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While independent observations have been made regarding the behavior of effective quasinormal mode
(QNM) potentials within the large angular momentum limit, we demonstrate analytically here that a
uniform expression emerges for nonrotating, higher-dimensional, and spherically symmetric black holes
(BHs) in this regime for fields of integer and half-integer spin in asymptotically flat and de Sitter BH
contexts; a second uniform expression arises for these QNM potentials in anti–de Sitter BH spacetimes. We
then proceed with a numerical analysis based on the multipolar expansion method recently proposed by
Dolan and Ottewill to determine the behavior of quasinormal frequencies (QNFs) for varying BH
parameters in the eikonal limit. We perform a complete study of Dolan and Ottewill’s method for
perturbations of spin s ∈ f0; 1=2; 1; 3=2; 2g in four-dimensional Schwarzschild, Reissner-Nordström, and
Schwarzschild–de Sitter spacetimes, clarifying expressions and presenting expansions and results to higher
orders [OðL−6Þ] than many of those presented in the literature [∼OðL−2Þ]. We find good agreement with
known results of QNFs for low-lying modes; in the large-l regime, our results are highly consistent with
those of Konoplya’s sixth-order WKB method. We confirm a universality in the trends of physical features
recorded in the literature for the low-lying QNFs (that the real part grows indefinitely, the imaginary tends
to a constant as l → ∞, etc.) as we approach large values of l within these spacetimes, and explore the
consequent interplay between BH parameters and QNFs in the eikonal limit.
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I. INTRODUCTION

An isolated black hole (BH) is a simple object: math-
ematically, it represents the vacuum solution of Einstein’s
field equations [1]; astrophysically, its full description can
be attained with the three parameters of Arnowitt-Deser-
Misner mass (M), charge (Q), and angular momentum (a)
when in equilibrium [2]. Despite this apparent simplicity,
BHs provide a medium through which we might explore
gauge-gravity duality (AdS=CFT) and physics beyond the
Standard Model (BSM) that range from supersymmetry
(SUSY) models to theories of quantum gravity [3,4]. With
the advent of gravitational-wave (GW) astronomy [5], we
can now exploit perturbed BHs as GW sources, the data
from which may be utilized in constraining BSM con-
jectures, such as SUSY models, extra-dimensional frame-
works, etc. [6] and test long-standing hypotheses like the
“no-hair” conjecture [7].

With this in mind, we concern ourselves with the
quasinormal mode (QNM), which is a fundamental feature
of the damped “ringdown” phase through which a per-
turbed system passes as it returns to equilibrium. The
corresponding quasinormal frequencies (QNFs) are com-
plex, such that they may be decomposed into a real and an
imaginary component,

ω ¼ ωR − iωI; ωR;ωI ∈ R; ð1:1Þ

where the real part represents the physical oscillation
frequency and the imaginary part expresses the damping
(see Refs. [3,4] for comprehensive reviews).
For spherically symmetric BHs, the QNM wave function

can be separated into its radial and angular components,where
the latter can be expressed fully through spherical harmonic
decompositions. As first illustrated byRegge andWheeler [8],
extended by Zerilli [9,10] and Moncrief [11–13], then gener-
alized fully by Ishibashi andKodama [14–17], the radialQNM
behavior can be described in theweak-field limit by a second-
order ordinary differential equation,
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d2ψ
dr2�

þ ½ω2 − VðrÞ�ψðr�Þ ¼ 0: ð1:2Þ

This requires the introduction of a “tortoise coordinate,”

d
dr�

¼ fðrÞ d
dr

; ð1:3Þ

where fðrÞ refers to the metric function for a spherically
symmetric BH through the expression,

fðrÞ ¼ 1 −
2μ

rd−3
þ θ2

r2ðd−3Þ
− λr2: ð1:4Þ

Here, μ, θ, and λ parametrize M, Q, and the cosmological
constant Λ:

μ ¼ 8πGd

ðd − 2ÞΩd−2
M;

θ2 ¼ 8πGd

ðd − 2Þðd − 3ÞQ
2; and

λ ¼ 2Λ
ðd − 1Þðd − 2Þ

for the gravitational constant in d-dimensional space Gd, and
the area of a unit (d − 2)-sphere Ωd−2. Minkowski, de Sitter
(dS) andanti–deSitter (AdS) spacetimes aredenotedbyλ ¼ 0,
λ > 0, and λ < 0, respectively [14–16].
To capture its behavior fully, the QNM wave function is

associated with multiple parameters required for the spheri-
cal decompositions of the angular component and the
description of the radial component. Of particular interest
to us are those uponwhich the radial function depends: s, the
spin of the oscillating field; l, the angular momentum
(multipolar) number describing the angular dependence of
the wave and serving as the eigenvalues for the spherical
harmonics; n, the overtone number, which labels the QNMs
by a monotonically increasing value of l [3,4].
Much focus in the literature has been placed on the

n → ∞ limit, initiated by a conjectured link between
quantum gravity and asymptotic QNF expressions [18].
Interest in the large-l limit, however, has been invested
primarily within the context of mathematical physics.
This is a consequence of the limitations of the numerical
methods by which QNM calculations are often addressed.
Well-established procedures such as the Pöschl-Teller
(PT) approximation method suggested in Ref. [19] and
the modified Wentzel-Kramers-Brillouin (WKB)
approximation developed in Refs. [20–25]—as well as
more recently constructed methods like the AIM [26], the
improved AIM [27], and the improved semianalytic
approach [28,29]—are most accurate in the eikonal limit,
and have been shown to break down for large overtones
(see Refs. [4,30,31] and references therein). As such,
subjecting the QNM potential to the l → ∞ limit is
required in order to extract the analytic expression needed

to compute QNFs within these methods, and may serve as
a means by which to assess the validity of various
methods in QNM contexts (in a manner much like
Ref. [31]). Whether this can be exploited in the establish-
ment of a mathematical and even machine-learning
algorithm for QNF calculations remains to be seen,
and is reserved for a future work.
Beyond its practical use in facilitating QNF calcula-

tions, the application of the large multipolar limit may
offer physical insights into BH systems. This can be
inferred from studies such as Ref. [32], in which the QNF
spectrum for the gravitational field perturbations of a
four-dimensional (4D) Schwarzschild BH was found to
be of the form

ωn;l→∞ ¼ Ω
�
lþ 1

2

�
− iΛ̄

�
nþ 1

2

�
þOðl−1Þ;

Ω ¼ Λ̄ ¼ 1ffiffiffiffiffi
27

p
M

; ð1:5Þ

for large l and fixed n. Ω here refers to the orbital
frequency of the rorb ¼ 3M photon sphere and Λ̄ is the
Lyapunov exponent describing the decay time scale. This
behavior in the large multipolar limit was echoed in
Ref. [33] at leading order, and found to apply also for
scalar and electromagnetic perturbing fields by Ferrari
and Mashhoon [34]. This was confirmed in Ref. [35] via
Leaver’s CFM and Ref. [36] via Konoplya’s sixth-order
WKB method [25].
The relationship between the Dirac QNFs and the

multipolar number, first studied in Ref. [37], exhibited
this same behavior: Refωg was found to increase with l,
whereas the magnitude of Imfωg increased with n. This
was confirmed in Ref. [36].
This dependence of QNFs on l has been noted also in

more complicated spacetimes. One such example of this is
the numerical analysis by Zhidenko [30] for the QNFs of a
4D Schwarzschild–de Sitter (SdS) BH spacetime. For
arbitrary spins, the QNF within the large multipolar limit
yielded Eq. (1.5), albeit with

Ω ¼ Λ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 9M2Λ

p
ffiffiffiffiffi
27

p
M

: ð1:6Þ

In Ref. [38], Wang, Lin, and Molina came to similar
conclusions when studying scalar perturbations within
Reissner-Nordström AdS spacetimes for l ∈ ½1; 10�: the
imaginary part of the QNF was shown to decrease, while
the real part increased almost linearly, with larger
multipolar numbers. These same relationships between
the angular momentum and the components of the QNF
were observed in Ref. [39] for Schwarzschild AdS
(SAdS) spacetimes perturbed by a spin-1=2 field.
Next, we note that the study of the QNMs in reference

to the multipolar number has already yielded tangible
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outcomes. On the basis of geometric arguments derived
from the form of Eq. (1.5), Dolan and Ottewill in
Ref. [40] established a novel ansatz by which Eq. (1.2)
may be solved for QNMs. Their numerical method
involves expansion in inverse powers of L ¼ lþ 1=2.
This allows for the analysis of higher-order asymptotics
and the production of accurate results in asymptotically
flat and dS spherically symmetric spacetimes [3], as
shown for the integer-spin perturbations discussed in
Ref. [40]. To date, Dolan and Ottewill’s method has been
applied to a number of BH contexts (see Refs. [41–44]),
but often only to low orders of OðL−kÞ. Furthermore, by
virtue of the fact that QNMs can be defined as the poles of
a Green’s function, this geometric interpretation of
QNMs as perturbations of unstable null geodesics can
be extended to investigations of the self-force of compact
objects [45] and the analysis of the singular structure of
the Green’s function [46]. The latter is especially useful
due to the relevance of Green’s functions in AdS=CFT
considerations, and their nature as propagators for the
Klein-Gordon equation [3].
In this paper, our main focus is to understand the

physical implications of imposing the large angular
momentum limit on QNFs within spherically symmetric
BH spacetimes. In Sec. II, we collate known effective
potentials for integer and half-integer QNMs of non-
rotating, spherically symmetric BH spacetimes and dem-
onstrate how their consistent behavior in the large-l
regime within BH spacetimes of λ ≥ 0 differs from that of
λ < 0. We then proceed to a numerical study of the large-
l limit in Sec. III: we perform a complete study of QNFs
for spin s ∈ f0; 1=2; 1; 3=2; 2g within 4D Schwarzschild,
Reissner-Nordström (RN), and SdS BH spacetimes for
large multipolar numbers, where we confine our numeri-
cal work to 4D BHs to produce astrophysically relevant

results. We provide explicit descriptions of the necessary
ansatz, inverse multipolar expansions, and associated
parameters for each context and carry the method to
orders of OðL−6Þ in almost all cases. This marks an
improvement on extant results for some integer-spin
cases and a production of new results for integer-spin
QNFs in RN and SdS BH spacetimes, as well as new
results for half-integer QNFs in all BH spacetimes
studied. To our knowledge, this is the first time this
method has been applied to QNFs of spin-3=2.
We observe that Dolan and Ottewill’s method is well

suited for our purpose due to its physically motivated
foundations and the ease with which it lends itself to
computations within the eikonal limit. When employing
low- and high-lying results to validate the method against
existing techniques, we find consistency with the literature
in the low-l regime (see the Appendix) and excellent
agreement with Konoplya’s sixth-order WKB method [25]
in the large-l regime. From the QNF expressions we obtain
for large values of l, we deduce the effect of θ and λ on
QNFs in the eikonal limit. These and other observations are
collected and commented upon in Sec. IV.

II. POTENTIALS IN THE LARGE MULTIPOLAR
LIMIT

A. Integer spin perturbations

The well-known expressions for the effective potential of
integer-spin QNMs in 4D Schwarzschild spacetimes can be
written concisely in the “Regge-Wheeler” form [3,4,8],

VeffðrÞ ¼
fðrÞ
r2

�
lðlþ 1Þ þ 2μð1 − s2Þ

r

�
; ð2:1Þ

where

s ¼

8>><
>>:

0; scalar perturbations ⇒ ð1 − s2Þ ¼ 1

1; electromagnetic perturbations∶ scalar=vector mode ⇒ ð1 − s2Þ ¼ 0

2; gravitational perturbations∶ vector mode ⇒ ð1 − s2Þ ¼ −3:

This expression serves as a description of the radial
dependence of a spin-s perturbation of the spacetime, with
which the angular momentum of l is associated [3,4].
Furthermore, it demonstrates explicitly that irrespective of
the spin, the dependence of the effective potential on the
multipolar number adheres to a distinct form proportional
to lðlþ 1ÞfðrÞ=r2 within the asymptotically flat, four-
dimensional Schwarzschild BH spacetime.
Within a RN BH spacetime, these effective QNM

potentials can be similarly condensed into the
“Moncrief-Zerilli” form [10–13,47],

VeffðrÞ ¼
fðrÞ
r2

�
ðlðlþ 1Þ − qs

r
þ θ2ps

r2

�
; ð2:2Þ

where for the scalar, electromagnetic (scalar/vector mode),
and gravitational (vector mode) perturbations,

s¼

8>><
>>:

0; p0 ¼ 2; q0 ¼ −2

1; p1 ¼ 4; q1 ¼ 3μ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μþ 4θ2ðlðlþ 1Þ− 2Þ

p
2; p2 ¼ 4; q2 ¼ 3μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μþ 4θ2ðlðlþ 1Þ− 2Þ

p
:
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While the lðlþ 1ÞfðrÞ=r2 dependence characteristic of
the 4D nonrotating, spherically symmetric BH spacetime
remains, the relationship between effective potential and
angular momentum in the cases of the electromagnetic and
gravitational field is complicated by the square root term, as
shall be discussed more fully in Sec. III C.
Note that we specify the spin-2 and spin-1 fields as the

