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Tidal perturbations play an important role in the study of the dynamics in the classical two-body system.
Understanding tidal effects in strong-field regions may allow one to use gravitational-wave or
electromagnetic observations to locate or constraint the location of possible companions. Here, we
investigate how timelike and null geodesics of a Schwarzschild black hole are affected in the presence of a
companion. There is a panoply of new effects. In some limiting cases, we find analytical solutions for
closed null or timelike geodesics. Our results show that light ring period as measured by a far-away
observer can be either shorter or longer, depending on the location of the companion. We also show that
there are closed lightlike trajectories which are elliptic (for equatorial companions), and that timelike
particles are affected in a similar manner. Finally, we attempt at estimating the ringdown from tidally
perturbed geometries. Our results indicate that there are two stages in the relaxation of such geometries, one
associated with a prompt decay of waves around the deformed photonsphere, and a later relaxation of the
global geometry. These results are consistent with previous, full numerical studies.
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I. INTRODUCTION

Tidal interactions play a fundamental role in many
astrophysical systems. The best known example are the
oceans tides in the Earth-Moon system, which drive tidal
acceleration and longer days, but their effects are ubiquitous
in astrophysics. In the context of gravitational-wave (GW)
astronomy, of tests of fundamental physics and of strong-
field gravity, tidal effects are precious. In a compact binary
emittingGWs, tidal deformations induced by the companion
affect the GW phase. The amount of the dephasing (relative
to that of pointlike objects) correlates to the equation of state
of the inspiralling bodies, hence a precise monitoring of the
GW phase evolution can teach us about the equation of state
of neutron star binaries [1–3]. Black holes (BHs) have a
particularly simple equation of state, owing to the unique-
ness properties invacuumgeneral relativity [4,5]. Hence, the
tidal interactions of compact objects are particularly useful
to test the Kerr nature of BHs [6–8].
Previous studies explored the potential of tidal inter-

actions to constrain the presence of a possible massive
companion to the Sgr*A source [9]. Specifically, data
collected by the GRAVITY collaboration [10,11] on the
orbital motion of the star S0-2 was used to constrain
possible orbital parameters of such a companion. It was

also shown that a putative companion may give rise to GW
emission potentially detectable with the future space-based
interferometer LISA. The effect of tidal fields in Newtonian
orbits is, of course, well studied, specially in the restricted
three-body problem (see Refs. [12,13] and references
therein). Here, we want to understand the effects of weak
tides in the strong-field region. We are particularly inter-
ested on the effect of tides on the location and properties of
the innermost stable circular orbit (ISCO), and of the
photonsphere. These dictate the high-energy behavior
of accretion disks, and the relaxation properties of BHs
[14–17], and so can be useful smoking-guns of compan-
ions. Driven by similar motivations, this problem was
studied recently, albeit in less realistic setups. The position
of the ISCO was studied in a spacetime describing a binary
of extremal charged BHs, in particular the Majumdar-
Papapetrou dihole spacetime [18,19]. The photonsphere of
binary BH spacetimes has been the subject of recent studies
[20–22], since it may help in understanding the relaxation
or ringdown stage of binaries themselves, or hold the key to
understanding how the individual components quasinormal
ringdown is affected by the companion. These spacetimes
include, naturally, tidal effects, but their effects have mostly
been studied numerically. Our aim is to provide simple
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analytical results of strong field phenomena. We use
geometric units G ¼ c ¼ 1 throughout.

II. SETUP: A BLACK HOLE PERTURBED
BY A COMPANION

Consider a nonspinning BH of mass M, perturbed by a
companion of mass Mc at a distance R. For far-away
companions, the tide is weak and one can expand the
geometry around its Schwarzschild value,

gμν ¼ gSchμν þ ϵhμν; ð1Þ

where ϵ represents the strength of the tidal perturbation,
assumed to be small (ϵ ≪ 1). Using Regge and Wheeler’s
approach, the perturbation hμν can be expanded in tensor
spherical harmonics [23–25] and decomposed in polar and
axial parts, due to the spherical symmetry of the system.We
focus on the polar contributions which, in the Regge-
Wheeler gauge, can be written as:

hpolarμν ¼

0
BBBBB@

fHlm
0 Hlm

1 0 0

Hlm
1 f−1Hlm

2 0 0

0 0 r2Klm 0

0 0 0 r2 sin2 θKlm

1
CCCCCAYlm

ð2Þ

where Hlm
i ¼ Hlm

i ðt; rÞ, Klm ¼ Klmðt; rÞ, Ylm ¼ Ylmðθ;ϕÞ
are standard spin-0 spherical harmonics and

f ¼ fðrÞ ¼
�
1 −

2M
r

�
: ð3Þ

To continue, consider a companion far away, such that
the orbital timescale is larger than any other scale in the
problem and much larger than the timescale of the
internal dynamics of the body. In this regime, one can
focus on static perturbations. The vacuum field equations
then provide equations for the metric functions H0; H1;
H2; K. These should be solved demanding regularity at the
horizon. We will mostly focus on quadrupolar modes, but
the analysis is easily extended. The tr and θθ components
of the field equations result in

H1 ¼ 0; H2 ¼ H0: ð4Þ

The solution for H2 which is regular across the horizon
r ¼ 2M for l ¼ 2 is given by

