρσ

γ , the field equations resemble those found in fðTÞ
gravity (in its covariant form [92]). Two particular exam-
ples where the fðTÞ and fðGÞ field equations are identical
are the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric in Cartesian coordinates and the Schwarzschild
metric in Cartesian isotropic coordinates, we will show
these equations explicitly below.
The integrand of the conservation equation (3.11)

becomes

1

2κ
∂α∂βð

ffiffiffiffiffiffi
−g

p
Mαβ

γf0ðGÞÞ −∇αTα
γ

ffiffiffiffiffiffi
−g

p ¼ 0: ð3:19Þ

Let us rewrite the field equations (3.18) into an Einstein-
like form. We divide by f0 and isolate the Einstein tensor,
which yields

Gρσ ¼
κ

f0
Tρσ þ

1

2

1

f0
ððf − f0GÞgρσ − f00Eρσ

γ∂γGÞ: ð3:20Þ

The second term of the right-hand side can be interpreted
as the effective energy-momentum tensor of the modified
theory of gravity, similar to the setup in fðRÞ gravity. Since
the covariant trace of the Einstein tensor vanishes, one can
again derive a conservation equation which will be equiv-
alent to (3.19). It is interesting to note that it is not clear

from first principles how the covariant derivative should act
on the quantities E or G as these are a nontensorial rank-
three object and pseudoscalar, respectively. The advantage
of (3.19) is that its formulation only uses partial derivatives
which are well defined on all objects, tensorial and non-
tensorial. In this sense one could combine these two
equations to read off the “meaning” of these covariant
derivatives of E and G. However, we will not require this
for what follows.
We can think of fðRÞ gravity as the unique theory based

on a true scalar while fðGÞ gravity can be seen as the
unique theory with second order equations within the
fðG;BÞ family. This is visualized in Fig. 1. This can be
seen as the “coordinate” analog of the discussion in [33] in
the context of modified teleparallel theories of gravity.
Within this family of theories, general relativity emerges as
the unique diffeomorphism invariant theory that has second
order field equations.
The discussion of [91] also restricted the form of the

function fðGÞ in order to yield GR in a suitable limit,
fðGÞ → Gþ c1 for large G and c1 being a constant.
The so-called deep MOND limit is attained when fðGÞ →
αG3=2 þ c2 for small G.

E. f ðGÞ cosmology

Comparison of the cosmological equation with those in
fðTÞ and fðQÞ gravity shows that these are in fact identical.
At first sight this result is surprising and one is tempted to
attribute it to the symmetry of the FLRW spacetime. In the
following we will investigate the relations between these
theories in greater detail.
For a homogeneous and isotropic cosmological space-

time given by the spatially flat FLRW metric in Cartesian
coordinates the line element is given by

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ: ð3:21Þ

We assume the energy-momentum tensor to be modeled by
a single perfect fluid with pressure p and energy density ρ.
We will require an equation of state to close the system of
equations if closed form solutions are sought. The fðGÞ
field equations are

fðGÞN2 þ 12H2f0ðGÞ ¼ 2κρ; ð3:22Þ

FIG. 1. Relationship between fðG;BÞ gravity and general
relativity.
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− fðGÞ − f0ðGÞ 4

N2

�
_H þ 3H2 −H

_N
N

�

þ f00ðGÞ 48H
2

N4

�
_H −H

_N
N

�
¼ 2κp; ð3:23Þ

where H ¼ _a=a is the Hubble function. In these coordi-
nates G is related to the Hubble parameter by

G ¼ −6
_a2

a2N2
¼ −6

H2

N2
: ð3:24Þ

Note that these equations satisfy the continuity equation.
This can also be seen by noting that the conservation
equation (3.19) vanishes for this choice of metric and
coordinates. If one works in the full fðG;BÞ theory the
conservation equation (3.19) is also zero. This corresponds
to the second possibility discussed in Sec. III B where the
equations appear to be invariant due to the specific choice
of coordinates.
The above cosmological equations (3.22) and (3.23)

are identical in form to the fðTÞ cosmological field
equations, assuming NðtÞ ¼ 1, with the torsion scalar
T replaced with our bulk term G [e.g., see equations (9)
and (10) in [18] ]. Similarly, the torsion scalar T is equal
to minus the bulk term G. Hence the dynamics for both
theories, given that coordinates and tetrads are chosen
appropriately, are equivalent, see also [93] for recent
discussion in the context of teleparallel theories. In fðQÞ
gravity it is known that the cosmological field equations
are also of the same form as those found in fðTÞ gravity
[48,94], and therefore the background dynamics are again
equivalent. In this case Q ¼ 6H2 ¼ −G with NðtÞ ¼ 1
and a slight redefinition of the function f yields equiv-
alence. After briefly stating the spherically symmetric
field equations we will proceed to discuss this equiv-
alence thoroughly in Sec. IV.

F. f ðGÞ spherical symmetry

Next we consider a spherically symmetric vacuum
spacetime with isotropic coordinates:

ds2 ¼ −AðRÞ2dt2 þ BðRÞ2ðdx2 þ dy2 þ dz2Þ;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
: ð3:25Þ

For the given metric the fðGÞ field equations (3.18) yield
two independent equations, which can be written as

fðGÞ
4

−
�
A0

A
B0

B3
þ 2

R
B0

B3
þ B00

B3

�
f0ðGÞ − B0

B3
G0f00ðGÞ ¼ 0;

ð3:26Þ

Bð2RA0B0 þ AðB0 − RB00ÞÞ þ B2ðA0 − RA00Þ þ 2RAB02

RBðBA0 þ AB0Þ

−G0 f
00ðGÞ
f0ðGÞ ¼ 0; ð3:27Þ

where we have used the shorthand A0 ¼ dA=dR. In these
coordinates G is

G ¼ 2
B0

B3

�
2
A0

A
þ B0

B

�
: ð3:28Þ

Just as in the previous example, the fðTÞ field equations are
identical to those presented here and the torsion scalar T is
again equal to minus (3.28). It is important to emphasize
that these results only hold for the chosen coordinates and
tetrads. These two nontrivial examples motivate us to look
closer at the relation between the seemingly different
formulations of modified gravity. Also note that this choice
of metric and coordinates again satisfies our conservation
equation in both the fðGÞ case (3.19) and the fðG;BÞ case
(3.10). When using the standard Schwarzschild coordi-
nates, one finds an undesirable off-diagonal field equation
proportional to f00ðGÞ ¼ 0, similar to the situation in fðTÞ
gravity where it is rather challenging to identity a suitable
static and spherically symmetric tetrad field [95].

G. A first glimpse at equivalence

The field equations for the three modified theories, fðGÞ,
fðTÞ and fðQÞ, can be stated in a similar form as follows:

f0ðGÞ
�
Gρσ þ

1

2
gρσG

�
þ 1

2
f00ðGÞEρσ

γ∂γG

−
1

2
gρσfðGÞ ¼ κTρσ; ð3:29Þ

f0ðTÞ
�
Gρσ −

1

2
gρσT

�
þ f00ðTÞS ρσ

γ∂γT

þ 1

2
gρσfðTÞ ¼ κΘρσ; ð3:30Þ

f0ðQÞ
�
Gρσ −

1

2
gρσQ

�
þ 2f00ðQÞPλ

ρσ∂λQ

þ 1

2
gρσfðQÞ ¼ κTρσ; ð3:31Þ

see [92] and [45,48] for fðTÞ and fðQÞ, respectively.
The objects Eμνρ,S μνρ and Pμνρ act as the superpotential of
each theory. It has already been noted that in the context
of fðQÞ gravity, whilst working in the so-called coinci-
dence gauge, the nonmetricity scalarQ reduces to −G [44].
In the context of the symmetric teleparallel equivalent of
general relativity (STEGR) the action is then just the
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Einstein action and leads to the Einstein field equations, see
for instance [36,61,88]. One also finds that in the coinci-
dence gauge Pλ

μν ¼ 1
4
Eμν

λ, in which case the fðQÞ field
equations are identical to the fðGÞ equations as one would
expect at this point. However, the geometric setting of all
three theories differs, which we will explore more in the
following.
Clearly, the above equivalence only holds provided one

works with appropriate coordinates or with an appropriate
tetrad. It is well known in fðTÞ gravity that some tetrads
yield undesirable field equations which generally imply
f00ðTÞ ¼ 0, thereby reducing the model back to GR. İt is
also worth emphasizing at this point that in TEGR and its
generalizations, the tetrad field eaμ becomes the dynamical
variable while the metric takes a secondary role. This also
means one deals with 16 field equations instead of 10.

IV. TOWARDS EQUIVALENCE

A. Affine connection

The starting point of teleparallel gravity is the well-
known relation R ¼ −T þ B, while the starting point for
the symmetric teleparallel formulation of general relativity
is of similar structure. Let us now consider spaces with
curvature, torsion and nonmetricity (a general affine space)
so that the affine connection Γ̄ can be written symbolically
as Γ̄ ¼ Γþ K where K is the contortion tensor that
represents the difference between the Levi-Civita (or
Christoffel) connection Γ and the full connection Γ̄ [84].
This term consists of permutations of the torsion and
nonmetricity tensors:

Kμλ
κ ¼ gκρ

�
−Tfμρλg þ

1

2
Qfμρλg

�
; ð4:1Þ

Tμν
κ ¼ 1

2
ðΓ̄κ

μν − Γ̄κ
νμÞ; Qμ

κλ ¼ ∇̄μgκλ: ð4:2Þ

Here ∇̄ stands for the covariant derivative using the affine
connection. The Riemann tensor for the affine connection is
given by

R̄μνλ
ρ ¼ 2Γ̄ρ

κ½μΓ̄
κ
ν�λ þ 2∂ ½μΓ̄

ρ
ν�λ; ð4:3Þ

and the complete Ricci scalar is given by

R̄ ¼ Rþ∇κKμ
μκ −∇κKμ

κμ þ Kκρ
κKλ

λ
ρ − Kλ

ρ
κKκλ

ρ;

ð4:4Þ

where ∇ stands for the covariant derivative using the Levi-
Civita connection. Using that the Ricci scalar R can be
written as in (2.2), we write the previous relation as

R̄ ¼ Gþ Bþ∇κKμ
μκ −∇κKμ

κμ þ Kκρ
κKλ

λ
ρ − Kλ

ρ
κKκλ

ρ:

ð4:5Þ

We note that the third and fourth terms on the right-hand
side are also boundary terms as the covariant derivative acts
on rank-one tensors due to the summations.
In TEGR one works with a flat manifold where the

Riemann curvature tensor of the complete connection
vanishes, and it is assumed that nonmetricity vanishes
identically. This means Eq. (4.5) becomes

0 ¼ Gþ B − 2∇κKμ
κμ þ Kκρ

κKλ
λ
ρ − Kλ

ρ
κKκλ

ρ; ð4:6Þ

where now the contortion terms only depend on the torsion
tensor. This is often written in the form

0 ¼ Gþ Bþ T − BT: ð4:7Þ

Here T is the torsion scalar

T ¼ TρλκTρλκ þ 2TκλρTκρλ − 4Tρ
κ
κT

ρλ
λ; ð4:8Þ

and BT is its boundary term, such that −T þ BT ¼ R.
As stated before, we follow the conventions of [84].
The superpotential S κρλ is defined through the relation
T ¼ S κρλTρλκ and is given by

S κ
ρλ ¼ Tρλ

κ − Tκ
ρλ þ Tκ

λρ þ 2ðδκρTλ
σ
σ − δκλTρ

σ
σÞ: ð4:9Þ

It should be noted that different conventions used in the
literature can result in slightly different prefactors, these
mainly go back to the definition of torsion.
In the so-called symmetric teleparallel gravity models,

one again works on a manifold with vanishing curvature,
however, with nonmetricity instead of torsion. In this case,
Eq. (4.5) becomes

0 ¼ Gþ BþQþ BQ; ð4:10Þ

where Q is the nonmetricity scalar and BQ its boundary
term. Again, we can write the Ricci scalar as
Qþ BQ ¼ −R. Combining these three settings into one
yields the fundamental equation,

R̄ ¼ Gþ Bþ T − BT þQþ BQ þ C; ð4:11Þ

where C contains the torsion-nonmetricity cross terms
which appear in (4.5). These cross terms can be conven-
iently written using the superpotential

C ¼ S κρλQλκρ ¼ 2ðQκρλTλκρ þQρ
σ
σT

ρκ
κ −Qσ

σρTρκ
κÞ;
ð4:12Þ

see for instance [96]. The identity (4.11) is the starting point
for our subsequent discussion.
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B. Boundary terms and TEGR

If equivalence between different theories can be estab-
lished, it will be important to understand how the different
boundary terms are related to each other. Clearly, the
geometrical setting that underlies fðTÞ gravity, with its
use of tetrads as the basic dynamical variable, appears
difficult to be reconciled with the metric formulation or the
nonmetricity formulation. First we will show that the
boundary term appearing in fðTÞ gravity BT differs from
our boundary term B by yet another boundary term which
we will call bT .
Starting from the previous equation (4.7) 0 ¼ Gþ Bþ

T − BT the boundary term BT is explicitly given by

BT ¼ 2

e
∂μðeTμÞ ¼ 2∇μTμ; Tμ ¼ Tμ

λ
λ: ð4:13Þ

We follow the standard formulation of TEGR where the
spin connection is set to zero ωμ

a
b ¼ 0, the torsion tensor is

explicitly given in terms of the tetrad field only and one
finds the following expression for the boundary term:

BT ¼ 2

e
∂μðegμνEλ

að∂λeaν − ∂νeaλÞÞ: ð4:14Þ

We will now look at our original boundary term B reex-
pressed using tetrads. Recall definition (2.4) which reads

