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In this work, we study Randers spacetimes of Berwald type and analyze Pfeifer and Wohlfarth’s vacuum
field equation of Finsler gravity for this class. We show that, in this case, the field equation is equivalent to
the vanishing of the Finsler Ricci tensor, analogously to Einstein gravity. This implies that the considered
vacuum field equation and Rutz’s equation coincide in this scenario. We also construct all exact solutions of
Berwald-Randers type to vacuum Finsler gravity, which turns out to be composed of a Ricci-flat, CCNV
(covariantly constant null vector) Lorentzian spacetime, or Brinkmann space, and a 1-form defined by its
CCNV. Since the pp-waves are the most well-known metric in this class, we refer to the found solutions as
Randers pp-waves.
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I. INTRODUCTION

Finsler geometry is an extension of Riemannian geom-
etry, in which the squared line element is not restricted to be
quadratic in the displacements, and it is a natural frame-
work allowing for a canonical definition of length for
curves on a smooth manifold.
Historically, the possibility of considering this type of

geometry was already discussed by Riemann himself in his
famous habilitation lecture in 1854 [1,2]. The first sys-
tematic study of such spaces, however, appeared only much
later, in the dissertation thesis of Finsler in 1918 [3]. It is
therefore hardly surprising that general relativity was
formulated on the basis of (pseudo-)Riemannian geometry,
which was already well developed at the time. In fact, there
is no fundamental physical reason to exclude the use of
proper, non-Riemannian, Finslerian spacetimes to describe
gravity [4,5].
The exploration of theories of gravity based on Finsler

geometry only began much later, once it became clear that
general relativity may not be the complete answer to our
understanding of gravity. Today, we know that general
relativity is able to explain many observations with

astonishing precision but not at all scales. The theory faces
substantial problems at the very large and very small scales.
In the first case, dark matter and dark energy have to be
postulated, and the challenge in the latter scenario is
to reconcile the theory with the principles of quantum
mechanics. A more general theory of gravity, based on
Finsler geometry, might shed light on some of these issues.
There are two particularly compelling examples of how

Finsler geometry may lead to new insights on the nature of
the gravitational interaction. The first one appears in the
context of quantum gravity. Research suggests that the flat,
classical limit of the quantum-mechanical description of
gravity may be given by an effective semiclassical theory in
which spacetime is a curved Finsler manifold. The geo-
metrical structure of spacetime in this regime seems to be of
a more general type, and it is truly necessary to use Finsler
geometry (or even Lagrange geometry) in order to describe
it. This is intimately related to deformed Poincaré sym-
metries and corresponding modified (energy-momentum)
dispersion relations (MDRs). For instance, a certain Finsler
geometry can be coupled to any MDR (satisfying some
basic mathematical assumptions) in order to describe the
corresponding dynamics [6–8]. This stands in contrast
to Lorentzian geometry, which can only describe quadratic
MDRs.
The second example comes from the coupling between

gravity and fluids, respectively gases. The kinetic theory of
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gases describes the dynamics of multiparticle systems in
terms of a scalar field on the tangent bundle, the so-called
1-particle distribution function (1PDF) [9]. The coupling
between gravity and such a gas usually involves averaging
over the velocity distribution of its particles and leads to the
Einstein-Vlasov equations [10]. Hence, although the veloc-
ity distribution of the gas is taken into account for its
dynamics, it is averaged away when determining the gas
gravitational field. A direct coupling of the gas 1PDF to
Finsler geometry circumvents this loss of information and
gives rise to a gas gravitational field distribution described
by Finsler geometry [11,12].
In this work, we consider the (action-based) approach to

Finsler gravity outlined in [13,14]. Structurally, the theory
is analogous to general relativity in the sense that admis-
sible, or “physical,” spacetimes are those that satisfy a
certain field equation. Solutions of Berwald type to Pfeifer
and Wohlfarth’s vacuum field equation have recently been
found [15–17]. We analyze this equation for Randers
spacetimes of Berwald type and prove that, in this scenario,
it is formally identical to Einstein’s vacuum field equations.
As a result, the classification of its solutions reduces to the
classification of vacuum solutions in general relativity,
admitting a covariantly constant 1-form. The resulting
Berwald-Randers spacetimes are composed of a Ricci-flat,
covariantly constant null vector (CCNV) Lorentzian space-
time, or Brinkmann space [18], and a 1-form defined by its
covariantly constant null vector. Since the pp-waves are the
most well-known metric in this class, we refer to the found
solutions as Randers pp-waves.

II. FINSLER GEOMETRY

Finsler geometry is a natural extension of Riemannian
geometry [3,19,20]. Given the philosophy that the length of
a curve is obtained by integrating the length of its tangent
vector, Finsler geometry provides the most general way of
assigning lengths to curves on a manifold. While in
Riemannian geometry, the length of a tangent vector is
given by the metric-induced norm, in Finsler geometry, this
length is given by a so-called Minkowski norm, a much
weaker and more general notion.
First of all, some remarks about notation are in order.