H2 ¼ c1
3ð2M − rÞr

M2
¼ −

3c1
M2

r2fðrÞ; ð5Þ

where c1 is an integration constant that must be determined
by studying the asymptotic behavior of the metric (1) in the

presence of an external tidal field. This can be done using
the definition of multipole moments developed by Thorne
[26,27]. The effects of an external tidal field are entirely
encoded in two symmetric and trace-free tensors: the
polar tidal field EL and the axial tidal field BL. The polar
tidal field can be expanded in spherical harmonics as
ELxL ¼ rl

P
m ElmYlmðθc;ϕcÞ, where θ ¼ θc and ϕ ¼ ϕc

are the angular coordinates of the companion in the BH
sky [28].
In the most general case, the asymptotic expansion of the

metric will depend on the angular index m. Since we only
need it to find the value of c1, we can fix m ¼ 0 without
loss of generality and the metric expansion reads

gtt ¼−1þ 2M
r

þ
X
l≥2

�
2

rlþ1

� ffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
MlYl0þðl0 < lpoleÞ

�

−
2

lðl− 1Þr
l½ElYl0þðl0 < lpoleÞ�

�
; ð6Þ

where Ml are the mass multipole moments.
If we consider the dominant quadrupolar contribution

with l ¼ 2, we can match Eq. (6) with the tt-component of
Eq. (1), and find

c1 ¼
M2E2

3
: ð7Þ

Now we have to find the explicit value of the tidal moment
E2. This can be done matching the full metric (1) with a
post-Newtonian (PN) description of the external spacetime
[28,29]. We will always assume parameters for which the
system can be captured by a PN description. The gtt
component in the PN approximation is [29]:

gPNtt ¼ −1þ 2Uðr; θ;ϕÞ: ð8Þ

If we assume that the companion is a PN monopole of mass
Mc and centering ourselves in the BH frame, the potential
can be written as

U ¼ M
r
þ Mc

jr −Rj

¼ M
r
þMc

X
lm

4π

2lþ 1

rl

Rlþ1
Y�
lmðθc;ϕcÞYlmðθ;ϕÞ: ð9Þ

Finally for l ¼ 2 we have

gPNtt ¼ −1þ 2M
r

þ 8πMc

5

r2

R3

X
m

Y�
2mðθc;ϕcÞY2mðθ;ϕÞ;

ð10Þ

and comparing (10) with the gtt component of the perturbed
metric we find that
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E2 ¼ −
8πMc

5R3

X
m

Y�
2mðθc;ϕcÞ ¼ −

8πϵ

5M2

X
m

Y�
2mðθc;ϕcÞ;

ð11Þ

where in the last step we have defined the strength of the
tidal deformation as

ϵ ¼ M2Mc=R3: ð12Þ

Equation (11) agrees with the expression for E2 in [30]. The
metric functions in (2) are now completely determined and
they read:

H0ðrÞ ¼ H2ðrÞ ¼
8πϵ

5M2
r2fðrÞ

X
m

Y�
2mðθc;ϕcÞ; ð13Þ

KðrÞ ¼ 8πϵ

5M2
ðr2 − 2M2Þ

X
m

Y�
2mðθc;ϕcÞ: ð14Þ

III. POLAR COMPANIONS

We will specialize our calculations to two specific
setups, where the orbits lie in the BH-companion plane,
or orthogonal to it. Equivalently, and this is the approach
we follow, we restrict to equatorial orbits, and place the
companion either at the equator or at the pole.
We start with a companion at the pole, θc ¼ 0;ϕc ¼ 0,

which then preserves the azimuthal symmetry of the BH.

A. ISCO and light ring properties

The full components of the metric with l ¼ 2 on the
equatorial plane are

gpolartt ¼ −fðrÞ
�
1þ fðrÞ r

2ϵ

M2

�
; ð15Þ

gpolarrr ¼ gðrÞ − r2ϵ
M2

; ð16Þ

gpolarθθ ¼ gpolarϕϕ ¼ r2
�
1 −

ðr2 − 2M2Þ
M2

ϵ

�
: ð17Þ

In the equatorial plane, we then find the Lagrangian

2L ¼ gpolartt _t2 þ gpolarrr _r2 þ gpolarϕϕ
_ϕ2; ð18Þ

with dots standing for derivatives with respect to proper
time. The Lagrangian is time and azimuth independent,
giving rise to two conserved quantities, specific energy E
and angular momentum L

_t ¼ E
fðrÞð1þ ϵfr2=M2Þ ; ð19Þ

_ϕ ¼ L
r2ð1þ ð2 − r2=M2ÞϵÞ : ð20Þ

The equations of motion are easier to handle via an
effective radial potential, which can be obtained substitut-
ing (19)–(20) in the normalization for the quadrivelocity

gμνuμuν ¼ δ; ð21Þ

where δ ¼ 0;−1 for null and timelike geodesics, respec-
tively. One finds,

_r2 ¼ E2 − VδðrÞ; ð22Þ
where

VδðrÞ ¼
L2ð2M − rÞð2Mrϵ − 2r2ϵþM2ð2ϵ − 1ÞÞ

M2r3

þ δ
ð2M − rÞðM2 − 2Mrϵþ r2ϵÞ

M2r
: ð23Þ

To understand the ISCO properties, we expand all
relevant quantities in Eq. (23) to first order in ϵ, e.g.,
rISCO ¼ rð0Þ þ ϵrð1Þ, with rð0Þ ¼ 6M the unperturbed
Schwarzschild BH value. By definition, at the ISCO
E2 − Vðδ¼−1Þ ¼ dVðδ¼−1Þ=dr ¼ d2Vðδ¼−1Þ=dr2 ¼ 0. We
find