“vector mode.” To describe the gravitational field perturba-
tions fully, one requires the vector-type (i.e., Regge-Wheeler/
odd-parity/axial) as well as the scalar-type (i.e. Zerilli/even-
parity/polar) mode [9]. These have been shown to be
isospectral [48]. Upon entering into discussions within
higher-dimensional spacetimes, an additional tensor-type
mode must also be included. Isospectrality no longer holds
in this context [17]. For electromagnetic perturbations, the
full description in higher-dimensional spacetimes is attained
when a scalar-type mode is also introduced.
Furthermore, if spacetime curvature is also to be con-

sidered, the effective potential gains a term ∼ − λr2. In a
manner analogous to Eq. (2.1), we may summarize these
for a d-dimensional Schwarzschild BH in (A)dS spacetimes
as

VeffðrÞ ¼
fðrÞ
r2

�
lðlþ d − 3Þ þ ðd − 2Þðd − 4Þ

4

−
K
4
λr2 þ P

2rd−3
μ

�
; ð2:3Þ

where the forms of K and P are associated with the
perturbation of interest, as summarized in Table I.
The form of the potentials remains similar for the higher-

dimensional RN BHs, albeit with the additional terms
required to account for the BH charge [16,51]. In the cases
of electromagnetic perturbations in RN BHs, and gravita-
tional perturbations in all spherically symmetric BHs, the
scalar-type mode is a complicated expression that veers
from the usual form exhibited by tensor- and vector-type
modes (see Refs. [51] and [14–16], respectively).
Upon reviewing these effective integer-spin QNM poten-

tials within static and spherically symmetric BH spacetimes
—charged or neutral, and exclusive of a cosmological
constant—we observe that the application of the eikonal
limit yields a common form of

Veff jl→∞ ≈
fðrÞ
r2

l2 ð2:4Þ

within Minkowski spacetimes. This is in keeping with
Eq. (41) of Ref. [33] for the massless Klein-Gordon
potential subjected to l → ∞, which the authors justify
as “universal” for scalar, electromagnetic, and gravitational
perturbations based on the uniformity of field behavior
reported in Ref. [16] for these spacetimes.
With the inclusion of the cosmological constant comes

the need to consider the asymptotic behavior of r. For dS
spacetimes, there exists a cosmological horizon towards
which r tends when its asymptotic behavior is considered.
As such, r approaches a constant and finite value, and
therefore does not interfere with the outcome of Veff under
the influence of the large angular momentum limit; the
“uniform” potential of Eq. (2.4) is still obtained for l → ∞
within spacetimes of λ > 0 for the fields mentioned above.
Within AdS spacetimes, however, infinite limits must be
considered carefully, as the nature of the boundary con-
ditions and their effects on the behavior of the potentials
can be significant (demonstrated explicitly in Ref. [52]). In
this large-l limit, the potential behaves as

Veff jr→∞ ∝ r2;

which prevents us from dismissing the ∼ − λr2 term as we
ordinarily would. Consequently, Eq. (2.4) becomes

fðrÞ
r2

l2 → const ð2:5Þ

in the large-l limit for the integer-spin fields dis-
cussed here.
In the subsection that follows, we assess whether these

expressions hold for the effective QNM potentials asso-
ciated with perturbing fields of half-integer spin.

B. Half-integer spin perturbations

For nonrotating and spherically symmetric BH space-
times, the effective Dirac [37,53–56] and Rarita-Schwinger
[57–60] potentials have a supersymmetric form,

V1;2 ¼ � dW
dr�

þW2; ð2:6Þ

where d=dr� ¼ fðrÞd=dr unless otherwise stated. V1 and
V2 are isospectral supersymmetric partners [61]. As shall
be shown, the potentials are further categorized within the
spin-3=2 framework into transverse-traceless (TT) and
non-transverse-traceless (non-TT) eigenmodes in order to
describe the perturbations of d-dimensional, spherically
symmetric BHs fully, according to the gauge-invariant
formalism constructed in Refs. [57–60]. Since TT modes

TABLE I. The values ofK and P for the effective QNM potential
of nonrotating, spherically symmetric, higher-dimensional S(A)dS
BH spacetimes.

Perturbation type K P

Scalar [3,49] dðd − 2Þ ðd − 2Þ2
Electromagnetic: scalar [50] ðd − 2Þðd − 4Þ dðd − 4Þ
Electromagnetic: vector [50] ðd − 4Þðd − 6Þ −ðd − 4Þð3d − 8Þ
Gravitational: vector [14] ðd − 2Þðd − 4Þ −3ðd − 2Þ2
Gravitational: tensor [14] dðd − 2Þ ðd − 2Þ2
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emerge only for d ≥ 5, their study is confined to this
analytical section.

1. Spin-1=2 perturbations

We first consider the higher-dimensional Schwarzschild
BH as investigated in Ref. [53], characterized here by
fðrÞ ¼ 1–2μ=rd−3, where κ ¼ lþ ðd − 2Þ=2 for l ¼
0; 1; 2;… is the spinor eigenvalue on the (d − 2)-sphere.
We calculate V1 explicitly here by substituting W ¼ffiffiffiffiffiffiffiffiffi
fðrÞp

κ=r and fðrÞ:

V1ðrÞ ¼ fðrÞ d
dr

� ffiffiffiffiffiffiffiffiffi
fðrÞ

p κ

r

�
þ
�
fðrÞ κ

2

r2

�

¼
�
rd−3 − 2μ

rd−3

�
d
dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rd−3 − 2μ

rd−3

s
κ

r

�

þ
�
rd−3 − 2μ

rd−3

�
κ2

r2
: ð2:7Þ

With the introduction of the definition,Δ ¼ rd−3ðrd−3 − 2μÞ,
we may simplify Eq. (2.7) to obtain

V1 ¼
κΔ1=2

r2ðd−2Þ

�
κΔ1=2 − rd−3 þ

�
d − 1

2

�
2μ

�
: ð2:8Þ

This same expression emerges for V2, as expected. We may
then subject Eq. (2.8) to κ → ∞. This preserves only the
terms in which κ2 can be found, as these dominate. Thus, we
obtain

V1;2jκ→∞ ≈
κ2rd−3ðrd−3 − 2μÞ

r2ðd−2Þ
¼ κ2

fðrÞ
r2

: ð2:9Þ

As such, we find that the massless Dirac field yields the
same expression as that of Eq. (2.4) within the large angular
momentum limit. That this holds also for the d-dimensional
RN BH was demonstrated in Ref. [54], following the
method outlined in Ref. [53].
From investigations into the effective potentials of Dirac

QNMs in 4D Schwarzschild [55] and RN [39,56] BH
spacetimes inclusive of a cosmological constant, the
application of the large-l limit to the effective potential
once again produces the “uniform” potential of Eq. (2.4).
However, as discussed for the integer-spin cases, this result
is applicable only for Minkowski and dS spacetimes; within
AdS spacetimes, the spin-1=2 QNMs of Schwarzschild and
RN BHs reduce to Eq. (2.5) when l → ∞, due to the
influence of the asymptotic behavior of r.

2. Spin-3=2 perturbations

Let us begin with the Schwarzschild-Tangherlini BH
studied in Ref. [58]. For the TT eigenmodes in d ≥ 5, the
potentials for the spinor-vectors retain their supersymmet-
ric form, with a superpotential defined as

V1;2 ¼ � d
dr�

W þW2; W ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ζ; ð2:10Þ

for ζ ¼ jþ ðd − 3Þ=2 and j ¼ lþ 1=2 [58]. Here, ζ is the
spinor-vector eigenvalue on the (d − 2)-sphere and j ¼
3=2; 5=2;… Since the metric function remains
fðrÞ ¼ 1–2μ=rd−3, an application of the large-l limit
naturally yields Eq. (2.9), as in the Dirac case. This
suggests that the TT eigenmode for the spin-3=2 field on
the N-sphere is equivalent to the higher-dimensional spinor
field. Since the premise of the spin-3=2 framework con-
structed in Ref. [58] includes a convolution of spin-1=2 and
spin-1 fields, this shared form is sensible.
Though they retain their supersymmetric form, the

potentials presented in Ref. [58] for the non-TT eigenm-
odes are fairly complicated, with a superpotential expressed
as

W ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

κ

�
κ2 − ðd−2Þ2

4
ð1þ d−4

d−2
2μ
rd−3

Þ
κ2 − ðd−2Þ2

4
ð1 − 2μ

rd−3
Þ

�
: ð2:11Þ

However, if we insert the superpotential into Eq. (2.6)
and extract only the terms dependent on the multipolar
number, we obtain

V1;2 ∼
Xκ

ffiffiffiffiffiffiffiffiffi
fðrÞp

r2ðX þ YÞ2 ½Xκ
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
�

þ κ
ffiffiffiffiffiffiffiffiffi
fðrÞp

Y2

r2ðX þ YÞ2
�
κ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
d − 4

d − 2

�
2
�

þ Xκ
ffiffiffiffiffiffiffiffiffi
fðrÞp

r2ðX þ YÞ2 ½�2ðd − 4ÞY�: ð2:12Þ

As before, κ ¼ jþ ðd − 3Þ=2 is the spinor eigenvalue on
the (d − 2)-sphere for j ¼ 3=2; 5=2;…. We also define

X ¼
�

2

d − 2

�
2
�
j −

1

2

��
jþ 2d − 5

2

�
and Y ¼ 2μ

rd−3
:

If we then isolate the Oðκ2Þ terms from Eq. (2.12) and
simplify appropriately, we find that

V1;2jκ→∞ ≈
κ2fðrÞ

r2ðX þ YÞ2
�
X2 þ Y2

�
d − 4

d − 2

�
2
�

≈
κ2ðrd−3 − 2μÞ

rd−1
: ð2:13Þ

Since we consider the ðd − 4Þ=ðd − 2Þ term to be negligible
for l → ∞ and d > 4, we observe that the non-TT
potentials reduce to the same expression within the large
angular momentum limit as their TT counterpart. This
again yields the “uniform” potential of Eq. (2.4) for the
large multipolar limit.
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We may now turn to Ref. [59], where a study of the spin-
3=2 perturbations of higher-dimensional RN BHs yielded
TT eigenmodes for which the potentials V1;2 were defined
in terms of

W ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ðζ − CÞ; C ¼ d − 2

2

θ

rd−3
; ð2:14Þ

with the spinor-vector eigenvalue given by ζ ¼ jþ ðd −
3Þ=2 for j ¼ 3=2; 5=2; 7=2;… Upon substituting this into
Eq. (2.6) and subjecting the expression to the ζ → ∞ limit,
the consequent expression for the large multipolar limit is
precisely that shown in Eq. (2.4).

As we might expect, the non-TT potentials for the
higher-dimensional RN BH prove more complicated.
However, if we define κ ¼ jþ ðd − 3Þ=2 with j ¼
3=2; 5=2; 7=2;… as before, as well as

A ¼ d − 2

2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þ ðκ þ CÞ and

B ¼ d − 2

2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
− ðκ þ CÞ; ð2:15Þ

it may be shown that

W ¼ d − 3

AB

ffiffiffiffiffiffiffiffiffi
fðrÞ
r2

r �
2AB
d − 2

ðκ þ CÞ þ d − 2

2
ðð1 − fðrÞÞκ þ CÞ

�
−
d − 4

d − 2

ffiffiffiffiffiffiffiffiffi
fðrÞ
r2

r
ðκ þ CÞ

¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ðκ þ CÞ
�
1þ ðd − 3Þðd − 2Þ

2ðκ þ CÞ
ð1 − fðrÞÞκ þ C

ðd−2Þ2
4

fðrÞ − ðκ þ CÞ2
�
: ð2:16Þ

Though not obvious by inspection, Eq. (2.4) once again
emerges when the potentials are subjected to the l → ∞
limit.
Finally, we discuss the Schwarzschild-Tangherlini (A)dS

BH [60], for which a metric function of fðrÞ ¼ 1–2μ=rd−3 −
λr2 is utilized. We maintain the definitions of κ and ζ for the
non-TT and TT modes, respectively. However, the spin-3=2
effective QNM potentials within SAdS BH spacetimes are
distinguished by their more complicated expressions, from
which the QNF ω cannot be extracted. Let us first consider
the non-TT eigenmodes, which produce

V1;2 ¼∓ ∂r�W þW2; W ¼ ½D2 − B2�1=2f−1F :

ð2:17Þ

Here, ∂r� ¼ F∂r, for which we introduce

B ¼ iκ

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ðzþ 1Þ and

D ¼ −i
ffiffiffiffiffiffiffiffiffiffiffi
λfðrÞ

p ðd − 2Þ
2

�
zþ d − 4

d − 2

�
; ð2:18Þ

as well as

z ¼
1 −

�
1þ ðd−3Þðd−2Þ

2
2μ
rd−3

�
κ2 − ðd−2Þ2

4

�
1 − 2μ

rd−3

� ; ð2:19Þ

to define

F ¼ fðrÞ
�
1þ fðrÞ

2ω

� ∂
∂r

D
iB

��
B2

B2 −D2

��−1
: ð2:20Þ

Similarly, for the TT eigenmodes in d ≥ 5,

V1;2 ¼∓ ∂r�W þW2; W ¼ ½D2 − B2�1=2f−1F ;
ð2:21Þ

where ∂r� ¼ F∂r, and the introduction of

B ¼ iζ

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

and D ¼ −i
ffiffiffiffiffiffiffiffiffiffiffi
λfðrÞ

p ðd − 2Þ
2

ð2:22Þ

suffices to define

F ¼ fðrÞ
�
1þ fðrÞ

2ω

� ∂
∂r

D
iB

��
B2

B2 − D2

��−1
: ð2:23Þ

Despite the unusual inclusion of the QNF within the
potential, the application of κ → ∞ and ζ → ∞ yield the
desired outcome featured in Eq. (2.9) for the SAdS cases,
such that the overall behavior of these effective potentials
within the eikonal limit for the spin-3=2QNMs in the SdS
BH spacetimes reflects Eq. (2.4). However, the Veff → r2

for r → ∞ behavior associated with AdS spacetimes must
be taken into account, such that the overall behavior of
the spin-3=2 effective QNM potential reflects Eq. (2.5)
for the Schwarzschild-Tangherlini AdS BH.
Thus, for higher-dimensional stationary and spherically

symmetric BHs, the effective potentials for spin-3=2
perturbing fields reduce to the same expressions in the
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large angular momentum limit as their integer-spin
counterparts.

III. NUMERICAL ANALYSIS OF THE LARGE
MULTIPOLAR REGIME FOR QNFs IN 4D

SPHERICALLY SYMMETRIC BH SPACETIMES

While numerical techniques have been exploited exten-
sively in the study of integer-spin QNFs (with some
attention directed to the effect of the large-l limit in
Refs. [32–34,36], among others), spin-1=2 and spin-3=2
QNF calculations have not been discussed as widely.
Known examples of the application of numerical tech-
niques specifically to QNFs of half-integer fields include
the spin-1=2 QNF results of Ref. [37] and Ref. [53], where
the third-order WKB approximation was used for the
Schwarzschild case in four and higher dimensions, respec-
tively. Further work in this spacetime was conducted in
Ref. [35,62] with the CFM andWKB; Refs. [54,55] instead
explored the RN and SAdS spacetimes, respectively. Less
common are studies on the spin-3=2 QNFs. From the
gauge-invariant formalism constructed by some of the
authors, results have been obtained for spin-3=2 QNFs
via Konoplya’s sixth-order WKB and improved AIM in
Schwarzschild-Tangherlini contexts [58], via the CFM for
the RN BH spacetime [59], and via the Horowitz-Hubeny
approach for S(A)dS cases with d ≥ 5 [60]. A major
component of this section is thus to add to the extant
results for the QNFs of half-integer fields by applying
Dolan and Ottewill’s inverse multipolar expansion method
[40] to the spin-3=2 fields, as well as spin-1=2 fields in the
RN context, for the first time.
Specifically, we introduce this numerical component to

validate the analytic results of Sec. II, to explore the
behavior of QNFs in the eikonal limit for different BH
spacetimes, as well as to engage with the recently
constructed method of Dolan and Ottewill—which was
found to be as efficient as Konoplya’s sixth-order WKB
[40,41]. In their original paper [40], Dolan and Ottewill
provided explicit expressions for their multipolar expan-
sions to OðL−6Þ for integer-spin perturbations in the
Schwarzschild context, to OðL−1Þ and OðL−4Þ for
the gravitational perturbations of a general and extremal
RN BH, respectively, and to OðL−4Þ for the scalar
perturbations of a SdS BH. Here, we extend their results
to encompass fields of s ∈ f0; 1=2; 1; 3=2; 2g within these
three spacetimes, to orders of OðL−6Þ in almost every
case, with the objective of exploring the interplay
between θ2, λ, and l in the eikonal limit. We verify
our results using expressions from the literature, where
available, as well as Konoplya’s sixth-order WKB
method [25] and the PT approximation of
Refs. [19,34]. Such comparisons with the low-lying
QNFs are available in the Appendix.

A. The Dolan-Ottewill expansion method

Since its introduction in Ref. [40], the Dolan-Ottewill
expansion method (hereafter, the DO method) has proven
itself a powerful tool whose efficiency in certain contexts
(such as the Regge pole determination of Ref. [41])
surpasses even that of the WKB method. It has been
applied to massive scalar perturbations of a Schwarzschild
BH [41], massless scalar perturbations of a RN and
Bardeen BH [42], massless electromagnetic perturbations
of a RN BH [44], and massless Dirac fields of a number of
spherically symmetric regular BHs (none of which we
pursue here) in Ref. [43], all with reasonable success even
at relatively low orders. As mentioned previously, the
method is designed to calculate QNFs through the appli-
cation of a novel ansatz to Eq. (1.2), in conjunction with a
multipolar expansion in orders of L ¼ lþ 1=2. The ansatz
in question is constructed from an analysis of the critical
orbits of null geodesics and serves to characterize the
method. Unlike the WKB and PT, whose development
centers on the form of the potential, the DO method relies
almost entirely on the nature of the spacetime context. The
method is especially appealing due to the relative ease with
which it can be carried to very high orders in a manner that
is globally valid in r. This feature endows it with its high
level of accuracy [40].
That the method can be extended to the calculation of

QNMwave functions, as well as the quasinormal excitation
factors that are invaluable in a wide variety of applications
within BH perturbation theory and gravitational-wave
analysis [3,45,46], serve to elevate its appeal and further
motivate its study. Moreover, the method is pragmatic:
since QNMs most likely to be observed are associated with
massless perturbations [4] and the “fundamental” n ¼ 0
mode that dominates QNM spectra, the original construc-
tion of the method was geared towards use in observation.
Here, we provide a brief overview of the method and the

physical concepts from which it is constructed, as outlined
in Ref. [40]. Let us begin with the metric for a static,
spherically symmetric, d-dimensional BH spacetime,

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩd−2: ð3:1Þ

To extract the parameters of interest, we follow
Refs. [33,63] in studying the equation of motion for a test
particle near the spherically symmetric BH. The
Lagrangian in the equatorial plane (θ ¼ π=2) is written as

L ¼ 1

2
gμν _xμ _xν ¼

1

2
ð−fðrÞ_t2 þ fðrÞ−1 _r2 þ r2 _ϕ2Þ; ð3:2Þ

where the overdot represents a derivative with respect to an
affine parameter. From the corresponding conjugate
momenta,

pt ¼ fðrÞ_t≡ E; ð3:3Þ
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pϕ ¼ r2 _ϕ≡ L; ð3:4Þ

pr ¼ fðrÞ−1 _r; ð3:5Þ

we obtain

_ϕ ¼ L
r2
; _t ¼ E

fðrÞ : ð3:6Þ

These expressions allow us to write the Hamiltonian as

H ¼ ðpt_tþ pϕ
_ϕþ pr _r − LÞ

⇒ 2H ¼ E_t − L _ϕ − fðrÞ−1 _r2 ¼ δ1; ð3:7Þ

for which δ1 ¼ 1 for time-like geodesics and δ1 ¼ 0 for
null geodesics. Our interest lies in the latter. The definition
_r≡ Vr [33] then permits the expression,

Vr ¼ fðrÞ
�
E2

fðrÞ −
L2

r2
− δ1

�
: ð3:8Þ

This, combined with the condition for circular orbits Vr ¼
V 0
r ¼ 0 [64], yields

0 ¼ E2

L2
−
fðrÞ
r2

ð3:9Þ

for the null geodesics. The radius of this circular orbit can
then be obtained by solving

rc ¼
2fc
∂rfc

; ð3:10Þ

where the subscript c denotes evaluation at r ¼ rc through-
out this section, viz. fc ¼ fðrcÞ.
Dolan and Ottewill make use of the “impact parameter”

b ¼ L=E to express the above as a function

k2ðr; bÞ ¼ 1

b2
−
fðrÞ
r2

: ð3:11Þ

When evaluated at frc; bcg, where b ¼ bc serves as the
“critical impact parameter,” k2ðr; bcÞ has a repeated root
and meets the conditions,

k2ðrc; bcÞ ¼ ∂rk2ðrc; bcÞ ¼ 0: ð3:12Þ

Dolan and Ottewill then make the explicit assumption that
the repeated root is a double root, in order to produce

kcðrÞ ¼ sgnðr − rcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðr; bcÞ

q
¼ ðr − rcÞKðrÞ: ð3:13Þ

The inclusion of sgnðr − rcÞ allows for the specification
that kc > 0 for r > rc. As discussed in Sec. 5.2 of Ref. [42],

the sign function is incorporated to ensure that kcðrÞ is
differentiable at r ¼ rc. KðrÞ can be used in the definition
of the Lyapunov exponent [33,40],

Λ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∂2
rVrc

2_t2

s
¼ fcKc; ð3:14Þ

where Vrc refers to Eq. (3.8) evaluated at r ¼ rc.
With this setup in place, we can proceed to the procedure

itself. First, we must restructure Eq. (1.2) in terms of
L ¼ lþ ðd − 3Þ=2. For the case of the d-dimensional
scalar field,

d2ψ
dr2�

þ
�
ω2 −

fðrÞ
r2

�
L2 −

ðd − 3Þ2
4

�
− fðrÞVeffðrÞ

�
ψ ¼ 0;

ð3:15Þ
for which Veff is understood to depend on L as

VeffðrÞ ¼
X∞
k¼−1

VðrÞkL−k: ð3:16Þ

It is in this equation that we are to introduce the novel
ansatz, defined in terms of the critical impact parameter and
Eq. (3.13),

ψðrÞ ¼ exp

	Z
r�
bckcðrÞdr�



vðrÞ; ð3:17Þ

which we can write as ψðrÞ ¼ expfiωzðr�ÞgvðrÞ using
zðr�Þ ¼

R
r� ρðrÞdr� for ρðrÞ ¼ bckcðrÞ. To encapsulate the

ingoing and outgoing boundary conditions required, it is
assumed that

fðrÞ → 0; bckcðrÞ → −1 as r� → −∞; ð3:18Þ

fðrÞ=r2 → 0; bckcðrÞ → þ1 as r� → þ∞: ð3:19Þ
This relays that a horizon is encountered as r� → −∞,
while r� → þ∞ leads either to an asymptotically flat
region or a cosmological constant. The boundary condi-
tions upon which the DO method depends, therefore,
accommodate asymptotically flat and dS spacetime, but
not AdS contexts.

Once these parameters are defined, the ansatz is sub-
stituted into the recasted ordinary differential equation, and
the expression

fðrÞ d
dr

�
fðrÞ dv

dr

�
þ 2iωρðrÞ dv

dr

þ
�
iωfðrÞ dρ

dr
þ ð1 − ρðrÞ2Þω2 − VeffðrÞ

�
vðrÞ

¼ 0 ð3:20Þ
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may be obtained [generalizing Eq. (6) of Ref. [40] and
offering a possible correction to the second term of Eq. (40)
of Ref. [42], Eq. (21) in Ref. [44], and Eq. (31) in Ref. [43]
that may allow for computation to higher orders of L−k].
The objective is then simply to solve for the QNFs at each
order of L−k through recursive substitutions of

ω ¼
X∞
k¼−1

ωkL−k ð3:21Þ

and

vðrÞ ¼ exp

	X∞
k¼0

SkðrÞL−k


; ð3:22Þ

where these expansions hold for the least damped “funda-
mental mode” of n ¼ 0 [40] which dominates the QNF
spectrum,
Specifically, we solve iteratively for ωk and S0kðrÞ, the

results of which are substituted into Eq. (3.21) to determine
the QNF. The associated wave function may be obtained by
integrating the S0kðrÞ terms and substituting these into
Eq. (3.22). We reserve an investigation into the wave
functions for a future work, and focus only on the QNFs
in this section.
The DO method is thus heavily reliant on the nature of

the BH spacetime and its associated photon orbits: the
radius of the critical orbit rc, the impact parameter bc, and
the introduced kcðrÞ function serve as the cruces of the
approach. This physicality emerges even from the terms of
the QNFs: the first QNF term for which we solve (occurring
at order Lþ2) can be defined using 1 − b2ck2cðrÞ ¼
b2cfðrÞ=r2 and produces

ω−1 ¼
1

bc
¼ Ωc: ð3:23Þ

Here, Ωc is the orbital angular velocity evaluated at r ¼ rc.
Moreover, the expansion in inverse powers of L affixes
angular dependence on the QNF, which has only an implicit
dependence on l. Recall from Eq. (1.5) that Ωc ≈ Λ̄ in the
large multipolar limit.
We now proceed to a complete study of the DO method

for QNFs of spin s ∈ f0; 1=2; 1; 3=2; 2g in the 4D
Schwarzschild, RN, and SdS BH spacetimes. We apply
the method also to the “uniform” potential of Eq. (2.4):
since this expression encodes the generalized behavior of
fields in the large multipolar limit, it is useful to observe a
direct application of numerical methods to this expression
when analyzing the behavior of individual fields in the
large-l limit. The calculations themselves were performed
within the Mathematica environment (versions 8 and 11.2)
through an algorithm we produced based on Ref. [40].
We did not explicitly set a precision assignment or compute

the associated errors for the input parameters within our
numerical process; instead, we made use of Mathematica’s
internal error setting. In our implementation, we first
specify Eq. (3.20) for the spacetime of interest, with the
substitution of Eqs. (3.21) and (3.22) expanded to the
desired order. The first value of Eq. (3.21), ω−1, must be
solved for and substituted into Eq. (3.20), followed by ω0

and S00ðrÞ. Through iterative solving and substituting of ωk

and S0kðrÞ into Eq. (3.20) for increasing values of k, we are
able to produce an expression for the QNF as an expansion
in inverse multipolar numbers. To specify the spin of the
field, the appropriate expression for the effective potential
must be substituted into Eq. (3.20) from the onset. It is
worth noting that for RN BH spacetimes, the value of θ
must also be specified.
We note also that our treatment of QNFs associated with

fields of integer and half-integer spin differ slightly: when
applying the DO method to integer fields, we parametrize
the angular momentum as L ¼ lþ 1=2; for the half-
integer fields, we use L̄ instead. This change in para-
metrization is necessitated by the differing representation of
the angular momentum within the effective potentials for
integer and half-integer fields, as shown in Sec. II. Further
distinction is also required for the definition of L̄ for spin-
1=2 and spin-3=2 fields. For the Dirac case (and the
“uniform” potential),

L̄ ¼ Lþ 1=2 ¼ κ ¼ jþ 1=2≡ lþ 1 for l ∈ No and

j ¼ 1=2; 3=2;… ½30; 37; 53�:

For the Rarita-Schwinger case,

L̄ ¼ Lþ 1=2 ¼ κ ¼ jþ 1=2≡ lþ 2 for l ∈ No and

j ¼ 3=2; 5=2;… ½57–60�:

These are in accordance with the definitions of the spinor
eigenvalue on the (d − 2)-sphere provided in Sec. II. For
further clarity on the choice of parametrizations, see the
Appendix. Consider Tables XXI and XXII for the dis-
tinction between L and L̄, where the results for spin-2
QNFs can be compared with those of spin-1=2 QNFs,
respectively. For the distinction between half-integer cases,
consider the spin-1=2 QNFs of Table XII and the spin-3=2
QNFs of Table XIII.
We maintain these parametrizations when computing the

QNFs throughout this work. Furthermore, we observe that
when calculating the QNFs within Mathematica, it is more
convenient to divide Eq. (3.20) and the effective potentials
by fðrÞ. To verify our large-l results, we use the sixth-order
WKB method of Ref. [25] and the PT approximation of
Refs. [19,34] (guided by the publicly available
Mathematica notebooks from Refs. [25,30]). The low-
lying QNFs included in the Appendix serve as further
sources of validation, where extant results in the literature
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computed via various established numerical and analytical
techniques compare favorably with our results produced via
the DO method.
Finally, since we confine ourselves to the 4D context, we

do not consider TT eigenmodes for the Rarita-Schwinger
field, tensor modes of the gravitational field, or scalar
modes of the electromagnetic field. Where possible, we can
also exploit the isospectrality of the QNFs to describe their
behavior in the large-l limit, viz. the scalar and vector
modes of the gravitational perturbation [48] and the two
parities of the half-integer fields [61]. We set the BH mass
as μ ¼ 1 throughout the work.

B. QNF behavior within the large-l limit for
Schwarzschild BHs

For the metric function fðrÞ ¼ 1–2=r,

rc ¼ 3; bc ¼
ffiffiffiffiffi
27

p
⇒ ρðrÞ ¼

�
1 −

3

r

� ffiffiffiffiffiffiffiffiffiffiffi
1þ 6

r

r
:

ð3:24Þ

With these components inserted into Eq. (3.20), the DO
method can be used to solve for the appropriate QNF. These
expressions are enclosed in Table II up to OðL−6Þ. For the
fields of integer spin, the effective potential used is that of
Eq. (2.1), with lðlþ 1Þ → L2 − 1=4. For the Dirac case,
we used the positive parity and parametrized the effective
potential as

VðrÞ ¼ fðrÞ d
dr

� ffiffiffiffiffiffiffiffiffi
fðrÞp
r

�
L̄þ fðrÞ

r2
L̄2: ð3:25Þ

For the Rarita-Schwinger effective potential, the super-
potential of Eq. (2.11) reduces to

Wjd¼4 ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

κ

�
κ2 − 1

κ2 − fðrÞ
�
¼

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

κ

�
1þ 1 − fðrÞ

fðrÞ − κ2

�
ð3:26Þ

in 4D. With the κ → L̄ parametrization in place, we observe
that Eq. (2.12) becomes

VðrÞ ¼ fðrÞ d
dr

� ffiffiffiffiffiffiffiffiffi
fðrÞp
r

½1þ zs�
�
L̄þ fðrÞ

r2
½1þ zs�2L̄2;

ð3:27Þ

in 4D, where

zs ¼
1 − fðrÞ
fðrÞ − L̄2

: ð3:28Þ

Since the TT modes emerge only for d ≥ 5, the spin-3=2
behavior is wholly captured by this non-TT mode in 4D. To
compute the Rarita-Schwinger QNFs, we expand zs in
inverse powers of L̄,

zs ≈ −
2

rL̄2
−
2ðr − 2Þ
r2L̄4

−
2ðr − 2Þ2
r3L̄6

: ð3:29Þ

Note that if we set zs → 0, we recover the Dirac potential.
We run the generalized DO program we construct from

Eqs. (3.20) and (3.24) within Mathematica, for each
potential defined above, to generate the QNF in the form
of Eq. (3.21). These inverse multipolar expansions are

TABLE II. The inverse multipolar expansions for the effective QNFs of spin s, where integer-spin results are
reproduced. All other expressions are new and derived using L → L̄. Here, the “uniform” potential refers to
Eq. (2.4).

s bc
P

6
k¼−1 ωkL−k

Perturbations of integer spin
0 L − i

2
þ 7

216L −
137

7776L2 iþ 2615
1259712L3 þ 590983

362797056L4 i − 42573661
39182082048L5 þ 11084613257

8463329722368L6 i

1 L − i
2
− 65

216L þ 295
7776L2 i − 35617

1259712L3 þ 3374791
362797056L4 i − 342889693

39182082048L5 þ 74076561065
8463329722368L6 i

2 L − i
2
− 281

216L þ 1591
7776L2 i − 710185

1259712L3 þ 92347783
362797056L4 i − 7827932509

39182082048L5 − 481407154423
8463329722368L6 i

The uniform potential

L̄ − i
2
− 19

108L̄ þ 295
7776L̄2 iþ 3853

2519424L̄3 − 66089
362797056L̄4 i − 165538573

39182082048L̄5 þ 54780211001
8463329722368L̄6 i

Perturbations of half-integer spin

1=2 L̄ − i
2
− 11

216L̄ −
29

7776L̄2 iþ 1805
1259712L̄3 þ 27223

362797056L̄4 iþ 23015171
39182082048L̄5 − 6431354863

8463329722368L̄6 i

3=2 L̄ − i
2
− 155

216L̄ þ 835
7776L̄2 i − 214627

1259712L̄3 þ 25750231
362797056L̄4 i − 2525971453

39182082048L̄5 þ 292606736465
8463329722368L̄6 i
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recorded in Table II. Within, certain commonalities emerge
among different s, such as a negative L0 term and
consistently imaginary expressions for L−k terms of even
k. To express the QNFs provided in Tables III and IV, we
extract

P
6
k¼−1 ωkL−k only from Table II and substitute the

appropriate values of L and L̄, respectively. In our
comparison of our results with those we calculate via
the WKB and PT methods, we observe excellent agreement
and an almost perfect correlation with the sixth-order WKB
results to four decimal places from l ∼ 10 onwards.
The interplay between QNM parameters for fields of

different spins within the Schwarzschild BH spacetime was
noted explicitly in Ref. [36] through a study of l ∈ ½2; 5�:
for fields of spin 0, 1, and 2, Refωg decreased with s for
fixed n and l, but increased with the s of half-integer fields;
Imfωg was found to decrease with s for all fields. This
behavior reported for the real part of the QNFs is replicated
in our results, and holds true as we increase l. The
imaginary part in the large multipolar limit tends to a
constant value, irrespective of the spin of the per-
turbing field.
That the imaginary part is negative indicates that the

modes decay with time [62]. The magnitude of the
imaginary part, however, remains consistently ∼0.0962i
for fields of integer and half-integer spin within the large-l
limit. From this, we observe that the imaginary component
of the QNF corresponds to Eq. (1.5) and matches the
correct value for the Lyapunov exponent associated with
the Schwarzschild BH irrespective of the spin of the
perturbing field.

Though Pan and Jing reported an equidistant spacing of

RefΔωg ≈ 0.3849;

between successive values of ω for large l in Ref. [35], we
find instead that

RefΔωg ≈ 0.1925� 0.0001: ð3:30Þ

Recall from Eq. (1.5) that this value is equivalent to the
Lyapunov exponent for the Schwarzschild BH spacetime.
In the large multipolar limit, however, Λ̄ ≈Ωc, such that
this spacing is related also to the orbital angular frequency.
This value ofRefΔωg first arises at l ∼ 10; the increase in
ω continues indefinitely as this spacing remains constant.
The uniform potential responsible for providing a gener-
alization of the QNF behavior in the large-l limit acts as an
average of the fields, and carries the same observed trends
and relationship with the Lyapunov exponent.
Finally, we note that the integer-spin QNFs converge to

a value of Refωg ≈ 19.34 for l ¼ 100; the Dirac and
uniform QNFs tend to Refωg ≈ 19.344 while the Rarita-
Schwinger QNFs becomeRefωg ≈ 19.63. This increasing
uniformity between QNFs as l is increased implies that the
spin of the field is suppressed in the wake of high angular
momentum, in a manner not unusual in astrophysical
systems.

C. QNF behavior within the large-l limit for RN BHs

For the metric function fðrÞ ¼ 1–2=rþ θ2=r2,

rc ¼
3� α

2
;

bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ 3Þ3
2ðαþ 1Þ

s
⇒

ρðrÞ ¼
�
1 −

rc
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðα − 3Þ

ðαþ 1Þ
�
rc
r

�
2

þ ðαþ 3Þ
r

s
; ð3:31Þ

for α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8θ2

p
and using the outer orbit.

As in the Schwarzschild case, we use Eq. (2.2) to calculate
the QNFs for the integer-spin perturbations with the lðlþ
1Þ → L2 − 1=4 replacement. This carries over to the square
root term included in the electromagnetic and gravitational
perturbations, such that lðlþ 1Þ − 2 → L2 − 9=4. To apply
the DO expansion successfully, however, an approximation
becomes necessary. Though a first-order approximation of
q1;2 ≈ 3 ∓ 2L was suggested in Ref. [40], we refine it to

q1;2 ¼ 3 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4θ2

�
L2 −

9

4

�s

≈3 ∓ 2L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 þ y

q
; y ¼ 9

4L2
ð1 − θ2Þ ð3:32Þ

TABLE III. Scalar, electromagnetic, and vector-type gravita-
tional QNFs for a 4D Schwarzschild BH calculated via the DO
method to order OðL−6Þ.
l ωs ωem ωg

10 2.0213 − 0.0963i 2.0152 − 0.0962i 1.9968 − 0.0959i
20 3.9455 − 0.0962i 3.9424 − 0.0962i 3.9330 − 0.0961i
40 7.7944 − 0.0962i 7.7928 − 0.0962i 7.7880 − 0.0962i
60 11.6433 − 0.0962i 11.6423 − 0.0962i 11.6391 − 0.0962i
80 15.4923 − 0.0962i 15.4915 − 0.0962i 15.4891 − 0.0962i
100 19.3413 − 0.0962i 19.3407 − 0.0962i 19.3387 − 0.0962i

TABLE IV. Uniform [Eq. (2.4)], Dirac, and Rarita-Schwinger
QNFs for a 4D Schwarzschild BH calculated via the DO method
to order OðL−6Þ.
l ωuni ωD ωRS

10 2.1139 − 0.0962i 2.1161 − 0.0962i 2.2979 − 0.0961i
20 4.0398 − 0.0962i 4.0410 − 0.0962i 4.2276 − 0.0962i
40 7.8896 − 0.0962i 7.8902 − 0.0962i 8.0796 − 0.0962i
60 11.7389 − 0.0962i 11.7393 − 0.0962i 11.9297 − 0.0962i
80 15.5880 − 0.0962i 15.5883 − 0.0962i 15.7792 − 0.0962i
100 19.4371 − 0.0962i 19.4374 − 0.0962i 19.6286 − 0.0962i

QUASINORMAL MODES FOR INTEGER AND HALF-INTEGER … PHYS. REV. D 104, 024009 (2021)

024009-11



in order to approach the higher-order multipolar expansions.
For a small y, this becomes an expansion in inverse powers of
L, and provides the condition

L2 >
9ð1 − θ2Þ

4θ2
;

which tells us that when θ is small, L is more influential.
Note that this condition is not automatically suitable for

θ ¼ 0, as this forces L to infinity. However, if we substitute
y into the square root first, then the Schwarzschild
expression is recovered. Furthermore, we obtain the sug-
gested q1;2 ≈ 3 ∓ 2L when θ ¼ 1. The DO method there-
fore does not fail for θ ¼ 1—in fact, it performs especially
well then—but instead breaks down for α ¼ 0 (i.e., for
θ ¼ ffiffiffiffiffiffiffiffi

9=8
p

) [40].
For the half-integer fields, Eq. (3.25) with the inclusion

of the RN metric function holds for the application of the
DO method in the Dirac case. For the spin-3=2 field, we
maintain the use of Eq. (2.16), such that we write the
superpotential as

W ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ð1þ zRNÞðL̄þ CÞ; ð3:33Þ

where the charge term C is defined in Eq. (2.14) and
Eq. (3.28) is amended to

zRN ¼ 1

ðL̄þ CÞ
ð1 − fðrÞÞL̄þ C
fðrÞ − ðL̄þ CÞ2 : ð3:34Þ

As in the Schwarzschild case, zRN is expanded in inverse
powers of L̄.
To investigate the effect of θ on the QNFs within the

eikonal limit, we apply the DO method to perturbations of
s ∈ f0; 1=2; 1; 3=2; 2g, expanding to orders of OðL−6Þ
unless otherwise stated. For each field, we first gauge the
accuracy of the method in the RN BH context through a
comparison with extant results (see Appendix A 2) before
proceeding with the large-l investigation.
Please note that for the sake of brevity, we do not

include the explicit bc
P

k ωkL−k expansions as in
Table II: in our DO routine for the RN BH spacetime,
we found that QNF computation was only feasible if θ
was predefined. As such, a multipolar expansion for each
s is associated with each θ; to calculate the QNF
associated with a particular charge, the entire DO routine
must be run. This undermines the efficiency of the
method for charged BH spacetimes.
However, since the DO method breaks down when α ¼

0 (i.e., for θ ¼ ffiffiffiffiffiffiffiffi
9=8

p
rather than for θ ¼ 1), it can be used

where other numerical techniques fail, such as in the
calculation of QNFs for the case of the extremal RN BH
in asymptotically flat spacetimes where μ ¼ θ. We show
this explicitly by providing results for μ ¼ θ ¼ 1 in
Tables V and VI, as well as in the comparisons made
with the literature contained in Appendix A 2.
For the analysis of the QNFs in the RN BH spacetime,

we consider the integer and half-integer perturbations
separately. Observations made in the Schwarzschild case,
however, manifest here: Refωg increases indefinitely
while Imfωg tends to a constant related to the
Lyapunov exponent—in this case, a different constant

TABLE V. QNFs of integer spin for a 4D RN BH calculated via the DO method to order OðL−4Þ for θ < 1 in the case of spin-1 and
spin-2 fields, and to order OðL−6Þ otherwise.
Field l ωðθ ¼ 0.0Þ ωðθ ¼ 0.4Þ ωðθ ¼ 0.8Þ ωðθ ¼ 1.0Þ

Scalar

10 2.0213 − 0.0963i 2.0793 − 0.0971i 2.4385 − 0.0963i 2.6372 − 0.0882i
20 3.9455 − 0.0962i 4.0577 − 0.0970i 4.7501 − 0.0963i 5.1313 − 0.0883i
40 7.7944 − 0.0962i 8.0154 − 0.0970i 9.3786 − 0.0963i 10.1282 − 0.0884i
60 11.6433 − 0.0962i 11.9734 − 0.0970i 14.0084 − 0.0963i 15.1270 − 0.0880i
80 15.4920 − 0.0962i 15.9310 − 0.0970i 18.6390 − 0.0963i 20.1270 − 0.0884i
100 19.3410 − 0.0962i 19.8890 − 0.0970i 23.2690 − 0.0963i 25.1260 − 0.0884i

EM

10 2.0152 − 0.0962i 2.0922 − 0.0973i 2.3667 − 0.0986i 2.7376 − 0.0882i
20 3.9424 − 0.0962i 4.0773 − 0.0972i 4.5730 − 0.0983i 5.2435 − 0.0883i
40 7.7928 − 0.0962i 8.0388 − 0.0971i 8.9761 − 0.0981i 10.2467 − 0.0884i
60 11.6423 − 0.0962i 11.9980 − 0.0971i 13.3768 − 0.0981i 15.2480 − 0.0884i
80 15.4920 − 0.0962i 15.9570 − 0.0971i 17.7770 − 0.0980i 20.2480 − 0.0884i
100 19.3410 − 0.0962i 19.9150 − 0.0971i 22.1770 − 0.0980i 25.2490 − 0.0884i

Gravitational

10 1.9968 − 0.0959i 2.0342 − 0.0964i 2.2236 − 0.0969i 2.4863 − 0.0882i
20 3.9330 − 0.0961i 4.0217 − 0.0968i 4.4310 − 0.0974i 4.9932 − 0.0883i
40 7.7880 − 0.0962i 7.9837 − 0.0969i 8.8343 − 0.0977i 9.9966 − 0.0884i
60 11.6391 − 0.0962i 11.9431 − 0.0970i 13.2351 − 0.0978i 14.9980 − 0.0884i
80 15.4890 − 0.0962i 15.9020 − 0.0970i 17.6350 − 0.0978i 19.9980 − 0.0884i
100 19.3390 − 0.0962i 19.8600 − 0.0970i 22.0350 − 0.0978i 24.9990 − 0.0884i
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for each θ—and for fixed l, the magnitude of the QNF
decreases (increases) for QNFs of increasing integer
(half-integer) spin. Once again, an equidistant spacing
appears between successive values of Refωgwith respect
to l, associated here with each θ and recorded in
Table VII. We note also that when θ ¼ 0, the
Schwarzschild QNFs are recovered. When θ ≠ 0, how-
ever, a discrepancy arises: the magnitudes of the real part
of the QNFs of different spins do not converge to an
approximately equal value, as we had seen in the
Schwarzschild case.
Finally, we observe that our results remain in very good

agreement with the QNFs calculated via the WKB method
of Ref. [25] and the PT approximation of Refs. [19,34]
for θ < 1.

1. QNFs of integer spin within 4D RN BH spacetimes

In Table V, we observe that for a fixed l, the real part of
the QNF increases with θ. This effect becomes pronounced
for the electromagnetic QNFs: their increase with θ is the
most rapid of the integer-spin fields (a growth of ∼0.1more
than the other QNFs for lower l). The imaginary part
decreases with increasing θ.

For this electromagnetic case, we calculate the expan-
sions up to OðL−4Þ for θ < 1. Beyond this order, our DO
routine fails to produce reliable output. For θ ¼ 1, however,
we found that the DO method may be expanded to OðL−6Þ
and further with ease. This reinforces the usefulness of the
DOmethod: based on the results of Refs. [23,65], as well as
our own WKB and PT calculations, standard methods may
not necessarily accommodate θ → 1 for s ¼ 1 QNF cal-
culations. The DO method, on the other hand, proves very
accurate for θ ¼ 1 and thereby proves itself a useful
contribution to the QNF computational toolkit.
As explained in Ref. [23], the gravitational QNFs of the

RN BH are inherently different from those of the
Schwarzschild case: as a consequence of the coupling
between electromagnetic and gravitational perturbations,
only when θ ¼ 0 are the QNFs distinctly electromagnetic
(such that q1 applies) or gravitational (such that q2
applies). That electromagnetic and gravitational pertur-
bations exhibit a closely related behavior can be gleaned
from their mathematical treatment in Eqs. (2.2) and
(3.32). Consequently, the comments made for the electro-
magnetic perturbations largely apply here: we calculate
the expansions up to OðL−4Þ and observe once again that

TABLE VI. QNFs of half-integer spin and the “uniform” potential for a 4D RN BH calculated via the DO method to orderOðL−6Þ for
all perturbations.

Field l ωðθ ¼ 0.0Þ ωðθ ¼ 0.4Þ ωðθ ¼ 0.8Þ ωðθ ¼ 1.0Þ

Uniform

10 2.1139 − 0.0961i 2.1739 − 0.0969i 2.4208 − 0.0979i 2.7475 − 0.0885i
20 4.0398 − 0.0962i 4.1544 − 0.0970i 4.6200 − 0.0979i 5.2487 − 0.0884i
40 7.8896 − 0.0962i 8.1132 − 0.0970i 9.0192 − 0.0979i 10.2493 − 0.0884i
60 11.7389 − 0.0962i 12.0715 − 0.0970i 13.4186 − 0.0979i 15.2500 − 0.0884i
80 15.5880 − 0.0962i 16.0300 − 0.0970i 17.8180 − 0.0979i 20.2500 − 0.0884i
100 19.4370 − 0.0962i 19.9889 − 0.0970i 22.2170 − 0.0979i 25.2500 − 0.0884i

Dirac

10 2.1161 − 0.0962i 2.1761 − 0.0970i 2.4189 − 0.0979i 2.7489 − 0.0884i
20 4.0410 − 0.0962i 4.1555 − 0.0970i 4.6190 − 0.0979i 5.2494 − 0.0884i
40 7.8902 − 0.0962i 8.1138 − 0.0970i 9.0187 − 0.0979i 10.2497 − 0.0884i
60 11.7393 − 0.0962i 12.0719 − 0.0970i 13.4183 − 0.0979i 15.2500 − 0.0884i
80 15.5880 − 0.0962i 16.0300 − 0.0970i 17.8180 − 0.0979i 20.2500 − 0.0884i
100 19.4370 − 0.0962i 19.9880 − 0.0970i 22.2170 − 0.0979i 25.2500 − 0.0884i

RS

10 2.2979 − 0.0961i 2.4022 − 0.0970i 2.6974 − 0.0985i 3.1099 − 0.0883i
20 4.2276 − 0.0962i 4.3813 − 0.0970i 4.9031 − 0.0983i 5.6167 − 0.0884i
40 8.0796 − 0.0962i 8.3393 − 0.0970i 9.3060 − 0.0981i 10.6206 − 0.0884i
60 11.9297 − 0.0962i 12.2974 − 0.0970i 13.7067 − 0.0981i 15.6220 − 0.0884i
80 15.7790 − 0.0962i 16.2550 − 0.0970i 18.1070 − 0.0980i 20.6230 − 0.0884i
100 19.6290 − 0.0962i 20.2140 − 0.0970i 22.5070 − 0.0980i 25.623 − 0.0884i

TABLE VII. Relationship between features of the QNFs in the large-l limit and the Lyapunov exponent for all spins s ∈
f0; 1=2; 1; 3=2; 2g and varying θ in RN BH spacetimes.

θ ¼ 0.0 θ ¼ 0.2 θ ¼ 0.4 θ ¼ 0.6 θ ¼ 0.8 θ ¼ 1.0

RefΔωg 0.1924� 0.0001 0.1937� 0.0001 0.1979� 0.0001 0.2058� 0.0001 0.2199� 0.0001 0.2499� 0.0001
Λ̄ 0.19245 0.19375 0.19790 0.20582 0.21997 0.2500
jImfωgj 0.0962� 0.0001 0.0964� 0.0001 0.0970� 0.0001 0.0978� 0.0001 0.0970� 0.0001 0.0884� 0.0001
Λ̄=2 0.09623 0.09688 0.09895 0.10291 0.10999 0.12500
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beyond this order, the DO method appears to break down
for noninteger θ. For the extremal case of θ ¼ 1, we
produce QNFs to orderOðL−6Þ. Unlike in the spin-1 case,
however, the gravitational QNF does not experience that
same rapidity in growth for fixed l and increasing θ—we
surmise that this behavior is then unique to the electro-
magnetic QNF.

2. QNFs of half-integer spin within 4D RN BH
spacetimes

As in the integer-spin cases, the real (imaginary) part
of the QNFs increases (decreases) with increasing θ.
However, the spin-3=2 QNFs are most affected by θ, with
a growth more rapid than even that of the spin-1 QNFs for
lower l (∼0.2 larger than the Dirac QNFs).
The computation of QNFs of half-integer spin is

comparatively uncomplicated using the DO method, as
there is no need to include further approximations
than those specified for the Dirac and Rarita-
Schwinger cases. For the uniform potential defined in
Eq. (2.4), we find that its behavior aligns closest with that
of the Dirac field.
Irrespective of the spin of the field, two distinct

features remain constant for QNFs within the RN
BH spacetime for each value of θ: the value of
RefΔωg, where Δω ¼ ωlþ1 − ωl, and jImfωgj in the
large-l limit.
For the Schwarzschild BH, we noted that an equidis-

tant spacing RefΔωg emerged in the large-l limit which
matched that of the Schwarzschild Lyapunov exponent.
In Table VII, we exploit the relationship between
the orbital angular frequency and the Lyapunov exponent
in the large multipolar limit, Ωc ≈ Λ̄ [32,33], such that
Λ̄ ¼ 1=bc by Eq. (3.23) for bc defined in Eq. (3.31),
and thereby determine a unique RN Lyapunov exponent
for each θ. In so doing, we find a corresponding behavior
between Λ̄ and RefΔωg for large l.
A further feature in the Schwarzschild case was a

match between Λ̄=2 and the value to which Imfωg tended
as l grew. For the RN BH, this relationship is only
observed for lower values of θ to three decimal
places. Furthermore, the consistency between the mag-
nitude of the real part of the QNFs at large multipolar
values is disrupted for larger values of θ.
The uniform potential once again produces QNFs that

align closest to the Dirac results. However, it remains a
fair intermediary between QNFs of integer and
half-integer spin, and matches the behavior of QNFs in
the large-l regime that we summarize in Table VII. We
note, however, that the neat convergence observed in the
Schwarzschild context for Refωg across different
spins for large values of l is disrupted by the presence
of θ: though not a major effect, the discrepancy becomes
apparent in integer-spin QNFs for larger θ values.