Throughout this work, we will usually work in local
coordinates; i.e., given a smooth manifold M, we assume
that some chartϕ∶U ⊂ M → Rn is provided, andwe identify
any p ∈ U with its image ϕðpÞ ∈ Rn. For p ∈ U, each Y ∈
TpM (the tangent spaces toM) can bewritten as Y ¼ yi∂ijp,
where the tangent vectors ∂i ≡ ∂

∂xi furnish the chart-induced
basis of TpM. This provides natural local coordinates on the
tangent bundle TM via the chart,

ϕ̃∶ Ũ → Rn ×Rn; Ũ ¼ ∪
p∈U

fpg × TpM ⊂ TM;

ϕ̃ðp; YÞ ¼ ðϕðpÞ; y1;…; ynÞ≕ ðx; yÞ: ð1Þ

These local coordinates on TM, in turn, provide a natural
basis of its tangent spaces Tðx;yÞTM, namely

� ∂
∂xi ¼ ∂i;

∂
∂yi ¼ ∂̄i

�
: ð2Þ

Next, we will first introduce the basic notions of Finsler
geometry for the positive definite case. The generalization
to Lorentzian signature is nontrivial, however, and will be
introduced afterward.

A. Finsler spaces of positive definite signature

A Finsler space is a pair ðM;FÞ, where M is a smooth
manifold, and F, the so-called Finsler function, is a map
F∶TM → ½0;∞Þ that satisfies the following axioms:

(i) F is (positively) homogeneous of degree one with
respect to y:

Fðx; λyÞ ¼ λFðx; yÞ; ∀ λ > 0; ð3Þ

(ii) F is strictly convex in y; i.e., the fundamental
tensor, with components gij ¼ ∂̄i∂̄jð12F2Þ, is pos-
itive definite.

For each x ∈ M, the map y ↦ Fðx; yÞ is what is known as a
Minkowski norm1 on TxM, i.e., a real-valued function that
is positively homogeneous, strictly convex, and smooth
away from the zero vector. The homogeneity conditions
ensure that the length of any curve γ, defined as

LðγÞ ¼
Z

Fð_γÞdλ ¼
Z

Fðx; _xÞdλ; _γ ¼ dγ
dλ

; ð4Þ

is invariant of the parameterization. A fundamental result
that is essential for doing computations in Finsler geometry
is Euler’s theorem for homogeneous functions. It says that
if f∶Rn → R is (positively) homogeneous of degree r,
i.e., fðλyÞ ¼ λrfðyÞ for all λ > 0, then yi ∂f∂yi ðyÞ ¼ rfðyÞ.
In particular, this implies the identity,

gijðx; yÞyiyj ¼ Fðx; yÞ2: ð5Þ

Hence, the length of curves is formally identical to the
length in Riemannian geometry, the difference being that
now, the metric tensor may depend on the direction in
addition to the position.
The fundamental theorem of Riemannian geometry says

that any Riemannian manifold admits a unique torsion free
affine connection that is compatible with the metric, the
Levi-Civita connection. A similar statement is true in
Finsler geometry, and this is sometimes called the funda-
mental lemma of Finsler geometry: It states that any Finsler

1Not to be confused with the flat Lorentzian Minkowski
metric.
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space can be endowed with a canonical connection. An
essential difference with Riemannian geometry is that the
connection on a Finsler space is, in general, not a linear
one. Let us therefore briefly recall the notion of a nonlinear
connection. A nonlinear (or Ehresmann) connection is a
smooth decomposition of TTM into a horizontal and a
vertical subbundle,

TTM ¼ HTM ⊕ VTM: ð6Þ
This provides the most general means of describing parallel
transport of vectors between tangent spaces, and, in
particular, it allows one to define whether a curve γ∶I ¼
ða; bÞ → M is autoparallel (straight). Intuitively, we would
like to call a curve straight whenever the velocity _γ∶I →
TM is constant. However, there is no unique way to say,
a priori, what constant means in this context, as each image
point of _γ lies in a different tangent space. As a matter of
fact, as _γ, living in the tangent bundle, also contains all
information about the base point γ, it could never be truly
constant. Indeed, all we can ask is that _γ change only
parallel to M and not in the direction of the fibres of TM.
The rate of change of _γ, i.e., ̈γ, is an element of TTM.
Therefore, in order to be able to say what we mean by a
straight line, we should split the directions in TTM into a
space HTM of directions parallel to M and a space of
directions VTM along the fibers of TM. We then say that a
curve γ∶I → M is autoparallel if ̈γðλÞ ∈ H _γðλÞTM for all
λ ∈ I. The vertical subbundle VTM is canonically defined
on any smooth manifold, namely