rISCO ¼ 6Mð1 − 256ϵÞ; ð24Þ

EISCO ¼ 2
ffiffiffi
2

p

3
ð1þ 38ϵÞ; ð25Þ

LISCO ¼ 2
ffiffiffi
3

p
Mð1þ 7ϵÞ; ð26Þ

ΩISCO ¼ 1þ 491ϵ

6
ffiffiffi
6

p
M

: ð27Þ

Note that ΩISCO is simply _ϕ=_t evaluated at the ISCO, and is
the angular velocity as measured by far away observers.
High frequency photons or gravitons are well described

by null geodesics. Of these, there is one that stands out: a
close null geodesic which for non-rotating, isolated BHs is
located at r ¼ 3M [8,14–17]. This location defines the
light ring or photosphere. In the presence of a companion,
we find

rLR ¼ 3Mð1þ 5ϵÞ; ð28Þ

bLR ¼ 3
ffiffiffi
3

p
Mð1 − 5ϵÞM; ð29Þ

ΩLR ¼ 1þ 5ϵ

3
ffiffiffi
3

p
M

: ð30Þ

where b ¼ L=E is the impact parameter.
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These analytical estimates can be compared to a numeri-
cal solution of the geodesic equations. Those results are
shown in Table I for some selected values of ϵ. The
perturbative analytical results agree with these numbers
to all digits listed. These results can be compared and
contrasted to those referring to an extremally-charged BH
binary, the Majumdar-Papapetrou geometry. This is done in
the Appendix.

B. The relaxation of tidally perturbed black holes: Light
ring modes and quasinormal modes

Consider now fundamental fields in the BH vicinities,
such as gravitational or electromagnetic waves. The
dynamical evolution is described by a set of second order
differential equations whose details depend on the initial
data. In general however, the time evolution is charac-
terized by a prompt signal, followed by a ringdown which
is caused by the “leaky” boundary conditions at the
boundaries [25,31]. When new structure is added, such
as a change of boundary conditions at large distances or in
the near-horizon region, new features appear. In particular,
the light ring controls the early-time relaxation of
BHs, whereas the late-time ringdown is dictated by
boundary conditions, defining quasinormal modes
[8,15,16,32,33]. For isolated BHs, these two decays
coincide and the dynamical properties of BHs are rela-
tively simple.
We are dealing with a tidally perturbed BH, so we expect

two stages in the dynamical evolution of fundamental
massless fields. In fact, there is evidence in the literature
for such distinctive behavior [21]. Consider, first, the light
ring relaxation. A complete knowledge must be obtained
performing time evolutions of the corresponding evolution
equations, but a good description is obtained in the eikonal
approximation [15,32]. In this approximation, the early
time ringdown of a signal Φ is an exponentially damped
sinusoid,

Φ ∼ e−ω
LR
I t sinωLR

R t: ð31Þ

Formally, the signal is a superposition of overtones which
carry an associated index l associated with the angular
dependence and an index n associated to a radial

dependence. Here, the ringdown frequency ωLR
R and the

damping rate ωLR
I are given by the angular frequency (30)

and the Lyapunov exponent λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
r=2_t2

p
, respec-

tively [15].
Although this limit is formally valid only when l ≫ 1, it

has been shown that it gives very accurate results even
when l is smaller [25]. In particular for modes with l ¼ m
we have ωR ¼ lΩLR and ωI ¼ ðnþ 1=2ÞjλLRj. For
l ¼ m ¼ 2 the ringdown frequency and the damping
rate are

MωR ¼ 2ð1þ 5ϵÞ
3

ffiffiffi
3

p ; MωI ¼
�
nþ 1

2

�
1 − 10ϵ

3
ffiffiffi
3

p : ð32Þ

We thus have a clear prediction for the changes in the early
ringdown of GWs, induced by a companion.
Now, as we mentioned, the late time behavior of the GW

signal is dominated by the poles of the relevant Green
function the quasinormal modes (QNMs), and therefore are
sensitive to the entire geometry and not only to the local
properties around the light ring. In order to assess the QNM
spectrum one needs to solve the dynamics. To understand
the possible changes, we focus on the relatively simpler
problem of a scalar field propagating on the fixed, back-
ground geometry (1). The dynamics are governed by the
Klein-Gordon equation,

□φ ¼ 1ffiffiffiffiffiffi−gp ∂μðgμνpolar
ffiffiffiffiffiffi
−g

p ∂νφÞ ¼ 0; ð33Þ

where g ¼ det gpolarμν . Since the spacetime admits two
Killing vectors ∂t and ∂ϕ, we can decompose the scalar
field as:

φðt; r; θ;ϕÞ ¼ eiðmϕ−ωtÞ ψ lðrÞ
r

YlmðθÞ: ð34Þ

If we substitute Eq. (34) in Eq. (33) we get a system of
differential equations that are not separable. Following
Ref. [34], we can expand the box operator in (33) at first
order in ϵ:

□ ¼ □ð0Þ þ ϵ□ð1Þ; ð35Þ

where we have taken into account that the zeroth order part
is separable while the nonseparable terms come only from
the perturbative correction to the metric. The explicit form
of the operator is

□ð0Þφm;ωðr; θÞ ¼
1

r2
∂rðrðr − 2MÞ∂rφÞ

þ 1

r2 sin θ
∂θðsin θ∂θφÞ

þ
�

rω2

r − 2M
−

m2

r2sin2θ

�
φ; ð36Þ

TABLE I. Numerical results for the ISCO properties of a tidally
deformed BH spacetime. The analytical results (24)–(27) agree
with these values up to the last digit.

Numerical results

ϵ r=M E L=M

10−7 5.9998 0.94281 3.4641
10−6 5.9985 0.94284 3.4644
10−5 5.9849 0.94317 3.4671
10−4 5.8657 0.94633 3.4932
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2M2

1þ 3 cos 2θ
□ð1Þφm;ωðr; θÞ ¼

2M2 − r2

r2
cot θ∂θφ

þ 2M2 − r2

r2
∂2
θφ −

2ðr − 2MÞ2
r

∂rφ − ðr − 2MÞ2∂2
rφ

þ
�
r2ω2 þ ðr2 − 2M2Þ

r2 sin2 θ
m2

�
φ: ð37Þ

Since the zeroth-order solution for a given l0 is φðr; θÞ ¼
ψ l0ðrÞ=rYl0mðθÞ, it is possible and consistent to assume that
any term with l ≠ l0 comes from the perturbative correc-
tion. Hence, we can expand the solution such as,

φm;ωðr; θÞ ¼
ψ l0ðrÞ

r
Yl0mðθÞ þ ϵ

X
l≠l0

ψ lðrÞ
r

YlmðθÞ ð38Þ

Applying the operator (35) to the solution (38) and
neglecting terms Oðϵ2Þ we have:

□ð0Þ

�
ψ l0ðrÞ

r
Yl0mðθÞ

�
þ ϵ

X
l≠l0

□ð0Þ

�
YlmðθÞ

ψ lðrÞ
r

�
þ

þ ϵ□ð1Þ

�
ψ l0ðrÞ

r
Yl0mðθÞ

�
þOðϵ2Þ ¼ 0: ð39Þ

Projecting (39) onto Yl0mðθÞ we get one single radial
equation that can be solved numerically to find the
QNM frequencies:

ð□ð0Þ − lðlþ 1ÞÞψ l0ðrÞ
r

þ ϵ

Z
π

0

□ð1Þ

�
ψ l0ðrÞ

r
Yl0mðθÞ

�
Yl0mðθÞdθ ¼ 0: ð40Þ

The asymptotic behavior of the solutions of the above
equation are as follows,

ψ l0 ∼ ðr − 2MÞ2Miω; r → 2M; ð41Þ

ψ l0 ∼ e�ωr; r → ∞: ð42Þ

The boundary condition at the horizon is similar to that of
isolated BHs [25]. However, the boundary behavior at large
spatial distances, imposed on us by the equations of
motion, are completely different from those of an asymp-
totically flat spacetime. Indeed, the metric perturbation of
the tidally perturbed BH we’re studying is not asymptoti-
cally flat. We are using the diverging piece of the metric
perturbation to impose the presence of a companion far
away. In a complete setup, the companion is at finite
distance and the spacetime asymptotically flat. In other
words, our description of the binary system is only accurate
for distances r≲ R. The boundary conditions imposed on
us within this setup are similar to those of asymptotically

anti-de Sitter or other spacetimes where radiation is
confined [25,35]. They select a set of complex quasinormal
mode frequencies

ω ¼ ωR þ iωI: ð43Þ

Accordingly, the confining nature of the tidal perturbations
indicates that one will find a QNM spectrum which differs
substantially from that of a single Schwarzschild BH,
reflecting the fact that perturbations should be less damped
(as the only dissipation channel is now the horizon).
We thus need to fix the unacceptable behavior at large

spatial distances. We will do so without entering the
challenge of matched asymptotic expansions to correctly
reproduce the geometry everywhere [21]. We simply
“cutoff” the tidal effects with an auxiliary function,
which we take rather arbitrarily to have the form
HðrÞ ¼ 1=1þ e2kðr−rcÞ. In other words, our regularization
procedure consists on the replacement

ϵ →
ϵ

1þ e2kðr−rcÞ
; ð44Þ

since the ϵ terms are precisely the ones responsible for the
divergence at infinity. In general, results will depend on the
smoothness parameter k and the cutoff point rc. It seems
reasonable to ask that rc ∼ R, whereas k is at least of the
order Mc to describe a smooth transition.
Figures 1–2 show the QNMs for three different values of

the cutoff radius rc=M ¼ 60, 70, 80 and k ¼ 100 (top
panels) or k ¼ 2 (bottom panels). Notice that what is shown
are the first overtones. Since we are mostly interested in
comparing against the eikonal limit, we fix l ¼ m ¼ 10.
We fixed a tidal parameter ϵ ¼ 10−4, but results for other ϵ
are similar.
As already anticipated from the discussion above, the