D. QNF behavior within the large-l limit for SdS BHs

The 4D SdS BH spacetime is markedly similar to its flat-
space counterpart. From the metric function
fðrÞ ¼ 1–2=r − ηr2=27, where η ¼ 27λ ¼ 9Λ, we obtain

rc ¼ 3; bc ¼
ffiffiffiffiffiffiffiffiffiffiffi
27

1 − η

s
;

ρðrÞ ¼
�
1 −

3

r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 6

ð1 − ηÞr

s
: ð3:35Þ

For the fields of integer spin, we follow the Schwarzschild
example such that the effective potential used is that of
Eq. (2.3), with d ¼ 4 and lðlþ 1Þ → L2 − 1=4. For the
spin-1=2 case, Eq. (3.25) holds, albeit with the SdS metric
function. The potential for the non-TT spin-3=2 field is fairly
complicated, as we saw in Eq. (2.17). However, upon setting
d ¼ 4, we find that

Bjd¼4 ¼ iκ

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

ðzSdS þ 1Þ and

Djd¼4 ¼ −i
ffiffiffiffiffiffiffiffiffiffiffi
λfðrÞ

p
zSdS: ð3:36Þ

Here, the zSdS is the z of Eq. (2.19), which in 4D reduces to

zSdSjd¼4 ¼
1 − ð1þ 2μ

r Þ
κ2 − ð1 − 2μ

r Þ
¼ 1 − ð1 − 2μ

r Þ
ð1 − 2μ

r Þ − κ2
¼ zs; ð3:37Þ

where zs refers to Eq. (3.28). Thus, we observe that this
behavior associated with half-integer spin emerges once
again, even if it is immersed in a greater equation of motion.
In the 4D SdS case, however, this zSdS retains the form of the
asymptotically flat Schwarzschild BH, rather than receiving
augmentation as in the RN case of Eq. (3.34). Since

D
B

����
d¼4

¼ 2
ffiffiffi
λ

p

κð1 − κ2Þ ð3:38Þ

is an r-independent expression, we observe that

F jd¼4 ¼ fðrÞ and Wjd¼4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − B2

p
: ð3:39Þ

We then perform a series expansion on W to ensure the
boundary conditions specified by Ref. [40] are met:

W ≈
κ

r

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þ ð16þ 9λÞfðrÞ

8

�
κ

r

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
−1
… ð3:40Þ

This expression is then substituted into Eq. (2.6) and the DO
method is applied, with λ → η=27 and κ → L̄.
In Ref. [40], Dolan and Ottewill provided explicit

expressions for Eq. (3.21) up to OðL−4Þ for scalar
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TABLE VIII. The inverse multipolar expansions for the effective QNM potentials of spin s, where the scalar result
is extended from Ref. [40] and subsequent expressions are new.

s bc
P

6
k¼−1 ωkL−k

Perturbations of integer spin

0

L − i
2
− 61η−7

216L − i ð−2005η
2þ1868ηþ137Þ
7776L2 þ 750851η3−1274856η2þ440043ηþ5230

2519424L3

þi ð−135495065η
4þ340616636η3−243504102η2þ37791548ηþ590983Þ

362797056L4

þ 32505248η5þ1627761149η4−3206256226η3þ1691631952η2−161716742η−9434549
3265173504L5

þi ð1−ηÞð34508780288η
5−21055361663η4−34042960215η3þ20928906553η2−1195508389η−117456486Þ

58773123072L6

1

L − i
2
þ ð−65þ11ηÞ

216L þ i 5ð1−ηÞð31ηþ59Þ
7776L2 − 39709η3−19848η2−12363ηþ71234

2519424L3

−i ð1−ηÞð494297η
3þ181965η2−366465η−191699Þ
22674816L4

þ ð119468395−268062134ηþ261980704η2−158224690η3−92371315η4þ111699872η5Þ
3265173504L5

þi ð1−ηÞð3240662016η
5−200131567η4−4986135335η3þ4932890217η2−5358151637ηþ2009486426Þ

58773123072L6

2

L − i
2
þ −281þ11η

216L þ i ð1−ηÞð1591þ155ηÞÞ
7776L2 − 1420370þ356997ηþ151224η2þ39709η3

2519424L3

−i ðð1−ηÞð−24667847þ10941243ηþ2695341η2þ494297η3ÞÞ
22674816L4

þ 1036251595−130033958η−6810863264η2þ2041863902η3þ562435853η4þ111699872η5

3265173504L5

þi ðð1−ηÞð282174255002−262728531653η−110347238007η
2þ82283660137η3þ21001557905η4þ3240662016η5ÞÞ

58773123072L6

The uniform potential

L̄ − i
2
þ 11η−38

216L̄ þ i 5ð1−ηÞð31ηþ59Þ
7776L̄2 − 39709η3−19848η2þ3675η−3853

2519424L̄3

−i ð1−ηÞð988594η
3þ363930η2−464415ηþ515945Þ

45349632L̄4 þ 111699872η5−92371315η4−128297944η3þ305515612η2−349843298ηþ150108427

3265173504L̄5

þi ð1−ηÞð3240662016η
5−200131567η4−4024480547η3þ6837452937η2−6191057384ηþ901944887Þ

58773123072L̄6

Perturbations of half-integer spin

1=2

L̄ − i
2
− 11ð1−ηÞ

216L̄ − i ð−1þηÞð−29þ155ηÞ
7776L̄2 − −3610þ26517η−62616η2þ39709η3

2519424L̄3

þ ð1−ηÞ3=2ð−988594i ffiffi
3

p ffiffiffiffi
1

1−η

p
η3þ3ð6316þ231523i

ffiffi
3

p ffiffiffiffi
1

1−η

p
Þη2þð688836−311709i ffiffi

3
p ffiffiffiffi

1
1−η

p
Þηþ277684i

ffiffi
3

p ffiffiffiffi
1

1−η

p
−2028732Þ

45349632
ffiffi
3

p
L̄4

−
ð1−ηÞ3=2ð68721752i−10877291

ffiffiffiffi
3

1−η

p
−176643780iηþ14698199

ffiffiffiffi
3

1−η

p
ηþ45782556iη2þ6466191

ffiffiffiffi
3

1−η

p
η2Þ

1632586752
ffiffi
3

p
L̄5

−
ð1−ηÞ3=2ð2578232iη3þ55980607

ffiffiffiffi
3

1−η

p
η3−55849936

ffiffiffiffi
3

1−η

p
η4Þ

1632586752
ffiffi
3

p
L̄5

þ ð1−ηÞ3=2ð2757868640þ632909178i
ffiffiffiffi
3

1−η

p
−22621357508η−5957507889i

ffiffiffiffi
3

1−η

p
ηþ34913622936η2þ7787617335i

ffiffiffiffi
3

1−η

p
η2Þ

176319369216
ffiffi
3

p
L̄6

−
ð1−ηÞ3=2ð8255611364η3þ1837367991i

ffiffiffiffi
3

1−η

p
η3þ1555478288η4−13014760527i

ffiffiffiffi
3

1−η

p
η4þ9721986048i

ffiffiffiffi
3

1−η

p
η5Þ

176319369216
ffiffi
3

p
L̄6

L̄þ −9795520512iþ9795520512iη
19591041024ð1−ηÞ þ −16507266048þ997691904η

19591041024L̄ þ 2920012416i−5449514112iηþ2138990976iη2þ390510720iη3

ð1−ηÞ19591041024L̄2

þ 2513531735
19591041024

ffiffiffiffiffiffiffiffi
3−3η

p
L̄2 þ −9795520512iþ9795520512iη5

19591041024
ffiffiffiffiffiffiffiffi
3−3η

p
L̄3 þ 473379552¼−1217744928η−732499200η2−308777184η3

19591041024L̄3

þ 8658485712i−21708103248iηþ15835827024iη2−1608359760iη3−750777120iη4−427072608iη5
19591041024ð1−ηÞL̄4

3=2 þ 39169484928−18966223872η
19591041024

ffiffiffiffiffiffiffiffi
3−3η

p
L̄4 þ 5063254530þ9042938484η−19353693144η2þ4363840560η3þ2065000782η4þ670199232η5

19591041024L̄5

þ 14574447936i−70857540288iηþ88207553664iη2−31924461312iη3
19591041024

ffiffiffiffiffiffiffiffi
3−3η

p
L̄5 þ 2484334683iη6þ1080220672iη7

19591041024ð1−ηÞL̄6

þ 17935074621i−54280336946iηþ31035646320iη2þ37626780033iη3−38990726240iη4þ3109006857iη5

19591041024ð1−ηÞL̄6

þ 11886526656þ16404841872η−9940944672η2−2367512928η3
19591041024

ffiffiffiffiffiffiffiffi
3−3η

p
L̄6
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perturbations in the SdS BH spacetime. In Table VIII, we
expand their work to include the QNFs for integer and half-
integer spins up to OðL−6Þ.
In this section, we calculate the QNFs for the 4D SdS BH

using these expressions from Table VIII for each of the
fields of spin s ∈ f0; 1=2; 1; 3=2; 2g. We address QNFs of
integer and half-integer spin separately. The QNFs of the
SdS BH within the eikonal regime follow the same trends
observed for the Schwarzschild and RN BH spacetimes: a
steadily increasing real part and a constant imaginary part
(emergent for each value of Λ and related to the associated
Lyapunov exponent), as well as a decrease (increase) in the
real part of the QNFs of integer spin (half-integer spin) for
increasing s and fixed l.
Moreover, an equidistant spacing between subsequent

QNFs emerges for each value of Λ, shown in Table XI to
be equivalent to theLyapunovexponent asdefined inEq. (1.6),
much like in the Schwarzschild case. Since Ωc ≈ Λ̄ in the
large-l regime [32,33], this spacing is equivalent also to the
orbital angular frequency. Furthermore, the Λ ¼ 0 column
matches its asymptotically flat-space counterpart, as expected.
However, as thevalueofΛ increases, thegrowthofboth the real
and the imaginary part is hindered: RefΔωg decreases in
magnitudeand the imaginarypart converges to a smaller value.
From this, we might surmise that the presence of a positive
spacetime curvature suppresses the influence of angular
momentum on the QNF.
We first list the low-lying results and compare these to

extant QNF expressions, to further the validation of the
method as initiated in Ref. [40] (see Appendix A 3, where
we find excellent agreement with Ref. [30]). We also verify
our large-l results with the WKB method of Ref. [25] and
the PT approximation of Refs. [19,34], and determine that
the results are highly consistent.

1. QNFs of integer spin within 4D SdS BH spacetimes

In keeping with the behavior of the QNFs within the
Schwarzschild and RN BH spacetimes, the magnitude of
the real part of the QNF decreases for increasing spin for
SdS BH spacetimes. For larger values of l, we observe that
Refωg of different spins become uniform. If we compare
the large-l QNFs of scalar and electromagnetic fields, the
QNFs match exceedingly well. Thus, we observe that the
spin of the oscillation does not influence QNF behavior in
the large-l limit. This is further supported by the consistent
values obtained for the spacing between subsequent QNFs,
as shown in Table XI.
While the same trends apply for the gravitational fields,

we note that there remains a slight discrepancy at l ¼ 100
between the QNFs for the gravitational and electromagnetic
perturbations. In other words, the effect of spin is not as
quickly negated for the spin-2 fields when compared with
the other integer fields studied.

2. QNFs of half-integer spin within 4D SdS BH
spacetimes

Despite the approximations introduced, the spin-1=2 and
spin-3=2 QNFs derived with the DO method remain in
excellent agreement with the WKB and PT results we
calculate (where low-lying points of comparison are
recorded in Appendix A 3).
The QNFs of half-integer spin reflect the behavior of the

integer fields, with an equivalent suppressive influence
observed for increasing values of Λ. Though the magni-
tudes of Refωg for the Dirac and Rarita-Schwinger fields
do not match exactly for l ¼ 100, the discrepancy between
the two remains small such that the role of spin becomes
demonstrably diminished in the large-l limit.
As we have seen for the Schwarzschild and RN BHs, the

Dirac and the uniform QNFs correlate best. However, the
QNFs associated with this uniform potential carry the same
characteristics observed for all fields within the large
multipolar limit for each Λ, most notably the emergence
of an equidistant spacing in the real part and a constant
imaginary part, both of which relate to the Lyapunov
exponent and the orbital angular frequency in the large-
l regime.
In Table XI, the quantitative commonalities that emerge

irrespective of the spin of the QNF are recorded. Here, we
calculate the Lyapunov exponent using Eq. (1.6); since we
are in the large multipolar limit, we know that the orbital
angular frequency is equivalent to this quantity [32,33].
The relationships between the Lyapunov exponent, as well
as RefΔωg and jImfωgj in the large-l limit, are as in the
Schwarzschild case, such that the Lyapunov exponent can
be extracted directly from the inter-QNF spacing and the
constant imaginary part of the QNF associated with each
value of Λ. As Λ increases, the Lyapunov exponent and all
related quantities decrease.

IV. CONCLUSIONS

Within this work, we have performed a review of the
extant expressions for the effective QNM potentials in the
literature associated with perturbing fields of integer and
half-integer spin in stationary, spherically symmetric BH
spacetimes of d ≥ 4. Through this systematic analysis, we
have determined that the application of the large multipolar
limit reduces these effective potentials to a common form,
irrespective of the spin of the field and regardless of the
nuances of the BH spacetime (i.e., BH mass, BH charge,
etc.), provided λ ≥ 0. For λ < 0, the asymptotic behavior of
r affects the final outcome. However, the effect is uniform
for all AdS cases studied here, such that Veff → const is
universal for our choice of AdS boundary conditions.
Since many of the mathematical techniques historically

applied to QNM problems exhibit greater accuracy when
l ≫ n, this uniformity of expression suggests that Eq. (2.4)
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alone is consistently sufficient to produce reliable results
within Minkowski and dS spacetimes; for AdS spacetimes,
thebehavior exhibited inEq. (2.5) should suffice.Furthermore,
if we were to automate a QNM calculation procedure, this
observation implies that dimensionality and angular momen-
tum serve as the primary factors to consider. As such, with the
generalized expressions of Eqs. (2.4) and (2.5) in place, we are
in a better position to compare various QNMproblem-solving
methods in order to gauge their relative accuracy within the
large multipolar limit, and to exploit this consistency in the
development of new mathematical techniques and possibly
machine-learning algorithms.