VTM ¼ spanf∂̄ig: ð7Þ
However, there is, in general, not a preferred choice of the
horizontal subbundle. In order to be able to speak about
straight curves, in the most general sense, one thus needs to
select one. In order to do so, a set of functions Ni

jðx; yÞ, the
connection coefficients, may be specified, leading to the
following horizontal subbundle of TTM:

HTM ¼ spanfδi ≡ ∂i − Nj
i ∂̄jg: ð8Þ

Parallel transport of a vector field V along γ is then
characterized by the parallel transport equation,

_Vi þ Ni
jðγ; VÞ_γj ¼ 0; ð9Þ

and consequently, autoparallels are precisely the curves that
satisfy

̈γi þ Ni
jðγ; _γÞ_γj ¼ 0: ð10Þ

As mentioned, on a generic smooth manifold, there is no
canonical choice of the connection2 Ni

j, but any Finsler

metric induces one, the Cartan nonlinear connection.
This is the unique homogeneous (nonlinear) connection
on TM that is (smooth on TMnf0g,) torsion free, and
compatible with F. This Cartan nonlinear connection is
given in terms of the Finsler function F by

Ni
jðx; yÞ ¼

1

4
∂̄jðgikðyl∂l∂̄kF2 − ∂kF2ÞÞ; ð11Þ

and may be viewed as a generalization of the Levi-Civita
connection to Finsler spaces. The autoparallel curves of the
nonlinear connection coincide with the geodesics (locally
length-minimizing curves) on M. The curvature tensor,
curvature scalar, and the Finsler Ricci tensor of ðM;FÞ are
defined as

Ri
jkðx; yÞ ¼ −½δj; δk�i ¼ δjNi

kðx; yÞ − δkNi
jðx; yÞ;

Ricðx; yÞ ¼ Ri
ijðx; yÞyj; Rijðx; yÞ ¼

1

2
∂̄i∂̄jRic: ð12Þ

B. Berwald spaces and the Riemannian limit

A Berwald space is a Finsler space ðM;FÞ for which the
Cartan nonlinear connection is, in fact, a linear connection
on TM.3 What this means is that the connection coefficients
are of the form,

Ni
jðx; yÞ ¼ Γi

jkðxÞyk; ð13Þ

for a set of functions Γi
jk∶M → R. From the transformation

behavior ofNi
j, it can be inferred that the functions Γi

jk have
the correct transformation behavior to be the Christoffel
symbols of a (torsion-free) affine connection onM. We will
refer to this affine connection as the associated affine
connection or simply the affine connection on the Berwald
space. The parallel transport (9) and autoparallel equa-
tions (10) reduce, in this case, to the familiar equations,

_Vi þ Γi
jkðγÞ_γjVk ¼ 0; ̈γi þ Γi

jkðγÞ_γj _γk ¼ 0; ð14Þ

in terms of the Christoffel symbols. A straightforward
calculation reveals that the curvature tensors of a Berwald
space can be written as follows:

Rj
kl ¼ R̄i

j
klðxÞyi; Ric ¼ R̄ijðxÞyiyj;

Rij ¼
1

2
ðR̄ijðxÞ þ R̄jiðxÞÞ; ð15Þ

in terms of the curvature tensor of the associated affine
connection,

2From now on, we will refer to the connection coefficients Ni
j

simply as the connection.

3See [21] for an overview of the various equivalent character-
izations of Berwald spaces and [22] for an explicit procedure to
construct Berwald spaces and spacetimes. The latter was used in
[23] to find all homogeneous and isotropic Berwald Finsler
geometries.
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R̄l
i
jk ¼ 2∂ ½jΓi

k�l þ 2Γi
m½jΓ

m
k�l; ð16Þ

and its Ricci tensor R̄lk ¼ R̄l
i
ik,

4 defined in the usual way.
In fact, for positive definite Berwald spaces, one even has
Rij ¼ 1

2
ðR̄ij þ R̄jiÞ ¼ R̄ij, but this does not extend to

Finsler spacetimes, as will be discussed in some more
detail in the next section.
Finsler geometry reduces to Riemannian geometry when

the fundamental tensor gijðx; yÞ ¼ gijðxÞ is independent of
direction y, i.e., if the fundamental tensor is a Riemannian
metric. Equivalently, the space is Riemannian if F2 is
quadratic in the y coordinates. In this case, the nonlinear
connection is actually linear so that, in particular, any
Riemannian manifold is Berwald. In fact, the associated
linear connection is, in this case, nothing more than the
Levi-Civita connection of the Riemannian metric.