B ¼ 1ffiffiffiffiffiffi−gp ∂ν

�
1ffiffiffiffiffiffi−gp ∂μðggμνÞ

�

¼ −
1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p ðgμνgβα − gμαgνβÞ∂μgαβÞ; ð4:15Þ

where we have used the standard relations

∂μgσρ ¼ −gσαgρβ∂μgαβ; ∂ν
ffiffiffiffiffiffi
−g

p ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gαβ∂νgαβ;

ð4:16Þ

etc. Rewriting the metric tensor in terms of tetrads using
gαβ ¼ Eα

mE
β
nηmn and e ¼ ffiffiffiffiffiffi−gp

we find

B ¼ −
1

e
∂νðeðgμνgβα − gμαgνβÞemα ∂μenβ

þ ðgμνgβα − gμαgνβÞenβ∂μemα ÞηmnÞ: ð4:17Þ

After expanding this out and simplifying terms we arrive at

B ¼ 1

e
∂μðegμνEλ

að∂λeaν − ∂νeaλÞ
þ egβνEλ

aðδμλ∂βeaν − δμβ∂νeaλÞÞ; ð4:18Þ

which is a lengthy calculation and constitutes the first key
result of this part. Comparison of the first two terms

in (4.18) with (4.14) shows that the boundary term B
contains the teleparallel boundary term BT :

B ¼ 1

2
BT þ 1

e
∂μðegβνEλ

aðδμλ∂βeaν − δμβ∂νeaλÞÞ

≕
1

2
BT þ 1

2
Bð2Þ
T : ð4:19Þ

In other words, this result states that both boundary terms
differ by yet another boundary term, which we will denote

by Bð2Þ
T . Due to the many different boundary terms notation

can become slightly difficult but we will try to keep the
notation as clear as possible.

C. A new boundary and TEGR equivalence

It is of interest to consider the following linear combi-
nation of the previous boundary terms. Let us define the
term

bT ≔ B − BT ¼ 1

2
Bð2Þ
T −

1

2
BT

¼ 1

e
∂ν½egμαEν

a∂μeaα − egναEμ
a∂μeaα�: ð4:20Þ

Using the fact that the square bracket is skew symmetric in
μν, we can show that the term, in fact, does not depend on
any second order derivatives,

bT ¼ 1

e
∂ν½egμαEν

a∂μeaα − egναEμ
a∂μeaα�

¼ 2

e
∂ν½e∂μeaαðgα½μEν�

a Þ�

¼ 2

e
∂μ∂νeaαðegα½μEν�

a Þ þ 2

e
ð∂μeaαÞ∂νðegα½μEν�

a Þ

¼ 2

e
ð∂μeaαÞ∂νðegα½μEν�

a Þ; ð4:21Þ

where in the second last line we have expanded using the
product rule and then noted that the first term vanishes. The
partial derivatives are symmetric whilst the bracket is skew
symmetric. Going back once more to our fundamental
equation 0 ¼ Gþ Bþ T − BT we can now write

Gþ Bþ T − BT ¼ Gþ 1

2
BT þ 1

2
Bð2Þ
T þ T − BT

¼ Gþ T þ 1

2
Bð2Þ
T −

1

2
BT: ð4:22Þ

This identity establishes the first result of this section

Gþ T þ bT ¼ 0 ⇒ G ¼ −T − bT: ð4:23Þ

From this final relation (4.23) it is clear that bT must be
first order and quadratic in derivatives of the tetrad, because
both G and T are. This is verified in the final form of

CHRISTIAN G. BÖHMER and ERIK JENSKO PHYS. REV. D 104, 024010 (2021)

024010-12



Eq. (4.21). Another property of this new boundary term is
that it vanishes for any diagonal tetrad. In this case
Eq. (4.23) simply reduces to G ¼ −T.
Next, we note that bT is neither a Lorentz scalar nor a

coordinate scalar. This boundary term encodes information
describing how the torsion scalar T fails to be Lorentz
invariant. Equivalently, it measures how the bulk term G
fails to be invariant under coordinate transformations. It
therefore contains important information about the struc-
ture of the spacetime and the tangent space for a given
tetrad field. In order for the field equations of fðGÞ and
fðTÞ gravity to match, it is necessary but not sufficient for
bT to vanish. The coordinates and tetrads chosen in
Secs. III E and III F satisfy this very condition.
If one wishes to work in the modified teleparallel setting

where the spin connection is set to zero, as in the above,
then it is well known that the theory is not invariant under
local Lorentz transformations [20,21,25]. Any attempt at
partially restoring the Lorentz symmetry, without altering
the spin connection, which means by considering only a
restricted class of tetrads must enforce the condition
bT ¼ 0. This term hence provides us with a new approach
to understand the so-called remnant symmetry of fðTÞ
gravity [26,27]. It should be noted, however, that there
exists an alternative approach to modified teleparallel
theories of gravity, which abandons the requirement of
having a vanishing spin connection, thereby allowing for
a covariant formulation of the theory [24]. For complete-
ness we should state that this approach is not free of
criticism [97,98] though.

D. Boundary term of symmetric teleparallel gravity

The ideas and methods of the previous sections can also
be applied to symmetric teleparallel gravity as we will now
show. Again one works with a flat manifold where the
Riemann curvature tensor of the complete connection
vanishes, however, in this case nonmetricity is present
but torsion is assumed to vanish identically. As before, we
have (4.6) which now becomes

0 ¼ Gþ BþQþ BQ: ð4:24Þ

Here the nonmetricity scalar Q is a quadratic combination
of the nonmetricity tensor, analogous to the torsion scalar,
while the boundary term BQ is

BQ ¼ ∇κKμ
μκ −∇κKμ

κμ: ð4:25Þ

Writing out the contortion explicitly in terms of non-
metricity, see [84], gives

Kμ
λκ ¼ 1

2
ðQμ

κλ −Qκλ
μ þQλ

μ
κÞ; ð4:26Þ

from which we find the two contractions

Kμ
μκ ¼ 1

2
ð2Qμ

μκ −Qκμ
μÞ; Kμ

κμ ¼ 1

2
Qκ

μ
μ: ð4:27Þ

Therefore, the boundary term can then be written as

BQ ¼ ∇κKμ
μκ −∇κKμ

κμ ¼ ∇κðQμ
μκ −Qκμ

μÞ

¼ 1ffiffiffiffiffiffi−gp ∂κð
ffiffiffiffiffiffi
−g

p ðQμ
μκ −Qκμ

μÞÞ: ð4:28Þ

Making the covariant derivative explicit on the metric
tensor, the nonmetricity tensor can be written as

Qλμν ¼ −∇̄λgμν ¼ −∂λgμν þ 2Γ̄κ
λðμgνÞκ; ð4:29Þ

where Γ̄, as before, is the affine connection. Starting with
an affine connection which vanishes and then making a
coordinate transformation gives

Γ̄λ
μν ¼

∂xλ
∂ξσ ∂μ∂νξ

σ; ð4:30Þ

where ξσ ¼ ξσðxμÞ are functions of the coordinates xμ. It is
common in fðQÞ gravity to work in the so-called coinci-
dent gauge, see [44], where the coordinates are chosen such
that the connection (4.30) vanishes. This is often denoted as

Γ
∘ ¼ 0. Then the nonmetricity tensor (4.29) is determined
by the partial derivatives of the metric

Q
∘
λμν ¼ −∂λgμν: ð4:31Þ

As a final bit of notation let us define

Q
1

λμν ¼ 2
∂xκ
∂ξσ ∂λ∂ðμξσgνÞκ ð4:32Þ

such that in an arbitrary gauge the nonmetricity tensor can
be written as

Qλμν ¼ Q
∘
λμν þQ

1

λμν: ð4:33Þ

Unfortunately, we cannot avoid this somewhat cumber-
some notation which will result in identifying the necessary
boundary terms.
The boundary term (4.28) is a linear combination of the

two nonmetricity pieces, moreover the partial derivative is
also linear, hence one finds straightforwardly

BQ¼ 1ffiffiffiffiffiffi−gp ∂κð
ffiffiffiffiffiffi
−g

p ðQ∘ μ

μκ
−Q

∘ κμ

μÞÞ

þ 1ffiffiffiffiffiffi−gp ∂κð
ffiffiffiffiffiffi
−g

p ðQ1 μ

μκ
−Q

1 κμ

μÞÞ≕Bð0Þ
Q þBð1Þ

Q ; ð4:34Þ
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which introduces two boundary terms related to the two
nonmetricity pieces, respectively.
The first of these boundary terms only depends on the

metric and its derivatives. We find the first term to be equal
to our boundary term B, up to a minus sign,

Bð0Þ
Q ¼ 1ffiffiffiffiffiffi−gp ∂κð

ffiffiffiffiffiffi
−g

p ðQ∘ μ

μκ
−Q

∘ κμ

μÞÞ

¼ −
1ffiffiffiffiffiffi−gp ∂κð

ffiffiffiffiffiffi
−g

p ðgμλgκγ∂μgλγ − gκλgμγ∂λgγμÞÞ

¼ −
1ffiffiffiffiffiffi−gp ∂κð

ffiffiffiffiffiffi
−g

p ðgμλΓκ
μλ þ gκγΓμ

μγ − gκλΓγ
γλ − gκλΓγ

γλÞÞ

¼ −
1ffiffiffiffiffiffi−gp ∂κð

ffiffiffiffiffiffi
−g

p ðgμλΓκ
μλ − gκλΓγ

γλÞÞ ¼ −B; ð4:35Þ

where the Γ stands for the usual Levi-Civita connection.
Similarly for the other term

Bð1Þ
Q ¼ 1ffiffiffiffiffiffi−gp ∂κð

ffiffiffiffiffiffi
−g

p ðQ1 μ

μκ

−Q
1 κμ

μÞÞ

¼ 1ffiffiffiffiffiffi−gp ∂κ

� ffiffiffiffiffiffi
−g

p �∂xκ
∂ξσ ∂

λ∂λξ
σ −

∂xρ
∂ξσ ∂

κ∂ρξ
σ

��
:

ð4:36Þ

Therefore we have the identity

BQ ¼ Bð0Þ
Q þ Bð1Þ

Q ¼ −Bþ Bð1Þ
Q : ð4:37Þ

As before, we define the difference between the non-
metricity boundary term and the curvature boundary terms
to be bQ to be consistent with the previous notation. It turns

out that bQ happens to be Bð1Þ
Q . We write

bQ ≔ BQ þB ¼ Bð1Þ
Q : ð4:38Þ

We are now ready to go back to (4.24) which gives

0 ¼ Gþ BþQþ Bð0Þ
Q þ Bð1Þ

Q

¼ GþQþ bQ ⇒ G ¼ −Q − bQ: ð4:39Þ

This is the analog symmetric teleparallel result of (4.23)
which was derived in the teleparallel setting. Again, we
note that G and Q differ by a peculiar boundary term not
previously identified. It is exactly this term which vanishes
in the coincident gauge. It should be noted that the term bQ
is a true Lorentz scalar but a coordinate pseudoscalar.

E. Equivalence—Summary discussion

The calculations of the preceding sections can all be
summarized in the following geometrical identity which
holds for globally flat affine spaces:

0 ¼ Gþ B|fflfflffl{zfflfflffl}
GR

þ T − BT|fflfflffl{zfflfflffl}
TEGR

þQþ BQ|fflfflfflffl{zfflfflfflffl}
STEGR

þC: ð4:40Þ

Using our newly identified boundary terms we rewrite
this as

0 ¼ Gþ bG þ T þ bT þQþ bQ þ C; ð4:41Þ

where we introduced the notation bG ¼ −B. It should now
be clear that these boundary terms play a crucial role in
determining the geometrical setting in which one operates.
When torsion and nonmetricity are assumed to vanish,
one works in the standard general relativity framework.
Note that in this case the left-hand side would not be zero
but equal to the Ricci scalar. Assuming that nonmetricity
vanishes give TEGR, whereas the vanishing of torsion
gives STEGR. It should also be noted that the cross term C
(4.12) vanishes when either torsion or nonmetricity vanish.
Therefore this term is only of importance when theories
which contain both quantities are considered.
Finally one can propose the following theory:

S ¼
Z

fðG; T;Q; bG; bT; bQ;CÞ
ffiffiffiffiffiffi
−g

p
d4x; ð4:42Þ

FIG. 2. Relationship of fðG; T;Q; bG; bT; bQ;CÞ gravity with other modified theories.
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where f is a sufficiently regular function of all its
variables. This setup is quite general and relates to various
well-known theories as shown in Fig. 2. The visualization
neglects matter couplings in the different settings, which
will be discussed in the next section. We suppressed the
dynamical variable in action (4.42) as the boundary terms
now become important. Recall that the definition of the
boundary term bT requires the use of tetrads, it cannot be
expressed in terms of the metric alone. This means that
one can always choose the tetrad to be the dynamical
variable but there are models where one can work with the
metric directly.
The mentioned generalized metric affine theories were

thoroughly studied in [3], top right in Fig. 2, where the
gravitational Lagrangian was assumed to be a function of
the metric, the tetrads and the connection, together with
their first derivatives. The gravitational Lagrangian was
then assumed to be invariant under tetrad deformations
which restricted it to be a function of the metric tensor and
tetrad, in addition to nonmetricity, torsion and curvature.
Clearly, our proposed model (4.42) deviates from this very
assumption and therefore yields distinct theories.

