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In all inflationary scenarios of primordial black hole (PBH) formation, amplified scalar perturbations
inevitably accompany an induced stochastic gravitational wave background (ISGWB) at smaller scales. In
this paper, we study the ISGWB originating from the inflationary model, introduced in our previous paper
[N. Bhaumik and R. K. Jain, Primordial black holes dark matter from inflection point models of inflation
and the effects of reheating, J. Cosmol. Astropart. Phys. 01 (2020) 037] wherein PBHs can be produced
with a nearly monochromatic mass fraction in the asteroid mass window accounting for the total dark
matter in the universe. We numerically calculate the ISGWB in our scenario for frequencies ranging from
nano-Hz to kHz that covers the observational scales corresponding to future space-based gravitational wave
(GW) observatories such as IPTA, LISA, DECIGO, and Einstein Telescope. Interestingly, we find that
ultralight PBHs (MPBH ∼ 10−20 M⊙), which shall completely evaporate by today with an exceedingly small
contribution to dark matter, would still generate an ISGWB that may be detected by a future design of the
ground-based Advanced LIGO detector. Using a model-independent approach, we obtain a stringent lower
mass limit for ultralight PBHs which would be valid for a large class of ultra slow roll inflationary models.
Further, we extend our formalism to study the imprints of a reheating epoch on both the ISGWB and the
derived lower mass bound. We find that any noninstantaneous reheating leads to an even stronger lower
bound on the PBH mass and an epoch of a prolonged matter-dominated reheating shifts the ISGWB
spectrum to smaller frequencies. In particular, we show that an epoch of an early matter-dominated phase
leads to a secondary amplification of the ISGWB at a much smaller scale corresponding to the smallest
comoving scale leaving the horizon during inflation or the end of the inflation scale. Finally, we discuss the
prospects of the ISGWB detection by the proposed and upcoming GW observatories.
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I. INTRODUCTION

Primordial black holes (PBH) are now widely considered
one of the most interesting candidates to explain the cold
dark matter (CDM) in the universe and have gained a lot of
attention lately, thanks to the recent detection of astro-
physical gravitational waves (GW) from a system of binary
black holes, as reported by the LIGO-Virgo scientific
collaboration [1–6]. Moreover, it has been discussed that
supermassive black holes which are observed at the center
of massive galaxies at high redshifts could have been
originated from the distribution of PBHs [7–10]. It is well
known that PBHs can be produced in the early universe,
particularly after inflation when primordial curvature per-
turbations with large overdensities reenter the horizon
during the radiation dominated (RD) epoch [11–14].
Lately, a large number of inflationary models have been
studied to produce PBHs in different mass ranges, in

particular, the class of models producing PBHs in the
asteroid mass window in which PBHs could contribute to
the total CDM in the universe [15–39].
A stochastic background of primordial GWs is a central

prediction of all the inflationary models. In particular, a
nearly scale invariant spectrum of tensor perturbations is
widely regarded as the holy grail of canonical single field
slow roll inflationary models. Such a background encodes
pivotal information which can be used to probe and
constrain the physics of the early universe and fundamental
physics operating at very high energies. In single field slow
roll inflationary models, the nearly scale invariant GW
background is usually generated from the amplification of
vacuum tensor fluctuations at the linear order wherein the
inflaton field is the only dynamical degree of freedom.
However, models with many dynamical fields such as extra
spectator fields or gauge fields also lead to a secondary
background of GWs with very different properties and
characteristics than the vacuum contribution. Distinct
signatures of such a background can then be used to probe
a general class of inflationary scenarios beyond the single
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field inflationary models. Besides probing the fundamental
physics of the early universe, the spectral energy density of
inflationary GWs at the present epoch can also be used to
trace and probe the thermal history of the universe [40–46].
For some recent reviews on various cosmological back-
grounds of GWs, their generation, and their detection, see
Refs. [47,48].
In general, an induced stochastic gravitational wave

background (ISGWB) at second order through mode
coupling of scalar metric perturbations is always generated
in all the inflationary models. Since the power spectrum of
second-order metric perturbations should be of order 10−18

in the RD era, one can expect this GW background to be
extremely small and quite far from the reach of present
and upcoming GW observatories. However, in all the
inflationary scenarios of PBH formation, since the
power spectrum of scalar curvature perturbations must
be enhanced to ∼10−2 at smaller scales to produce
PBHs, this ISGWB typically turns out to be quite large
and is, therefore, considered an interesting and relevant
byproduct of all such inflationary scenarios [49–68].
In an earlier paper [69], we had studied an inflationary

scenario with a sixth-order polynomial potential that allows
the existence of an inflection point in the inflaton potential.
Such a potential allows an epoch of an ultra slow roll (USR)
evolution which leads to an enhancement of the spectrum
of primordial scalar curvature perturbations at small scales.
We found that this scenario can produce PBHs in different
mass ranges and, in particular, in the asteroid mass range in
which PBHs can contribute to the entire CDM. In this
paper, we shall study the ISGWB arising in this scenario
which is generated from the contribution due to mode
coupling of first-order scalar perturbations at quadratic
order. Such GWs are generated on smaller scales after they
reenter the horizon during the RD phase. We shall calculate
this ISGWB in our model, which is produced in a range of
different frequencies from nano-Hz to kHz, using an
adequate numerical approach and we will compare it with
the current and projected sensitivities of various ground-
and future space-based GWobservatories. Interestingly, we
find that in our model this ISGWB can be simultaneously
detected by different GW observatories, which is usually
not the case when the primordial power spectrum is highly
peaked. We emphasize that this feature provides a unique
opportunity to constrain the resulting signal much better. In
models which produce PBHs in the asteroid mass window
as in our scenario, the secondary GW background is usually
peaked in the frequency band fGW ∼ 10−3 − 1 Hz and thus
can be potentially detected by the future space-based GW
observatories such as LISA [70–73], TAIJI [74], DECIGO
[75,76], or BBO [77]. Moreover, we notice an interesting
observational possibility that ultralight PBHs produced in
our scenario with mass MPBH ∼ 10−20–10−21 M⊙, which
would have been completely evaporated by today, would
still lead to an ISGWB at larger frequencies which can, in

principle, be observed by the future design of the ground-
based Advanced LIGO detector [78].
Furthermore, using a model-independent approach, we

obtain a robust lower bound on the PBH mass in our case
by assuming an instantaneous as well as a smooth transition
from the USR to the slow roll (SR) phase. Our mass bounds
are applicable as far as there is no intermediate fast roll
stage between the USR and the SR phase. We then extend
our formalism to study the imprints of a reheating epoch on
both the ISGWB and the derived lower mass bound. We
find that a prolonged epoch of a noninstantaneous reheating
leads to a shift in the ISGWB energy spectrum towards
smaller frequencies. Thus, such an ISGWB signal can be
detected simultaneously by different GW observatories.
Finally, we study the imprints of a transition from an early
matter-dominated (eMD) phase to the RD phase on the
ISGWB and find that such a transition leads to a secondary
amplification of the ISGWB at a much smaller scale
corresponding to the smallest comoving scale leaving
the horizon during inflation or the end of the inflation scale.
The remainder of this paper is organized as follows. In

the following section, we shall quickly discuss the basic
formalism to compute the ISGWB from first-order scalar
perturbations in any general inflationary scenario. We shall
compute the spectral energy density of GWs today for the
scenario of PBH formation of our earlier work and compare
it with the optimal (design) sensitivities of various present
and future GW observatories. We shall show that the
ISGWB induced by ultralight PBHs can be detected by
a future run of the ground-based Advanced LIGO detector.
In Sec. III, we shall discuss in detail how to obtain the
lowest possible PBH mass both for the cases of an
instantaneous transition and a smooth transition from the
USR to the SR phase. In Sec. IV, we shall study the
resulting effects of a noninstantaneous reheating epoch on
the GW spectra and the lower bound on the PBH mass as
well as a secondary amplification of the ISGWB due to a
transition from an eMD phase to the RD phase. Finally, we
shall summarize our results and discuss their implications in
Sec. V. In the Appendix, we shall provide the details of the
calculations of the transition from an eMD to the RD era.
Our conventions and notations adopted in this paper are

as follows. We work in the natural units, ℏ ¼ c ¼ 1, with
reduced Planck mass M2

Pl ¼ ð8πGÞ−1. The conformal time
τ is defined as dτ ¼ dt=aðtÞ. The overdots and primes
denote the derivatives with respect to the cosmic time t and
the conformal time τ, respectively. The Hubble parameter is
defined asH ≡ _a=a while the conformal Hubble parameter
is given by H≡ aH≡ a0=a.

II. STOCHASTIC GWs FROM FIRST-ORDER
SCALAR PERTURBATIONS

It is well known that, at the linear order in perturbations,
the scalar, vector, and tensor perturbations evolve inde-
pendently (thanks to the decomposition theorem) and that
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their evolution is governed by their corresponding equa-
tions of motion. However, at the second order in perturba-
tions, an extra source term is generated for the tensor
perturbations due to the mode coupling of scalar metric
fluctuations which inevitably lead to an ISGWB. In this
section, we shall present the basic formalism and essential
equations for the tensor perturbations with a source term
due to first-order scalar perturbations at quadratic order. We
shall then solve these equations numerically for the infla-
tionary scenario of our earlier work [69] and calculate the
GWenergy density spectrum at the present epoch. We shall
also discuss the potential detection of this ISGWB with the
future space-based GW observatories such as IPTA, LISA,
DECIGO, and Einstein Telescope (ET).
In this section, we shall closely follow the discussion of

the seminal paper [49]. Let us start with perturbing the
Friedmann-Lemaître-Robertson-Walker metric with the
scalar and tensor perturbations. In the conformal
Newtonian gauge, the perturbed metric can be written as

ds2 ¼ −a2ðτÞð1þ 2ΦÞdτ2

þ a2ðτÞ
�
ð1 − 2ΨÞδij þ

1

2
hij

�
dxidxj; ð2:1Þ

where Φ and Ψ are the scalar metric perturbations, also
called the Bardeen potentials, and hij is the tensor pertur-
bation which is symmetric ðhij ¼ hjiÞ, traceless (hii ¼ 0Þ,
and transverse ðhij;j ¼ 0Þ. Assuming Φ ¼ Ψ, the scalar
part of the anisotropic stress (shear) vanishes but the
corresponding tensor part does not. As we shall see later,
this serves as a source to the evolution equation for tensor
perturbations. With the Fourier modes hk, the dimension-
less power spectrum Ph is

k3

2π2
hhλkðτÞhλ

0
k0 ðτÞi ¼ δλλ0δ

3ðkþ k0ÞPhðτ; kÞ; ð2:2Þ

where λ; λ0 ¼ fþ;×g represent the two polarizations of
tensor perturbations. Now, the GW energy density per
logarithmic wavelength can be defined as

ΩGWðτ; kÞ≡ 1

ρc

dρGW
d ln k

¼ ρGWðτ; kÞ
ρtotðτÞ

¼ 1

24

�
k
H

�
2

Phðτ; kÞ;

ð2:3Þ

where the overline denotes an average over time. The
observationally relevant quantity is the energy densityΩGW
at the present epoch τ ¼ τ0. Note that in parity invariant
scenarios as in our model, both the polarizations will lead to
the same result for the GW spectrum. However, in parity
violating situations, the power spectrum will be different
for the two polarizations. In particular, when only one
helicity mode is exponentially amplified due to dynamical
instabilities, the power spectrum turns out to be maximally

helical and has very interesting observational implications.
For simplicity, from now on we shall ignore the superscript
λ in hk.

A. Induced tensor modes and their power spectrum

Using the standard canonical quantization procedure
for hij, one finds that the equation of motion for the
Fourier modes hk, sourced by the scalar perturbations Φ, is
given by

h00kðτÞ þ 2Hh0kðτÞ þ k2hkðτÞ ¼ 4SkðτÞ; ð2:4Þ

where Sk is the Fourier component of the source term
comprised of first-order scalar perturbations. This differ-
ential equation can be solved by the Green’s function
method which yields the solution as [55]

hkðτÞ ¼
4

aðτÞ
Z

τ
dτ̄ aðτ̄ÞGkðτ; τ̄ÞSkðτ̄Þ; ð2:5Þ

where Gkðτ; τ̄Þ is the solution to the following equation:

G00
kðτ; τ̄Þ þ

�
k2 −

a00ðτÞ
aðτÞ

�
Gkðτ; τ̄Þ ¼ δðτ − τ̄Þ: ð2:6Þ

Since we are interested in the ISGWB on smaller scales
corresponding to k ≫ keq, which reenter the horizon during
the RD epoch, we shall restrict our following discussion to
w ¼ 1=3 only. In the RD universe (a ∼ τ), we can express
Gkðτ; τ̄Þ as

Gkðτ; τ̄Þ ¼
1

k
sinðx − x̄Þ; ð2:7Þ

where x ¼ kτ and x̄ ¼ kτ̄, respectively. While Gkðτ; τ̄Þ
involves the effects of propagation for the GW, the effects
of amplified scalar perturbation come from the source term
and depend on the time evolution of the scalar perturbation
modes. During the RD era, the ISGWB is produced mainly
around the horizon reentry without growing any further,
because the gravitational potential oscillates after horizon
reentry. At first order, the time evolution of Φk in RD is
governed by

Φ00
kðτÞ þ

4

τ
Φ0

kðτÞ þ
1

3
k2ΦkðτÞ ¼ 0: ð2:8Þ

We can split ΦkðτÞ into a primordial part, Φ̃k (the value at
the start of RD), and the transfer function, T ðkτÞ, repre-
senting the time evolution asΦkðτÞ ¼ T ðkτÞΦ̃k. Note that,
in the RD era, the scalar perturbation Φk is directly related
to the gauge invariant comoving curvature perturbation by
Φ̃k ¼ 2

3
RðkÞ. The full solution for Eq. (2.8) for T ðkτÞ can

be found in the Appendix. For an instantaneous reheating
history, we assume for τ → 0 that T ðkτÞ → 1 and
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T 0ðkτÞ → 0, and we can express T ðkτÞ as a function
of x by

T ðxÞ ¼ 9

x2

� ffiffiffi
3

p

x
sin

�
xffiffiffi
3

p
�
− cos

�
xffiffiffi
3

p
��

: ð2:9Þ

One can find the detailed calculation of the induced tensor
spectrum in [55,58,79] and thus, we shall directly write the
final expression of the second-order tensor power spectra.
The calculation of the tensor power spectrum Ph will

involve the four point functions ofRðkÞ. However, we can
assume it to be Gaussian at leading order and use Wick’s
theorem to write the four point functions in terms of
possible combinations of the two point functions or the
power spectrum PRðkÞ. After a lot of simplification, one
finds

Phðτ; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× I2RDðv; u; xÞPRðkvÞPRðkuÞ; ð2:10Þ

where v ¼ p=k, u ¼ jk − pj=k, and the factor IRD is
defined as

IRDðu; v; xÞ ¼
Z

x

xr

dx̄
x̄
x
fðu; v; x̄; xrÞkGðx̄; xÞ; ð2:11Þ

where xr ¼ kτr corresponds to the conformal time τr at the
beginning of RD phase, and x ¼ kτ corresponds to some
late time τ during the RD epoch. For instantaneous
reheating, we can take xr → 0. The factor Iðu; v; xÞ is a
very involved function and we have derived its general

form for the RD universe preceded by an eMD era in the
Appendix, from which the results for the instantaneous
reheating case can be recovered by taking the appropriate
limit xr → 0.
To calculate the present energy density of the ISGWB,

we can evolve the integration Iðu; v; xÞ up to a time when
standard model degrees of freedom become nonrelativistic
and findΩGWðτ; kÞ. Using the entropy conservation, we can
then express the present ISGWB energy density,
ΩGWðτ0; kÞ, in terms of present radiation energy density,
Ωr;0, ΩGWðτ; kÞ, and a constant cg as [79]

ΩGWðτ0; kÞ ¼ cgΩr;0ΩGWðτ; kÞ

¼ 1

24

�
k
H

�
2

cgΩr;0Phðτ; kÞ; ð2:12Þ

where cg ≈ 0.4 if we take the number of relativistic degrees
of freedom to be ∼106. In the RD epoch, H ¼ aH ¼ 1=τ,
and we can write k=H ¼ kτ ¼ x, so taking the k=H factor
inside the power spectra integral and defining I with
I ¼ I=x, we can write

ΩGWðτ0; kÞ ¼
1

6
cgΩr;0

Z
∞

0

dv

×
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× Ī2
RDðv; u; xÞPRðkvÞPRðkuÞ: ð2:13Þ