C. Finsler spacetimes

The generalization of positive definite Finsler geometry
to an indefinite, for instance Lorentzian, signature is not
completely trivial. To see the basic issue, note that if
the fundamental tensor gμν has Lorentzian signature, then
there will be (nonzero) null vectors v ∈ TxM for which
gμνvμvν¼0. Then, Fðx;vÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνvμvν
p ¼ ffiffiffi

0
p

, even though
v ≠ 0, so F can never be smooth everywhere on TMn0,
which was one of the axioms of a Finsler space. Moreover,
for spacelike (or timelike, depending on the convention)
directions w, Fðx; wÞ will even be imaginary. Thus, some
things clearly need to be modified in order to give an
acceptable definition of a Finsler spacetime. Multiple
approaches are possible. One classical approach [24] is
to work with L ¼ F2 instead of F. Another is to restrict the
domain of definition of F, for instance, to those ðx; yÞ for
which Fðx; yÞ2 ¼ gμνðx; yÞyμyν > 0 [25]. Also, combina-
tions of the two approaches and even additional variations
have been proposed [13,26–28]. What we will do in this
work is simply replace the subbundle TMnf0g ⊂ TM by a
generic conic5 subbundle A ⊂ TM. One might say this is
the weakest definition of a Finsler spacetime in the sense
that it allows for the most examples. This is, of course, the
most suitable for our present purpose, which is to find the
most general solutions to the vacuum field equations of
Finsler gravity in the Berwald-Randers class. In this way,
we guarantee that our results do not depend on a particular
definition and that we indeed find the most general
solutions. Given any other specific definition of a Finsler
spacetime, the most general solutions will then still be a
subset of the ones we present later.

Thus, we will be using the following definition. A
Finsler spacetime is a triple ðM;A; FÞ, where M is a
smooth manifold, A is a conic subbundle of TM (with
nonempty fibers), and F, the so-called Finsler function, is a
map F∶A ⊂ TM → ½0;∞Þ that satisfies the following
axioms:

(i) F is (positively) homogeneous of degree one with
respect to y:

Fðx; λyÞ ¼ λFðx; yÞ; ∀ λ > 0; ð17Þ

(ii) The fundamental tensor, with components gμν ¼
∂̄μ∂̄νð12F2Þ, has Lorentzian signature on A.

The discussion and results (for the connection, curvature
tensors, etc.) treated in sections II A and II B apply
verbatim for Finsler spacetimes, assuming that we only
consider points ðx; yÞ ∈ A. In particular, since the last
equality in Eq. (15) will prove to be of particular interest to
us, we restate it as a lemma.

Lemma 1. The Finsler Ricci tensor of a Berwald space
(time) coincides with the symmetrization of the conven-
tional Ricci tensor of the associated affine connection.

We remark that, in the case that A ¼ TMnf0g, symmet-
rization is, in fact, not necessary, as the Ricci tensor is then
automatically symmetric. In the positive definite case, this
follows immediately from Szabo’s theorem, which states
that the affine connection of any Berwald space is
Riemann-metrizable [29]. In the case of Finsler spacetimes,
the situation is more complicated. In general, Szabo’s
theorem does not hold in this setting, as has been
demonstrated in [30]. Therefore, there is no reason to
expect the Ricci tensor R̄ij to be symmetric. In order to shed
a bit more light on this, we may use the first Bianchi
identity, R̄½lijk� ¼ 0 (which holds as the connection is

torsion-free) to deduce that

2R̄½lk� ¼ R̄i
i
lk: ð18Þ

When the connection is the Levi-Civita connection of a
pseudo-Riemannian metric, the symmetries of the Riemann
tensor dictate that the right-hand side vanish identically,
and hence, in that scenario, the Ricci tensor is always
symmetric. Here, however, the curvature tensor, as defined
in (16), does not have the same symmetries as in
Riemannian geometry, because the connection, in general,
does not come from a pseudo-Riemannian metric. Indeed,
in the cited article, we present explicit examples where
these symmetries do not hold, and the Ricci tensor is indeed
not symmetric.
One can prove that if A ¼ TMnf0g, then the Ricci

tensor must be symmetric after all, as illustrated in detail in
the same article, but, in general, it is not, and hence,
symmetrization in the last equality of (15) is really
necessary.