most salient feature of Figs. 1–2 is that the QNM spectrum
of a tidally deformed BH is completely different from that
of an isolated BH. Despite our curing the asymptotic
behavior artificially, remains of this behavior remain in
the perturbation via the existence of quasibound states. For
example, for a perturbation parameter ϵ ¼ 10−4, one could
expect a correspondingly small change in the QNM
spectrum. However, as can be seen in Figs. 1–2, the
QNM frequencies change by Oð1Þ. These features were
seen in the past [8,16,35–37] and are connected with the
asymptotic properties of the effective potential for wave
propagation (and of the corresponding solutions). In fact,
the tidal effects act to create a long-distance “well” that
traps low frequency radiation. This explains why the
damping of the lowest modes (see right panels in
Figs. 1–2) is so much lower than the isolated-BH
counterpart. Once the vibration frequency ωR is sufficiently
large for fluctuations to tunnel out through the light ring,
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ωR ≃ ωSch
R [15], a new channel for dissipation is open, and

the damping timescale decreases.
Our results are well described by a real component

ωR ≈ ωð0Þ
R þ αn; n ¼ 0; 1; 2.:: ð45Þ

where the offset ωð0Þ
R corresponds to the fundamental mode

n ¼ 0, and α is a constant, which decreases increasing rc
and it is independent (or only weakly dependent) on ϵ. Our

results indicate a very weak dependence of ωð0Þ
R on rc and ϵ.

At very small ϵ we recover the Schwarzschild fundamental
QNM, but it is not necessarily the fundamental mode of this
perturbed spacetime. This is the spectrum characteristic of a
confined system and differs markedly from that of an
isolated BH, for which the (real part of the) QNM

frequencies asymptote to a constant [25]. For k ¼ 100,
α ¼ 0.044, 0.039, 0.035 for rc=M ¼ 60, 70, 80 respec-
tively, while for k ¼ 2, α ¼ 0.052, 0.048, 0.041.
Regarding the imaginary part of the QNM frequencies,

our results for the fundamental mode are well described by

Mωð0Þ
I ≈

3M

5rcϵ1=8
: ð46Þ

As we stressed, these results are sensitive to the cutoff
function and radius we choose. We have also investigated
the auxiliary function HðrÞ ¼ Θðrc − rÞ, with Θ the
Heaviside function. Our results for the QNM spectrum
show the same qualitative behavior as in Figs. 1–2.
Although the numerical values are slightly different, the
overall structure is the same, and we find frequencies below

FIG. 1. Real (left panel) and imaginary (right panel) part of the frequencies for different values of the “cutoff point” rc in the function
HðrÞ. In this case ϵ ¼ 10−4, k ¼ 100, and l ¼ m ¼ 10. The dashed line represents the Schwarzschild frequency (not shown in the right
panel since its value jMωIjSch ≃ 0.09 is out of the range chosen).

FIG. 2. Real (left panel) and imaginary (right panel) part of the frequencies for different values of the “cutoff point” rc in the function
HðrÞ. In this case ϵ ¼ 10−4, k ¼ 2 and l ¼ m ¼ 10. The dashed line represents the Schwarzschild frequency (not shown in the right
panel since its value jMωIjSch ≃ 0.09 is out of the range chosen).
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the Schwarzschild fundamental mode. We also find a
transition in the spectrum at ωR ≃ ωSch

R , as before. This
lends strength to the claim that Figs. 1–2 are a good
qualitative description of the spectrum.
In conclusion, there are two different stages to consider

in the relaxation of binaries [21]. The first one is associated
with a prompt ringdown phase and the local properties of
the BHs light ring, which are affected by the presence of the
companion via (32). This is a local property of the
spacetime and hence is not affected by the asymptotic
structure at infinity. The second one is associated with the
late time decay of the field which instead strongly depends
on the global properties of the spacetime and that we tried
to capture solving (40). Although it is impossible with our
naive cutoff procedure to fully capture all the physics, the
structure of the spectrum confirms that we’re dealing with a
very different late-time relaxation induced by the different
scales in the problem. These features have already been
seen in the numerical studies of Ref. [21].

IV. EQUATORIAL COMPANIONS

We now specialize our analysis to equatorial compan-
ions, for which θc ¼ π=2. Without loss of generality we can
impose ϕc ¼ 0. The presence of the companion, which is
still assumed to be at rest, breaks the axisymmetry of
the metric. As a consequence, the orbits that now lie on the
BH-companion plane, have an explicit dependence on
the azimuthal angle. For l ¼ 2, the metric components
read:

geqtt ¼ fðrÞ
2M2

½−2M2 þ fðrÞr2ϵð1þ 3 cos 2ϕÞ�; ð47Þ

geqrr ¼ gðrÞ
2M2

½2M2 − 2Mrϵþ r2ϵþ 3rðr − 2MÞϵ cos 2ϕ�;
ð48Þ

geqθθ ¼ geqϕϕ

¼ r2

2M2
½2M2ð1 − ϵÞ þ r2ϵþ 3ðr2 − 2M2Þϵ cos 2ϕ�:

ð49Þ

A. Null geodesics

Due to the nonaxisymmetry of the spacetime, solving
geodesic motion analytically is challenging. Instead, we
perform a numerical integration of geodesic equations and
find the best fit for the motion’s parameters. Consider first
null geodesics and the “shape” of closed null orbits. To
calculate these, we integrate the geodesic equations sub-
jected to initial conditions,

xα0 ¼ ð0; r0; π=2; 0Þ; uα0 ¼ ðuϕ0=s; 0; 0; uϕ0 Þ; ð50Þ

where s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðr0; π=2; 0Þ=gϕϕðr0; π=2; 0Þ

p
. These con-

ditions ensure that we’re integrating the motion for a null
particle. We then vary the affine parameter τ in an interval
½0;ϒ� and fine-tune the value r0 ∼ 3M such that the orbit
closes in the same interval. The period (in proper or affine
time) ϒ is roughly given by ∼2π=uϕ0 and hence our
calculation is independent from the initial value of uϕ.
Our results show an interesting, perhaps expected feature

(cf. Fig. 3): the null geodesic is no longer circular, but there
are closed null orbits, which are elliptical. In fact, one can
describe them analytically at small ϵ, looking for an
expansion with the functional form

rðϕÞ ¼ 3M − ϵðx0 þ A cos 2ϕðτÞÞM; ð51Þ

ϕðτÞ ¼ðc1 þ ϵc2Þ
τ

M
; ð52Þ

tðτÞ ¼ t0τ þ ϵðt1 þ B sin 2ϕðτÞÞM: ð53Þ

The geodesic equations, together with the normalization for
quadrivelocities, yield the solution

rðϕÞ ¼ 3M − ϵ

�
15

2
þ 9

2
cos 2ϕðτÞ

�
M; ð54Þ

tðτÞ ¼ t0τ þ
45

ffiffiffi
3

p

4
ϵ sin 2ϕðτÞM; ð55Þ

ϕðτÞ ¼ t0

�
1

3
ffiffiffi
3

p −
5

6
ffiffiffi
3

p ϵ

�
τ

M
; ð56Þ

FIG. 3. Graphic representation of the closed null orbit (54)
(solid line) when the companion is fixed at the equator. The
dashed circle represents the light ring in the Schwarzschild
spacetime. Not in scale.
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where t0 is a scale-factor of the affine parameter τ (with no
influence on observables). Table II reports the values of r0
(at ϕ ¼ 0) obtained via numerical integration and the
analytical prediction (54). Once the solution (54) is known,
one can find the parameters of the ellipse in terms of ϵ.
Namely, a ¼ ð3 − 3ϵÞM and b ¼ ð3 − 12ϵÞM are the
semimajor and semiminor axes respectively, while the

eccentricity is given by e ¼
ffiffiffiffiffiffiffiffi
6ϵ

1−4ϵ

q
.

Imposing ϕðϒÞ ¼ 2π, one can find the period of the
orbit, which in the t-coordinate is

T ¼ tðϒÞ ¼ 3
ffiffiffi
3

p
πð2þ 5ϵÞM: ð57Þ

B. Timelike geodesics: Particles at rest

The spacetime described by Eqs. (47)–(49) seems to
admit new types of motion. We find new results concerning
static particles, i.e., orbits which satisfy _r ¼ _ϕ ¼ 0. At
τ ¼ 0, we set initial conditions ϕ ¼ 0; r ¼ rs and the radial
motion is governed by

_r2 ¼ E2 þ ð2M − rsÞ
�
1

rs
−
2ðrs − 2MÞϵ

M2

�
: ð58Þ

Solving _r ¼ ̈r ¼ 0, one finds:

rs ¼
�
2

3
þ 1

ð2ϵÞ1=3
�
M þOðϵÞ; ð59Þ

E2 ¼ 1þOðϵÞ: ð60Þ

Estimates (59) can be tested solving numerically the
geodesic equations imposing ut0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=geqtt ðrs; π=2; 0Þ

p
as

initial condition. Table III reports the results obtained with
these two approaches, with an overall good agreement.
The result (59) is also in agreement with a Newtonian

solution of the problem [38,39]. Consider a binary system
with massesM andMc separated by a distance R. Let a test
particle with mass μ be located at distance r from the
primary mass M. The test particle will be at rest if the
gravitational force exerted by the primary mass is com-
pensated by the tidal force exerted by the secondary mass
on the primary. Namely,

Mμ

r2
¼ Mcμ

ðR − rÞ2 −
Mcμ

R2
≃
2Mcμr
R3

; ð61Þ

where we have exploited the fact that r=R ≪ 1. Solving
this equation for r one finds:

r ¼ R

�
M
2Mc

�
1=3

; ð62Þ

which is proportional to the value of rs in (59) if we
substitute in it the definition of ϵ given by (12).

C. Timelike geodesics: Disturbing circular motion

An analytical description of the ISCO is challenging to
find in these nonsymmetric setups. Without attempting to
find an analytical solution to this problem, we wish to study
when one disturbs circular orbits by slowly lowering a
companion coming from infinity. This process could mimic
for example the inspiral of a binary and its effect of the disk
of one of them.
We use a toy model of a time-dependent perturbation

described by ϵ ¼ M2Mc=R3 with R a time-dependent
quantity,

RðτÞ ¼ R0

1 − e−λðτþδÞ : ð63Þ

This behavior is meant to describe the appearance of a
companion in a smooth way, so that one is able to study the
transition from no-companion to a tidally distorted BH. The
results discussed below are not dependent on δ, and
converge to a universal behavior for small λ. We focus
now precisely on ðδ; λÞ-independent results.
We set δ ¼ M2λ ¼ 10−4M, so that initially the

companion is at R ∼ 108R0 and asymptotically approaches
R ¼ R0. We focus on R0 ¼ 200M.
We start with a particle initially at r ¼ ri on a circular

orbit, i.e.,

TABLE II. Coordinate value of r0 at θ ¼ π=2;ϕ ¼ 0 for which
the null geodesic is closed. We show both the numerical result
rnum0 and the analytical prediction ran0 given in Eq. (54) and valid
for small ϵ.

ϵ 3 − rnum0 =M 3 − ran0 =M

10−6 1.2 × 10−5 1.2 × 10−5

10−5 1.2 × 10−4 1.2 × 10−4

10−4 1.2 × 10−3 1.2 × 10−3

10−3 1.2 × 10−2 1.2 × 10−2

TABLE III. Location rs where static equilibrium of particles in
a tidally deformed BH spacetime is possible. Numerical values
are denoted rnums and can be compared against the analytical
prediction rans of Eq. (59).

ϵ rnums =M rans =M

10−6 80.037 79.713
10−5 37.507 37.195
10−4 17.766 17.479
10−3 8.604 8.372
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uμ0 ¼

0
B@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri
ri − 3M

r
; 0; 0;

1

ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

ri − 3M

s 1
CA; ð64Þ

and we integrate the geodesic equation up to τ ∼ 10λ−1.
As the companion approaches its asymptotic location R0,

the particle is pulled to a slightly larger orbital radius, while
the orbits becomes slightly eccentric, as shown in Fig. 4.
If we assume that the orbit is elliptic, we can extract the

local maximum and minimum values of the radial coor-
dinate to compute an eccentricity-like quantity

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrmin=rmaxÞ2

q
; ð65Þ

as well as its period T. Specifically, these quantities are
evaluated for a single period T and extracted when the
companion is almost steady, so at late times. Results are
reported in Table IV. Note that T is to a good precision the
orbital period of a particle in circular motion, given by
Kepler’s law. Not surprisingly, e increases as the particle
moves away from the BH and get closer to the companion.
Specifically, it scales as

e ∝
�
ri
M

�
1.8
: ð66Þ

In fact, the motion is not really eccentric in these
coordinates. For large ri, we find that the motion acquires
a peanut-like shape, as shown in Fig. 5. If we take the
ϕ ¼ 0 direction as the apoapsis rmin direction, then devia-
tions from a perfect elliptic shape are of order Δrmin=rmin ∼
10−3 (blue line in the last panel of Fig. 5). As a
consequence, the eccentricitylike parameter e can still be
considered an adequate measure of deviation from
circularity.

Likewise, both the period T and the shapes of the orbits
in Fig. 5 are unaffected by the change in the final position.
The only relevant difference is in the numerical values of
rmin and rmax, as well as in their ratio. In fact, as expected,
these values become larger (smaller) if the companion is at
R0=M ¼ 100 (300). As a consequence, orbits have a larger
(smaller) value of the parameter e, though its scaling with
ri is still well described by Eq. (66). To be precise, the
exponent is 1.71 for R0 ¼ 300 and 1.88 for R0 ¼ 100.
The final position of the particle, due to the presence of a

companion, is dependent both on the strength of the
perturbation and the initial radius. If we denote by rfin
the average value between rmin and rmax, extracted when the
companion is now steady, we find that for radii ri ≥ 10M
the displacement Δr ¼ rfin − ri is given by

Δr
ri

≈ A

�
ri
M

�
3

ϵ ð67Þ

with the constant A of order of unity.

FIG. 4. Orbital radius of a particle, as function of proper time τ. The particle is placed initially on a circular trajectory of radius
ri ¼ 6.01M (left panel) and ri ¼ 6.10M (right panel) and perturbed by a companion such that RðτÞ ¼ R0=ð1 − e−λðτþδÞÞ, with λ ¼ 10−4,
δ ¼ 10−4, R0 ¼ 200M. The inset shows the behavior of the radial coordinate on shorter timescales for ri=M ¼ 6.01, 6.10. Oscillations
with periodicity ∼45M can be seen, which correspond to orbital periods ∼90M in the ðr;ϕÞ-plane, in accordance with Fig. 5 and
Table IV. Note that at early times there are some “gaps” in the oscillatory behavior. These are a technical artifact of plot-drawing only and
have no physical meaning.

TABLE IV. Period T in time coordinate and eccentricitylike
parameter e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrmin=rmaxÞ2

p
of the orbits performed by a

timelike particle starting with initial radius ri when the
companion is slowly approaching from infinity to R0 ¼ 200M.

ri=M T=M e

6.01 92 0.0055
6.05 95 0.0055
6.1 96 0.0057
6.5 104 0.0063
7 116 0.0074
8 142 0.0099
10 198 0.0148
15 363 0.0317
20 562 0.0522
25 786 0.0759
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V. DISCUSSION

The understanding of accretion disks or of the orbital
motion of stars is a fundamental aspect in the interpretation
of astrophysical observations. In addition, the location and
properties of the light ring around BHs are crucial in the
understanding of the dynamics in the strong-field regime.
Thus, peculiarities in motion in deep strong-field regions
could indicate either new physics or simply the presence of
an unseen companion [9]. Motivated by this possibility, we
studied the geodesic motion of both null and timelike orbits
when tidal perturbations induced by an external companion
are present.
There are several new features of tidally distorted

BH geometries relative to BHs in isolation. When the
orbital plane is orthogonal to that of the BH-companion,
we were able to analytically quantify the linear deviations
in the characteristic orbits induced by the companion.
Specifically, with respect to the unperturbed configuration,
the light ring has larger radius and orbital frequency, while
the ISCO is located closer to the BH and, consequently, has
a larger angular frequency. In this framework we also
obtained the QNM frequencies for the l ¼ m ¼ 2 modes
and we found that the ringdown frequency (the damping
rate) is shifted to a slightly larger (smaller) value with
respect to that of a Schwarzschild BH.
Instead, studying the late-time behavior of the field

showed that the structure of the modes of such a geometry
is noticeably different from that of a single BH and is
instead typical of confined systems. These properties had
already been observed previously [21]. However, in order
to correctly capture all the physical properties of the
relaxation stage, it is necessary to construct a spacetime
which correctly reproduces the asymptotic behavior at
infinity [21]. Further investigations in this direction are
left for future work.
On the other hand, when orbits lie in the same plane as

that of the BH-companion system, one needs a numerical
study. We showed that the light ring is still a closed

orbit but with an elliptical shape characterized by eccen-
tricity and axes proportional to ϵ (cf. Fig. 3). Timelike
orbits displayed a similar behavior but other effects took
place as well. The companion induces a relaxing of the
orbit of point particles, which moves toward larger radii and
are tidally distorted as seen in Fig. 5. We also explored the
possibility for the spacetime to admit static orbits and we
found an expression for their initial radius rs in agreement
with the Newtonian treatment of the problem.
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APPENDIX: GEODESICS IN MAJUMDAR-
PAPAPETROU SPACETIMES

There is a solution known in closed form, describing a
regular and asymptotically flat BH binary spacetime
geometry: it is known as the Majumdar-Papapetrou geom-
etry and describes a pair (or more) of charged, extremal
BHs. The BHs feel no force as they are extremal: their
gravitational attraction is exactly canceled by an electro-
static repulsion. In isotropic cylindrical coordinates the
geometry reads

FIG. 5. Orbits in the ðrðτÞ − ri;ϕðτÞÞ plane for initial radii (from left to right) ri=M ¼ 6.01, 7, 10, 25 in a single period T. For
graphical reason in the first case the radial coordinate is obtained as rðτÞ − 6.025M. In the last panel the blue line represents Δrmin
mentioned in the main text.
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ds2 ¼ −
1

U2
dt2 þU2ðdρ2 þ ρ2dϕ2 þ dz2Þ; ðA1Þ

where

U ¼ 1þ m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ aÞ2

p þ m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p : ðA2Þ

Studies similar to that in the main body of this work were
done in the context of such a spacetime [18–20]. Following
their analysis, we find the following corrections for the
ISCO frequency of an extremal BH of massM perturbed by
a companion of mass Mc at a distance R ¼ 2a

MΩISCO ¼
ffiffiffi
3

p

16

�
1 −

Mc

2R

�
; ðA3Þ

MΩLR ¼ 1

4

�
1 −

Mc

2R

�
: ðA4Þ

These results have no approximation other than assuming a
large separation R. As one can see, the correction to the
ISCO or light ring frequency has a scaling with ϵ (or
equivalently, with distance R) different from that found in
the main text for neutral binaries. The disagreement can be
traced back to the monopolar and dipolar components, and
indirectly to the fact that this is not a purely gravitational
system.
To see this, perform a translation of the z coordinate,

z → z0 − a and change from ðρ; z0Þ coordinates to the usual
spheroidal coordinates ðriso; θÞ, to find

U ¼ 1þ m1

riso
þ m2

jriso − 2aj : ðA5Þ

Use the same Laplace expansion in (9) to expand the
second term, but now neglect the monopole l ¼ 0 and the
dipole l ¼ 1 terms, finding

U ¼ 1þ m1

riso
þ m2

ð2aÞ3 r
2
isoY

�
lmðθ2;ϕ2ÞYlmðθ;ϕÞ; ðA6Þ

where again ðθ2;ϕ2Þ are the angular coordinates of the
second mass m2 in the new reference frame. We now want
to express the metric in the new coordinates using the
relations ρ → ðr −m1Þ cos θ and z → ðr −m1Þ sin θ, where
r is the nonisotropic coordinate riso ¼ r −m1. To make
contact with the approach in the main text, set l ¼ 2 in the
harmonic expansion, fix the equatorial plane θ ¼ π=2 and
specify the angular coordinates of m2, which correspond to
the polar case ðθ2;ϕ2Þ ¼ ð0; 0Þ. Assume large separations,
a ≫ 1, and expand the metric in powers of ð1=aÞ up to
Oð1=a4Þ. We then find the leading correction

m1ΩISCO ¼
ffiffiffi
3

p

16

�
1þm2

R3

�
ðA7Þ

which is now in perfect agreement (scaling-wise) with the
main body, for neutral binaries. In conclusion, the
Majumdar-Papapetrou spacetime does affect the geodesics
in a different way, which can be ascribed to the spacetime
not describing two BHs bound and evolving solely under
the gravitational interaction.
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