To validate the behavior observed in our analytical inves-
tigation of the large-l regime,we have engaged in a numerical
study of QNFs for increasing values of l via Dolan and
Ottewill’s recently developed inverse multipolar expansion
method, with a focus onQNFs of spin s ∈ f0; 1=2; 1; 3=2; 2g
inSchwarzschild,RN,andSdSspacetimes. InSec. III,wehave
provideda full descriptionof thephysicaloriginsof themethod
and the manner in which it is applied; we have addressed the
necessary ansatz and associated components required forQNF
computation in each spacetime and, where feasible, explicitly
recorded the series expansion with which the QNFs are to be
computed for each field. Except for gravitational and

TABLE X. QNFs of half-integer spin and the “uniform” potential for a 4D SdS BH calculated via the DO method to order OðL−6Þ.
Field l ωðΛ ¼ 0.00Þ ωðΛ ¼ 0.04Þ ωðΛ ¼ 0.08Þ ωðΛ ¼ 0.10Þ

Uniform

10 2.1139 − 0.0962i 1.6914 − 0.0769i 1.1189 − 0.0509i 0.6687 − 0.0304i
20 4.0398 − 0.0962i 3.2320 − 0.0770i 2.1379 − 0.0509i 1.2776 − 0.0304i
40 7.8896 − 0.0962i 6.3118 − 0.0770i 4.1749 − 0.0509i 2.4950 − 0.0304i
60 11.7389 − 0.0962i 9.3912 − 0.0770i 6.2117 − 0.0509i 3.7122 − 0.0304i
80 15.5880 − 0.0962i 12.4705 − 0.0770i 8.2485 − 0.0509i 4.9294 − 0.0304i
100 19.4370 − 0.0962i 15.5500 − 0.0770i 10.2852 − 0.0509i 6.1466 − 0.0304i

Dirac

10 2.1161 − 0.0962i 1.6931 − 0.0770i 1.1201 − 0.0509i 0.6694 − 0.0304i
20 4.0410 − 0.0962i 3.2329 − 0.0770i 2.1385 − 0.0509i 1.2780 − 0.0304i
40 7.8902 − 0.0962i 6.3122 − 0.0770i 4.1752 − 0.0509i 2.4952 − 0.0304i
60 11.7393 − 0.0962i 9.3915 − 0.0770i 6.2119 − 0.0509i 3.7123 − 0.0304i
80 15.5880 − 0.0962i 12.4707 − 0.0770i 8.2486 − 0.0509i 4.9295 − 0.0304i
100 19.4370 − 0.0962i 15.5500 − 0.0770i 10.2853 − 0.0509i 6.1467 − 0.0304i

RS

10 2.2964 − 0.0961i 1.8373 − 0.0769i 1.2153 − 0.0509i 0.7263 − 0.0304i
20 4.2267 − 0.0962i 3.3815 − 0.0770i 2.2367 − 0.0509i 1.3367 − 0.0304i
40 8.0791 − 0.0962i 6.4633 − 0.0770i 4.2751 − 0.0509i 2.5549 − 0.0304i
60 11.9293 − 0.0962i 9.5435 − 0.0770i 6.3125 − 0.0509i 3.7724 − 0.0304i
80 15.7790 − 0.0962i 12.6232 − 0.0770i 8.3495 − 0.0509i 4.9898 − 0.0304i
100 19.6280 − 0.0962i 15.7030 − 0.0770i 10.3864 − 0.0509i 6.2070 − 0.0304i

TABLE IX. QNFs of integer spin for a 4D SdS BH calculated via the DO method to orderOðL−6Þ for spin-0, spin-1, and spin-2 fields.
Field l ωðΛ ¼ 0.00Þ ωðΛ ¼ 0.04Þ ωðΛ ¼ 0.08Þ ωðΛ ¼ 0.10Þ

Scalar

10 2.0213 − 0.0963i 1.6156 − 0.0771i 1.0676 − 0.0510i 0.6377 − 0.0304i
20 3.9455 − 0.0962i 3.1557 − 0.0770i 2.0868 − 0.0509i 1.2469 − 0.0304i
40 7.7944 − 0.0962i 6.2351 − 0.0770i 4.1239 − 0.0509i 2.4644 − 0.0304i
60 11.6433 − 0.0962i 9.3144 − 0.0770i 6.1607 − 0.0509i 3.6817 − 0.0304i
80 15.4920 − 0.0962i 12.3937 − 0.0770i 8.1975 − 0.0509i 4.8989 − 0.0304i
100 19.3410 − 0.0962i 15.4730− 0.0770i 10.2342− 0.0509i 6.1161 − 0.0304i

EM

10 2.0152 − 0.0962i 1.6124 − 0.0769i 1.0667 − 0.0509i 0.6375 − 0.0304i
20 3.9424 − 0.0962i 3.1541 − 0.0770i 2.0863 − 0.0509i 1.2468 − 0.0304i
40 7.7928 − 0.0962i 6.2343 − 0.0770i 4.1237 − 0.0509i 2.4644 − 0.0304i
60 11.6423 − 0.0962i 9.3139 − 0.0770i 6.1606 − 0.0509i 3.6817 − 0.0304i
80 15.4920 − 0.0962i 12.3932 − 0.0770i 8.1974 − 0.0509i 4.8989 − 0.0304i
100 19.3410 − 0.0962i 15.4730 − 0.0770i 10.2342 − 0.0509i 6.1161 − 0.0304i

Gravitational

10 1.9968 − 0.0958i 1.5977 − 0.0768i 1.0569 − 0.0509i 0.6317 − 0.0304i
20 3.9330 − 0.0961i 3.1465 − 0.0769i 2.0813 − 0.0509i 1.2439 − 0.0304i
40 7.7880 − 0.0962i 6.2305 − 0.0770i 4.1211 − 0.0509i 2.4629 − 0.0304i
60 11.6391 − 0.0962i 9.3113 − 0.0770i 6.1589 − 0.0509i 3.6807 − 0.0304i
80 15.4890 − 0.0962i 12.3913 − 0.0770i 8.1961 − 0.0509i 4.8981 − 0.0304i
100 19.3390 − 0.0962i 15.4710 − 0.0770i 10.2331 − 0.0509i 6.1155 − 0.0304i
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electromagneticQNFsof theRNBHspacetimewithθ < 1, all
results have been carried to orders of OðL−6Þ, reflecting a
marked improvement on several extant attempts at pursuing
the DO method in the literature. At this order, we found
excellent agreementbetween theQNFswecomputedusing the
DOmethod and those obtained through the sixth-order WKB
and PT methods, particularly for larger values of l. We
anticipate better agreement for expansions at higher orders
of L−k.
Irrespective of the BH context and the spin of the field,

we observed that the magnitude of the QNFs decreased
(increased) with s for QNFs of integer (half-integer) spin
for fixed l—an effect more pronounced in the lower-l
regime. In accordance with our analytical results in the
large multipolar limit, the magnitude of the QNFs for
different values of s began to converge for large l. This was
noted explicitly in the Schwarzschild and SdS cases (for
each value of the cosmological constant, with a distinct
value of integer-spin QNFs); the presence of θ slightly
offset this consistency. Furthermore, we observed that
Refωg increased with increasing θ while both Refωg
and Imfωg decreased with increasing λ—an effect more
pronounced in the large-l regime.
From these observations, we may surmise that the

nature of the BH parameters is of greater influence than
the nuances of the perturbing field within the large-l
regime. The effect of an increase in θ manifests as an
increase in Refωg and a slight decrease in Imfωg (please
see Tables V and VI). This implies an increase in
oscillation frequency and a decrease in damping, thereby
demonstrating that BH charge increases QNF energy. In
contrast, Λ suppresses QNF growth for both Refωg and
Imfωg. This effect appears more pronounced than that of
the BH charge, with relatively substantial differences in
QNF magnitude seen as Λ was increased from 0.00 to 0.1
for large l (please see Tables IX and X). This suggests
that the QNF dependence on the cosmological constant is
particularly significant. Although we maintained a con-
stant BH mass throughout our investigation, it would be
interesting to observe the effect of BH mass on QNF
magnitudes.
Based on known behaviors in the literature [30,32,33],

we expected the imaginary part of the gravitational QNF to
converge to a constant that—in the Schwarzschild and SdS
BH spacetimes—would match the Lyapunov exponent. We

found that this relationship between Imfωg and Λ̄ for l →
∞ applied to QNFs of all spins studied here for
Schwarzschild, SdS, and RN BH spacetimes of sufficiently
low θ. An unexpected observation was the emergence of a
constant spacing between successive values of Refωg
within the large-l regime that matched precisely with this
Lyapunov exponent. We suggest that this is related to the
fact that Λ̄ ≈ Ωc within the large multipolar limit.
Thus, we have demonstrated that the large multipolar

regime offers a number of physical insights regarding the
behavior of QNFs within various spacetimes, for which
further study is warranted. Additional investigations into
the DO method are also required, such as a full-scale
analysis of the form we presented here focused instead on
the QNM wave function. Further comparative studies
between the DO method at higher orders of L−k and more
recently constructed methods with demonstrably enhanced
accuracy (such as the improved semianalytic approach of
Refs. [28,29]) are of particular interest. Such studies would
benefit from the inclusion of an explicit error analysis,
which was not considered in this work. Finally, we note that
extensions of the method to higher dimensions and AdS
spacetimes are highly desirable.
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APPENDIX: VALIDATION OF THE DO METHOD
FOR LOW-LYING QNFS IN 4D BH SPACETIMES

In Ref. [40], Dolan and Ottewill explicitly compared
their results for the gravitational QNFs within a
Schwarzschild BH spacetime with extant results in the
literature. They observed that the excellent agreement they
found for these perturbations extended to those of integer
spin for the Schwarzschild case. Expansions to higher
orders of L−k corresponded to improved agreement. Here,
we continue their validation of the DO method in the low-l
regime: we supply sources of comparison from the liter-
ature for half-integer QNFs within the Schwarzschild BH

TABLE XI. Relationship between features of the QNFs in the large-l limit and the Lyapunov exponent for all spins s ∈
f0; 1=2; 1; 3=2; 2g and varying Λ in 4D SdS BHs.

Λ ¼ 0.00 Λ ¼ 0.02 Λ ¼ 0.04 Λ ¼ 0.06 Λ ¼ 0.08 Λ ¼ 0.10

RefΔωg 0.1924� 0.0001 0.1743� 0.0001 0.1540� 0.0001 0.1305� 0.0001 0.1018� 0.0001 0.0608� 0.0001
Λ̄ 0.1925 0.1743 0.1540 0.1305 0.1018 0.06086
jImfωgj 0.0962� 0.0001 0.0871� 0.0001 0.0770� 0.0001 0.0653� 0.0001 0.05092� 0.0001 0.0304� 0.0001
Λ̄=2 0.0962 0.0871 0.0770 0.0653 0.05092 0.0304
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spacetime, and for QNFs of all spins studied in this paper
within the RN and SdS BH spacetimes. Where appropriate,
we provide results we calculate using the sixth-order WKB
and PT methods, produced with the aid of theMathematica
notebooks made available in Refs. [25,30].

1. QNFs in Schwarzschild BH spacetimes

The DO results of Tables XII and XIII are computed
using the

P
k ωkL−k expansions to OðL−6Þ, extracted

from the bc
P

6
k¼−1 ωkL−k expansions of Table II. The

positive imaginary part in Shu and Shen’s results [36] is a
consequence of their choice in temporal dependence.
In Table XII, the columns labeled ωSS and ωCho showcase

results from Shu and Shen [36] and Cho [37], respectively,
derived via the third-orderWKB. The results of the remaining
columns are calculated by us using the sixth-order WKB, PT,
and DO methods.
In Table XIII, we again use the third-order WKB

results of Ref. [36]. The third-order WKB, sixth-
order WKB, and improved AIM results are taken
from Ref. [58]. We calculate the final DO column
to OðL−6Þ.

2. QNFs in Reissner-Nordström BH spacetimes

For the RN BH spacetimes, the DO method extends to
order OðL−6Þ for QNFs of spin s ¼ 0; 1=2; 3=2 without
incident. However, for QNFs associated with electromag-
netic and gravitational perturbations, complications arise.
This can be seen in the following comparisons with the
literature.
In Table XIV, we compare the QNFs we produce via the

DO method to OðL−6Þ with results from Ref. [42] calcu-
lated using the sixth-order WKB method. We include
results we calculated using the WKB method and PT
approximation to improve our comparison.
For lower values of θ, we find a closer agreement

between the WKB and DO results than the WKB and
the PT for the spin-0 QNFs, such that the DO method
appears more accurate than the PT under these conditions.
For the electromagnetic case, we calculate the expan-

sions up to OðL−4Þ for θ < 1 and to OðL−6Þ for θ ¼ 1. We
compare our results in Table XV with those listed in
Ref. [23], which includes the QNFs determined in Ref. [65]
by Gunter. Note that where we use θ ¼ 1 for the DO
method, these references made use of θ ¼ 0.99 to

TABLE XII. Spin-1=2 QNFs of Schwarzschild BHs from Refs. [36,37] and computed with the sixth-order WKB, PT approximation,
and DO expansion from Table II.

l ωSS [36] ωCho [37] ωcalc (WKB) ωcalc (PT) ωcalc (DO)

1 0.3786þ 0.0965i 0.379 − 0.097i 0.3801 − 0.0964i 0.3855 − 0.0991i 0.3800 − 0.0964i
2 0.5737þ 0.0963i 0.574 − 0.096i 0.5741 − 0.0963i 0.5779 − 0.0975i 0.5741 − 0.0963i
3 0.7672þ 0.0963i 0.7670 − 0.096i 0.7674 − 0.0963i 0.7702 − 0.0969i 0.7674 − 0.0963i
4 0.9602þ 0.0963i 0.960 − 0.096i 0.9603 − 0.0963i 0.9625 − 0.0963i 0.9603 − 0.0963i

TABLE XIII. Spin-3=2 QNFs of Schwarzschild BHs from Refs. [36,58] based on the WKB and AIM, and computed with the DO
expansion from Table II.

l ωSS [36] ω3rd [58] ω6th [58] ωAIM [58] ωcalc_calc (DO)

2 0.7346þ 0.0949i 0.7346 − 0.0949i 0.7348 − 0.0949i 0.7347 − 0.0948i 0.7348 − 0.0949i
3 0.9343þ 0.0954i 0.9343 − 0.0954i 0.9344 − 0.0954i 0.9343 − 0.0953i 0.9345 − 0.0954i
4 1.1315þ 0.0956i 1.1315 − 0.0956i 1.1315-0.0956i 1.1315 − 0.0956i 1.1315 − 0.0956i

TABLE XIV. Spin-0 QNFs for 4D RN BHs calculated using the DO method and compared with the sixth-order WKB from Ref. [42]
and the WKB and PT results we calculate.

l ωðθ ¼ 0.2Þ ωðθ ¼ 0.4Þ ωðθ ¼ 0.6Þ ωðθ ¼ 0.8Þ
2 (DO) 0.4876 − 0.0971i 0.5001 − 0.0978i 0.5245 − 0.0989i 0.6078 − 0.0973i
2 [42] 0.4869 − 0.09697i 0.4974 − 0.09756i 0.5174 − 0.09833i 0.5531 − 0.09834i
2 (PT) 0.4913 − 0.0982i 0.5041 − 0.0989i 0.5288 − 0.0998i 0.5747 − 0.1001i
3 (DO) 0.6804 − 0.0967i 0.6970 − 0.0974i 0.7277 − 0.0984i 0.8318 − 0.0967i
3 (WKB) 0.6805 − 0.0967i 0.6967 − 0.0974i 0.7281 − 0.0983i 0.7853 − 0.0985i
3 (PT) 0.6832 − 0.0973i 0.6994 − 0.0980i 0.7306 − 0.0989i 0.7876 − 0.0990i
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accommodate the limitations of their chosen methodolo-
gies. In our own calculations for the QNFs of the RN BH
spacetime using the sixth-order WKB and PT approxima-
tion, we have seen the methods fail as θ → 1.
For the low-lying gravitational QNFs, we compare our

results with those listed in Ref. [23], where Kokkotas and
Schultz employed the third-order WKB method and com-
pared their results against those Gunter obtained numeri-
cally in Ref. [65]. In Table XVI, we observe that Gunter’s
results match or overtake the DO for lower values of θ,

particularly for Imfωg. However, the DO method becomes
demonstrably more accurate for larger l.
Relative to their integer-spin counterparts, there are few

reviews of spin-1=2 QNFs for RN BHs, particularly using
the formalism we apply. We compare the DO results we
calculate to order OðL−6Þ and those of Ref. [66] using the
PTapproximation in Table XVII. The results match best for
θ ¼ 0.4; the DO QNFs show improvement as l increases.
In Table XVIII, we compare the DO method for spin-3=2

QNFs to order OðL−6Þ with results obtained via the sixth-

TABLE XV. Spin-1 QNFs in the 4D RN BH spacetime calculated using the DO method and compared with the third-order WKB
results of Ref. [23] and numerical results of Ref. [65].

l ωðθ ¼ 0.0Þ ωðθ ¼ 0.4Þ ωðθ ¼ 0.8Þ ωðθ ≈ 1Þ
2 (DO) 0.4576 − 0.09501i 0.4751 − 0.0966i 0.5702 − 0.09899i 0.7043 − 0.0859i
2 [23] 0.4571 − 0.0951i 0.4795 − 0.0965i 0.5698 − 0.0990i 0.6925 − 0.0892i
2 [65] 0.4576 − 0.0950i 0.4799 − 0.0964i 0.5701 − 0.0991i 0.6928 − 0.0886i
3 (DO) 0.6569 − 0.0956i 0.6864 − 0.0970i 0.8029 − 0.0991i 0.9658 − 0.0870i
3 [23] 0.6567 − 0.0956i 0.6871 − 0.0970i 0.8027 − 0.0991i 0.9519 − 0.0889i
3 [65] 0.656 − 0.0956i 0.6873 − 0.0970i 0.8028 − 0.0991i 0.9521 − 0.0893i
4 (DO) 0.8531 − 0.0959i 0.8908 − 0.0972i000 1.0304 − 0.0990i 1.2226 − 0.0875i
4 [23] 0.8530 − 0.0959i 0.8909 − 0.0972i 1.0303 − 0.0991i 1.2066 − 0.0891i
4 [65] 0.8531 − 0.0959i 0.891 − 0.0972i 1.0304 − 0.0990i 1.2067 − 0.0898i
5 [23] 1.0382 − 0.0960i 1.0929 − 0.0972i 1.2554 − 0.0989i 1.4588 − 0.0896i
5 (DO) 1.0479 − 0.0960i 1.0928 − 0.0972i 1.2554 − 0.0989i 1.4772 − 0.0878i
5 [65] 1.0459 − 0.0960i 1.0929 − 0.0974i 1.2554 − 0.0947i 1.4589 − 0.0898i

TABLE XVI. Spin-2 QNFs for 4D RN BHs calculated using the DO method and compared with the third-order WKB results of
Ref. [23] and numerical results of Ref. [65].

l ωðθ ¼ 0.0Þ ωðθ ¼ 0.4Þ ωðθ ¼ 0.8Þ ωðθ ≈ 1Þ
2 (DO) 0.3736 − 0.0887i 0.3836 − 0.0889i 0.4013 − 0.0892i 0.4313 − 0.0833i
2 [23] 0.3732 − 0.0892i 0.3779 − 0.0896i 0.4005 − 0.0898i 0.4283 − 0.0853i
2 [65] 0.3737 − 0.0890i 0.3784 − 0.0894i 0.4012 − 0.0896i 0.4293 − 0.0843i
3 (DO) 0.5994 − 0.0927i 0.6080 − 0.09300i 0.6476 − 0.0931i 0.7043 − 0.0860i
3 [23] 0.5993 − 0.0927i 0.6069 − 0.0931i 0.6473 − 0.0931i 0.6998 − 0.0871i
3 [65] 0.5994 − 0.0927i 0.6071 − 0.0931i 0.6476 − 0.0931i 0.7001 − 0.0870i
4 (DO) 0.8092 − 0.09416i 0.8204 − 0.0945i 0.8806 − 0.09466i 0.9658 − 0.0870i
4 [23] 0.8091 − 0.0942i 0.8201 − 0.0945i 0.8805 − 0.0947i 0.9591 − 0.08800i
4 [65] 0.8092 − 0.0942i 0.8202 − 0.0945i 0.8806 − 0.0947i 0.9593 − 0.0881i
5 (DO) 1.0123 − 0.0949i 1.0272 − 0.0953i 1.1083 − 0.0955i 1.2226 − 0.0875
5 [23] 1.0123 − 0.0949i 1.027 − 0.0953i 1.1083 − 0.0955i 1.2137 − 0.0884i
5 [65] 1.0123 − 0.0949i 1.0272 − 0.0953i 1.1083 − 0.0955i 1.2138 − 0.0887i

TABLE XVII. Spin-1=2 QNFs for 4D RN BHs calculated using the DO expansion of Table II and compared with the PT results of
Ref. [66].

l ωðθ ¼ 0.0Þ ωðθ ¼ 0.2Þ ωðθ ¼ 0.4Þ ωðθ ¼ 0.6Þ
1 (DO) 0.3784 − 0.0930i 0.3833 − 0.0930i 0.3915 − 0.0936i 0.4054 − 0.0954i
1 [66] 0.3855 − 0.0991i 0.3881 − 0.0993i 0.3964 − 0.0997i 0.4121 − 0.1003i
4 (DO) 0.9603 − 0.0962i 0.9673 − 0.0965i 0.988 − 0.0971i 1.027 − 0.0978i
4 [66] 0.9625 − 0.0966i 0.9690 − 0.0968i 0.9898 − 0.0974i 1.0293 − 0.0982i
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order WKB and the improved AIM, as recorded in Ref. [59].
Though the DO method demonstrates relatively poor agree-
ment for results of low multipolar number, particularly for
Imfωg, it becomes more reliable as l and θ increase.

3. QNFs in Schwarzschild de Sitter BH spacetimes

In Ref. [30], Zhidenko performed a numerical analysis on
low-lying QNFs of spin s ∈ f0; 1=2; 1; 2g within the SdS
BH spacetime, using the sixth-order WKB and PT approxi-
mation methods. We use these results for our comparison in

Tables XIX–Table XXII. For the spin-3=2 QNFs, we utilize
the notebook provided in Ref. [30] to compute the out-
standing spin-3=2 results (see Tables XXIII).
For the SdS BH spacetimes, the DO method extends to

order OðL−6Þ with relative ease. As such, all QNFs
here are calculated to this order. We consistently find a
closer agreement between the WKB and DO results
than the WKB and the PT for all but the spin-3=2
QNFs, demonstrating that the DO method is highly
reliable.

TABLE XVIII. Spin-3=2 QNFs for 4D RN BHs calculated using the DO method and compared with the WKB and improved AIM
results of Ref. [59].

l ωðθ ¼ 0.1Þ ωðθ ¼ 0.5Þ ωðθ ¼ 1.0Þ
0 (DO) 0.3189 − 0.08516i 0.3023 − 0.0506i 0.5204 − 0.0766i
0 (WKB) 0.3185 − 0.0910i 0.3634 − 0.0952i 0.5414 − 0.0865i
0 (AIM) 0.3185 − 0.0909i 0.3621 − 0.0881i 0.5414 − 0.0864i
1 (DO) 0.5382 − 0.0932 0.5790 − 0.0944i 0.8159 − 0.0870i
1 (WKB) 0.5375 − 0.0942i 0.5908 − 0.0971i 0.8174 − 0.0874i
1 (AIM) 0.5375 − 0.0942i 0.4050 − 0.1854i 0.8174 − 0.0873i
2 (DO) 0.7429 − 0.0950i 0.7987 − 0.0970i 1.0809 − 0.0879i
2 (WKB) 0.7425 − 0.0952i 0.8046 − 0.0976i 1.0811 − 0.0878i
2 (AIM) 0.7425 − 0.0952i 0.8045 − 0.0975i 1.0811 − 0.0877i
3 (DO) 0.9427 − 0.09554i 1.009 − 0.0973i 1.3396 − 0.0881i
3 (WKB) 0.9424 − 0.0957i 1.0132 − 0.0977i 1.3396 − 0.0880i
3 (AIM) 0.9424 − 0.0957i 1.0131 − 0.0977i 1.3395 − 0.0879i
4 (DO) 1.1400 − 0.0958i 1.2166 − 0.0974i 1.5953 − 0.0882i
4 (WKB) 1.1399 − 0.0959i 1.2193 − 0.0978i 1.5953 − 0.0881i
4 (AIM) 1.1399 − 0.0959i 1.2193 − 0.0978i 1.5953 − 0.0881i
5 (DO) 1.3361 − 0.0960i 1.4220 − 0.0975i 1.8495 − 0.0882
5 (WKB) 1.3360 − 0.0960i 1.4241 − 0.0978i 1.8494 − 0.0882i
5 (AIM) 1.3360 − 0.0960i 1.4241 − 0.0978i 1.8494 − 0.0882i

TABLE XIX. Spin-0 QNFs of 4D SdS BHs calculated using the DO expansions of Table VIII and compared with the sixth-order
WKB and PT results from Ref. [30].

l ωðΛ ¼ 0.00Þ ωðΛ ¼ 0.04Þ ωðΛ ¼ 0.08Þ ωðΛ ¼ 0.10Þ
1 (DO) 0.2929 − 0.0976i 0.2246 − 0.0819i 0.1404 − 0.0540i 0.08160 − 0.03125i
1 (WKB) 0.2929 − 0.0978i 0.2247 − 0.0821i 0.1404 − 0.0542i 0.08156 − 0.03124i
1 (PT) 0.2990 − 0.1010i 0.2260i − 0.0830i 0.1410 − 0.0550i 0.0819 − 0.0315i
2 (DO) 0.4836 − 0.0967i 0.3808 − 0.0787i 0.2475 − 0.0519i 0.1466 − 0.0307i
2 (WKB) 0.4836 − 0.0968i 0.3808 − 0.0788i 0.2475 − 0.05197i 0.1466 − 0.0307i
2 (PT) 0.4870 − 0.0980i 0.3820 − 0.0790i 0.2480 − 0.0520i 0.1468 − 0.0308i

TABLE XX. Spin-1 QNFs of 4D SdS BHs calculated using the DO expansions of Table VIII and compared with the sixth-order WKB
and PT results from Ref. [30].

l ωðΛ ¼ 0.00Þ ωðΛ ¼ 0.04Þ ωðΛ ¼ 0.08Þ ωðΛ ¼ 0.10Þ
1 (DO) 0.2494 − 0.0921i 0.2010 − 0.0747i 0.1340 − 0.0502i 0.0804 − 0.0303i
1 (WKB) 0.2482 − 0.0926i 0.2006 − 0.0748i 0.1339 − 0.0502i 0.0804 − 0.0303i
1 (PT) 0.2550 − 0.0960i 0.2040 − 0.0770i 0.1350 − 0.0510i 0.0805 − 0.0304i
2 (DO) 0.4577 − 0.0950i 0.3673 − 0.0762i 0.2437 − 0.0507i 0.1458 − 0.0304i
2 (WKB) 0.4576 − 0.09501i 0.36723 − 0.07624i 0.24365 − 0.0506i 0.14582 − 0.03037i
2 (PT) 0.4610 − 0.0960i 0.3690 − 0.0770i 0.2440 − 0.0510i 0.1459 − 0.0304i
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