In the late time limit x → ∞ for a pure RD universe
one gets

Ī2
RDðv; u; x → ∞Þ ¼ 1

2

�
3ðu2 þ v2 − 3Þ

4u3v3

�
2
��

−4uvþ ðu2 þ v2 − 3Þ log
���� 3 − ðuþ vÞ2
3 − ðu − vÞ2

����
�

2

þ π2ðu2 þ v2 − 3Þ2Θðuþ v −
ffiffiffi
3

p
Þ
�
: ð2:14Þ

Note that while this formula is valid for an instantaneous
reheating history, a more general expression for Ī2

RD,
assuming the RD phase is preceded by an eMD phase,
is derived in the Appendix.
In our previous work [69], we had developed a numerical

code to compute the PBH mass fraction for inflationary
models which allows violations of the SR condition needed
for the enhancement of the power spectrum. We have
chosen a different set of parameters for our model in such a
way that the largest possible mass fraction of the PBHs is
obtained as allowed by various constraints in a given mass
range. We have now extended that code by including a
routine to compute the ISGWB in such models. In Fig. 1
(on the left), we have plotted the power spectra of

primordial curvature and tensor perturbations PR and
Ph for the scenario that we had discussed in our earlier
work [69]. The power spectra PR correspond to different
choices of parameters of the model which leads to different
values of the spectral index nS at the pivot scale. All these
spectra show a similar enhancement, PR ∼ k4, at smaller
scales, an interesting behavior which has also been
obtained using an analytical formalism [80,81]. The spec-
tral distortion constraints on the primordial power spectrum
derived from COBE/FIRAS and forecasts for PIXIE are
also shown [82]. It is well known that the amplitude of the
power spectrum of curvature perturbations should be PR ∼
10−2 to form PBHs in radiation domination. Assuming a
specific functional form of the scalar spectrum, one can
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arrive at a rough order of magnitude estimation of the PBH
nondetection constraints, as shown in [80]. However, this
estimate also depends upon the shape of the power
spectrum, as has already been shown in [83]. It further
depends on the choice of the critical density contrast, the
window function, the collapse formalism, etc., as discussed
in Appendix B of our earlier paper [69]. Unless one obtains
these PBH constraints for the specific model of interest, it is
not appropriate to use them for comparison with another
model. For this reason, we are not displaying such con-
straints in our plots in Fig. 1. Moreover, to facilitate easy
comparison, we are following the same color coding as in
Fig. 3 of our previous paper [69].
In the right panel of Fig. 1, we have plotted the

corresponding spectral energy density of induced GWs,
ΩGWh2, obtained by numerically integrating Eq. (2.13). We
found that all the GW spectra show similar behavior, with a
peak at a characteristic frequency determined by the
relation (2.16). As expected, a bump in PR leads to a
peak in ΩGWh2, which fall in the sensitivity regimes of
various future space-based GWobservatories such as IPTA,
LISA, DECIGO, and ET. As we have found in our scenario,
a wider power spectrum PR will result in a wider induced
GW spectra spanning a broader frequency range. This is
interesting because the induced signal overlaps with the
design sensitivity plots of different upcoming GWobserva-
tories, particularly around the mHz–Hz range. In such a
situation, there lies an interesting possibility to simulta-
neously detect these signals with different observatories
and obtain stronger constraints on its origins in terms of the
model parameters. It is also interesting to note that for some
cases in our model, wherein the bump in the scalar power
spectrum is located on rather larger scales (but still much

smaller than CMB scales), the resulting induced GW
background can also be detected by an array of future
IPTA/SKA detectors [85,86]. Future observations of
CMB spectral distortions will also strongly constrain the
primordial power spectrum in the regime 1 Mpc−1 ≲ k≲
105 Mpc−1 [84,87].

B. Observing ultralight PBHs with Advanced LIGO

As we had mentioned in our earlier work [69], our
scenario can produce PBHs in very different mass ranges
and all these mass windows are constrained by a variety of
observations. However, it turns out that there does not seem
to be any observational constraints around the asteroid
mass window and thus, PBHs could contribute to the total
energy density of CDM around that window, as has been
emphasized in the literature recently. It is well known that
PBHs do evaporate due to Hawking radiation and that the
evaporation time scale is given by

tevðMÞ ∼ G2M3

ℏc4
∼ 1063

�
M
M⊙

�
3

yr: ð2:15Þ

This implies that PBHs with mass M ≲ 10−18 M⊙
(M ≲ 1015 g) would be completely evaporated by today
and thus can not contribute to the present density of the
CDM in the universe [88,89]. PBHs in the mass range
10−18–10−16 M⊙ would actually be evaporating at the
present epoch and thus can induce an observable γ-ray
background [90]. However, PBHs in the very low mass
range would not contribute to the CDM at all and would
also be completely evaporated by today. However, they
might still induce a secondary GW background which

FIG. 1. On the left, we plot the power spectra of primordial curvature perturbations PR (solid curves) and primordial tensor
perturbations Ph (dashed curves) for different parameters of the scenario proposed in our earlier work [69]. All these spectra show a
similar enhancement at smaller scales, required for the abundant PBH production. Also shown are the relevant constraints from cosmic
microwave background (CMB) spectral distortions [82,84]. On the right, we plot the spectral energy density of the ISGWB
corresponding to the spectra on the left. All the GW spectra also show similar behavior. In particular, a bump in PR on small scales leads
to a peak in ΩGWh2 on larger frequencies which fall in the sensitivity regimes of various future space-based GW observatories such as
IPTA, LISA, DECIGO, and ET. The color coding of different plots is consistent across the two figures.
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could, in principle, be detected by the future designs of the
ground-based GW observatories.
It is interesting to note that the three “peaks,” i.e., the

position of the peak in the power spectrum of curvature
perturbations, the peak height in the PBHmass distribution,
and the frequency of the peak of the GW signal, are related
by [54,57,91]

�
MPBH

1017 g

�
−1=2

≃
k

2 × 1014 Mpc−1
¼ f

0.3 Hz
; ð2:16Þ

which provides a qualitative understanding of the relation
amongMPBH, k, and f. This relation roughly indicates that
a peak in the power spectrum of curvature perturbations at
k ≃ 2 × 1014 Mpc−1 would generate a peak in the GW
spectrum at frequency f ∼ 0.3 Hz. Moreover, as the sensi-
tivity is maximum for LISA at f ∼mHz, the peak in PR

should be around k ∼ 1012 Mpc−1, which is consistent with
what is shown in Fig. 1. This scaling can further be used to
roughly figure out what mass range of PBHs can possibly
be probed by means of their secondary GW signatures
using the ground-based detectors such as Advanced LIGO.
The maximal sensitivity of the projected design of the
Advanced LIGO detector corresponds to f ∼ 30 Hz.
A stochastic GW signal around this frequency would
correspond to very light PBHs with mass around MPBH ∼
1013 g ∼ 10−20 M⊙. Evidently, from Eq. (2.15), all such
PBHs would be completely evaporated through the emis-
sion of Hawking radiation from their formation to today
and thus can not constitute the observed abundance
of CDM.
Note thatMPBH here corresponds to the mass of a PBH at

the formation epoch and disregards any further mass
growth due to merging or accretion. Moreover, there exists
various uncertainties associated with the numbers in this
equation, e.g., the efficiency factor γ which is defined as the
ratio between the mass collapsing into a PBH and the total
mass associated to that mode within the horizon. Its value is
usually taken as γ ∼ 0.2 [88,92] but there could be some
uncertainties associated with the PBH collapse. Often,
the effects of the critical collapse are neglected wherein
detailed numerical work has shown that the mass of PBHs
formed after horizon reentry will depend on the amplitude
of the overdensity δ. Secondly, a slightly smaller value of
the radiation energy density today will lead to an Oð1Þ
difference in this relation. Finally, a slight difference arises
due to the value of g�, the relativistic number of degrees of
freedom in the thermal bath when the mode responsible for
the PBH reenters the horizon, although the dependence of
MPBH on g� is weak. All these uncertainties could introduce
a factor ofOð10Þ in the final result so one should keep them
in mind when comparing this relation with an exact
numerical calculation, as is the case with our scenario.
In Fig. 2, we have plotted the PBH mass fractions at the

formation epoch βini and the associated secondary GW

energy densities for two different cases of our scenario [69].
Since the PBH mass fraction at matter-radiation equality
βeq can be expressed as βeq ≃ ðaeq=ainiÞβini, this implies
that βeq can be quite large even for a very small βini.
Since lowmass PBHs will evaporate very quickly, βini is the
only relevant quantity for such PBHs and thus, we have
optimized our parameters1 such that we obtain βini∼10−23,
as allowed by the constraints arising from the big bang
nucleosynthesis (BBN) and the extragalactic γ-ray back-
ground. However, as pointed out recently in [36] and as we
also observed in our inflationary model, their ISGWB falls
right in the design sensitivity curves of a future configu-
ration of the Advanced LIGO detector and thus can
potentially be detected. Moreover, this ISGWB also falls
in the sensitivity contours of the proposed third-generation
ground-based GW detectors, the ET and Cosmic Explorer
(CE). Since this ISGWB overlaps with these three future
GW detectors, there lies again an interesting possibility of
its simultaneous detection with these GWobservatories and
thereby putting stronger constraints on its origin. Note that
the ground-based GW detectors such as LIGO and VIRGO
have already detected the astrophysical GW signals from a
few systems of binary black holes and neutron stars with
large masses and will detect many more in the near future.

FIG. 2. On the left, we plot the initial PBH mass fraction βini (at
formation) for two different cases, produced in our model [69] in
the very low mass range corresponding toM ∼ 10−20–10−21 M⊙,
as well as the observational constraints arising from BBN and the
extragalactic γ-ray background. Note that while comparing the
constraints on βini, we are assuming the mass fractions of our
model to be monochromatic. Such small-mass PBHs would have
been completely evaporated by today due to Hawking radiation.
However, they will still induce an observable ISGWB in the
higher frequency range which falls in the design sensitivity
contours of the Advanced LIGO detector and therefore can, in
principle, be detected in future runs, as shown on the right.

1In order to obtain an appropriate fraction of initial PBH
abundance, we need to fine-tune the potential parameters,
following the same method as in [69], which requires slight
deviations from the exact inflection point conditions of the
inflationary potential.
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However, the characteristic shapes of the GW spectrum in
these two cases are very different and thus can be easily
disentangled. Recently, some prospects of probing such
ultralight PBHs using their ISGWB signatures with the
Advanced LIGO detector have been discussed in [93].

III. A LOWER BOUND ON THE PBH MASSES
FOR USR INFLATION

In this section, we shall discuss how to obtain a stringent
lower bound on the PBH masses in the USR phase, both
using an instantaneous transition as well as a smooth
transition from the USR to the SR phase. We find that
the lower bound obtained in both of the scenarios are in
agreement with each other. Moreover, our bounds also
effectively apply even if there are brief deviations from the
SR phase after the USR phase.

A. An instantaneous transition from USR to SR

In order to estimate the lower bound, we first need an
estimation of the minimum number of e-folds in the final
SR phase followed by the USR phase. Assuming that the
inflaton is rolling in the positive direction, ϕN ¼ dϕ=dN is
positive. Since ϕN always decreases during the USR phase,
let’s assume that atN ¼ N0, ϕN reaches its minimum value.
This can also be considered the point after which the SR
potential takes over and ϕN starts to increase again. Note
that, at this point, ϕNN ¼ 0 and as the first SR parameter,
ϵ ¼ ϕ2

N=2M
2
Pl, is very small, the second SR parameter,

η ¼ ϵ − ðϕNN=ϕNÞ, is also very small and as a result, all the
SR conditions are satisfied. Thus we can safely approxi-
mate the power spectrum of Rk with the SR result as

PRðkÞ ≃
1

8π2M2
Pl

H2

ϵ0
; ð3:1Þ

where ϵ0 ¼ ϵðN0Þ. Since we are considering an instanta-
neous transition from the USR to the SR phase, the smallest
scale k0 ¼ kðN0Þ leaving the horizon would still be
amplified and produce PBHs. Moreover, a significant mass
fraction of PBHs requires an amplification of the power
spectrum at PBH scales as PRðkÞ ∼ 10−2, so Eq. (3.1)
leads to

ϵ0 ≃
H2

M2
Pl

: ð3:2Þ

Now, using the SR approximation during the horizon exit
of the observable pivot scale kp, we can safely use Eq. (3.1)
to estimate the Hubble parameter, H, which stays nearly
constant during inflation as

H2

M2
Pl

∼ 10−9; ð3:3Þ

where we have used PRðkpÞ ∼ 2.1 × 10−9 and ϵp ∼ 10−2

using nsðkpÞ ≃ 0.965. Now using (3.2) and (3.3), we can
estimate the minimum value of ϵ0 as ϵ0 ∼ 10−9 and the
corresponding minimum value of jϕN0

j ≃ ffiffiffi
2

p
× 10−4.5.

Using this estimation, we want to understand the minimum
number of e-folds necessary from N ¼ N0 to the end of
inflation at N ¼ Ne, where ϵðNeÞ ¼ 1 or ϕNe

¼ ffiffiffi
2

p
must

be satisfied. For this calculation, we shall assume that SR
conditions are not violated again between the end of the
USR phase and the end of inflation, and thus, the two
conditions must be satisfied, ϵ ≪ 1 and jηj ≤ 1. This leads
to the following inequality:

−1 ≤
ϕNN

ϕN
≤ 1 or

����ϕNN

ϕN

���� ≤ 1: ð3:4Þ

If we assume ϕNN=ϕN ¼ cðNÞ, and solve it with the initial
condition ϕNðN ¼ N0Þ ¼ ϕN0

, we obtain

log

���� ϕN

ϕN0

���� ¼
Z

Ne

N0

cðNÞdN: ð3:5Þ

Now using (3.4), jcðNÞj ≤ 1, so the minimum number of
e-folds betweenN0 and the end of inflation Ne (ϕNe

¼ ffiffiffi
2

p
)

is constrained as

ΔN ¼ Ne − N0 ≥ log

����
ffiffiffi
2

p

ϕN0

����: ð3:6Þ

Using our previous estimation, jϕN0
j ≃ ffiffiffi

2
p

× 10−4.5, we get
ΔN ≥ 10.36, which is roughly the duration of the final SR
phase before the end of inflation.

B. A smooth transition from USR to SR

Our previous estimation of the minimum number of
e-folds was independent of the form of the potential and we
only assumed an instantaneous transition from the USR to
SR phase. To extend our analysis for a smooth transition
from USR to SR, we need to consider the potential around
ϕðN0Þ≡ ϕ0. Since the USR phase is on a flat part of the
potential, we can effectively approximate the potential
around ϕ0, with the first few terms of the Taylor’s
expansion as

VðϕÞ ¼ b0 þ b1ðϕ − ϕ0Þ þ b2ðϕ − ϕ0Þ2 þ � � � : ð3:7Þ

In the vicinity of the USR phase, we can neglect the ϕ2
N

term and assume the Hubble parameter to be constant as
HðNÞ ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðϕ0Þ=3
p ¼ ffiffiffiffiffiffiffiffiffiffi

b0=3
p

. This reduces the equation
of motion for ϕ to

ϕNN þ 3ϕN þ 1

H2

dV
dϕ

¼ 0: ð3:8Þ
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Now, using the initial condition that atN ¼ N0 the inflation
field value is ϕ0 and the minima of ϕN is reached, i.e.,
ϕNN ¼ 0, we obtain the dynamics of ϕ as [94]

ϕðNÞ ¼ ϕ0 −
b1
2b2

þ 1

4αb2

×

��
αb1 þ

4b1b2
3H

− 3b1H

�
e−

ðαþ3HÞðN−N0Þ
2H

þ
�
αb1 þ

4b1b2
3H

− 3b1H

�
e
ðα−3HÞðN−N0Þ

2H

�
;

where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b0 − 8b2

p
. Assuming that the inflaton is

rolling in the positive direction, at the minima ϕN must
be positive to have a finite duration of the USR phase.
Thus, we need

ϕNðN0Þ¼−
b1
b0

> 0 and ϕNNNðN0Þ¼
ð6b1b2Þ

b20
> 0: ð3:9Þ

These conditions constrain the possible value of the
potential parameters b1 < 0 and b2 < 0. Using these, we
can now express ϕN as a function of a single positive
parameter b6 as

ϕNðNÞ
ϕNðN0Þ

¼
ffiffiffi
3

p

b6
e−3ΔN=2 sinh

� ffiffiffi
3

p

2
b6ΔN

�

þ e−3ΔN=2 cosh

� ffiffiffi
3

p

2
b6ΔN

�
; ð3:10Þ

where b6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b0 − 8b2

p
=

ffiffiffiffiffi
b0

p
and ΔN ¼ N − N0. To

avoid eternal inflation, we need b2 < 0, so the minimum
value of b6 must be greater than

ffiffiffi
3

p
. Now we want to

estimate the number of e-folds from the peak in the power
spectra to the point where the SR potential takes over
completely (let’s say at N ¼ Ns). Our assumption is that
this transition to the SR phase must happen while jηj ≤ 1,
which then leads to

ϵðΔNÞ ¼ 10−9
�
ϕNðΔNÞ
ϕNðN0Þ

�
2

; ð3:11Þ

ηðΔNÞ ¼ ϵðΔNÞ − ϕNNðΔNÞ
ϕNðΔNÞ

¼ ϵðΔNÞ þ 9 − 3b62

2
ffiffiffi
3

p
b6 coth ð

ffiffi
3

p
2
b6ΔNÞ þ 6

: ð3:12Þ

When the minima of ϕN is reached, ϕNN ¼ 0, ϵ is very
small (ϵ ∼ 10−9 ), and thus around N ¼ N0, η crosses zero.
Just after this crossing, ϕNN starts to increase and achieves a
positive value, which leads to an increase in ϕN as well.
Very quickly, the ratio ϕNN=ϕN saturates, which is the
second term of η with a negative sign, as in (3.12). It is

interesting to note that depending on the value of b6,
this term saturates to a negative asymptotic value

ηasym ¼ 9−3b62

2
ffiffi
3

p
b6þ6

. Evidently, this saturation indicates the

end of the transition phase. After this point, the further
dynamics must be completely described by the SR poten-
tial. If this saturation value ηasym ≤ −1, the dynamics
deviate from the SR phase before the transition and enter
a fast roll phase. We shall assume that there is no
intermediate fast roll phase between USR and SR and
consider only values of b6 which ensure the transition to SR
before η ≃ −1. Thus, solving for ϕNN=ϕN ¼ 1, we obtain

Nðb6Þ ¼
2ffiffiffi
3

p
b6

coth−1
� ffiffiffi

3
p ðb62 − 5Þ

2b6

�
: ð3:13Þ

In our case, b6 is already constrained as b6 >
ffiffiffi
3

p
. The

above equation further limits the value of b6 to be less than
5=

ffiffiffi
3

p
so we finally have

ffiffiffi
3

p
< b6 ≤ 5=

ffiffiffi
3

p
.

Now we want to understand what can be the maximum
value of ϵs or ϕNs

during this transition and how many
e-folds are spent to reach the transition. If we solve η ¼ −c
for 0 < c < 1, from (3.12) we get

Ncðb6Þ ¼
2ffiffiffi
3

p
b6

coth−1
� ffiffiffi

3
p ðb62 − 2c − 3Þ

2b6c

�
: ð3:14Þ

Upon using (3.14), atN ¼ Nc we can find ϵ as a function of
b6 as

ϵðb6Þ¼ 3×10−9
ðb62−3Þ

3b62− ð2cþ3Þ2

×exp

�
−
2

ffiffiffi
3

p

b6
coth−1

� ffiffiffi
3

p ðb62−2c−3Þ
2b6c

��
: ð3:15Þ

This value of ϵ is plotted in Fig. 3 (on the left) and from this
plot we can clearly see that for every b6 in the rangeffiffiffi
3

p
< b6 ≤ 5=

ffiffiffi
3

p
, η saturates to a constant value, η > −1.

We can consider this saturation to be the beginning of the
SR phase and we need to use the value of ϵ during this
saturation as the starting value of ϵs for the SR phase.
Solving for ϕNN=ϕN ¼ −ηasym þ ξ, where ξ is negative and
much smaller than ηasym, we can get the value of the e-fold
number where η reaches its asymptotic value and the value
of ϵs, as plotted on the right in Fig. 3. It is evident from
these plots that b6 ¼ 5=

ffiffiffi
3

p
leads to the highest value of

ϵs≃7.0×10−8 and the lowest value of Ns − N0 ≃ 2.34721.
This also corresponds to the quickest transition and the
largest possible transition value of jηsj, whereas b6 →

ffiffiffi
3

p
leads to the lowest value of ϵs ≃ 1.0 × 10−9 and the largest
value of Ns − N0 ≃ 3.83.
Finally, the above values of ϵs can be translated to the

bound on the number of e-folds using (3.6), and thus we
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can calculate the total number of e-folds, before and after
the SR transition for both the cases, as
(1) For b6 ¼ 5=

ffiffiffi
3

p
, ΔNmin ≃ 2.35þ 8.23 ¼ 10.58,

(2) For b6 →
ffiffiffi
3

p
, ΔNmin ≃ 3.83þ 10.36 ¼ 14.19.

Thus, it is evident that for a smooth transition, even the
quickest possible transition takes more numbers of e-folds
than our estimation in the previous section wherein we
considered an instantaneous transition in a rather model-
independent manner.

C. Estimation of the lower bound on the PBH mass

In order to estimate a lower bound on the PBHmass from
the USR phase, we first need to calculate the total number
of e-folds from the horizon exit of the pivot scale kp ¼
0.05 Mpc−1 to the end of inflation. In the RD universe,
a ∝ t1=2, H ∝ t−1, and k ¼ aH ∝ t−1=2 ∝ H1=2. Thus if a
comoving wavenumber k reenters the horizon during the
RD epoch, we can relate it with the comoving mode keq of
matter-radiation equality using the Hubble parameter dur-
ing reentry as

k
keq

¼
�

H
Heq

�
1=2

: ð3:16Þ

Upon using ρeq ¼ 3H2
eqM2

Pl, Heq can be related to the
present Hubble parameter as

ρeq ¼ 2Ωr;0ρcð1þ zeqÞ4 ¼ 6Ωr;0H2
0M

2
Plð1þ zeqÞ4; ð3:17Þ

Heq ≃
ffiffiffiffiffiffiffiffi
Ωr;0

p
H0ð1þ zeqÞ2: ð3:18Þ

TakingΩr;0≃8×10−5, zeq≃3400, andH0≃2×10−4Mpc−1,
we findHeq ≃ 20.7 Mpc−1. Note that we are calculatingHeq

by only taking into account the radiation energydensity at the
matter-radiation equality. Now at the pivot scale, we know
both the amplitude and the tilt of the primordial spectrum
from Planck, so using (3.1), we can calculate Hinf during

inflation which we assume to stay nearly constant up to the
end of inflation, which, for instantaneous reheating, is
the same as with the beginning of the RD epoch. So
Hinf ≃He ≃Hr, which is given by

He ≃Hr ≃ ð8π2M2
PlPRðkÞϵÞ1=2: ð3:19Þ

With this and (3.16), we can now calculate the comoving
mode entering at the very beginning of the RD epoch,
kr ¼ arHr, as

kr ≃
keqffiffiffiffiffiffiffiffi
Heq

p ð8π2M2
PlPRðkÞϵÞ1=4: ð3:20Þ

Taking keq≃0.01Mpc−1 andPRðkÞ ≃ 2.1 × 10−9 at k ¼ kp,
we find

kr ≃ 1.94 × 1024ϵ1=4 Mpc−1: ð3:21Þ

For the case of an instantaneous reheating, we can finally
estimate the total number of e-folds from the horizon exit of
the pivot scale to the end of inflation:

Ne − Np ¼ ln

�
kr
kp

�
≃ 58.92þ 1

4
ln ϵ: ð3:22Þ

Using observational constraints on the value of ns ≃ 0.965
at the pivot scale, we can roughly estimate ϵ ≤ 10−2,
which then limits Ne − Np ≲ 57.77. This is, of course,
consistentwith the results from [95]wherein the total number
of e-folds from the horizon exit of the present horizon
(khor ≃ 2 × 10−4 Mpc−1) to the end of inflation is con-
strained to be ΔNtot ≃ 63.3.
We now want to estimate the maximum number of

e-folds from the horizon crossing of kp to the minima of ϕN

at N ¼ N0, which we can translate to the smallest scale
becoming super-horizon before the onset of the final SR

b6 =3.5

b6 =2.88
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FIG. 3. On the left, we have plotted the growing behavior of ϵ before the transition, as obtained in Eq. (3.15). It is evident that for all
values of b6 in the range

ffiffiffi
3

p
< b6 ≤ 5=

ffiffiffi
3

p
, η saturates to a constant value greater than −1. On the right is the largest value of ϵs and the

corresponding number of e-folds whenever η reaches its asymptotic value ηs.

SMALL SCALE INDUCED GRAVITATIONAL WAVES FROM … PHYS. REV. D 104, 023531 (2021)

023531-9



phase. Assuming the Hubble parameter H to be nearly
constant and kp ¼ aðNpÞH ¼ aieNpH, where ai is the
scale factor at the beginning of inflation, using (3.6) and
(3.22) we get

N0 − Np ≃ 57.77 − 10.36 ¼ 47.41: ð3:23Þ

This corresponds to a scale kPBH ¼ σaðN0ÞH, which
becomes super-horizon around N ¼ N0. Here, σ ≪ 1 is
taken to ensure that the super-horizon condition is satisfied:

kmax ¼ σkpeN0−Np ≈ 1.94 × 1019σ Mpc−1: ð3:24Þ

Thus the smallest possible comoving-length scale associ-
ated with a PBH peak corresponds to kmax, or kPBH ≤ kmax.
Now we can use the relation between the mass of PBHs
and the frequency of second-order induced GWs as in
Eq. (2.16) to translate the upper limit on k in the above
equation to a lower limit on the PBH mass, MPBH and an
upper limit on the frequency of corresponding second-order
GWs, f, as

MPBH ≥ 6.14 × 10−27σ−2M⊙; ð3:25Þ

f ≤ 2.91 × 104σ Hz: ð3:26Þ

Now, if we take a very conservative limit on the factor σ as
σ ≤ 10−2, the lowest possible value of PBH mass and the
highest value of the second-order GW frequency turn
out to be MPBH≥6.14×10−23M⊙ and f≤2.91×102Hz,
respectively. Interestingly, these constraints just cover the
Advanced LIGO frequency range so future runs of
Advanced LIGO can be used to detect the existence of
PBHs from USR models, as we have already discussed in
detail in Sec. II B.
Recently, it has also been discussed in the literature that

during their formation, the abundance of PBHs with masses
M < 109 g ∼ 5 × 10−25 M⊙ are essentially not constrained
so they can constitute the dominant component of energy
density (since they behave as matter) and drive the
dynamics of the universe for a brief period of time before
their evaporation due to Hawking radiation [96]. However,
our analysis and results of these sections suggest that the
USR models of inflation can not possibly produce such
ultra low mass PBHs to dominate the energy density of the
universe for even a short period of time. Thus one has to
resort to a different mechanism of PBH production to
discuss those possibilities. It may be interesting to see if an
intermediate fast roll phase can produce such ultra low
mass PBHs which can dominate for a short while before
their evaporation.

IV. IMPRINTS OF REHEATING ON THE LOWER
MASS BOUND AND THE ISGWB SPECTRUM

In the previous section, we had derived a lower mass
bound of PBHs originating from a class of USR models of
inflation, and also estimated the induced GW energy
density coming from the inflection point model we have
studied in our previous paper. Both these results have
strong dependence on the reheating history between the end
of inflation and the start of the RD phase. Our discussion,
so far, was limited to an instantaneous reheating. In this
section, we shall extend our results by taking into account
the effects of a noninstantaneous reheating stage.

A. Effects of reheating on the lower mass bound

In order to understand the effects of reheating on the
PBHs mass bound, we shall first parametrize the reheating
phase with an equation of state parameter wreh and its
duration in number of e-folds Nreh. We also assume a
sudden transition from the reheating phase to the RD
epoch. Following the same arguments as in the previous
section, a noninstantaneous reheating epoch shall modify
Eq. (3.23), to

N0 − Np ≃ 47.41 −
1

4
Nrehð1–3wrehÞ; ð4:1Þ

which implies that

kmax ≃ 1.94 × 1019σe−
1
4
Nrehð1−3wrehÞ Mpc−1: ð4:2Þ

Note that both Nreh ¼ 0 and wreh ¼ 1=3 correspond to
instantaneous reheating. Since the maximum value of k
shifts to an even lower value, both the lower bound on the
PBH mass and the upper bound on the GW frequency
become stronger and are given by

MPBH ≥ 6.14 × 10−27σ−2e
1
2
Nrehð1−3wrehÞ M⊙; ð4:3Þ

f ≤ 2.91 × 104σe−
1
4
Nrehð1−3wrehÞ Hz: ð4:4Þ

For σ ≤ 10−2, wreh ¼ 0, and Nreh ¼ 10, these bounds
translate to MPBH ≥ 9.09 × 10−21 M⊙ and f ≤ 23.94 Hz.
Evidently, the lower bounds calculated in the previous
section become even stronger in the presence of a nonzero
duration of the reheating phase.

B. Effects of reheating on the ISGWB

To consider the broad effects of different reheating
histories on the ISGWB originating from our inflection
point inflationary model, we shall assume an effectively
sudden transition from the reheating phase to the RD
epoch. With this setup, we notice that a noninstantaneous
reheating history leaves two very different effects on the
observable energy density of the ISGWB.
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We have discussed the origin of the first effect in detail in
our previous paper [69]. For any inflationary model,
different reheating histories change the mapping of differ-
ent length scales upon their reentry to the horizon, which
shifts the peak of the scalar power spectra to lower
wavenumbers k (Fig. 4 of [69]). It also slightly changes
the pivot scale normalization, thereby leading to more
abundant PBH formation in higher mass range. As the
ISGWB involves a convolution integral of first-order scalar
power spectra, this shift in the peak of the scalar spectra is
reflected as a shift towards lower frequencies in the ISGWB
energy density. We found that this effect is strongest for a
matter-dominated reheating (wreh ¼ 0), so if we consider
the expression of ΩGW as in (2.13), this effect is completely
encoded through the primordial scalar power spectra.
The second effect arises due to the nontrivial evolution of

scalar perturbation modes and is only significant for an
eMD reheating phase. While an eMD epoch leads to a
constant transfer function for first-order scalar perturba-
tions, for all subhorizon modes, any other reheating phase
(with wreh > 0) would lead to a suppression of the transfer
function far before the RD phase starts. A similar sup-
pression for all the subhorizon modes will happen if the
transition from the eMD to the RD phase is slow. While we
shall not observe any amplification of ΩGWh2 for wreh > 0
cases and the gradual transition from the eMD to RD phase,
a sudden transition from the eMD to RD phase will actually
lead to a secondary amplification. For the case of a nearly
scale invariant scalar power spectra, this effect is discussed
in detail in [97].
In an eMD reheating phase, the first-order scalar per-

turbations for both the sub- and super-horizon scales stay
nearly constant. Just after the transition to the RD phase, the
amplitudes of all these modes oscillate rapidly and quickly
decay. The oscillation frequency for each mode depends on
the corresponding wavenumbers. Both the transfer function
T ðx; xrÞ and its time derivative contribute to the term
fðu; v; x; xrÞ, as we can see from (A3). For modes with
very large wavenumbers which reenter the horizon during
the eMD phase, the terms involving the time derivative of
T ðx; xrÞ in (A3) contribute dominantly, leading to a
secondary amplification of the ISGWB spectra, and the
frequency of maximum amplification corresponds to the
cutoff scale kmax of the scalar power spectra. In our case, we
take kmax to be the end of the inflation scale as any scale
smaller than this always remains subhorizon and thus no
growth can happen for those scales. This effect is essen-
tially encoded in the integral Iðu; v; x; xrÞ, as this term
covers the time evolution of the source function. We can
split the contribution of the I integral into two parts as

I ¼ IeMD þ IRD; ð4:5Þ

where IeMD and IRD are the contributions to the ISGWB
produced during eMD and during RD, respectively.

The calculation of IeMD strongly depends on the gauge
choice and recently it has been argued that, during a phase
of w ≤ 0, one can neglect this contribution entirely by
taking a suitable gauge choice [98]. Also, for the conformal
Newtonian gauge, the magnitude arising from IeMD is
sufficiently lower than the contribution of IRD [97], so in
our calculations we neglect any contribution coming
from the IeMD part and focus solely on the contribution
from IRD to the ISGWB produced after the transition to the
RD phase.
For the RD phase preceded by an eMD era, an analytical

expression of the IRDðu; v; x; xrÞ integral can be obtained
after integrating each term by parts. The full analytical
expression of Iðu; v; x; xrÞ (given in the Appendix) is used
to get the ISGWB energy density numerically. We also
match the numerical results with the corresponding results
in limiting cases xr ≪ 1 and xr ≫ 1. These two different
limits represent the two different peaks quite closely, i.e.,
the xr ≪ 1 (or k ≪ kr) limit corresponds to the pure RD era
result and leads to the first peak of the ISGWB in Fig. 4,
while the xr ≫ 1 (or k ≫ kr) limit correctly represents the
second peak. The expressions involving the second limit
are derived in (A16) and (A15) of the Appendix, while the
expressions for the first limit would reduce to the standard
expression (2.14) for the pure RD case.
As seen in the left panel of Fig. 4, any reheating

history different than the instantaneous one leads to a shift
in the primary peak of the ISGWB power spectra which
comes due to the first effect. The second peak only
occurs for an eMD reheating, and the frequency of this
peak depends on the reheating history. To demonstrate this
point, we have also considered the case of wreh ¼ 1=4,
which is an intermediate state of fluid between the radiation
(wreh ¼ 1=3) and the matter (wreh ¼ 0). We found that the
second bump does not appear in the case of wreh ¼ 1=4, as
the behavior of the transfer function in this case is very
similar to wreh ¼ 1=3. Note that, the frequency of this
second resonant peak corresponds to the cutoff scale of the
power spectra kmax, which we can take as the smallest
comoving scale leaving the horizon during inflation, or the
end of the inflation scale. As we have discussed in the
beginning of this section, different reheating histories shall
lead to different values of kmax [c.f. Eq. (4.2)], and thus
slightly different values of the second peak frequency. It is
this dependence, which is reflected here, in the slight shift
in frequency for the second resonant peak in two different
durations of the eMD phase. The understanding of the
amplitude of the second resonant peak is slightly more
complicated, as it depends both on the duration of the
reheating phase and also on the amplitude of the primordial
scalar power spectra around the cutoff scale, and this
amplitude strongly varies as the frequency of the primary
peak changes. As we see in the right panel of Fig. 4, for
the same duration of the eMD epoch, if we take the
power spectra with peaks at two different wavenumbers
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(producing PBHs in two different mass ranges and a
primary peak in GW spectra at two different frequencies),
the amplifications of the second resonant peak are very
different.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the ISGWB from the
enhancement of primordial curvature perturbations at
smaller scales. An enhancement of the power spectrum
is a very generic feature of all the inflationary models,
allowing the violation of slow roll conditions [99–101]. In
our previous work [69], we had presented an inflationary
scenario with a polynomial potential containing an inflec-
tion point which can generate PBHs in different mass
windows with a nearly monochromatic mass fraction. In
particular, PBHs generated in the asteroid mass window are
very interesting as they can contribute to all CDM in the
universe and the induced GWs have a characteristic peak
around the mHz frequency band which can be probed by
the future space-based GW observatories such as LISA,
DECIGO, or BBO. We have also shown that the secondary
GWs induced by more massive PBHs, which will be
peaked in the lower frequency range, can be probed by
IPTA/SKA observations. Interestingly, in this scenario, we
also notice that very light PBHs which may completely
evaporate by today and would not contribute to the dark
matter at all, will also generate an ISGWB that may be
observed from a future design of the ground-based
Advanced LIGO detector.
Further, using a model-independent approach, we have

obtained a lower bound on the PBH mass by only assuming
an instantaneous and a smooth transition from the USR to
the SR phase. The lower mass bound of PBHs also
becomes stronger in the case of a noninstantaneous
reheating epoch. We also investigate the effects of reheating

on the ISGWB spectrum and find that an epoch of a
noninstantaneous reheating can cause a shift in the GW
spectrum to smaller frequencies, thereby making it acces-
sible to the reach of different GW observatories. In
particular, we found that a transition from an eMD phase
to the RD phase leads to a secondary enhancement of the
ISGWB energy density spectrum on much larger frequen-
cies. We stress that our motivation behind the calculation of
the lower mass bound is two-fold. First, this mass bound is
a model-independent bound and is thus applicable for a
large class of USR models, similar to ours. Second, this
result has very interesting correlations with our discussion
of the very low mass PBH in Sec. II B and its relevance in
determining the scales corresponding to the second peak in
the induced GW background in the matter-dominated
reheating epoch in Sec. IV B. The first step of the lower
mass bound calculation is to determine the smallest scale
that leaves the horizon just before the end of inflation. It
offers us an intuitive way to understand the location of the
second GW peak for a matter-dominated reheating.
The second step in this calculation is to get a bound
on the smallest possible scale leaving the horizon just
before the onset of the final slow roll phase such that it
leads to a PBH peak in the primordial scalar power spectra.
This provides us a lower mass limit on the ultralight PBHs.
It also limits how close the first GW peak (corresponding to
the PBH scale) can be to the second GW peak (the end of
inflation scale). As shown in the right panel of Fig. 4, the
amplitude of the second GW peak strongly depends on the
proximity to the first GW peak, so this, in principle, also
limits the amplitude of the second GW peak.
In general, all cosmological sources of GWs typically

produce stochastic backgrounds of GWs with frequencies
roughly related to the size of the comoving Hubble horizon
at the time of their production. It is worth pointing out that
the entire mechanism of PBH generations from scalar field
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FIG. 4. On the left, the ISGWB energy density ΩGWh2 has been plotted for different reheating histories, as shown in the inset. On the
right is the ISGWB energy density for the same reheating history, but for two different scalar power spectra peaking at different
wavenumbers k, leading to the same amplitude at different frequencies for the first peak but different amplitudes at the same frequency
for the second peak.
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inflationary models2 leads to different characteristic back-
grounds of GWs which can be distinguished based on their
spectral energy density and frequency range.

(i) Primordial GW backgrounds are from vacuum
tensor fluctuations characterized by the tensor to
scalar ratio r. This background is typically very
small and highly redshifted since its generation
during inflation, and it thus can not be directly
detected with present or future GW observatories.

(ii) Secondary GW backgrounds are sourced by the
enhanced scalar perturbations in models of PBH
formations. Such GW production is maximized
when the scalar modes reenter the horizon during
the RD era but decay inside the horizon. This
induced contribution typically has a broad peak in
the spectra energy density which can be probed with
various ground- and space-based GW detectors.

(iii) The GWs are produced by the mergers of PBH
binaries since formation until today [111,112]. The
frequency of this GW signal is in the Hz–kHz
regime which falls in the sensitivity band of
ground-based detectors such as LIGO and future
runs such as O5 of Advanced LIGO. Perhaps the
binary black hole systems detected by LIGO are
PBH binaries. The most recently detected merger
event [113] also points to a strong possibility of
these intermediate mass black holes origins being
primordial [114].

(iv) The GWs are also produced due to the graviton
emission from the Hawking evaporation of PBHs
[96]. The emitted GWs from tiny PBHs with high
Hawking temperature typically have very high
frequencies and are thus quite far from the reach
of near future GW observatories.

Recently, it has been discussed whether the spectral
energy density of the ISGWB in the RD era from first-order
scalar perturbations is gauge invariant. In principle, a
physical observable today should not depend on the choice
of the gauge in which the calculations are carried out.
There have been a few papers discussing this issue lately
[115–119], and all of them seem to present different
conclusions. All of these papers have computed the spectral
energy density of induced gravitational waves in the
Newtonian, and the comoving and uniform curvature
gauges. In [115], it was noticed that there are huge
differences in the final result between the Newtonian
and the comoving gauge while the uniform curvature gauge
gave the same result as the Newtonian gauge. However, in
[116–118] it was claimed that the induced GWs today are

gauge invariant while Ref. [119] claims that the result is
identical in four different gauges but still different than
other gauges. In summary, the issue of gauge invariance for
second-order GWs is not yet completely settled and
requires further investigation.
Having computed the power spectrum of induced ten-

sor perturbations, it is interesting and relevant to understand
the extent of the induced tensor bispectrum in such models
and analyze whether its imprints could possibly be detected
by future space-based GW observatories. Recently, it has
been pointed out that the non-Gaussianity associated with
the induced tensor bispectrum in some models can be
large [57,58] and it is imperative to think about the extent of
this bispectrum in other inflationary models. Moreover, one
can naively expect that all such models which induce a
large ISGWB due to the enhancement of primordial
curvature perturbations will also generally induce a large
tensor bispectrum at the time of GW production, i.e., some
time after the horizon reentry of different modes. However,
it has been further emphasized that this peculiar non-
Gaussian characteristic of the signal may unfortunately not
be observable in any GW detectors at present. Since the
detectors can only measure the superposition of such
signals coming from many different directions in the
sky, and not just from one line of sight, such non-
Gaussianities (or the phase correlations) would be fur-
ther decorrelated by the propagation of GWs from different
directions due to the inhomogeneities present from
their generation epoch to today and thus, will not be
observable [57].
It has been pointed out recently that anisotropies in the

GW backgrounds are interesting observables that can be
used to distinguish among different GW production mech-
anisms [120,121]. These anisotropies refer to a change in
the spectral energy density of observed GWs as a function
of direction in the sky and can be imprinted both at the
generation epoch as well as, due to their propagation,
through the perturbed universe from the formation epoch to
today. These anisotropies are similar to the CMB anisot-
ropies and can be computed using a Boltzmann approach,
taking into account both the scalar and tensor perturbations
[122–124]. Recently, the effects of primordial curvature
perturbations on GW propagation over cosmic distances
have been calculated and it was shown that the resulting
deformations of the GW background can be significant for
extremely peaked GW spectra [125]. It will be very
interesting to study these anisotropies in the case of scalar
induced GW backgrounds and see if they provide further
insights into the mechanism of PBH formation and the
associated secondary GW background produced in the
early universe [126].
Detecting very high frequency GWs is going to be a big

challenge for future detectors as high frequencies pose
severe complications for interferometric observatories. An
interesting thought in this context is based on an indirect

2It is well known that dynamical gauge fields during inflation
provide very rich and interesting phenomenology [102–108]. In
models wherein PBHs are produced due to the amplification of
gauge fields, there exists another primordial contribution to
tensor perturbations sourced directly by enhanced gauge fields
during inflation [109,110].
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detection of these high frequency GWs by means of
their conversion into electromagnetic (EM) radiation
(gravitons → photons) in the presence of a cosmological
background magnetic field. This effect is often called the
inverse Gertsenshtein effect [127,128]. It has been dis-
cussed that relic gravitons emitted by PBHs prior to BBN
would transform to an almost isotropic background
of electromagnetic radiation due to their conversion
[129–131]. This can be calculated at the recombination
epoch and during the subsequent evolution of the universe.
Since the produced EM radiation is concentrated in the x
ray part of the spectrum, this contribution could be
observable and even dominate the cosmic x ray back-
ground. We plan to investigate all such interesting issues in
future.
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APPENDIX: CALCULATION OF IRDðu;v;x;xrÞ
FOR THE RD EPOCH PRECEDED

BY AN eMD EPOCH

The general solution for the transfer function in RD,
preceded by an eMD phase, can be written as [97]

T ðx; xrÞ ¼
3

ffiffiffi
3

p ½AðxrÞj1ðx−xr=2ffiffi3p Þ þ BðxrÞy1ðx−xr=2ffiffi3p Þ�
x − xr=2

; ðA1Þ

where j1 and y1 are the spherical Bessel functions of first
and second kind, xr ¼ kτr and x ¼ kτ, where τr corre-
sponds to the conformal time at the transition from the eMD
to RD phase, τ corresponds to some conformal time after
the transition, and A, B are constants which depend on the
duration of the eMD phase. Demanding the continuity of
the transfer function T ðxÞ and its time derivative at the
transition, we can determine A and B as

AðxrÞ¼
xr
2

ffiffiffi
3

p sin

�
xr
2

ffiffiffi
3

p
�
−

1

36
ðx2r−36Þcos

�
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ffiffiffi
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p
�
;

BðxrÞ¼−
1

36
ðx2r−36Þsin

�
xr
2

ffiffiffi
3

p
�
−

xr
2

ffiffiffi
3

p cos

�
xr
2

ffiffiffi
3

p
�
; ðA2Þ

where the pure RD case can be recovered by taking the xr → 0 limit. For this general expression of the transfer function, we
can calculate fðu; v; xÞ,

fðu; v; x̄; xrÞ ¼
4

9

�
ðx̄ − xr=2Þ∂ x̄T ðux̄; uxrÞððx̄ − xr=2Þ∂ x̄T ðvx̄; vxrÞ þ T ðvx̄; vxrÞÞ ðA3Þ

þT ðux̄; uxrÞððx̄ − xr=2Þ∂ x̄T ðvx̄; vxrÞ þ 3T ðvx̄; vxrÞÞ
�
: ðA4Þ

The propagation of GWs shall not be affected by any
preceding phase of eMD, so the Green’s function for (2.6)
shall be same as the pure RD phase, and we can define the
integral Iðu; v; x; xrÞ, running from the start of the RD xr to
a later time in the RD phase by which the source term
becomes inactive, as

Iðu; v; x; xrÞ ¼
Z

x

xr

dx̄
aðx̄Þ
aðxÞ fðu; v; x̄; xrÞkGðx̄; xÞ; ðA5Þ

where

aðx̄Þ
aðxÞ ¼

x̄ − xr=2
x − xr=2

: ðA6Þ

For simplifying the calculations, we can take 1=ðx − xr=2Þ
out of the integral expression and define

Iðu; v; x; xrÞ ¼ Iðu; v; x; xrÞ × ðx − xr=2Þ: ðA7Þ

We can now expand the integrand according to the powers
of z̄ ¼ x̄ − xr=2, and integrate it by parts separately to
obtain the analytical expression of Iðu; v; x; xrÞ, which can
be broken into 6 different terms as
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Iðu; v; x; xrÞ ¼ Isðu; v; x; xrÞ sinðxÞ þ Icðu; v; x; xrÞ cosðxÞ

þ I smðu; v; x; xrÞ sin
�
xðu − vÞffiffiffi

3
p
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�
xðuþ vÞffiffiffi

3
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3
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�
xðuþ vÞffiffiffi

3
p

�
: ðA8Þ

To calculate the ISGWB energy density spectra, we need to take the oscillation average of the square of Iðu; v; x; xrÞ. In the
late time limit, x ≫ 1, we can neglect all the terms except for the first two terms which simplify the calculation to

I2ðu; v; x; xrÞ ¼
1

2
ðI2

sðu; v; x; xrÞ þ I2
cðu; v; x; xrÞÞ: ðA9Þ

Now, we can further break the Isðu; v; x; xrÞ and Icðu; v; x; xrÞ terms into two parts, one involving the Si() and Ci()
integrals and the other without them:

Isðu; v; x; xrÞ ¼ Is1ðu; v; x; xrÞ þ I s2ðu; v; x; xrÞ:
Icðu; v; x; xrÞ ¼ Ic1ðu; v; x; xrÞ þ Ic2ðu; v; x; xrÞ: ðA10Þ

In the ðx − xr=2Þ ≫ 1 limit, using limx→�∞Ciðx − xr=2Þ → 0 and limx→�∞Siðx − xr=2Þ → �π=2, we can obtain a simplified
expression for these four terms. In this limit, we define Siðð−1þ ðuþvÞffiffi

3
p Þðx − xr=2ÞÞ ¼ V, so that for ð−1þ ðuþvÞffiffi

3
p Þ > 0;
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p Þ < 0; V ¼ −π=2. These different terms in their simplest form can be expressed as
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Ic2 ¼−
1

36u2v2
ð3sinðxrÞðu4x2r − 3u2ðx2r þ 12Þþ ðv2− 3Þðv2x2r − 36ÞÞþ xr cosðxrÞðu2ðv2x2r þ 54Þþ 54ðv2 − 3ÞÞÞ: ðA14Þ

Another way of breaking the terms of Ic and I s is to identify the terms involving different powers of xr. It is possible
to show that the term involving the lowest power of xr contributes dominantly to the small k regime (k ≪ kr or xr ≪ 1)
and reproduces a standard pure RD era formula. This term is also primarily responsible for the first peak inΩGWh2, as shown
in Fig. 5. The term with highest order of xr contributes dominantly for the large k regime (k ≫ kr or xr ≫ 1), and leads
to the second peak in Fig. 5. We have also obtained the analytical forms of Ic and Is for the large k regime, which are given
below:
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FIG. 5. Comparison of contributions from the pure RD approximation (light red) for the k ≪ kr limit and from the k ≫ kr limit result
(light blue) along with the full numerical result (solid black).
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