V. CONCLUSIONS AND DISCUSSIONS

The starting point of this work was the Einstein or
Gamma squared action which is based on the pseudoscalar
G which differs from the Ricci scalar R, a true geometrical
scalar, by a boundary term B. This boundary term is also a
pseudoscalar but does not contribute to the equations of
motion of the theory. These pseudoscalars are not invari-
ant under arbitrary coordinate transformations. We follow
recent approaches to modified theories of gravity and
introduce a theory based on the function fðG;BÞ. Both
pseudoscalars can be expressed in terms of the metric gμν
alone which means that the metric is the dynamical
variable of the gravitational action. Consequently, in this
approach matter couplings are straightforward to imple-
ment and one can follow the minimal coupling procedure
without loss of generality. This is an important point as
matter couplings in theories based on more general
connections are well known to become problematic when
spin 1=2 matter is taken into account. The Dirac action
depends explicitly on the connection. In theories with
torsion, for example, the Levi-Civita connection differs
from the affine connection so that the Dirac action could
be written in two different ways, leading potentially to two
different theories. These subtle issues are fortunately
absent in our approach.
A model based on fðG;BÞ does no longer differ from a

true scalar by only a boundary term, therefore one has to be
particularly careful when formulating the resulting field
theory. To be able to formulate a well-defined variational
principle for the complete theory, gravity plus matter, we
must eventually assume that the total action is invariant
under diffeomorphisms. By relaxing the condition that both

gravitational and matter actions must individually be
invariant under diffeomorphisms, we can consider a wider
class of theories than is usually studied. Similarly, the
generalized conservation equations we derived are less
restrictive than in other theories of modified gravity but still
reduce to those of GR in the appropriate limits.
We also considered the simpler model fðGÞ gravity

which shares many features with fðQÞ gravity and can be
seen as an analog to fðTÞ gravity. For instance, fðTÞ
gravity is invariant under diffeomorphisms but not invari-
ant under local Lorentz transformation. However, fðGÞ
gravity is invariant under local Lorentz transformation but
not invariant under diffeomorphisms. All known concep-
tual issue that appear in fðTÞ gravity appear to have an
analog issue in our setup. As we have shown in Sec. IV C,
we can identify a new boundary which is neither a
coordinate scalar nor a Lorentz scalar. This object bT ,
see Eq. (4.20), contains information about the tetrad and
the chosen coordinates, and it will be interesting to study
this object further.
As a by-product of studying this simpler model, which

gave cosmological field equations equivalent to those of
fðTÞ and fðQÞ gravity, we explored in more detail the
possible differences between these three theories. A some-
what surprising result was that we could establish their
equivalence despite their different geometrical interpreta-
tions and different dynamical variables. When working
with suitably chosen coordinates, similar to the good
tetrads in fðTÞ gravity, we find field equations which
appear to be covariant. In particular, these field equations
imply the usual conservation equation for the matter, again
similar to the analog situations in fðTÞ and fðQÞ gravity.
We also identified some new boundary terms that are
neither coordinate scalars nor Lorentz scalars; these terms
are sensitive to both the choice of coordinates and the
choice of frames. It would be most interesting to understand
the role played by these terms in different modified gravity
models. Related to this issue is the so-called remnant group
of fðTÞ gravity [26,27] which leaves the field equation
unchanged. In our model one would instead deal with
restricted coordinate transformations that would not affect
the field equations in certain settings. This is an interesting
aspect of our model that should be investigated further.
In order to study the many different aspects of our

proposed model, it appears to be sensible to consider the
following framework:

fðG;BÞ ¼ Gþ fðG;BÞ;

for the gravitational part of the action and

Lmatter ¼ Lmin matter½gμν;Φ� þ Lnon−min matter½gμν;Φ;G;B�;

for the matter part. Isolating G in the gravitational action
makes it straightforward to consider the limit of general
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relativity. The inclusion of nonminimal coupling terms [66]
makes it possible to study some interesting models,
for instance, where a scalar field couples to a boundary
term [99]. If we were to consider couplings of the form
αϕ2B and βϕ2B, where α and β are coupling constants and
ϕ is a scalar field, then the corresponding nonminimal
matter action would not be a true coordinate scalar, as
previously discussed. It would therefore be unnatural to
assume diffeomorphism invariance for this part of the
action alone, which agrees with our approach of consid-
ering models where diffeomorphism invariance only holds
for the total action. Assuming the flat FLRW metric, a
direct calculation shows that the cosmological field equa-
tions in the presence of a nonminimally coupled scalar field
indeed agree with the field equations given in [99]. This
should not be a surprising result at this point.
A large body of models can be explored in this way,

many of which will show features distinct to previously
studies theories. Note that in the cosmological setting our
model yields field equations identical to those of other
theories, however, this is accidental in the sense that it
requires a specific choice of tetrads and coordinates. In
general one can expected different features.
The approach outlined in this work allows the possibility

to study gravitational theories which break diffeomorphism
invariance at certain scales, for instance very small scales
where classical physics breaks down, or very large,
cosmological scales. We carefully set up the required
framework to study models of this type in a variety of
situations. The inclusion of nonminimal matter couplings
should make this framework sufficiently general for most
realistic applications. The identification of various new
boundary terms, not previously discussed in the literature,
allowed us to link our model to many previously studied
modified gravity theories.
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APPENDIX A: VARIATIONS OF THE
EINSTEIN ACTION

1. The Einstein action

Here we calculate the variations of the Einstein action
where we naturally introduce the objects Mμν

λ and Eμνλ.
The metric variation of the Einstein action (2.6) and the
matter action Smatter½gμν;Φ� can be written as

δS ¼ δSE½gμν� þ δSmatter½gμν;Φ� ¼ 0

¼ 1

2κ

Z
d4x

�
δ

ffiffiffiffiffiffi
−g

p
Gþ ffiffiffiffiffiffi

−g
p

δGþ 2κ
δSmatter

δgμν
δgμν

�
;

ðA1Þ

with G previously introduced in (2.3). Focusing on the
gravitational action and dropping the factor of 2κ we have

δSE ¼
Z

δ
ffiffiffiffiffiffi
−g

p
gμνðΓμνÞ2d4xþ

Z ffiffiffiffiffiffi
−g

p
δgμνðΓμνÞ2d4x

þ
Z ffiffiffiffiffiffi

−g
p

gμνδðΓμνÞ2d4x; ðA2Þ

where here ðΓμνÞ2 is short for Γσ
λμΓλ

νσ − Γσ
μνΓλ

σλ. The first
two terms are

Z
δ

ffiffiffiffiffiffi
−g

p
gμνðΓμνÞ2d4x ¼ −

1

2

Z ffiffiffiffiffiffi
−g

p
δgρσgρσgμνðΓγ

λμΓλ
γν

− Γγ
μνΓλ

γλÞd4x; ðA3Þ

Z ffiffiffiffiffiffi
−g

p
δgμνðΓμνÞ2d4x¼

Z ffiffiffiffiffiffi
−g

p
δgρσðΓγ

λρΓλ
γσ − Γγ

ρσΓλ
γλÞd4x:

ðA4Þ

Next we expand gμνδðΓμνÞ2 to arrive at

gμνδðΓμνÞ2 ¼ gμνðδΓσ
λμΓλ

σν þ δΓλ
σνΓσ

λμ − δΓσ
μνΓλ

σλ − δΓλ
σλΓσ

μνÞ
¼ gμνðδσμΓρ

κν þ δσνΓ
ρ
κμ − δρμδσνΓλ

κλ − δσκΓ
ρ
μνÞδΓκ

ρσ

¼ Mρσ
κδΓκ

ρσ: ðA5Þ

Here we introduced the object

Mαβ
γ ≔ 2gνðβΓαÞ

γν − gαβΓλ
γλ − gμνδðβγ ΓαÞ

μν; ðA6Þ

which is just the variation of G with respect to the
connection

∂G
∂Γγ

αβ

¼ Mαβ
γ: ðA7Þ

The objectMαβ
γ is constructed to be symmetric over its first

two indices to match the symmetry of the connection.
Expanding the variation of the Christoffel connection in

terms of metric variations gives
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δΓκ
ρσ ¼

1

2
δgκλðgρλ;σ þ gσλ;ρ − gρσ;λÞ

þ 1

2
gκλðδgρλ;σ þ δgσλ;ρ − δgρσ;λÞ

¼ δgκλgζλΓ
ζ
ρσ þ 1

2
gκλðδgρλ;σ þ δgσλ;ρ − δgρσ;λÞ

¼ δgκλgζλΓ
ζ
ρσ þ 1

2
gκλðδgαβ;γΔαβγ

ρσλÞ; ðA8Þ

where we also define

Δαβγ
ρσλ ¼ δαfλδ

β
ρδ

γ
σg ¼ δαλδ

β
ρδ

γ
σ þ δασδ

β
λδ

γ
ρ − δαρδ

β
σδ

γ
λ; ðA9Þ

which simply permutes indices using the Schouten bracket,
see [84]. Again we note that only the symmetric part over
the indices αβ of Δαβγ

ρσλ in (A8) contributes.
Putting the above equations back into the integrand, we

can write the last term of (A2) as

Z ffiffiffiffiffiffi
−g

p
gμνδðΓμνÞ2d4x ¼

Z ffiffiffiffiffiffi
−g

p
Mρσ

κδΓκ
ρσd4x

¼
Z ffiffiffiffiffiffi

−g
p

Mρσ
κ½δgκλgζλΓζ

ρσ

þ 1

2
gκλðδgαβ;γΔαβγ

ρσλÞ�d4x: ðA10Þ

To simplify the second term, we define the new object E as
the permutation of Mρσλ given by

Eαβγ ≔ Δαβγ
ρσλM

ρσλ ¼ Mβγα þMγαβ −Mαβγ

¼ 2gναgβμΓγ
μν − 2gγðαgβÞμΓλ

λμ þ gαβgμγΓλ
λμ − gαβgμνΓγ

μν;

ðA11Þ

allowing us to write

Z ffiffiffiffiffiffi
−g

p
gμνδðΓμνÞ2d4x

¼
Z ffiffiffiffiffiffi

−g
p �

δgκλgζλMρσ
κΓ

ζ
ρσ þ 1

2
Eαβγ∂γδgαβ

�
d4x:

ðA12Þ

Integrating the second term by parts and dropping the
boundary terms, then rewriting the metric variation in terms
of the inverse metric gives

Z ffiffiffiffiffiffi
−g

p
gμνδðΓμνÞ2d4x ¼

Z
δgρσ

� ffiffiffiffiffiffi
−g

p
gζσMμν

ρΓ
ζ
μν

þ 1

2
gαρgβσ∂γð

ffiffiffiffiffiffi
−g

p
EαβγÞ

�
d4x:

ðA13Þ

As we wish to obtain the Einstein tensor, we will simply
expand everything in terms of the connection and its
derivatives. The first term in the integrand of (A13) can
be expanded as

δgρσ
ffiffiffiffiffiffi
−g

p
gζσMμν

ρΓ
ζ
μν ¼ δgρσ

ffiffiffiffiffiffi
−g

p ð2gνηgσζΓζ
μνΓμ

ρη

− gμνgσζΓ
ζ
μνΓλ

λρ − gγηgσζΓ
ζ
μρΓμ

γηÞ:
ðA14Þ

The second term of (A13) involves taking the partial
derivative of Eαβγ, which leads to the following expression:

1

2
δgρσgαρgβσ∂γð

ffiffiffiffiffiffi
−g

p
EαβγÞ ¼ ffiffiffiffiffiffi

−g
p

δgρσ
�
2Γλ

κλΓκ
ρσ − 2Γγ

σνΓν
γρ − gσρgμνΓ

η
γηΓγ

μν − 2gαρgϵνΓ
γ
σνΓα

γϵ þ gαρgηγΓα
γηΓλ

σλ

þ gαρgμνΓ
γ
μνΓα

γσ þ gρσgηνΓ
γ
μνΓμ

γη þ ∂γΓ
γ
ρσ − ∂ρΓλ

σλ þ
1

2
gσρgκγ∂γΓλ

κλ −
1

2
gρσgμν∂γΓ

γ
μν

�
: ðA15Þ

The full ðΓμνÞ2 variation becomes

Z ffiffiffiffiffiffi
−g

p
gμνδðΓμνÞ2d4x ¼

Z
δgρσ

ffiffiffiffiffiffi
−g

p �
2Γη

γηΓγ
ρσ − 2Γγ

σνΓν
γρ þ gρσgηνΓ

γ
μνΓμ

γη − gσρgμνΓ
η
γηΓγ

μν

þ ∂γΓ
γ
ρσ − ∂ρΓλ

σλ þ
1

2
gσρgκγ∂γΓλ

κλ −
1

2
gρσgμν∂γΓ

γ
μν

�
d4x: ðA16Þ
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2. Recovering the Einstein field equations

Putting together Eqs. (A3), (A4) and (A16), we get a
final expression for the variation of the Einstein action:

δSE ¼
Z ffiffiffiffiffiffi

−g
p

δgρσ
�
Γη
γηΓγ

ρσ − Γγ
σνΓν

γρ þ
1

2
gρσgηνΓ

γ
μνΓμ

γη

−
1

2
gσρgμνΓ

η
γηΓγ

μν þ ∂γΓ
γ
ρσ − ∂ρΓλ

σλ

þ 1

2
gσρgκγ∂γΓλ

κλ −
1

2
gρσgμν∂γΓ

γ
μν

�
d4x: ðA17Þ

The term in the square brackets is symmetric over ρσ,
we left out the implicit symmetry brackets to make the
calculation clearer. We then recognize this to be the
Einstein tensor,

δSE ¼
Z ffiffiffiffiffiffi

−g
p

δgρσ
�
Rρσ −

1

2
gρσR

�
d4x

¼
Z ffiffiffiffiffiffi

−g
p

δgρσGρσd4x: ðA18Þ

The full action variation (A1) then leads to

δS ¼ δSE½gμν� þ δSmatter½gμν;Φ� ¼ 0Z
1

2κ

ffiffiffiffiffiffi
−g

p
δgρσ

�
Gρσ þ

2κffiffiffiffiffiffi−gp δLM

δgρσ

�
d4x ¼ 0 ðA19Þ

⇒ Gρσ ¼ κTρσ; ðA20Þ

where the metric energy-momentum tensor is defined by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δLM½gμν;Φ�

δgμν
: ðA21Þ

APPENDIX B: VARIATIONS OF THE f ðG;BÞ
ACTION

1. f ðG;BÞ action
Here we calculate the variation of the fðG;BÞ action

(3.1). We begin with Eqs. (3.2) and (3.3), ignoring for now
the factor of 2κ:

δSgrav¼
Z �

δfðG;BÞ ffiffiffiffiffiffi
−g

p
−
1

2
fðG;BÞ ffiffiffiffiffiffi

−g
p

gρσδgρσ
�
d4x;

δfðG;BÞ¼∂fðG;BÞ
∂G δGþ∂fðG;BÞ

∂B δB; ðB1Þ

where G and B are defined in (2.3) and (2.4),

G ¼ gμνðΓλ
μσΓσ

λν − Γσ
μνΓλ

λσÞ; B ¼ 1ffiffiffiffiffiffi−gp ∂ν

�∂μðggμνÞffiffiffiffiffiffi−gp
�
:

We will use the following shorthand notation for deriva-
tives, f;G ¼ ∂fðG;BÞ=∂G, f;B ¼ ∂fðG;BÞ=∂B, etc. First
we will look at the variation of the bulk term and then the
variation of the boundary term. Note that most of the
calculations for δGwere covered in the previous Appendix.

2. Bulk term

In Appendix A we calculated the variation of the bulk
term, so using Eqs. (A4) and (A12) we can write

δG¼ δgρσðΓγ
λρΓλ

γσ − Γγ
ρσΓλ

γλ þ gγσΓ
γ
μνMμν

ρÞ þ
1

2
Eαβγ∂γδgαβ:

ðB2Þ

The first term of the integrand (B1) is then

ffiffiffiffiffiffi
−g

p
f;GδG ¼ ffiffiffiffiffiffi

−g
p

f;G

�
δgρσðΓγ

λρΓλ
γσ − Γγ

ρσΓλ
γλ þ gγσΓ

γ
μνMμν

ρÞ þ
1

2
Eαβγ∂γδgαβ

�
: ðB3Þ

Using the definition of Mμν
ρ (A6), we can write the term in the curved brackets above as

ffiffiffiffiffiffi
−g

p
f;Gδgρσ½ðΓγ

λρΓλ
γσ − Γγ

ρσΓλ
γλÞ þ ð2gνλgσγΓγ

μνΓμ
ρλ − gμνgσγΓ

γ
μνΓλ

λρ − gγλgσνΓν
μρΓ

μ
γλÞ�: ðB4Þ

Finally, the last term in (B3) is integrated by parts,

1

2

Z ffiffiffiffiffiffi
−g

p
f;GEαβγðδgαβ;γÞd4x ¼ boundary terms −

1

2

Z
δgαβ∂γð

ffiffiffiffiffiffi
−g

p
f;GEαβγÞd4x

¼ 1

2

Z
½ ffiffiffiffiffiffi

−g
p

δgρσ∂γðf;GÞEρσ
γ þ δgαβgαρgβσf;G∂γð

ffiffiffiffiffiffi
−g

p
EαβγÞ�d4x; ðB5Þ

where the boundary term proportional to δgαβ does not contribute. We already calculated ∂γð ffiffiffiffiffiffi−gp
EαβγÞ, so the second term

in the final line of (B5) is just f;G times (A15):
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1

2
δgρσgαρgβσ∂γf;Gð

ffiffiffiffiffiffi
−g

p
EαβγÞ ¼ ffiffiffiffiffiffi

−g
p

δgρσf;G

�
2Γλ

κλΓκ
ρσ − 2Γγ

σνΓν
γρ − gσρgμνΓ

η
γηΓγ

μν − 2gαρgϵνΓ
γ
σνΓα

γϵ þ gαρgηγΓα
γηΓλ

σλ

þ gαρgμνΓ
γ
μνΓα

γσ þ gρσgηνΓ
γ
μνΓμ

γη þ ∂γΓ
γ
ρσ − ∂ρΓλ

σλ þ
1

2
gσρgκγ∂γΓλ

κλ −
1

2
gρσgμν∂γΓ

γ
μν

�
:

ðB6Þ

From comparison with Appendix A 2, we can immediately notice that the terms inside the square brackets of Eqs. (B4)
and (B6) almost give the Einstein tensor, but they are missing the variation of the metric determinant multiplied by G (A3).
We therefore have that our final variation of the bulk term is given by

Z ffiffiffiffiffiffi
−g

p
f;GδGd4x ¼

Z ffiffiffiffiffiffi
−g

p
δgρσ

�
f;G

�
Gρσ þ

1

2
gρσG

�
þ 1

2
Eρσ

γ∂γf;G

�
d4x: ðB7Þ

3. Boundary term

The variation of the boundary term is

δB¼ δ

�
1ffiffiffiffiffiffi−gp

�
∂ν

�∂μðggμνÞffiffiffiffiffiffi−gp
�
þ 1ffiffiffiffiffiffi−gp δ

�
∂ν

�∂μðggμνÞffiffiffiffiffiffi−gp
��

:

ðB8Þ

The first term gives

1

2
ffiffiffiffiffiffi−gp gαβδgαβ∂ν

�∂μðggμνÞffiffiffiffiffiffi−gp
�

¼ 1

2
δgαβgαβB: ðB9Þ

The second term we split into three calculations:

1ffiffiffiffiffiffi−gp δ

�
∂ν

�∂μðggμνÞffiffiffiffiffiffi−gp
��

¼ 1ffiffiffiffiffiffi−gp ∂ν

�∂μðδggμνÞffiffiffiffiffiffi−gp
zfflfflfflfflfflffl}|fflfflfflfflfflffl{1

þ ∂μðgδgμνÞffiffiffiffiffiffi−gp
zfflfflfflfflfflffl}|fflfflfflfflfflffl{2

þ ∂μðggμνÞδ
�

1ffiffiffiffiffiffi−gp
�zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{3 	

;

ðB10Þ

where the first term is given by

1ffiffiffiffiffiffi−gp ∂ν

�∂μðδggμνÞffiffiffiffiffiffi−gp
zfflfflfflfflfflffl}|fflfflfflfflfflffl{1 �

¼ 1ffiffiffiffiffiffi−gp ∂νf
ffiffiffiffiffiffi
−g

p
δgαβ½2Γη

μηgαβgμν þ 2Γη
μαgηβgμν − gαβðΓμ

μηgην þ Γν
μηgμηÞ� þ

ffiffiffiffiffiffi
−g

p
gαβgμν∂μðδgαβÞg:

ðB11Þ

For the second and third term we find

1ffiffiffiffiffiffi−gp ∂ν

�∂μðgδgμνÞffiffiffiffiffiffi−gp
zfflfflfflfflfflffl}|fflfflfflfflfflffl{2 �

¼ −1ffiffiffiffiffiffi−gp ∂ν½
ffiffiffiffiffiffi
−g

p ½2δgμνΓα
μαþ∂μðδgμνÞ��; ðB12Þ

1ffiffiffiffiffiffi−gp ∂ν

�
∂μðggμνÞδ

�
1ffiffiffiffiffiffi−gp

�zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{3 �
¼ 1ffiffiffiffiffiffi−gp ∂ν

� ffiffiffiffiffiffi
−g

p
δgαβ

�
gαβ
2

ðΓμ
μηgην þ Γν

μηgμηÞ − Γη
μηgαβgμν

��
: ðB13Þ

Collecting these together gives

1ffiffiffiffiffiffi−gp ∂ν

� ffiffiffiffiffiffi
−g

p �
δgαβ

�
1

2
gαβgμνΓ

η
μη −

1

2
gαβgμηΓν

μη þ 2gηβgμνΓ
η
μα − 2δναΓ

γ
βγ

�
þ gαβgμν∂μðδgαβÞ − ∂μðδgμνÞ

�	
: ðB14Þ

The total variation of B can then be written as
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δB ¼ 1

2
δgαβgαβBþ 1ffiffiffiffiffiffi−gp ∂ν

� ffiffiffiffiffiffi
−g

p �
δgαβ

�
1

2
gαβgμνΓ

η
μη −

1

2
gαβgμηΓν

μη þ 2gηβgμνΓ
η
μα − 2δναΓ

γ
βγ

�

þ gαβgμν∂μðδgαβÞ − ∂μðδgμνÞ
�	

: ðB15Þ

Substituting δB (B15) into the variational integral (B1) yields

Z ffiffiffiffiffiffi
−g

p
f;BδBd4x ¼

Z
1

2

ffiffiffiffiffiffi
−g

p
f;BδgαβgαβBd4xþ f;B∂ν

� ffiffiffiffiffiffi
−g

p �
δgαβ

�
1

2
gαβgμνΓ

η
μη −

1

2
gαβgμηΓν

μη þ 2gηβgμνΓ
η
μα − 2δναΓ

γ
βγ

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

þ gαβgμν∂μðδgαβÞ − ∂μðδgμνÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B �	

d4x; ðB16Þ

where we perform integration by parts once on the A terms and twice on the B terms:

Z
f;B∂ν

� ffiffiffiffiffiffi
−g

p
δgαβ

�
1

2
gαβgμνΓ

η
μη −

1

2
gαβgμηΓν

μη þ 2gηβgμνΓ
η
μα − 2δναΓ

γ
βγ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�A �
d4x

¼ boundary terms −
Z

δgαβ∂νðf;BÞ
�
1

2
gαβgμνΓ

η
μη −

1

2
gαβgμηΓν

μη þ 2gηβgμνΓ
η
μα − 2δναΓ

γ
βγ

�
d4x; ðB17Þ

Z
f;B∂ν½

ffiffiffiffiffiffi
−g

p ðgαβgμν∂μðδgαβÞ − ∂μðδgμνÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B

Þ�d4x ¼ boundary terms −
Z

∂νðf;BÞ
ffiffiffiffiffiffi
−g

p ðgαβgμν∂μðδgαβÞ − ∂μðδgμνÞÞd4x

¼ boundary termsþ
Z

δgαβ½∂μð
ffiffiffiffiffiffi
−g

p
gαβgμν∂νf;BÞ − ∂αð

ffiffiffiffiffiffi
−g

p ∂βf;BÞ�d4x;

ðB18Þ

with all boundary terms proportional to δgμν and ∂δgμν vanishing. Expanding the partial derivatives of (B18) gives

Z
δgαβ½∂μð

ffiffiffiffiffiffi
−g

p
gαβgμν∂νf;BÞ − ∂αð

ffiffiffiffiffiffi
−g

p ∂βf;BÞ�d4x ¼
Z ffiffiffiffiffiffi

−g
p

δgρσ½∂νðf;BÞ½2gηρgμνΓη
μσ − gρσgμηΓν

μη� − ∂σðf;BÞΓη
ρη

þ ∂μ∂νðf;BÞgρσgμν − ∂ρ∂σðf;BÞ�d4x: ðB19Þ

Putting equations (B17) and (B19) into our expression for the boundary variation (B16), and canceling off terms, we
arrive at

Z ffiffiffiffiffiffi
−g

p
f;BδBd4x ¼

Z
δgρσ

ffiffiffiffiffiffi
−g

p �
1

2
f;BgρσB − ∂νðf;BÞ

�
1

2
gρσgμνΓ

η
μη þ 1

2
gρσgμηΓν

μη − δνσΓ
γ
ργ

�

þ ∂μ∂νðf;BÞgρσgμν − ∂ρ∂σðf;BÞ
�
d4x: ðB20Þ

Lastly, let us rewrite the connection pieces in terms of partial derivatives of the metric:

Z ffiffiffiffiffiffi
−g

p
f;BδBd4x ¼

Z ffiffiffiffiffiffi
−g

p
δgρσ

�
1

2
f;BgρσBþ gρσ∂μ∂μf;B − ∂ρ∂σf;B þ 1

2
gρσ∂μðgμνÞ∂νf;B þ 1ffiffiffiffiffiffi−gp ∂ρð

ffiffiffiffiffiffi
−g

p Þ∂σf;B

�
d4x:

ðB21Þ
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4. f ðG;BÞ field equations

The full variation of the gravitational fðG;BÞ action is given by the variation of the bulk term (B7), the boundary term
(B21) and the metric determinant

δSgrav ¼
1

2κ

Z � ffiffiffiffiffiffi
−g

p �∂fðG;BÞ
∂G δGþ ∂fðG;BÞ

∂B δB
�
−
1

2
fðG;BÞ ffiffiffiffiffiffi

−g
p

gρσδgρσ
�
d4x

¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p
δgρσ

�
f;G

�
Gρσ þ

1

2
gρσG

�
þ 1

2
Eρσ

γ∂γf;G −
1

2
gρσfðG;BÞ

þ 1

2
gρσf;BBþ gρσ∂μ∂μf;B − ∂ρ∂σf;B þ 1

2
gρσ∂μðgμνÞ∂νf;B þ 1ffiffiffiffiffiffi−gp ∂ρð

ffiffiffiffiffiffi
−g

p Þ∂σf;B

�
d4x: ðB22Þ

Including the matter action Smatter½gμν;Φ�, the variation of the total action Stotal ¼ Sgrav þ Smatter leads to the field equations,

∂f
∂G

�
Gρσ þ

1

2
gρσG

�
þ 1

2
Eρσ

γ∂γ

�∂f
∂G

�
−
1

2
fðG;BÞgρσ þ

1

2
gρσB

∂f
∂Bþ gρσ∂μ∂μ

�∂f
∂B

�
− ∂ρ∂σ

�∂f
∂B

�

þ 1

2
gρσ∂μðgμνÞ∂ν

�∂f
∂B

�
þ 1ffiffiffiffiffiffi−gp ∂ðρð

ffiffiffiffiffiffi
−g

p Þ∂σÞ

�∂f
∂B

�
¼ κTρσ; ðB23Þ

where the metric energy-momentum tensor is defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δLM½gμν;Φ�

δgμν
: ðB24Þ

Note that we have explicitly symmetrized over ρ and σ in the field equations (B23).
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[96] J. B. Jiménez, L. Heisenberg, D. Iosifidis, A. Jiménez-Cano,
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