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We propose an inflationary scenario based on the concurrent presence of nonminimal coupling (NMC)
and generalized nonminimal derivative coupling (GNMDC), in the context of Higgs inflation. The
combined construction maintains the advantages of the individual scenarios without sharing their
disadvantages. In particular, a long inflationary phase can be easily achieved due to the gravitational
friction effect owed to the GNMDC, without leading to trans-Planckian values and unitarity violation.
Additionally, the tensor-to-scalar ratio remains at low values due to the NMC contribution. Finally, the
instabilities related to the squared sound speed of scalar perturbations, which plague the simple GNMDC
scenarios, are now healed due to the domination of the NMC contribution and the damping of the GNMDC
effects during the reheating era. These features make scenarios with nonminimal and derivative couplings
to gravity successful candidates for the description of inflation.
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I. INTRODUCTION

The inflationary scenario according to which an early
exponential expansion of the Universe takes place offers a
compelling explanation for the initial conditions of a hot
big bang (for reviews, see [1–3]). This inflationary descrip-
tion of the early phases of the Universe can be viewed as the
effect of the dynamics of a scalar field called inflaton. At
the same time, observations based on the cosmic micro-
wave background radiation (CMBR) offer increasingly
precise constraints to test the inflationary paradigm, as
well as the theory of gravity that operates at very high
densities. Moreover, there has been a significant effort
regarding the formation of primordial black holes, during a
super slow-roll phase during the inflationary period, which
could in fact be a viable dark matter candidate (see [4–16]).
Hence, the physics surrounding inflation is of particular
significance to various aspects of our understanding of the
Universe, and as such, early Universe cosmology provides
the grounds to test and choose between a significant
number of inflationary models. To identify a viable one,
one should study the dynamics of the full system of the
inflaton field and gravity.
In an attempt to describe the early cosmological evolu-

tion according to recent observational results, gravity

theories that are based on modifications of Einstein gravity
were proposed. Two of the most common ways to modify
the standard theory of relativity are introducing higher-
order curvature terms and/or including scalar fields that are
nonminimally coupled to gravity. Higher-order corrections
to the Einstein-Hilbert action arise naturally in the gravi-
tational effective action of string theory [17]. On the other
hand, introducing extra scalar fields, which are nonmini-
mally coupled to gravity, is a thoroughly studied way to
modify the standard theory of general relativity (GR) and
results in what is known as scalar-tensor theory [18]. A
particularly well-studied scalar-tensor theory is the one
obtained through the Horndeski Lagrangian [19]. These
theories yield field equations of second order and hence
they do not produce ghost instabilities [20]. Moreover,
many scalar-tensor theories share a classical Galilean
symmetry [21–28].
One simple subclass of Horndeski theories is obtained

with the use of a scalar field coupled to the Ricci scalar,
which is known as nonminimal coupling (NMC). Such a
construction goes beyond the simple case of GR plus a
scalar field and thus it can improve the inflationary
behavior. In particular, by taking a NMC of the form
ξϕ2, if the scale ξ is large enough, the resulting inflationary
phase is long enough [29–34]. In fact, it was shown that a
rather well-behaved phenomenology is obtained, since the
tensor-to-scalar ratio is particularly low and easily inside
the Planck 2018 observational limits. Additionally, there
have also been other works that have utilized a different
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NMC [35] or a matrix configuration for the inflaton field
[36]. However, although NMC models with large coupling
values are very efficient in producing improved inflationary
phenomenology, large coupling constants lead to problems
related to the unitarity of this theory and thus are not
desirable from a quantum mechanical perspective [37–54]
if one is to have a single-field model. A different picture is
obtained when multifield theories are studied, and it has
been argued [55,56] that in such theories these problems do
not exist. Moreover, other attempts without unitarity issues
have been made in a similar context, utilizing a Palatini
formulation of gravity [57–59] or by taking into account
additional interactions [60,61].
On the other hand, in Horndeski theory, one of the most

well-studied terms is the one corresponding to the non-
minimal derivative coupling (NMDC) of the scalar field to
the Einstein tensor. This term has interesting implications
both on small and large scales for black hole physics [62–
71], dark energy [72,73], and inflation [74,75], respec-
tively. For a recent review, see [76]. Concerning inflation,
the main advantage of NMDC is that it is free from unitarity
problems, and this led to the established model of new
Higgs inflation [77].
As it has been shown, the nonminimal derivative

coupling acts as a friction mechanism; therefore, from
an inflationary model-building point of view, it allows for
the implementation of a slow-roll phase [74,78], as well as
for inflation with potentials such as the Standard Model
Higgs to be realized [79]. In light of the above, it becomes a
very attractive term within the framework of Horndeski
theory. Moreover, such models are consistently described
within supergravity [80,81] via the gauge kinematic func-
tion [82]. An extensive study of the NMDC predictions is
performed in [83], where the dynamics of both the infla-
tionary slow-roll phase and the reheating phase were
considered. In particular, the NMDC oscillations of the
inflaton are very rapid and remain undamped for a very
lengthy period [84–92], affecting heavy particle production
[93]. However, such oscillations, where the NMDC
remains dominant over the standard GR term, are prob-
lematic in terms of stability of the postinflationary system.
This is due to the oscillations of the sound-speed squared
between positive and negative values [91], implying that
scalar fluctuations are exponentially enhanced.
To avoid this instability, the nonminimal kinetic term

must cease to be the dominant (or even coleading) term
when compared to the canonical kinetic term. However, if
this condition is to be met, the model effectively reduces to
that of a canonical scalar field in GR even during the slow-
roll period, and the advantages of the NMDC are lost.
Nevertheless, one can generalize the NMDC term, since it
is a special case of the Horndeski Lagrangian density, and
consider Lagrangians of the form [24–26]

L5 ¼ G5ðϕ; XÞGμν∂μ∂νϕ; ð1Þ

where X ¼ −∂μϕ∂μϕ=2. If the functionG5ðϕ; XÞ is chosen
to beG5ðϕ; XÞ ¼ −ϕ=ð2M2Þ, one gets the simplest NMDC
possible, since after integration by parts the derivative
coupling becomes constant. This, however, leads to the
problematic postinflationary evolution. Instead, in [94] it
was shown that, if one chooses a more general function
G5ðϕ;XÞ¼GðϕÞξðXÞ, the phenomenology of the Horndeski
terms becomes richer, both during inflation and reheating
stages.
In the case where GðϕÞ ∝ ϕ, this generalized NMDC

(GNMDC) term essentially vanishes when the inflaton field
approaches the minimum of the potential. Thus, the system,
after a few oscillations, transits to the dynamics of a
canonical kinetic term in GR, leading to a more manageable
and reliable behavior, dominated by GR dynamics during
the reheating stage. In fact, it was shown that with this kind
of term the inflationary phenomenology generated in a
Higgs potential was in very good agreement with obser-
vations. Furthermore, the tight bounds on the speed of
gravitational waves extracted by recent observations [95–
97] and from the solar system constraints [98] were
dismissive of the NMDC [99,100], since a NMDC term
playing the role of dark energy can produce super-
luminal tensor perturbations [79,101] in Friedmann-
Lemaître-Robertson-Walker cosmological backgrounds.
A GNMDC of the form GðϕÞ ∝ ϕ, however, can heal this
problem, since after the end of slow-roll inflation it has
essentially decoupled from the dynamics of the system
since it becomes negligible. However, it was also shown
that the sound-speed square was not completely healed of
the oscillations between positive and negative values, albeit
this problem was significantly ameliorated. One then would
have to seek for further modifications that could entirely
heal the theories that are modified with noncanonical
kinetic terms of this form, from the sound-speed-related
instabilities, and possibly even further improve the observ-
ables of inflation.
The motivation for this work is based on the above

discussion, according to which neither the NMC nor
NMDC scenarios are completely free of disadvantages
and problems when a desirable phenomenology is
achieved. Hence, we are interested in investigating a simple
combination of the NMC and GNMDC terms that can
alleviate the problems of both of these standardized
modifications. In particular, the GNMDC’s gravitational
friction effect allows for the ξ and ϕ� to be lowered enough
to not violate unitarity, while the late time domination of
the NMC term ensures that no sound-speed-related insta-
bilities occur. Moreover, a lowering of the tensor-to-scalar
ratio of this combined theory is obtained as compared to the
GNMDC case and a desirable theory is achieved.
This manuscript is organized as follows. In Sec. II we

briefly analyze some basic results of each of the NMC and
GNMDC terms as stand-alone modifications of GR. In
Sec. III, we present the combined scenario of inflation in
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the presence of the NMC and GNMDC terms. Then in
Sec. IV we proceed to a detailed numerical investigation in
a Higgs potential for a variety of interesting cases, with the
purpose of demonstrating the general results obtained in
Sec. III, thus clearly showing the advantages of this
scenario. Finally, in Sec. V we summarize our results.

II. NONMINIMAL COUPLING AND
GENERALIZED NONMINIMAL DERIVATIVE

COUPLING AS STAND-ALONE MODIFICATIONS

In this section, we present a short synopsis of inflationary
models resulting from general relativity plus nonmini-
mal coupling (GRþ NMC) and from general relativity
plus generalized nonminimal derivative coupling (GRþ
GNMDC), which have been studied extensively in the
literature.
In studying inflationary models, it is of great importance

to perturbatively study the effects of inflation, since every
inflationary model provides a rich phenomenology related
to scalar and tensorial perturbations. This phenomenology
sets the observational testing grounds for all inflationary
models. Specifically, in order to test their viability, one
needs to compare the predictions of a variety of quantities
with their corresponding observed values, mainly obtained
through CMBR. These observable quantities include the
power spectrum of the scalar perturbations PR, the scalar
spectral index (tilt) ns, and the tensor-to-scalar ratio r,
while a specific amount of e-folds is also required in order
for the horizon and flatness problems to be efficiently
solved. In the Appendix, we include a short review of the
usual steps taken in this direction. A full analysis of single-
field perturbations (without soft-properties considerations
[102]) has been performed in a number of works, e.g., in
[91,103,104].

A. Inflation with nonminimal coupling

The action of this modification to GR is written in the
form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðϕÞR −

∂μϕ∂μϕ

2
− VðϕÞ

�
; ð2Þ

and the most studied coupling of this form in the literature
is fðϕÞ ¼ ξϕ2. Nonminimal coupling as a stand-alone
modification to GR, when taking the form fðϕÞ ¼ ξϕ2

in a Higgs potential, has been shown to produce remarkably
low tensor-to-scalar ratio values. Additionally, it has no
postinflationary instability issues, since c2s can be shown to
be identically equal to 1, regardless of the form of the
NMC. Nevertheless, it was shown that it does not preserve
unitarity and thus it is problematic from a quantum-
mechanical point of view, since the combination ξϕ2 takes
values larger than MPl in order to yield a long enough
inflation [37–53].

We consider a homogeneous and isotropic flat Friedmann-
Robertson-Walker (FRW) geometry with metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð3Þ

where aðtÞ is the scale factor. The Friedmann equations of
this scenario are

3M2
PlH

2 ¼ VðϕÞ þ
_ϕ2

2
− 6ξ½fðϕÞH2 þ f0ðϕÞ _ϕH�; ð4Þ

M2
Plð2 _H þ 3H2Þ ¼ −ξ½2 _ϕ2f00ðϕÞ þ 4H _ϕf0ðϕÞ þ 2ϕ̈f0ðϕÞ

þ 4fðϕÞ _H þ 6H2fðϕÞ� −
_ϕ2

2
þ VðϕÞ;

ð5Þ

and the scalar-field equation of motion reads as

ϕ̈þ 3H _ϕ − 6ξf0ðϕÞð _H þ 2H2Þ þ V 0ðϕÞ ¼ 0: ð6Þ

However, in order to calculate the inflationary observables,
the convenient approach is to perform a conformal trans-
formation, thus passing to the Einstein frame. By choosing
ĝμν ¼ Ω2ðxÞgμν, with

Ω2ðxÞ ¼ 16π

M2
Pl

fðϕÞ;

and defining a new scalar field φ and potential U such that

dφ
dϕ

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Pl

8π

fðϕÞ þ 3f02ðϕÞ
2f2ðϕÞ

s
;

UðφÞ≡ Ω−4VðϕÞ;

then the action is brought to the Einstein-frame equivalent
form

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
M2

Pl

2
R̂ −

∂μφ∂μφ

2
−UðφÞ

�
; ð7Þ

where the quantities in the Einstein frame are denoted with
a hat.
It has been shown that to first order one can write the

spectral index and tensor-to-scalar ratio as [3]

1 − ns ¼ 6ϵU − 2δU; ð8Þ

r ¼ 16ϵU; ð9Þ

where we have defined the slow-roll parameters
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ϵU ¼ M2
Pl

2

�
U0

U

�
; ð10Þ

δU ¼ M2
Pl
U00

U
: ð11Þ

Moreover, it can be easily shown that for an arbitrary
coupling fðϕÞ the c2s of the GRþ NMC scenario is
identically equal to 1, by simple replacement of the above
equations into Eq. (A7).
We mention here that in the Einstein frame the potential

U is essentially flat for large values of the NMC term
(ξϕ2 ≫ MPl), hence the field rolls very slowly and the slow-
roll parameters ϵU and δU are very small, yielding a
correspondingly small r. This last conclusion is what entails
one of the basic results of single field, NMC, Higgs inflation
with the coupling form fðϕÞ ¼ ϕ2. Nevertheless, as we
mentioned above, these particularly attractive features of a
very low r and a long inflation come at the cost of ξϕ2 > MPl,
leading to nonunitarity. In order to solve this problem, one
should consider other couplings of the scalar field to gravity,
as the one described in the next subsection.

B. Inflation with nonminimal derivative coupling

We now turn to the scenario according to which the
generalized nonminimal derivative coupling is a stand-
alone modification to GR. As we discussed in the
Introduction in the general framework of Horndeski the-
ories, NMDC holds a particular position due to its attractive
feature of “gravitational friction,” i.e., the phenomenon
according to which a single inflaton field, when rolling
down a potential, stays in “slow roll” for a significantly
lengthier period compared to GR. This results in an easier
realization of inflation and a richer phenomenology, studied
extensively in the literature [79,84,85,87,89–92,105].
However, among other effects it has been argued that a

stand-alone NMDC modification to GR creates postinfla-
tionary instabilities, due to the fact that the NMDC term
remains dominant after the slow-roll period and this may
lead to c2s < 0. As a result, a further intuitive modification,
dubbed GNMDC, was proposed in [26,94], where it was
shown that, when the derivative coupling with the Einstein
tensor is of the form GðϕÞ∂μϕ∂νϕGμν, this problem is
significantly ameliorated. In particular, the action of this
modification to GR can be written in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
RþG5ðϕ; XÞGμν∂μ∂νϕ − VðϕÞ

�
;

ð12Þ

where Gμν is the Einstein tensor. Hence, by considering
only a ϕ dependence of the G5 function, the Friedmann
equations of this scenario are [26,94]

3M2
PlH

2 ¼ 9H2GðϕÞ _ϕ2 þ 1

2
_ϕ2 þ VðϕÞ; ð13Þ

M2
Plð2 _H þ 3H2Þ ¼ VðϕÞ −

_ϕ2

2
þ 2H _ϕ3G0ðϕÞ

þGðϕÞð2 _H _ϕ2 þ 3H2 _ϕ2 þ 4H _ϕ ϕ̈Þ;
ð14Þ

while the scalar-field equation of motion reads as

ϕ̈þ V 0ðϕÞ þ 3H _ϕþ 3H2 _ϕ2G0ðϕÞ
þ GðϕÞð12HH0 _ϕþ 6H2ϕ̈þ 18H3 _ϕÞ ¼ 0: ð15Þ

Note that the function GðϕÞ results from G5, after integrat-
ing by parts; namely, GðϕÞ ¼ −G0

5ðϕÞ.
In the class of models that include a noncanonical kinetic

term, the gravitational friction effect offers the ground for
very efficient inflationary predictions, since the slow-roll
conditions can be easily satisfied. In particular, in order to
investigate inflation in the slow-roll approximation, we
define the slow-roll parameters

ϵ ¼ −
_H
H2

; δ ¼ ϕ̈

H _ϕ
; ð16Þ

ϵV ¼ M2
Pl

2

�
V 0

V

�
2

; ηV ≡M2
Pl

2

V 00

V
: ð17Þ

The slow-roll approximation holds when ϵ ≪ 1 and
δ ≪ 1, and thus _H ≪ H2 and ϕ̈ ≪ 3H _ϕ, and in this case
the Friedmann equations (13) and (15) are simplified to

3M2
PlH

2 ≈ VðϕÞ; ð18Þ

3H _ϕ½1þ 6GðϕÞH2 þG0ðϕÞH _ϕ� þ V 0ðϕÞ ≈ 0: ð19Þ

Hence, under the slow-roll approximations, the first slow-
roll parameter ϵ can then be written in the form

ϵ ≈ ϵGR þ ϵD þ ϵB; ð20Þ

where

ϵD ≡ 3GðϕÞ _ϕ2

M2
Pl

; ϵB ≡ _ϕ2

M2
PlH

2
G0ðϕÞH _ϕ: ð21Þ

These two functions correspond to ϵG1 and ϵG4 of Eq. (45)
that we will later use. Moreover,

ϵGR ≡ _ϕ2

2M2
PlH

2
; ð22Þ
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where the quantity ϵGR corresponds to the result of the GR
case, while ϵD is the leading term during slow roll.
The GNMDC term has the effect of decreasing the ϵ

parameter and hence increases the slow-roll period. In fact,
in the slow-roll approximation, Eq. (20) can be brought to
the form

ϵ ¼ ϵV
A − 2B
ðAþ BÞ2 ; ð23Þ

with A≡ 1þ 6H2GðϕÞ and B≡G0ðϕÞH _ϕ. Additionally,
the squared sound speed of the scalar perturbations is found
to be [94]

c2s ¼
�
1 −

ϵD
3
þ 6H2GðϕÞð1þ ϵDÞ

�
−1

×

�
1þ ϵD þ 6H2GðϕÞ

�
1þ ϵD þ 4ϵDð1 − ϵDÞ

3ð3 − ϵDÞ
�

þ 12 _HGðϕÞ
�
1 −

ϵD
3

��
: ð24Þ

Furthermore, we can approximate the number of e-folds
as [94]

N ≈
1

MPl

Z
ϕ

ϕend

Aþ Bffiffiffiffiffiffiffiffi
2ϵV

p dϕ: ð25Þ

As one can see, for GðϕÞ → 0 all the above expressions
restore the canonical case. Finally, concerning the infla-
tionary observables, the scalar power spectrum can be
brought to the form [94]

PR ¼ H2

8π2M2
PlϵV

�
Aþ 2B þO

�
B2

A

��
; ð26Þ

the scalar spectral index becomes

1 − ns ≈ 8ϵ − 2ηþ ϵMPl
G0ðϕÞ
GðϕÞ

ffiffiffiffiffi
2

ϵV

s
; ð27Þ

with η≡ ηV
A , while the tensor-to-scalar ratio is written as

r ¼ 16
ϵV

Aþ 2B
: ð28Þ

Let us now consider a specific model of GNMDC. In
particular, we will focus on the case

GðϕÞ ¼ αϕα−1

2Mαþ1
; ð29Þ

which recovers the simple NMDC for α ¼ 1 [see [94] for
the different case of GðϕÞ ¼ eτϕ=MPl

M2 ]. Within the framework
of this particular modification, it can be shown that as α

becomes larger, then the postinflationary instabilities
related to c2s < 0 become significantly shorter as compared
to the simple NMDC (α ¼ 1). This effect results from the
fact that near the bottom of the potential the GNMDC term
is not dominant and GR takes over, which in turn results
from the fact that the more the α parameter grows the more
dominant becomes the gravitational friction effect, and this
allows the scale of the theory 1

Mαþ1 (needed to produce a
long enough inflation) to decrease significantly.
Concerning the observables, it can be shown that, for a

given value of the scalar power spectrum PR, while a
growing α parameter ameliorates the instability problem, it
additionally affects the values of the spectral index ns and
the tensor-to-scalar ratio. In particular, while r becomes
smaller, ns increases and tends to the outside of the
observationally determined Planck likelihood contours, if
one seeks to build a 60 e-fold model [94].
Similar results can be obtained if one uses as GðϕÞ

a polynomial instead of a monomial form, namely,

GðϕÞ ¼ P
i
αiϕ

αi−1

2M
αiþ1

i

. In order for a coupling of such a form

to produce a different phenomenology than the one studied
in the monomial case, its various terms must be of
comparable magnitude. If this is not the case, then the
leading monomial term determines the phenomenology.
Finding the scales Mi so that different terms are

comparable is a nontrivial task. In [94], a constraint
between the scale M, the parameter α, and the initial
values ϕ�; _ϕ� was found [similar to Eq. (41) below]. This
constraint creates a part of the phase space that is forbidden,
which proves problematic when one seeks to build a model
with an even value of α. This issue is carried over in the
polynomial GNMDC case, if a term that corresponds to an
even value of α becomes important, posing yet another
problem for the polynomial case. However, this is signifi-
cantly ameliorated in the combined theory proposed in this
paper [when the NMC term is turned on in Eq. (41)], as we
discuss later.
In summary, if one has a polynomial form of GðϕÞ or

obtains such a polynomial form through quantum correc-
tions [106], the nonleading terms will either make an
insignificant contribution in phenomenology or, in order to
affect it, they have to be fine-tuned in terms of α and Mi.

III. NONMINIMAL COUPLING AND
GENERALIZED NONMINIMAL DERIVATIVE

COUPLING COMBINED

In the previous section, we presented the inflationary
realization of each of the stand-alone modifications to GR,
namely, of the NMC and of the GNMDC. As we men-
tioned, the NMC can lead to observables in very good
agreement with observations, however, it possesses the
known unitarity problem, while the α ¼ 1 GNMDC solves
the unitarity violation, but leads to c2s instabilities, while the
α > 1 GNMDC solves the unitarity, but only ameliorates
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the c2s issues, while making the observable predictions less
attractive, in terms of the spectral index.
Keeping the above behaviors in mind, in this section we

construct the combination of the scenarios of NMC and
GNMDC, intending to maintain their separate advantages,
while removing their separate disadvantages.

A. The model

We considered the combined action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LGR þ Lϕ þ LNMC þ LGNMDC�; ð30Þ

with

LGR ¼ M2
Pl

2
R;

Lϕ ¼ −
1

2
gμν∂μϕ∂νϕ − VðϕÞ;

LNMC ¼ ξfðϕÞR;
LGNMDC ¼ GðϕÞGμν∂μϕ∂νϕ: ð31Þ

Variation in terms of the metric gives rise to the field
equations as

Gμν ¼
1

M2
Pl

½TðϕÞ
μν þ ξTðNMCÞ

μν − 2GðϕÞTðNMDC1Þ
μν

−G0ðϕÞTðNMDC2Þ
μν �; ð32Þ

while variation in terms of the scalar field leads to the
Klein-Gordon equation

□ϕ −Gμν½2GðϕÞ∇μ∇νϕþG0ðϕÞ∇μϕ∇νϕ�
þ ξf0ðϕÞR − V 0ðϕÞ ¼ 0; ð33Þ

where

TðϕÞ
μν ¼ ∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ − gμνVðϕÞ; ð34Þ

TðNMCÞ
μν ¼ −2fðϕÞ

�
Rμν −

1

2
gμνR

�

− 2f0ðϕÞ½gμν□ϕ −∇μ∇νϕ�
− 2f00ðϕÞ½gμν∇λϕ∇λϕ −∇μϕ∇νϕ�; ð35Þ

TðNMDC1Þ
μν ¼−Gμν∇λϕ∇λϕþ4Rλðμ∇νÞϕ∇λϕ

þ2½∇κϕ∇λϕRμκνλþ∇μ∇λϕ∇ν∇λϕ−∇ν∇μϕ∇2ϕ�
þgμν½∇2ϕ∇2ϕ−∇κ∇λϕ∇κ∇λϕ−2Rκλ∇κϕ∇λϕ�
−∇μϕ∇νϕR; ð36Þ

TðNMDC2Þ
μν ¼ gμνð∇λϕ∇λϕ∇2ϕ −∇κϕ∇λϕ∇κ∇λϕÞ

þ 2∇λϕ∇ðμϕ∇νÞ∇λϕ −∇λϕ∇λϕ∇ν∇μϕ

−∇μϕ∇νϕ∇2ϕ; ð37Þ

with the indices in parentheses denoting symmetrization. As
expected, for GðϕÞ → 0 we recover the GRþ NMC
case, while for fðϕÞ → 0 we reobtain the GRþ GNMDC
case.
Applying the above general field equations in the FRW

metric (3), we extract the two Friedmann equations as

ρϕ ≡ 3M2
PlH

2 ¼
_ϕ2

2
þ VðϕÞ þ 9GðϕÞH2 _ϕ2

− 6ξ½fðϕÞH2 þ f0ðϕÞ _ϕH�; ð38Þ

−pϕ ≡M2
Plð3H2 þ 2 _HÞ ¼ VðϕÞ −

_ϕ2

2

þ GðϕÞð3H2 _ϕ2 þ 2 _H _ϕ2 þ 4H _ϕ ϕ̈Þ þ 2G0ðϕÞH _ϕ3

− 2ξ½3fðϕÞH2 þ 2fðϕÞ _H þ 2Hf0ðϕÞ _ϕþ _ϕ2f00ðϕÞ
þf0ðϕÞϕ̈�; ð39Þ

where for convenience we have introduced the effective
energy density ρϕ and pressure pϕ for the scalar field.
Additionally, the Klein-Gordon equation (33) becomes

ϕ̈ð1þ 6GðϕÞH2Þ þ 3H _ϕð1þ 6GðϕÞH2 þ 4GðϕÞ _HÞ
þ 3H2G0ðϕÞ _ϕ2 − 6ξf0ðϕÞð _H þ 2H2Þ þ V 0ðϕÞ ¼ 0:

ð40Þ

We mention that, combining the above equations, one
deduces that in order for the scalar field to obtain real
values then the quantity

Q≡ 6ξ2 _ϕ2f0ðϕÞ2 þ ξð2fðϕÞ _ϕ2 þ 4fðϕÞVðϕÞÞ
þ GðϕÞð−3 _ϕ4 − 6 _ϕ2VðϕÞÞ þM2

Pl
_ϕ2 þ 2M2

PlVðϕÞ
ð41Þ

must be positive.

B. Slow-roll inflation and the three regimes

From a theoretical perspective, if one investigates a theory
that combines two different terms, it is expected that there
will be three different regimes that one would need to study,
depending on their relative magnitude: one where the
GNMDC is dominating and NMC is a small correction,
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one that NMC dominates and GNMDC acts as a small
correction, and finally a regime where the two terms are
roughly of the same order. Before discussing each one
individually, and in order to facilitate the following dis-
cussion, we first provide the general slow-roll framework of
this theory.
In the slow-roll approximation, namely, when _H ≪ H2,

_ϕ ≪ H, and ϕ̈ ≪ 3H _ϕ, and keeping the leading terms of
GNMDC and NMC, the first Friedmann equation (38)
becomes

3M2
PlH

2 ¼ 9GðϕÞH2 _ϕ2 − 6ξfðϕÞH2 þ VðϕÞ; ð42Þ

while the Klein-Gordon equation (40) is simplified as

3H _ϕð1þ 6GðϕÞH2Þ − 12H2ξf0ðϕÞ þ V 0ðϕÞ ¼ 0: ð43Þ

Note that regarding f0ðϕÞ and fðϕÞ, since we focus in
monomial fðϕÞ forms that give f0ðϕÞ > fðϕÞ in the small
field scenarios (ϕ < MPl), we deduce that the difference is
less important than that between _ϕ and H due to the slow
roll, and hence we keep only the fðϕÞH2 term. This
approximation will be a posteriori shown to hold in the
numerical analysis of the next section.
Using Eqs. (38) and (39) we can obtain the exact form of

the slow-roll parameter ϵ ¼ − _H
H2 as

ϵ ¼ ϵGR þ ϵG1 þ ϵG2 þ ϵG3 þ ϵG4

þ ϵN1 þ ϵN2 þ ϵN3 þ ϵN4; ð44Þ

where we have introduced the following auxiliary
parameters:

ϵGR ¼
_ϕ2

2M2
PlH

2
;

ϵG1 ¼
3 _ϕ2GðϕÞ

M2
Pl

; ϵG2 ¼ −
_ϕ2 _HGðϕÞ
M2

PlH
2

;

ϵG3 ¼ −
2 _ϕ ϕ̈GðϕÞ
M2

PlH
; ϵG4 ¼ −

G0ðϕÞ _ϕ3

M2
PlH

;

ϵN1 ¼
2ξfðϕÞ _H
M2

PlH
2

; ϵN2 ¼ −
ξf0ðϕÞ _ϕ
M2

PlH
;

ϵN3 ¼
_ϕ2ξf00ðϕÞ
M2

PlH
2

; ϵN4 ¼
ξf0ðϕÞϕ̈
M2

PlH
2
: ð45Þ

These separate parameters will be useful in order to quantify
which specific term of the theory dominates the inflationary
realization, and in particular, the ϵGi are related to the
GNMDC, while the ϵNi are related to the NMC (i runs from
one to four), while ϵGR is the usual slow-roll parameter of
minimally coupled, single-field inflation. From our previous
discussion, it becomes clear that in the slow-roll era the only
important terms should be ϵG1, ϵN1, and ϵN2.
We can now move on to calculate the various perturbative

functions, as functions of the auxiliary parameters defined
above. Using the definitions in the Appendix, we find

GT ¼ M2
Pl

�
1 −

ϵG1
3

−
ϵN1

ϵ

�
; ð46Þ

F T ¼ M2
Pl

�
1þ ϵG1

3
−
ϵN1

ϵ

�
; ð47Þ

Σ ¼ M2
PlH

2

�
ϵGR þ 6ϵG1 þ 6ϵN2 þ 3

ϵN1

ϵ
− 3

�
; ð48Þ

Θ ¼ M2
PlH

�
1 − ϵG1 − ϵN2 −

ϵN1

ϵ

�
; ð49Þ

Gs ¼ −
M2

Pl

9
½ϵN1 þ ϵðϵG1 þ ϵN2 − 1Þ�−2

· ½ϵðϵG1 − 3Þ þ 3ϵN1�f−3ϵN1ðϵG1 þ ϵGRÞ
þϵ½3ϵ2G1 þ 3ϵGR þ 9ϵ2N2 þ ϵG1ð3 − ϵGR þ 12ϵN2Þ�g;

ð50Þ

F s ¼ −
M2

Pl

9½ϵðϵG1 þ ϵN2 − 1Þ þ ϵN1�2
fϵ2fϵ2G1½7ϵN1 þ 17ϵN2 þ ϵN3 − 4−3ðϵG3 þ ϵG4 þ ϵN4Þ − 4�

þ 4ϵ3G1 þ 3ϵG1½2ϵG3 − 2ϵG4ðϵN2 − 1Þ − 10ϵN1−2ϵN3 þ 5ϵN2ðϵN2 − 2Þ þ 2ϵN4� þ 9ð2ϵG4ϵN2

þϵG3 þ ϵG4 þ 3ϵN1 − 3ϵ2N2 þ ϵN2 þ ϵN3 þ ϵN4ÞgþϵϵN1½ϵG1ð−6ϵG3 − 6ϵG4 þ 15ϵN1 þ 30ϵN2 þ 6ϵN3

−6ϵN4Þ − 9ð2ϵG3 þ 2ϵG4ðϵN2 þ 1Þ þ 3ϵN1þ2ðϵN2 þ ϵN3 þ ϵN4Þ − 3ϵ2N2Þ þ 4ϵ2G1�
þ ϵ3ðϵG1 − 3Þ2ðϵG1 − 1Þ þ 9ϵ2N1ðϵ − ϵGR − ϵG1 − ϵG2Þg: ð51Þ
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We can now proceed to calculate the sound speed of the theory. If we insert these equations into the definition of the
sound speed (A7), we obtain

c2s ¼ fϵ½ϵG1ð12ϵN2 − ϵGR þ 3Þ þ 3ðϵ2G1 þ ϵGR þ 3ϵ2N2Þ�−3ϵN1ðϵG1 þ ϵGRÞg−1½ϵðϵG1 − 3Þ þ 3ϵN1�−1
· fϵ2fϵ2G1½7ϵN1 þ 17ϵN2 þ ϵN3−3ðϵG3 − ϵG4 − ϵN4Þ − 4� þ 3ϵG1½5ðϵN2 − 2ÞϵN2 − 2ϵG4ðϵN2 − 1Þ − 10ϵN1

þ2ðϵG3 − ϵN3 þ ϵN4Þ� þ 4ϵ3G1 þ 9ðϵG3 þ 2ϵG4ϵN2 þ ϵG4 þ 3ϵN1

−3ϵ2N2 þ ϵN2 þ ϵN3 þ ϵN4Þg þ ϵϵN1fϵG1½6ðϵN3 − ϵG3 − ϵG4 − ϵN4Þ
þ15ϵN1 þ 30ϵN2� þ 4ϵ2G1 − 9½2ϵG3 þ 2ϵG4ðϵN2 þ 1Þ þ 3ϵN1

þ2ðϵN2 þ ϵN3 þ ϵN4Þ − 3ϵ2N2�g þ ϵ3ðϵG1 − 3Þ2ðϵG1 − 1Þ
þ 9ϵ2N1ðϵG3 þ ϵG4 þ ϵN1 þ ϵN2 þ ϵN3 þ ϵN4Þg; ð52Þ

which is an exact expression. Let us consider its various limits. First, in the GR limit, where ϵGi, ϵNi → 0, we can see that c2s
becomes identically equal to 1 as expected. The same holds in the NMC limit, where ϵGi → 0, again as expected. Moreover,
in the GNMDC limit, where ϵNi → 0, we acquire

c2s ¼
1

ðϵG1 − 3Þð3ϵG1ðϵG1 þ 1Þ − ðϵG1 − 3ÞϵGRÞ
· fϵðϵG1 − 1ÞðϵG1 − 3Þ2 þ 9ðϵG3 þ ϵG4Þ

þ ϵG1½ϵG1ð4ϵG1 − 3ϵG3 − 3ϵG4 − 4Þ þ 6ðϵG3 þ ϵG4Þ�g; ð53Þ

which, using the definitions (45), gives expression (24).

However, in general, we would like to extract more
information about the behavior of the full equation (52). A
detailed manipulation of this equation is quite tedious and
is not included here, however, there is a clear note to be
made based on it. If we use Eq. (44) to substitute ϵ with the
auxiliary ϵ functions, we end up with an expression of the
form

c2s − 1 ≈
OðϵGiÞ

fϵðϵNi; ϵGRÞ þOðϵGiÞ
; ð54Þ

where fϵ is a function that does not depend on the ϵGi,
while OðϵGiÞ is a function at least linear in ϵGi. Hence, the
denominator is of greater order of magnitude as compared
to the nominator of this fraction, when slow roll has
ended and the NMC terms completely take over, if one
chooses a derivative coupling that vanishes toward the
bottom of the potential. This implies that c2s ≡ 1, which is,
in fact, one of the main results of this work: the inclu-
sion of NMC and a vanishing ϕ-dependent GNMDC,
regardless its exact form, can completely heal the c2s
instabilities of derivative coupling (see also Fig. 3 for
corresponding numerical results). This was expected
because the NMC term has a sound speed identically equal
to 1 and its terms remain dominant after the end of the
slow roll.
On the other hand, using the same rationale with

Eq. (53), we can show that in the GNMDC limit we acquire

c2s − 1 ≈
OðϵGiÞ
OðϵGiÞ

: ð55Þ

This fraction is obviously nonzero, in general, and in
particular, it can be larger or smaller than 1. This reconfirms
the results of [94], regarding the squared sound-speed
oscillations between negative and superluminal values.

1. Regime 1: NMC ≫ GNMDC

If one would like to study the case where the GNMDC
term is negligible compared to the NMC term during the
slow-roll era, then observing Eqs. (42) and (43), there are
two requirements that should be satisfied, namely,

ξ ≫
GðϕÞ
f0ðϕÞH

_ϕ ð56Þ

and

ξ ≫
GðϕÞ
fðϕÞ

_ϕ2; ð57Þ

where, based on our previous discussion, we deduce that
the former is actually stronger than the latter. Nevertheless,
we should mention here that the GNMDC form (29), on
which we will focus on in this work, turns off at the end of
inflation; hence, if we enforce the above constraints then
the GNMDC will be unimportant throughout the field’s
evolution. Thus, this case would bear practically no effect

KARYDAS, PAPANTONOPOULOS, and SARIDAKIS PHYS. REV. D 104, 023530 (2021)

023530-8



in both the early and late stages phenomenology, and
therefore, we will not investigate it further.

2. Regime 2: GNMDC ≫ NMC

In order to realize this regime of GNMDC domination,
using Eqs. (42) and (43) we extract the requirements

ξ ≪
GðϕÞ
f0ðϕÞH

_ϕ ð58Þ

and

ξ ≪
GðϕÞ
fðϕÞ

_ϕ2; ð59Þ

where the latter is stronger than the former if the dynamics
of the NMC are to be negligible in the slow-roll era.
However, unlike the previous case where GNMDC ≪
NMC, the post-slow-roll dynamics cannot be studied
without the NMC terms. This is due to the fact that a ϕ-
dependent GNMDC quickly becomes subdominant near
the bottom of the potential, in the post-slow-roll regime.
Hence, this case should be studied in more detail and, in
particular, to examine the sound speed squared, since in the
sole GNMDC model the derivative coupling has been
shown to create instabilities due to c2s < 0.
Specifically, as discussed and shown with Eq. (54), we

are interested in investigating whether the inclusion of the
NMC term corrects the c2s values toward 1, compared to the
stand-alone GNMDC case. A theoretical indication toward
this direction is that the NMC sound speed is identically
equal to 1, and since the NMC should take over (or at least
be comparable) with GNMDC in the post-slow-roll period,
it is expected that the sound speed will be corrected; albeit
the magnitude of this correction remains to be found, since
Eq. (54) is only qualitative. Instead of providing explicit
results here, we will do it in the analysis of the next regime,
namely, where NMC ≈ GNMDC.

3. Regime 3: NMC ≈GNMDC

We can now proceed to the investigation of the case
where NMC and GNMDC terms are of the same order. We
start with the slow-roll dynamical equations presented
above. To enforce NMC ≈ GNMDC, we can choose
between the two requirements presented earlier, one of
which is stronger. For simplicity, we will choose the weaker
constraint, which nevertheless is adequate for the results of
our model. In particular, we enforce

ξf0ðϕÞ ≈GðϕÞH _ϕ; ð60Þ

while still

ξfðϕÞ ≫ GðϕÞ _ϕ2; ð61Þ

and we additionally require that the GR terms are negligible
compared to the GNMDC and NMC ones during the slow-
roll era. Then, the scalar-field equation (43) becomes

18GðϕÞH3 _ϕþ V 0ðