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We study stationary and axially symmetric black hole-disk systems, assuming a combination of the
DD2 and Timmes-Swesty equations of state and a three-parameter family of rotation laws. There exist two
branches of solutions that are shown to bifurcate, for a suitable specific entropy and a parameter in the
rotation law. Low entropy nuclear matter allows for the existence of moderately massive Keplerian disks.
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I. INTRODUCTION

We shall investigate in this paper a stationary axially
symmetric system consisting of a black hole and a toroid.
The matter in the toroid is a perfect fluid that satisfies a
tabulated equation of state of [1].
The description of such systems can be self-contained,

provided that a rotation law is supplied. The main challenge
is to find a rotation law that is realistic and at the same time
solvable numerically. Uniformly (rigidly) rotating gaseous
disks in general-relativistic hydrodynamics have been
discussed in [2,3]. A more realistic angular velocity profile
has been studied since the 1980s—in the context of rotating
stars—with the angular momentum density being a linear
function of the frequency [4–6]. We should mention
important investigations of the rigid rotation by the Jena
group [7–9]. Later various nonlinear differential rotation
laws have been proposed and implemented numerically
[10–13]. A rotation law describing disks in motion around
black holes has been obtained in [14]. In what follows we
focus on its generalization—a new family of rotation laws
that was derived recently [15]. This family includes the
Keplerian rotation, by which we mean a special case of the
rotation law derived in [16]—see Eq. (9) below.
There are two reasons to study toroids circulating around

black holes. First, the numerical simulations of the coa-
lescence of two neutron stars indicate, that there might
appear a quasistationary phase with remnants consisting of
a black hole surrounded by a toroid. We recall reviews
of different scenarios that can lead to that picture [17,18].
This system should be further evolved in order to make
predictions concerning related electromagnetic or gravita-
tional-wave observation. These coalescence simulations are
numerically expensive, and it would be advantageous to
start from initial data supplied by a (suitably deformed and
supplied with a relevant physics) stationary black hole-
toroid configuration. Such a program has already been
implemented, see recent results in [1,19]. Thus there is a

need for a catalogue of stationary solutions that could
serve as idealizations of the remnants that are produced
in real merger processes. Secondly, the mathematics of
black hole-disk configurations is interesting. They are
described by a free-boundary system of nonlinear elliptic
equations, and one can expect that there shall appear
typical phenomena such as nonuniqueness of solutions or
bifurcations, which in turn can be associated with the
emergence of instability.
The order of the main part of the paper is as follows. The

second section is dedicated to the description of equations.
Section III explains the tabulated equation of state within
the toroidal matter. Section IVexplains the relation between
our family of laws and those of Fujibayashi et al. [1]. The
next section is dedicated to the description of numerics. In
particular, we test in Sec. V C our numerical procedure,
using the rotation law of [1]. We get a satisfactory agree-
ment with results of [1] in all analyzed cases. We compare
also disk solutions that satisfy the same boundary data,
but different rotation laws—those of [1] and of [15].
We describe examples of bifurcation in Sec. VI, with the
bifurcation parameter being the specific entropy s or the
exponent parameter δ of the rotation law, respectively.
Section VII is dedicated mainly to the discussion of
Keplerian rotation laws. It is known that the rotation law
of [1] excludes compact Keplerian solutions with light
disks. In contrast to that, a Keplerian law of [15] does allow
for compact solutions with light disks for a range of the
specific entropy. These tori can gain a mass of the order
of 0.06 M⊙ if the specific entropy s is relatively low.

II. STATIONARY TOROIDS AROUND BLACK
HOLES: EQUATIONS

The formulation and numerical methods of this paper are
based on a scheme of [20]. They have been used (with some
changes) also in [16,21–23]. In this section we only give a
brief description of the key elements of the formalism.
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We use (with a few exceptions) standard gravitational
system of units with c ¼ G ¼ 1, where c is the speed of
light, and G is the gravitational constant. The signature of
the metric is ð−;þ;þ;þÞ. Greek indices are used to label
spacetime dimensions, μ; ν;… ¼ 0, 1, 2, 3. Spatial dimen-
sions are denoted by Latin indices i; j;… ¼ 1, 2, 3.

A. Hydrodynamical equations

We shall use stationary, axially symmetric metrics of
the form

g ¼ gttdt2 þ 2gtφdtdφþ grrdr2 þ gθθdθ2 þ gφφdφ2; ð1Þ

where ðt; r; θ;φÞ denote spherical coordinates, and where
the components of the metric tensor gtt, gtφ, grr, gθθ, gφφ
depend only on r and θ. Because of numerical convenience,
in the majority of this work we will specialize to the
following quasi-isotropic gauge

g ¼ −α2dt2 þ ψ4e2qðdr2 þ r2dθ2Þ
þ ψ4r2sin2θðβdtþ dφÞ2: ð2Þ

There exist two independent Killing vectors, azimuthal
(rotational) and asymptotically timelike, with contravariant
components ημ ¼ ð0; 0; 0; 1Þ and ξμ ¼ ð1; 0; 0; 0Þ,
respectively.
We assume the energy-momentum tensor of the perfect

fluid

Tμν ¼ ρhuμuν þ pgμν; ð3Þ

where ρ is the rest-mass density, h is the specific enthalpy,
and p is the pressure. The four-velocity of the fluid uμ is
normalized: uμuμ ¼ −1.
In what follows we shall deal only with the azimuthal

stationary rotation: uμ ¼ ðut; 0; 0; uφÞ ¼ utð1; 0; 0;ΩÞ. The
component ut can be expressed in terms of the angular
velocity Ω ¼ uφ=ut as

ðutÞ2 ¼ −
1

gtt þ 2gtφΩþ gφφΩ2
: ð4Þ

The assumptions of stationarity and axial symmetry imply
that ut, uφ, ρ, p, and h can only depend on r and θ.
For a barotropic fluid, the conservation equations

∇μðρuμÞ ¼ 0; ∇μTμν ¼ 0 ð5Þ

can be integrated, assuming that the angular momentum
per unit inertial mass, j ¼ utuφ, depends only on the
angular velocity Ω. In this case, one obtains in the region
of nonnegative mass density (ρ > 0)

ln

�
h
ut

�
þ
Z

jðΩÞdΩ ¼ C; ð6Þ

where C denotes an integration constant. We will refer to
Eq. (6) as the Euler-Bernoulli equation.
We should warn the reader, that an alternative choice

is to define the angular momentum density j̃ ¼ huφ; that
also leads to the equation analogous to (6)—of the
following form:

h
ut

þ
Z

j̃ðΩÞdΩ ¼ C1: ð7Þ

This option is adopted in [1,19].
In the main part of this paper we assume the recently

derived rotation law [15]

jðΩÞ≡ −
1

κð1þ δÞ
d
dΩ

ln ½1 − ðarotΩÞ2

− κw1−δΩ1þδð1 − arotΩÞ1−δ�; ð8Þ

where w is a constant, and δ, κ and arot are parameters.
The value of w is obtained in the process of solving the
relevant equations, as explained later. Note that in the
Newtonian limit for κ ¼ ð1 − 3δÞ=ð1þ δÞ, Eq. (8) yields
Ω ¼ w=ðr sin θÞ 2

1−δ.
The special case of this formula is the Keplerian rotation

law that corresponds to the choice of δ ¼ −1=3 and
κ ¼ ð1 − 3δÞ=ð1þ δÞ, i.e.,

jðΩÞ ¼ a2rotΩ
4
3 þ w

4
3ð1 − 3arotΩÞð1 − arotΩÞ13

Ω1
3½1 − a2rotΩ2 − 3w

4
3Ω2

3ð1 − arotΩÞ43�
¼ −

1

2

d
dΩ

ln f1 − ½a2rotΩ2 þ 3w
4
3Ω2

3ð1 − arotΩÞ43�g:
ð9Þ

This formula was obtained in [16,21], where its physical
relevance was thoroughly discussed. It has been recently
applied in [22–24]. Massless disks of dust around a Kerr
black hole are subjected to the Keplerian rotation with the
parameter arot ¼ a, where a is the black hole spin param-
eter (see Sec. II B for the definition).
In former calculations we often had chosen arot to be

equal to the spin parameter of the black hole a. Hereafter
we decided to consider also the case arot ≠ a, for a reason
that is to be explained later, in Sec. VII. The circular
geodesic motion of a test body in the equatorial plane of
the Kerr spacetime with the mass m and spin a is given
by Eq. (9) with w2 ¼ m and arot ¼ a. In the case of self-
gravitating toroids, however, w2 ≠ m. Equation (9) gives
the Keplerian angular velocity Ω ¼ w=ðr sin θÞ32 in the
Newtonian limit.
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In the main part of this work we will use the rotation law
(8) with free parameters δ and arot, and κ¼ð1−3δÞ=ð1þδÞ,
as motivated by the Keplerian rotation law. This rotation
law will be further referred to as jKM:

jKMðΩÞ≡ −
1

ð1 − 3δÞ
d
dΩ

ln

�
1 − ðarotΩÞ2

−
1 − 3δ

1þ δ
w1−δΩ1þδð1 − arotΩÞ1−δ

�
: ð10Þ

Given the relation jðΩÞ and the metric, one can compute
the angular velocity Ω by solving the equation

jðΩÞ½α2 − ψ4r2 sin2 θðΩþ βÞ2� ¼ ψ4r2 sin2 θðΩþ βÞ;
ð11Þ

which is directly implied by the definition j ¼ utuφ. In the
following, we assume a convention with Ω > 0. The torus
would be said to corotate, if a > 0, and counterrotate,
for a < 0.
Taking the above definitions into account, one can write

the Euler-Bernoulli Eq. (6) as

C0 ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4r2sin2θðΩþ βÞ2

q
× f1 − ½a2rotΩ2 þ κw1−δΩ1þδð1 − arotΩÞ1−δ�g−

1
κð1þδÞ;

ð12Þ

where C0 is a constant.

B. Einstein equations

The spacetime metric is not given by the Kerr solution
for self-gravitating tori, but the Kerr metric plays an
important role in our construction. We shall need the
Kerr metric in quasi-isotropic coordinates of the form
given in (2) [20,25]. Let us define

rK ¼ r

�
1þm

r
þm2 − a2

4r2

�
; ð13Þ

ΔK ¼ r2K − 2rK þ a2; ð14Þ

ΣK ¼ r2K þ a2 cos2 θ; ð15Þ

where m and am denote the asymptotic mass and the
angular momentum of the Kerr spacetime, respectively. The
Kerr metric can be now written as

g ¼ −α2Kdt2 þ ψ4
Ke

2qKðdr2 þ r2dθ2Þ
þ ψ4

Kr
2sin2θðβKdtþ dφÞ2; ð16Þ

where

ψK ¼ 1ffiffiffi
r

p
�
r2K þ a2 þ 2ma2

rK sin2 θ
ΣK

�
1=4

; ð17Þ

βK ¼ −
2marK

ðr2K þ a2ÞΣK þ 2ma2rK sin2 θ
; ð18Þ

αK ¼
�

ΣKΔK

ðr2K þ a2ÞΣK þ 2ma2rKsin2θ

�
1=2

; ð19Þ

eqK ¼ ΣKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2K þ a2ÞΣK þ 2ma2rK sin2 θ

p : ð20Þ

We will apply the puncture formalism in the form
presented in [20]. Let m and a be parameters, correspond-
ing to some Kerr spacetime. We define rs ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
;

thus for the Kerr metric with the asymptotic massm and the
asymptotic angular momentum am, the event horizon
coincides with a coordinate sphere r ¼ rs. In the general
self-gravitating case, we replace the functions ψ and α (the
lapse) by ϕ and B defined by the following relations

ψ ¼
�
1þ rs

r

�
eϕ; αψ ¼

�
1 −

rs
r

�
e−ϕB: ð21Þ

The shift vector is split into two parts, β ¼ βK þ βT; their
construction is described below. The nonvanishing com-
ponents of the extrinsic curvature of the slices of constant
time t can be expressed as

Krφ ¼ Kφr ¼
HE sin2 θ
ψ2r2

þ 1

2α
ψ4r2 sin2 θ∂rβT; ð22Þ

Kθφ ¼ Kφθ ¼
HF sin θ
ψ2r

þ 1

2α
ψ4r2 sin2 θ∂θβT; ð23Þ

where HE and HF are given by

HE ¼ ma½ðr2K − a2ÞΣK þ 2r2Kðr2K þ a2Þ�
Σ2
K

; ð24Þ

HF ¼ −
2ma3rK

ffiffiffiffiffiffiffi
ΔK

p
cos θ sin2 θ

Σ2
K

: ð25Þ

Equations (22) and (23) define βT. One can check that
βT ¼ 0 for the Kerr solution. In a sense, βK is associated
with the black hole, while βT corresponds to the torus.
The Einstein equations can be written as the following

system of equations for the functions q, ϕ, B and βT:�
∂rr þ

1

r
∂r þ

1

r2
∂θθ

�
q ¼ Sq; ð26aÞ

�
∂rr þ

2r
r2 − r2s

∂r þ
1

r2
∂θθ þ

cot θ
r2

∂θ

�
ϕ ¼ Sϕ; ð26bÞ
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�
∂rr þ

3r2 þ r2s
rðr2 − r2sÞ

∂r þ
1

r2
∂θθ þ

2 cot θ
r2

∂θ

�
B ¼ SB; ð26cÞ

�
∂rr þ

4r2 − 8rsrþ 2r2s
rðr2 − r2sÞ

∂r þ
1

r2
∂θθ þ

3 cot θ
r2

∂θ

�
βT ¼ SβT :

ð26dÞ

Therein the source terms are given by

Sq ¼ −8πe2q
�
ψ4p −

ρhu2φ
r2sin2θ

�
þ 3A2

ψ8

þ 2

�
r − rs

rðrþ rsÞ
∂r þ

cot θ
r2

∂θ

�
b

þ
�

8rs
r2 − r2s

þ 4∂rðb − ϕÞ
�
∂rϕþ 4

r2
∂θϕ∂θðb − ϕÞ;

ð27aÞ

Sϕ ¼ −2πe2qψ4

�
ρH − pþ ρhu2φ

ψ4r2sin2θ

�

−
A2

ψ8
− ∂rϕ∂rb −

1

r2
∂θϕ∂θb

−
1

2

�
r − rs

rðrþ rsÞ
∂rbþ cot θ

r2
∂θb

�
; ð27bÞ

SB ¼ 16πBe2qψ4p; ð27cÞ

SβT ¼
16παe2qjφ
r2sin2θ

− 8∂rϕ∂rβT þ ∂rb∂rβT

− 8
∂θϕ∂θβT

r2
þ ∂θb∂θβT

r2
: ð27dÞ

The function βK satisfies the equation

∂rβK ¼ 2HEBe−8ϕ
ðr − rsÞr2
ðrþ rsÞ7

: ð28Þ

In the above formulas B ¼ eb and

A2 ¼ ðψ2KrφÞ2
r2sin2θ

þ ðψ2KθφÞ2
r4sin2θ

: ð29Þ

There appear also functions

ρH ¼ α2ρhðutÞ2 − p ð30Þ

and

jφ ¼ αρhutuφ: ð31Þ

There are imposed boundary conditions at the surface
given by r ¼ rs. They read

∂rq ¼ ∂rϕ ¼ ∂rB ¼ ∂rβT ¼ 0: ð32Þ

Equation (26d) requires a more stringent boundary con-
dition. Following [20] we set βT ¼ O½ðr − rsÞ4�, which is
equivalent to βT ¼ ∂rβT ¼ ∂rrβT ¼ ∂rrrβT ¼ 0 at r ¼ rs.
One can show, with the preceding conditions, that the

two-surface r ¼ rs embedded in a hypersurface of constant
time Σt is a minimal surface.
We will refer to the system of Eqs. (11), (12), (26),

and (28) as the Einstein-Euler equations.

C. Mass and angular momentum

Black hole-torus systems are characterized by masses
and angular momenta of their constituents. The Arnowitt-
Deser-Misner (ADM) asymptotic mass of the whole system
is an obvious choice. It is defined as an asymptotic surface
integral, but we choose to compute the ADMmass using an
equivalent formula [20]:

MADM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
þM1; ð33Þ

where

M1 ¼ −2
Z

∞

rs

dr
Z

π=2

0

dθðr2 − r2sÞ sin θSϕ; ð34Þ

and m is the black-hole mass parameter introduced in
Sec. II B.
The quasilocal mass of the black hole is given by the

commonly used formula

MBH ¼ Mirr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J2H

4M4
irr

s
: ð35Þ

The mass of the disk is defined as [20]

Mdisk ¼ 4π

Z
∞

rs

r2dr
Z

π=2

0

ραutψ6e2q sin θdθ: ð36Þ

JH is the angular momentum of the black hole,

JH ¼ 1

4

Z
π=2

0

dθ

�
r4sin3θψ6∂rβ

α

�
r¼rs

; ð37Þ

and Mirr denotes the so-called irreducible mass, defined as

Mirr ¼
ffiffiffiffiffiffiffiffi
AH

16π

r
; ð38Þ

where AH is the area of the horizon,

AH ¼ 4π

Z
π=2

0

dθðψ4eqr2 sin θÞr¼rs : ð39Þ
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This definition is inspired by the observation of
Christodoulou [26] that for the Kerr solution the asymptotic
mass is equal to the right-hand side of (35). In the presence
of matter that satisfies standard energy conditions, we
have MADM ≠ MBH.
The angular momentum of the torus is defined as

J1 ¼
Z ffiffiffiffiffiffi

−g
p

Tt
φd3x

¼ 4π

Z
∞

rs

dr
Z

π=2

0

dθr2 sin θαψ6e2qρhutuφ: ð40Þ

The above definition follows from the conservation
law ην∇μTμ

ν ¼ ∇μðTμ
νη

νÞ ¼ 0 [27] for the Killing vector
ημ ¼ ð0; 0; 0; 1Þ. The total angular momentum can be
expressed as

J ¼ JH þ J1: ð41Þ

We point out that the value assigned to JH depends on the
assumed boundary conditions at r ¼ rs. In our case (and in
[20]) the condition ∂rβT ¼ 0 at r ¼ rs yields JH ¼ am.
Obviously, the natural definition of the black-hole spin
would be

â ¼ JH
MBH

¼ am
MBH

: ð42Þ

In general â ≠ a, but we have equality for a massless disk.
The discussion of other mass measures (including a

quasilocal toroidal mass) and relations between them can
be found in [20,24].
We should stress out that in the presence of self-

gravitating disks the mass of the black hole MBH is larger
than the black hole mass parameter m. The effect is
negligible for light tori (in vacuum obviously MBH ¼ m)
but it becomes noticeable for heavy disks. This is true
assuming a “reasonable” matter; the perfect fluid consid-
ered in this paper, with the DD2-Timmes-Swesty equation
of state, is “reasonable.”

III. TABULATED EQUATIONS OF STATE

In this paper we use a tabulated equation of state after
[1,19]. This equation of state is based on two prescriptions:
the Density-Dependent DD2 model in the high-density
sector and Timmes and Swesty equation of state for low
values of density [28]. For this equation of state the specific
enthalpy h, the energy density ϵ and the pressure P are the
functions of the density ρ, the electron fraction Ye, and the
temperature T. In order to compute values of ρ, Ye, and T
from h, one has to assume two relations between these
variables. The first was already made during derivation
of the Bernoulli equation (6)—that the specific entropy
(entropy per baryon) s is constant. The second assumption
is that Ye is a function of ρ only. Here we define Ye after

[1,19]. It ranges from 0.5 to 0.07 and depends on ρ as
follows: for ρ ⪅ 107 g=cm3, Ye ¼ 0.5; for ρ⪆1011 g=cm3,
Ye ¼ 0.07; for ρ ∈ ð107; 1011Þ g=cm3, Ye decreases lin-
early from 0.5 to 0.07.
The minimal value of the specific enthalpy in the

disk hmin is lower than h ¼ c2 due to the presence of
the nuclear binding energy. One has to choose hmin in order
to solve Eq. (12) at the disk edges in the equatorial plane,
which is necessary for the computation of the angular
velocityΩ. Here we took hmin ≈ 0.9987, the lowest value in
the table, which corresponds to the rest-mass density
ρmin ∈ ð0.1; 0.6Þ g=cm3. The value of hmin varies slightly
for different equations of state (with different values of
entropy per baryon s and/or the electron fraction Ye). In
order to calculate hydrodynamic quantities from the tabu-
lated equation of state, we used for each quantity an
interpolation linear in logarithms of ðh − hminÞ=c2, ρ, P,
kT (where k is Boltzmann constant). Because of numerical
problems with the interpolation we subtracted from each
appropriate tabular value a small number 10−16 while
setting values of hmin. This allows us to interpolate all
points of the table.

IV. ROTATION LAWS OF [1] VERSUS [15]

Fujibayashi et al. [1] have assumed the rotation law

j̃ ¼ AjΩδ ð43Þ

that is similar to the rotation law (8) in some aspects. We
shall investigate in this section these similarities.
The first observation is that both rotation laws have

the same Newtonian limit. Indeed, in the Newtonian limit
c→∞ one gets from (43) j̃¼ ÂjΩδ, where Âj¼ limc→∞Aj;

this implies, using (11), the angular velocity Ω ¼ ðÂjÞ1=ð1−δÞ
r2=ð1−δÞ .

On the other hand, formulae (8) and (11) give in the
Newtonian limitΩ ¼ ŵ

r2=ð1−δÞ [29]. Here ŵ ¼ limc→∞ w. Thus

these two Newtonian limits coincide if ŵ ¼ Â1=ð1−δÞ
j .

In the second step, assume the rotation law given by
Eq. (43); one gets the Euler-Bernoulli equation in the form

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4r2 sin2ðΩþ βÞ2

q
þ Aj

1þ δ
Ω1þδ ¼ C1: ð44Þ

It is easy to see that the above relation is in fact a
special case of Eq. (6). Indeed, let us take arot ¼ 0 and
κ ¼ 1=ð1þ δÞ in Eq. (6). This yields

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ψ4r2 sin2ðΩþ βÞ2

q
¼ C0 −

C0w1−δ

1þ δ
Ω1þδ: ð45Þ

Clearly, Eqs. (44) and (45) coincide, provided that C1 ¼ C0

and Aj ¼ C0w1−δ.
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There are two useful relations between j and j̃. One gets

j̃
j
¼ h

ut
ð46Þ

directly from definitions j ¼ utuφ and j̃ ¼ huφ. Employing
now (7)

h
ut

þ
Z

j̃ðΩÞdΩ ¼ C1; ð47Þ

we arrive at

j̃
j
þ
Z

j̃ðΩÞdΩ ¼ C1: ð48Þ

Thus

j̃
j
¼ C1 −

Z
j̃ðΩÞdΩ: ð49Þ

In a similar vein Eqs. (6) and (46) yield

ln

�
j̃
j

�
þ
Z

jðΩÞdΩ ¼ C: ð50Þ

V. ON PARAMETRIZATION OF SOLUTIONS
AND NUMERICAL PROCEDURE

A. Parametrization of solutions

The black hole-torus system is described by Eqs. (8),
(11), (12), (26), (28) and the tabulated equation of state
(cf. Sec. III).
In our calculations we choose the mass parameter m to

be a unit of mass and length, so m ¼ 1. We assume further
that it corresponds to three solar masses, 3 M⊙. We
remarked earlier that the quasilocal mass of the black-hole
MBH in the presence of the disk can be larger than m. In
most cases reported below the difference does not exceed
1% and it approaches 10% only in solutions with disks
having masses of the order of m. The inner and outer
coordinate radii of disks at the symmetry plane θ ¼ π=2 are
r1 ¼ 2 and r2 ¼ 40 (with one exception) respectively; in SI
units they are 9 km or 180 km.
The numerical method used in this paper is a modifi-

cation of a scheme described and tested in [21]. One of the
changes with respect to the version described in [21] is the
implementation of a very efficient PARDISO linear algebra
library [30], which is now used instead of LAPACK [31].
Major changes were enforced by the implementation of a
new rotation law and, more importantly, the tabulated
equation of state.
A version described in [21] used polytropic equations of

state of the form

p ¼ KρΓ;

where K and Γ are constant. Solutions were specified by
setting m, a, r1, r2, Γ, and the maximum value of the rest-
mass density within the disk ρmax. The rotation law was
prescribed up to a constant, corresponding roughly to w in
Eqs. (8), (9), or (10). This meant, in particular, that the
value of the polytropic constant K was not specified, but
computed from the requirement concerning ρmax. We found
this scheme to be much more effective than simply fixing K
a priori and computing ρmax as a part of the solution. On the
other hand, with the tabulated equation of state, this point
requires a change. We now specify a constant value of the
specific entropy s (in the units of the Boltzmann constant k)
together with a relation between the electron fraction Ye
and the rest-mass density, as described in Sec. III. With
these settings, the equation of state becomes essentially
barotropic—the relation between the rest-mass density and
the pressure (or the specific enthalpy) becomes fixed. As a
consequence, there is no freedom in specifying ρmax as a
parameter. In summary, solutions with light disks are
specified by choosing the equation of state (fixing the
value of s) and the parameters m, a, r1, r2, arot, δ, and κ.
That means, as before, that the rotation law is prescribed up
to the parameter w, which has to be computed as a part of
the solution, together with the constant C0 in Eq. (12).
It appears that, similarly to the situation described in

[23], the solutions are not unique with respect to the above
parametrization. Given fixed parametersm, a, r1, r2, arot, δ,
κ, and the equation of state, one can still obtain two distinct
solutions, differing in the total asymptotic mass (or the
mass of the disk). However, in contrast to the case of [23],
more massive disks are now characterized by larger values
of the maximum rest-mass density ρmax. Changing the
parameter δ, we get two branches of solutions. There is a
branch of solutions corresponding to relatively light disks,
which we denote as branch I, and a branch of solutions
corresponding to more massive disks, referred to as branch
II. In the following, we will also give examples of two
solution branches obtained by keeping δ fixed, but chang-
ing the value of the specific entropy s. Numerical proce-
dures used to obtain solutions belonging to these two
branches are slightly different; they are described in the
next subsection.

B. Finding solutions corresponding
to light and massive disks

Solutions corresponding to light disks (branch I)
are obtained by an iterative procedure, in which each
iteration starts with a computation of the angular velocities
Ω1 and Ω2 at the inner, ðr; θÞ ¼ ðr1; π=2Þ, and outer,
ðr; θÞ ¼ ðr2; π=2Þ, edges of the disk. This is done by a
Newton-Raphson method, assuming Eqs. (11) and (12),
and the rotation law (8). We assume that the edges of
the torus correspond to h ¼ hmin, as described in Sec. III.
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This procedure also yields the values of constants w and C0.
In the subsequent step we compute, from Eq. (11), the
values of Ω in all grid points within the disk. Next, Eq. (12)
is used to determine the specific enthalpy h in the torus.
Given h, we compute the rest-mass density ρ and the
pressure p from the tabulated equation of state (for a fixed
value of the specific entropy s), interpolating linearly in
logarithms of h, ρ and p as described in Sec. III. The
iteration is concluded with solving the Einstein equa-
tions (26) and (28) for functions q, ϕ, B, βT , and βK ,
which amounts to the main computational cost of the
entire method.
The procedure used for finding solutions corresponding

to massive disks (branch II) is different. Our aim is to get
solutions characterized by larger values of the baryonic
mass density and this is done as follows. We temporarily
set a (desired) maximal mass density ρmax. Each iteration
proceeds as before, until a point at which a new distribution
of the specific enthalpy is found, as follows from Eq. (12).
We then search for the maximum of h within the disk and,
using the tabulated equation of state, find a corresponding
value of the rest-mass density ρ0. This allows us to
introduce an auxiliary parameter λ ¼ ρmax=ρ0, where
ρmax is a desired maximal value of ρ. In the next step
we construct a rescaled tabulated equation of state by
setting ρ̃ ¼ λρ, p̃ ¼ λp. The idea behind this choice is that
for barotropic equations of state the specific enthalpy is
given by h ¼ R

dp=ρ, and thus the above scaling leaves h
unchanged. This rescaled equation of state is used to
compute the rest-mass density and the pressure within
the disk. The remainder of each iteration proceeds as before
with a solution of Einstein equations (26) and (28). These
iterations are repeated until a certain level of convergence is
reached, which also means that the parameter λ converges
to a fixed value. Of course, the solution obtained in this way
usually corresponds to an unphysical, rescaled equation
of state. Solutions corresponding to massive disks are
obtained by changing ρmax every few thousands of iter-
ations, until finally they converge to a solution with λ ¼ 1

(with the accuracy jλ − 1j ≤ 10−8), obeying the original,
physical equation of state. More precisely, every 1000
iterations ρmax is increased, if λ > 1 and decreased, if λ < 1.
Let us remark that the opposite choice, i.e., decreasing ρmax
for λ > 1 and increasing for λ < 1, can be used to retrieve
solutions corresponding to light tori.
Note, that ultimately we do not really control the final

value of the maximal baryonic mass density; we are free to
set a trial value ρmax, but eventually the maximal mass
density is obtained as a part of the solution and it is usually
different from that trial ρmax. The only purpose of intro-
ducing the rescaled equation of state is to allow the
numerical scheme to approach the solutions with suffi-
ciently large ρmax and to ensure that they do not belong to
the branch I. Unfortunately, the whole procedure is quite
sensitive to the initial choice of ρmax—the solution may

diverge, if ρmax is significantly different from the target
value. Therefore, we always chose initial ρmax to be not
smaller than the value of ρmax on the corresponding light
branch and of the order of magnitude not larger than that of
the targeted value of ρmax.

C. Numerical tests

Fujibayashi et al. constructed in [1,19] stationary sol-
utions assuming the DD2-Timmes-Swesty equation of state
and the rotation law j̃ðΩÞ ¼ huφ ¼ AjΩδ. We reproduce
their solutions, using the relation described in Sec. IV
between their and our approach. We shall use j ¼ utuφ.
Choosing in Eq. (8) constants arot ¼ 0, κ ¼ 1=ð1þ δÞ, we
get the rotation law jSh.
Results taken from [1] and those reproduced by the

use of our procedure and jSh, shall be compared in Figs. 1
and 2. Strictly speaking, we shall deal with branch I of
configurations with light disks.
In Fig. 1 we compare the disk density profiles on the

plane θ ¼ π=2 obtained in [1] with the result of our
calculation. Here j̃ðΩÞ ¼ AjΩ−1=7. It is clear that the
density profiles of [1] and that of the present work,
do agree.
Figure 2 shows masses of disks obtained for different

values of the parameter δ, −0.2 ≤ δ ≤ 0, assuming the
rotation law of [1]: jSh. Again we can conclude that results
of [1] and those obtained by us are essentially the same.

D. Solutions: jKM versus jSh
In the next two Figs. 3 and 4 we demonstrate how the

relative masses (of disks versus the black holes) depend on
the parameter δ, within a shown interval. It is notable, that
the aforementioned two branches of solutions, I and II,
exist for both rotation laws jSh and jKM. Herein we put
the specific entropy s ¼ 8k and for jKM we set arot ¼ a.
The masses of disks corresponding to the two rotation laws
are roughly equal at δ ≈ −0.15 at the light branch and at
δ ≈ −0.08 at the heavy branch. They behave differently
with the change of δ, depending on the branch. In the case
of light disks, shown in Fig. 3, the mass decreases with jδj

FIG. 1. A comparison between the equatorial (x ¼ r sin θ) rest-
mass density profile shown in Fig. 1 of [1] (violet line) and the
corresponding profile computed with the present code, using the
rotation law jSh (dashed line). The inner and outer coordinate
radii of the disk are r1 ¼ 2, r2 ¼ 41, respectively. We assume
m ¼ 1, a ¼ 0.8, and δ ¼ −1=7. The specific entropy in the disk
s ¼ 6k. The mass of the disk is Mdisk ¼ 0.1 M⊙.
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and the falloff is faster for the rotation law jSh. In the case of
heavy disks, depicted in Fig. 4, the mass increases with jδj
and the growth is faster for the rotation law jSh.

VI. BIFURCATION OF SOLUTIONS

In this section we shall work exclusively with the
rotation law jKM of Eq. (10), assuming arot ¼ a. We have
studied a few dozens of solutions corresponding to different
pairs ðδ; sÞ consisting of the exponent in the rotation law
and the specific entropy, respectively. Typically, for a
chosen pair ðδ; sÞ there exist two solutions—two configu-
rations that differ in the mass ratio Mdisk=MBH. We have
found that, if one of the parameters, δ or s, is fixed then the
set of solutions consists of two branches, in which solutions
are labeled by the other parameter. We shall analyze the
structure of this set in what follows.
In our first study we fix δ≡ δ� ¼ −0.1595 and change

the specific entropy parameter s. We have found a sequence
of solutions, shown in Fig. 5, that suggests the existence
of a bifurcation point. In the second investigation—see
Fig. 6—we have δ� ¼ −0.0576171875; again there are
symptoms of bifurcation. Let us remark, that the above
values of the parameter δ are chosen in such a way, as to
have the vertex of the bifurcation diagram at s ¼ 5k or
s ¼ 6k. The specific entropy s plays a role of the bifurca-
tion parameter—two branches of solutions seem to origi-
nate from the critical points s ¼ s�1 ¼ 5k and s ¼ s�2 ¼ 6k,
respectively. There exist (critical) solutions at the
conjectured bifurcation points s�1 and s�2 with a disk mass

FIG. 3. The ratio Mdisk=MBH vs the parameter δ for two
rotation laws—jSh and jKM. The graph shows data correspond-
ing to the light disks (branch I). The parameters r1, r2, m, a,
and s are the same as in Fig. 2. The exponent δ in the rotation
law (10) changes from 0 to −2=7; there are no solutions in the
case of jSh for δ ¼ −1=4;−2=7. For the rotation law jKM the
parameter arot ¼ 0.8.

FIG. 4. The ratioMdisk=MBH vs the parameter δ for two rotation
laws—jSh and jKM. The graph shows data corresponding to
heavy disks (branch II). The remaining parameters are as
in Fig. 3.

FIG. 2. A comparison between the ratios Mdisk=MBH (relative
disk masses) depicted in Fig. 2 of [1] (blue dots) and those
computed with the present code, assuming the rotation law jSh
(empty circles). The inner and outer coordinate radii are r1 ¼ 2
and r2 ¼ 40, respectively. The spin parameter a ¼ 0.8, and the
specific entropy s ¼ 8k. The exponent δ in the rotation law
changes from −0.2 to 0.
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M�
disk;1 ∈ ð0.40; 0.43ÞM⊙ and M�

disk;2 ∈ ð0.86; 0.93ÞM⊙,
respectively.
There is a trivial but serious restriction preventing further

investigation that would require going into smaller values

of s. We are limited by the known to us tabulated equation
of state, in which the smallest value of the specific entropy
is s ¼ 5k and the set of values of s=k is discrete:
ðs=kÞ ¼ ð5; 6; 7; 8; 9; 10Þ. For that reason we are not able
to investigate in more detail the neighborhood of the above
bifurcation point. For the same reason we could not resolve
an interesting issue, whether there exists a subcritical
solution, i.e., with subcritical values of the specific entropy
parameter s < 5k. On the other hand, we have data
concerning the case of s ¼ 6k, which suggest the absence
of a subcritical solution.
Therefore we decided to study a different situation, with

the specific entropy parameter s being fixed and the
exponent δ being the bifurcation parameter. We have
found two examples of bifurcation. In one case we have
s ¼ 5k and the critical value of the bifurcation parameter
δ�1 ≈ −0.1595. In the other case the specific entropy is s ¼
6k and the critical exponents is δ�2 ≈ −0.0576. The relevant
graphs are shown in Fig. 7.
In each case the two branches of solutions, I and II (with

light and heavy disks, respectively), converge to a common
vertex (the bifurcation point) when δ → δ�1 or δ → δ�2. We
have at the bifurcation points solutions corresponding to
disks with masses M�

disk;1 ∈ ð0.40; 0.43Þ M⊙ (solid line)
and M�

disk;2 ∈ ð0.86; 0.93Þ M⊙ (broken line), respectively.
The masses M�

disk;1 and M�
disk;2 for critical solutions are not

determined exactly due to the numerical difficulties that
are typical for bifurcation; the time needed to generate a

FIG. 5. The ratio Mdisk=MBH vs the specific entropy s for the
rotation law jKM. The inner and outer coordinate radii of disks
are r1 ¼ 2, r2 ¼ 40. The mass parameter m ¼ 1, arot ¼ 0.8,
and the spin parameter a ¼ 0.8. Here δ� ¼ −0.1595, and
M�

disk ∈ ð0.40; 0.43Þ M⊙.

FIG. 6. The ratio Mdisk=MBH vs the specific entropy s for the
rotation law jKM. The inner and outer coordinate radii of disks
are r1 ¼ 2, r2 ¼ 40. The mass parameter m ¼ 1, arot ¼ 0.8, and
the spin parameter a ¼ 0.8. Here δ� ¼ −0.0576171875, and
M�

disk ∈ ð0.86; 0.93Þ M⊙.

FIG. 7. The ratioMdisk=MBH vs the parameter δ for the rotation
law jKM. The parameters m, r1, r2, arot, and a are the same as in
Fig. 5. The specific entropy s ¼ 5k (solid line) or s ¼ 6k (broken
line). The values of δ and disk masses corresponding to critical
solutions are: δ�1 ≈ −0.1595 and M�

disk ∈ ð0.40; 0.43Þ M⊙ (solid
line); δ�2 ≈ −0.0576 and M�

disk ∈ ð0.86; 0.93Þ M⊙ (broken line).
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solution grows quickly, from one hour to a couple of days,
when δ approaches a critical value. A more precise
calculation would require a numerical run extending for
a couple of weeks on a personal computer.
We failed to find any subcritical solutions—solutions

seem to be absent for values of the parameter δ that are
larger than the critical value δ�1 (δ

�
2). It is interesting that in

Fig. 7 the branches consisting of light solutions continue
only up to a border value δb ≈ −1=3; they stop just before
attaining the regime of Keplerian rotation. In contrast to
that, the branch of heavy solutions approaches quite closely
the points with δ ¼ −1.
Figures 8 and 9 display mass density profiles of disks

that are close to critical points δ�1 or δ�2. Solid and dotted
lines are denoted by the Roman numeral I; they depict
solutions belonging to the light branch. Dashed and
dashed-dotted lines, denoted by II, correspond to solutions
that belong to the heavy branch. The two central curves
(solid and broken lines) refer to the disk solutions that are
very close to critical ones. The corresponding disk masses
are given below. We have for configurations of Fig. 8:
on branch I—0.40 M⊙ (δ ¼ −0.1595) and 0.043 M⊙
(δ ¼ −0.2); on branch II—1.29 M⊙ (δ ¼ −0.2) and
0.43 M⊙ (δ ¼ −0.1595). In the case of configurations
shown in Fig. 9:—0.86 M⊙ (δ ≈ −0.0576) and 0.22 M⊙
(δ ¼ −0.1) on branch I;—2.1 M⊙ (δ ¼ −0.1) and 0.93 M⊙
(δ ≈ −0.0576) on branch II.
We failed to find a bifurcation diagram in the important

case when the critical solution corresponds to the Keplerian
rotation (δ� ¼ −1=3). It probably does exist, but its critical
point might exist for smaller s, presumably around s ¼ 4k;

we do not possess data defining the equation of state,
in this case.

VII. KEPLERIAN ROTATION LAWS AND DISKS

The Keplerian rotation is common in rotating systems.
It is the only allowed rotation in the case of massless disks
of dust around a compact system, a black hole or a neutron
star. It might well be so also for light gaseous disks, perhaps
under certain restrictions concerning the equation of state.
There exists a numerical indication that the collapse of two
neutron stars can result in quasistationary tori rotating
around a black hole with the “almost” Keplerian angular
velocity [32]. Such “sufficiently compact” stationary tor-
oids have been absent—for the rotation law jSh with the
exponent −1=3—in the analysis of [1]. We shall investigate
below a model with a special case of the rotation (9),
where the rotation parameter arot can differ from the spin
parameter a. Our goal is to construct a numerical solution
with a disk significantly less massive than the central
black hole, but yet sufficiently massive to be interesting
astrophysically.
In the first step we will study the impact of the parameter

arot onto masses of disks for solutions belonging to
branch I. In all cases shown below the coordinate size
of disks is the same—the inner and outer coordinate radii
are r1 ¼ 2, r2 ¼ 40 respectively. The spin parameter of the
black hole is always a ¼ 0.8.
Figure 10, in which the specific entropy is relatively

high, shows that masses depend quite significantly on the
value of arot. The disk mass quickly decreases with
the increase of arot and becomes a negligible entity (of

FIG. 8. Equatorial rest-mass density profiles for s ¼ 5k near the
bifurcation point δ�1 ≈ −0.1595. Here r1, r2, arot, and a are the
same as in Fig. 5. The critical mass M�

disk ∈ ð0.40; 0.43Þ M⊙.

FIG. 9. Equatorial rest-mass density profiles for s ¼ 6k near the
bifurcation point δ�2 ≈ −0.0576. Here r1, r2, arot, and a are the
same as in Fig. 5. The critical mass M�

disk ∈ ð0.86; 0.93Þ M⊙.
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the order of 10−11 of the mass of the black hole) when
arot ≈ 0.788—a bit less than the spin of the black hole,
a ¼ 0.8. The heaviest disk corresponds to the parameter
arot ¼ 0, and its mass Mdisk ¼ 3.3 × 10−3 MBH. That
teaches us that we should choose arot ¼ 0 and then try
to maximize the mass of the disk by changing the
specific entropy s. Results of this investigation are shown

in Fig. 11, which displays masses of disks versus the
specific entropy. In the case of s ¼ 5k solutions have not
been found, but they exist in the interval s ∈ ½6k; 10k�.
The masses of tori decrease with the increase of the
specific entropy. The largest disk mass is equal to about
0.02 MBH ¼ 0.06 M⊙, and it was obtained for s ¼ 6k.
Relative disk masses decrease rapidly with the increase
of s: we have Mdisk=MBH ¼ 7.8 × 10−3 for s ¼ 7k,

FIG. 10. The ratio Mdisk=MBH vs arot for light disks with the
Keplerian rotation law (9). Here r1 ¼ 2, r2 ¼ 40, δ ¼ −1=3, the
mass parameter m ¼ 1, the spin parameter arot ∈ ½0; 0.8Þ, and
s ¼ 8k. The black hole mass MBH ≈ 3 M⊙.

FIG. 11. The ratio Mdisk=MBH vs the specific entropy in the
disk. The data are the same as in Fig. 10, but now arot ¼ 0, and the
specific entropy changes: s=k ¼ 6, 7, 8, 9, 10.

FIG. 12. Equatorial rest-mass density profiles for solutions
shown in Fig. 11.

FIG. 13. Equatorial rest-mass density profiles of light disks
obtained for arot ¼ 0 and the rotation law (10). The exponent
−δ ∈ f0; 1=7; 1=4; 1=3g. The remaining parameters are the same
as in Fig. 10.
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Mdisk=MBH ¼ 3.26 × 10−3 for s ¼ 8k,Mdisk=MBH ¼ 1.5 ×
10−3 for s ¼ 9k, andMdisk=MBH ¼ 7.5 × 10−4 for s ¼ 10k.
Figure 12 shows mass density profiles of disks corre-

sponding to solutions presented in Fig. 11. The maximal
mass density of the heaviest disk, for which s ¼ 6k, reaches
the value 2 × 1012 g=cm3.
Finally, we shall show masses and density profiles of a

Keplerian disk and a few non-Keplerian ones. Figure 13
compares various density profiles within light disks, for a
family of rotation laws (10) with the rotation parameter arot
set to zero. The spin parameter of the black hole a ¼ 0.8
is the same as in former examples. The black hole mass is
3 M⊙. The general feature is that these profiles are shifted
inwards with the decrease of δ. The values of the mass of
the disk are given in Table I; they are decreasing with the
decrease of δ.

VIII. CONCLUDING REMARKS

We study stationary and axially symmetric black hole-
disk systems. The fluid inside the disk satisfies the equation
of state found by Fujibayashi et al. [1]—a combination of
the DD2 and Timmes-Swesty equations of state [28].
We choose two families of rotation laws, that of [1] and

of [15]. They are natural, for different reasons. The first is
simple and yields well known monomial Newtonian limits
for the angular velocity. The second is formally more
complex, but it gives the right and exact answer in the case
of a masless disk around a Kerr black hole [16] (in such a

case δ ¼ −1=3 and κ ¼ 3) and also gives monomial
Newtonian limits for the angular velocity. We show, that
the family of rotation laws of [1] is a subcase of that
considered in [15].
We present numerical evidence for the existence of

bifurcation. There are two kinds of situations—the stronger
case is when the parameter δ is treated as a bifurcation
parameter. There is, however, a possibility that it is the
specific entropy that rules the bifurcation. This emergence
of bifurcation is interesting mathematically, but there is also
a potential physical application. Bifurcation often goes in
pair, in nonlinear equations of physics, with the loss of
stability of solutions. That would mean that there exists, in
the context of gravitational coalescences of two compact
objects, a favored (stable) branch of possible configurations
consisting of a black hole and a toroid. A more technical
reason why the investigation of bifurcation is important,
is that the process of finding numerical solutions near a
bifurcation point becomes rather subtle—it is easy to miss
them. Let us mention here a recent discovery of a
bifurcation in rotating polytropic disks [23], with yet
another bifurcation parameter. It is clear that the math-
ematics of rotating and self-gravitating matter within
general relativity, is not only complex but also rich in
classic (nonlinear) phenomena.
A new interesting feature of the family of rotation

laws jKM is that they allow for the existence of solutions
with δ being equal to the “Keplerian” value −1=3, even for
relatively compact configurations and light disks. There
exists a regime within the DD2-Timmes-Swesty equation
of state of a moderate entropy, when Keplerian disks can be
moderately massive—up to 2% (0.06 M⊙) of the mass of
the black hole.
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