4We use the notations T ½ij� ¼ 1
2
ðTij−TjiÞ and TðijÞ ¼ 1

2
ðTijþTjiÞ

for (anti)symmetrization.
5The property of being conic means that if ðx; yÞ ∈ A, then

also ðx; λyÞ ∈ A, for any λ > 0.
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D. Randers spacetimes

A Randers metric [31] is a Finsler function of the form
F ¼ αþ β, where the variables αðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aμνðxÞyμyν
p

and
βðx; yÞ ¼ bμðxÞyμ are defined in terms of a
(pseudo-)Riemannian metric6 a¼aμνdxμdxν and a 1-form
b ¼ bμdxμ. By convention, all indices are raised and lowered
with the aμν, and we denote the norm of the
1-form by jbj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνbμbν
p

. Randers metrics belong to the
class of ðα; βÞ-metrics, which are Finsler functions of
the form F ¼ αϕðβ=αÞ, with α and β as defined above
andϕ a scalar function.ForRandersmetrics, the functionϕ is
given by ϕðsÞ ¼ 1þ s. Randers metrics have been studied
extensively in both the positive definite as well as the
Lorentzian context and have a wealth of applications in
physics.
A well-known result states that if α is positive definite,

then F ¼ αþ β is a Finsler metric if and only if jbj < 1.
A crucial ingredient that leads to this conclusion is the
Cauchy-Schwarz inequality jβj ≤ jbjα, which does not
extend in this simple form to indefinite signatures.
Therefore, in the latter case, the situation becomes some-
what different. It can be shown via the matrix determinant
lemma that for α-timelike (i.e., aμνyμyν > 0) vectors, the
determinant of the fundamental tensor of a Randers metric is
given by

det g ¼
�
αþ β

α

�
nþ1

det a; ð19Þ

where n ¼ dimM. This expression has, in general, no well-
defined limit as α → 0, so from this, it is clear that, in the
Lorentzian case, the subbundle A can only include points
ðx; yÞ for which α ≠ 0. In order to have a connected
subbundle, one might propose to work on the subbundle
consisting of α-timelike vectors, i.e., the timecone of α.
However, this does not work in general, and one has to
restrict A just a little bit further.

Proposition 2. Given a Lorentzian metric α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aμνyμyν

p
on a manifold M with time orientation T and

a future-pointing 1-form β that is either null or timelike
with respect to a, the Randers metric F ¼ αþ β defines a
Finsler spacetime on

A ¼ fðx; yÞ ∈ TM∶ aμνðxÞyμyν > 0; aμνðxÞTμðxÞyν > 0g;
ð20Þ

i.e., the forward timecone of a.

The proof, presented in Appendix, relies on showing that
β ¼ biyi > 0 holds everywhere on A.

The following is a well-established result in the positive
definite case, which holds in the indefinite case as well; see
e.g., [22], where conditions for a Finsler spacetime to be of
Berwald type are presented.

Proposition 3. A Randers space, F ¼ αþ β is Berwald
if and only if the 1-form β is covariantly constant with
respect to the Levi-Civita connection of a. If so, the affine
connection of F is identical to the Levi-Civita connection
of a.

III. VACUUM FIELD EQUATION

In the context of Finsler gravity, two types of field
equations have been proposed in the literature. First,
tensorial field equations considering the Finsler metric as
fundamental variable [25,32–36], and second, scalar field
equations for which the Finsler Lagrangian is the funda-
mental variable [13,37,38]. We adopt the latter view, and, in
addition, demand the field equation to be variational,7

meaning that it can be derived from an action. The first
Finsler generalization of Einstein’s equations in a scalar
fashion was suggested by Rutz [37]. However, Rutz’s
equation is not variational; its variational completion
[14,39] turns out to be the Finsler gravity equation
proposed in [13] (for positive definite Finsler spaces, the
analogous equation was presented in [38]), which we
therefore consider as our departure point. In the case of
Berwald spacetimes, it reduces to [16]

�
gμν −

3

F2
yμyν

�
Rμν ¼ 0; ð21Þ

where Rμν is the Finsler Ricci tensor, and since we are in a
Berwald setting, we have Rμν ¼ R̄ðμνÞðxÞ; see Eq. (15). Note
that the vanishing of the Finsler Ricci tensor is a sufficient
condition for a Berwald spacetime to be a solution to
Eq. (21). In fact, for Randers spaces, we have a stronger
result.

Proposition 4. For Berwald-Randers spacetimes, the
field equation, Eq. (21), is equivalent to the vanishing of the
Finsler Ricci tensor RμνðxÞ ¼ R̄μνðxÞ ¼ R̄ðμνÞðxÞ ¼ 0.

Proof.—To see this, we first compute the fundamental
tensor for a Randers spacetime F ¼ αþ β. It reads,

gμν ¼
F
α
aμν þ bμbν þ ðbμyν þ bνyμÞ

1

α
− yμyν

β

α3
: ð22Þ

It can be checked that its inverse is given by

gμν ¼ aμν
α

F
− ðbνyμ þ bμyνÞ α

F2
þ yμyν

ðβ þ jbjαÞ
F3

: ð23Þ

6By abuse of language, α is often referred to as a
(pseudo-)Riemannian metric.

7This constrains the field equation to be a scalar equation on
the tangent bundle.
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Substituting the expression for the gμν into the Berwald
field equation, (21), we find that for Berwald-Randers
spacetimes, the field equation becomes equivalent to

Rαðαþ βÞ2 − 2αðαþ βÞRμνbμyν þ ðβ þ αjbj2ÞRμνyμyν

− 3ðαþ βÞRμνyμyν ¼ 0; ð24Þ

which is a polynomial equation in α. We can separate this
equation into the rational part (even powers in α) and
irrational part (odd powers in α) as

Rα3 þ ðRβ2 − 2βRμνyμbν þ ðjbj2 − 3ÞRμνyμyνÞα
¼ 2ðRμνbμyν − RβÞα2 þ 2βRμνyμyν: ð25Þ

In order for this equation to hold, the left-hand side must
become polynomial in y. However, since α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aμνyμyν
p

is
built from the components of a nondegenerate metric aμν,
this is only possible if both the rational and irrational part
vanish separately.
To verify this last statement before we continue, we

rewrite the equation above as

Pα ¼ Q; ð26Þ

where Q ¼ QμνρðxÞyμyνyρ and P ¼ PμνðxÞyμyν are third
and second order polynomials in y. Thus, assuming P is
nonvanishing, then α ¼ Q

P everywhere on A. In other
words, α is a rational function everywhere on A. This
is, however, not possible since α is the square root of a
pseudo-Riemannian metric, which is, in particular, non-
degenerate and, by definition, nonvanishing on A. Hence,
we must have P ¼ 0, by contradiction.
To continue our proof, we now focus on the vanishing of

the rational part Q, which implies

2ðRμνbμyν − RβÞα2 þ 2βRμνyμyν ¼ 0: ð27Þ

Taking two derivatives with respect to y and taking the trace
with a yields

4ð5Rβ − 8RμνbμyνÞ ¼ 0: ð28Þ

Substituting this into equation (27) yields

β

�
3

4
Rα2 − 2Rμνyμyν

�
¼ 0: ð29Þ

After applying other two y derivatives to the term in
parenthesis and contracting again with a, we get 2R ¼ 0.
Substituting this back into (29) yields Rμνyμyν ¼ 0, and
hence, Rμν ¼ 0. ▪
Notice that in this specific scenario, Berwald-Randers,

the vacuum field equations of Finsler gravity are formally

identical to the vacuum field equations of general
relativity. Moreover, they coincide with Rutz’s proposal
for the vacuum field equation in Finsler gravity [37],
Ric ¼ 0, which amounts to the vanishing of the Finsler
Ricci tensor, Rμν ¼ 0; see Eq. (12). The analogous result
for positive definite Finsler spaces has been proven
in [38].
Next, we will investigate solutions of the field equation.

The previous results show that in Berwald-Randers space-
times, the metric a is determined by the Einstein vacuum
equations R̄μν ¼ 0 and 1-form b ¼ bμdxμ by the condition
that it is covariantly constant with respect to metric
a, ∇μbν ¼ 0.

IV. EXACT BERWALD-RANDERS SOLUTIONS

We now have all the background required to prove our
main results. The following theorem classifies all Berwald-
Randers solutions to the vacuum Finsler generalization of
Einstein’s field equation (FEFE), Eq. (21), that are Berwald
in terms of solutions to the classical Einstein field equa-
tions (EFEs).

Theorem 5. Let ðM;A; FÞ be a Randers spacetime of
Berwald type, F ¼ αþ β. Then, F is an exact solution to
the vacuum FEFE if and only if α is a solution to the
vacuum EFEs.

Proof.—Since F is Berwald-Randers, Proposition 3
implies that its affine connection coincides with the
Levi-Civita connection of the Lorentzian metric α. With
Lemma 1, it thus follows that the Finsler Ricci tensor
coincides with the Ricci tensor of α, and since for
Lorentzian resp. Randers spaces, the property of being a
solution is equivalent to the vanishing of the relevant Ricci
tensor, by Proposition 4, α solves the vacuum EFEs if and
only F solves the vacuum FEFE. ▪
Taking into account Prop. 3, we may also formulate the

theorem in the following way.

Theorem 6. Let ðM;A; FÞ be a Finsler spacetime
of Randers type, F ¼ αþ β. Then the following are
equivalent:
(1) F is an exact Berwald solution to the vac-

uum FEFE.
(2) α is an exact solution to the vacuum EFEs, and F is

Berwald.
(3) α is an exact solution to the vacuum EFEs and β is

parallel with respect to α.

An immediate consequence of the theorem is that a
Randers metric of Berwald type can only be a solution to
the Finsler gravity field equation provided α admits a
parallel 1-form. This strongly restricts the set of possibil-
ities for α, which we investigate in detail in the next
section.
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V. RANDERS pp-WAVES

It has been shown [40] that if a four-dimensional Ricci-
flat Lorentzian manifold ðM; gÞ admits a covariantly con-
stant 1-form ω, then either g is the flat Minkowski metric
(and, hence, the components of ω, in suitable coordinates,
must be constant), or ω is null and the metric can be written,
in local coordinates ðu;v;x1;x2Þ, with u¼ð1= ffiffiffi

2
p Þðx0−x3Þ

and v ¼ ð1= ffiffiffi
2

p Þðx0 þ x3Þ light-cone coordinates, as

ds2 ¼−2duðdvþHðu;xÞduþWaðu;xÞdxaÞ
þhabðu;xÞdxadxb; ω¼ du; a;b¼ 1;2; ð30Þ

where H, Wa are real metric functions, and hab is a two-
dimensional Riemannian metric. We focus our attention on
the nontrivial case given by Eq. (30). Lorentzian spacetimes
of this form are called Brinkmann spaces8 and are also
referred to as covariantly constant null vector (CCNV)
spacetimes; the standard pp-waves are obtained when the

transverse metric is Euclidean. Brinkmann spaces in higher
dimensions are also of this form; see, for example, [41–43].
We choose α ¼ ds2ðy; yÞ as above and β ¼ duðyÞ ¼ yu

and consider the following Randers metric,

F¼ αþβ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2yuðyvþHðu;xÞyuþWaðu;xÞyaÞþhabðu;xÞyayb

q

þyu: ð31Þ

By Proposition 2, any such F defines a Finsler spacetime
on the forward timecone of α if and only if du is future
oriented, which we can always achieve (at least locally) by
choosing an appropriate time orientation. We can use these
observations to strengthen our theorem.

Theorem 7. Let ðM;FÞ be a Randers spacetime,
F ¼ αþ β. Then, F is an exact Berwald solution to the
FEFE if and only if one of the following statements is true:

(i) There exist local coordinates such that

F ¼ αþ β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2yuðyv þHðu; xÞyu þWaðu; xÞyaÞ þ habðu; xÞyayb

q
þ yu; ð32Þ

where α is a vacuum solution to Einstein gravity.
(ii) There exist local coordinates such that

F ¼ αþ β

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðy0Þ2 þ ðy1Þ2 þ ðy2Þ2 þ ðy3Þ2

q
þ bμyμ;

bμ ¼ const: ð33Þ

In particular, the second item in the theorem may be
viewed as a Randers analog of the Bogoslovsky/very
special relativity (VSR) line element [44–47]. The first
item may be viewed as a Randers analog of very general
relativity (VGR) spacetimes [16], and when Wa ¼ 0 and
hab ¼ δab, it reduces to a Randers analog of the Finsler pp-
waves introduced in [15]. In practice (to the best of our
knowledge), the most general solution to Einstein’s vacuum
field equations that can appear here, i.e., of the form (30), is
the gyratonic pp wave [48,49], which belongs to the VSI
class of spacetimes [50]. In this case, the transverse metric
is Euclidean, hab ¼ δab, and the vacuum Einstein equations
read,

∇2H¼−
1

2
ð∂x2W1−∂x1W2Þ2þ∂uð∂x1W1þ∂x2W2Þ ð34Þ

0 ¼ ∂x2ð∂x2W1 − ∂x1W2Þ ð35Þ

0 ¼ ∂x1ð∂x2W1 − ∂x1W2Þ; ð36Þ

where ∇2 ¼ ∂2
x1 þ ∂2

x2 . The latter two equations restrict
the form of metric functions W1, W2, and the first one
determines H for given W1, W2.

VI. DISCUSSION

In thiswork,we studyRanders spacetimes ofBerwald type
and analyze Pfeifer andWohlfarth’s vacuum field equation of
Finsler gravity for this class. We show that, in this case, the
fieldequation isequivalent to thevanishingof theFinslerRicci
tensor, analogously to Einstein gravity. This implies that the
considered vacuum field equation and Rutz’s equation
coincidein this scenario.Then,weconstructall exact solutions
of Berwald-Randers type to vacuum Finsler gravity, which
turn out to be composed of a Ricci-flat, CCNV Lorentzian
spacetime, or Brinkmann space, and a 1-form defined by its
covariantly constant null vector. Since the pp-waves are the
most well-known metric in this class, we refer to the found
solutions as Randers pp-waves.
Interestingly, such a Randers spacetime has the same

affine connection and, hence, the same geodesics, as
the corresponding CCNV Lorentzian spacetime (see
Proposition 3). This also holds for the CCNV subclass
of Finsler VSI spacetimes presented in [16], which
include the Finsler pp-waves [15]. The latter case has
also been discussed recently in [51]. In Finsler geometry,
it is not uncommon to encounter different Finsler metrics
that nevertheless share the same geodesics. This8Note that these are not necessarily Ricci flat.
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remarkable feature of Finsler geometry was first pointed
out by Tavakol and Van den Bergh [4]. However, having
the same affine structure does not imply that the causal
structure coincides as well. For example, the set of causal
(timelike and null) directions of the Randers pp-waves
does not coincide with that of the classical pp-waves due
to their different Finsler functions.
The natural question that arises is whether and how

such spacetimes can be physically distinguished from
one another. In particular, is there any kind of physical
observable that could distinguish Randers pp-waves from
Finsler pp-waves and/or Lorentzian pp-waves? Such ques-
tions cannot be answered without a consistent observer
framework; see, for example, [52,53]. These studies sug-
gest that time dilations between observers moving rela-
tively to each other would yield different results for
Randers and Lorentzian pp wave spacetimes due to the
different normalization of timelike geodesics. Similarly,
speed light measurements may not coincide for different
observers due to the modified null condition for light rays
[54], although this strongly depends on the observer model
employed [52]. These important questions will be
addressed in future work.
A somewhat related issue pertains to geodesic complete-

ness. It is known that any Lorentzian compact pp wave is
geodesically complete, and this reduces to planewaves in the
Ricci flat case [41]. Whether these features also hold for
Finslerian versions of pp-waves, such as the ones in this work
and in [15], remains to be studied. However, the fact that all of
these spacetimes share the same geodesics could point in that
direction.
Both our Randers and the previously known m-Kropina

solutions in [16] belong to the class of ðα; βÞ-metrics. A
natural next step would be to study the existence of generic
solutions of ðα; βÞ type, i.e., with a defining Finsler
function F ¼ αϕðβ=αÞ with arbitrary scalar ϕ. Even
beyond this class, it would also be of interest to explore
solutions in the form of Finsler b spaces, which describe
Lorentz violating particle kinematics derived from the
standard model extension [55] and certain classical
mechanical systems [56]. Such metrics are characterized
by a Finsler function F ¼ αþ β̃, where β̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − jbj2α2

p
,

and b is an arbitrary 1-form. Note that Randers and b spaces
coincide for a null 1-form b.
Finally, it would be interesting to investigate Berwald-

Randers spacetimes in higher dimensions. In this case, a
Brinkmann metric also induces a Berwald-Randers space-
time in a straightforward generalization of expression (31).
The vacuum field equations in higher-dimensional Finsler
gravity, although not formally studied yet, are very likely to
resemble the 4D case (up to numerical factors related
to the considered number of dimensions). In such a
scenario, spacetimes generalizing (31) with a Ricci-flat
Brinkmann metric would immediately be solutions of
higher-dimensional Finsler gravity.
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APPENDIX: PROOF OF PROPOSITION 2

Here, we include the proof that the Randers metric
F ¼ αþ β, where α is Lorentzian and β is future pointing
and not spacelike, defines a Finsler spacetime on the
forward timecone of α.
The lemma below shows that F ¼ αþ β is strictly

positive on the forward timecone of α so that det g is
strictly positive as well, by Eq. (19). The remainder of the
proof is the same as in the positive definite scenario.
Introduce a parameter λ and consider the family of
functions Fλ ¼ αþ λβ for λ ∈ ½0; 1�. For each value of
λ, det gλ is strictly positive, and so gλ has constant signature
for λ ∈ ½0; 1�. In particular, gλ¼1 has the same signature as
gλ¼0, which is just the statement that g is Lorentzian. Since
the homogeneity of F is clear, this completes the proof that
F defines a Finsler spacetime on the forward timecone of α.

Lemma 8. Let y be timelike, b timelike or null, and y
and b both future oriented, all with respect to some time-
oriented Lorentzian matrix gμν with index convention
ðþ;−; � � � ;−Þ. Then gμνyμbν > 0.

Proof.—Let the time orientation be defined in terms of a
nowhere vanishing timelike vector field v. Then, future
orientation of y and b means that we have gμνyμvν > 0 and
gμνbμvν ≥ 0. Now, notice that we can always pick a basis of
TxM such that v has coordinates ðv0; 0;…; 0Þ, and gμν ¼
ημν is the Minkowski metric (first, pick a basis such that the
metric is Minkowski, then apply an appropriate Lorentz
boost to make all components of v other then the first
vanish, and then possibly apply a reflection in the x0

coordinate). In this basis, we write y⃗ ¼ ðy1; y2;…ynÞ. With
this notation, the future-pointing properties of y and b
translate to y0 > 0 and b0 > 0, and the remaining
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properties can be stated as jy0j > jy⃗j and jb0j ≥ jb⃗j.
Combined, they read y0 > jy⃗j and b0 ≥ jb⃗j. Then, we have

ημνyμbν ¼ y0b0 − y⃗ · b⃗ ≥ y0b0 − jy⃗jjb⃗j > y0b0 − y0b0

¼ 0: ðA1Þ
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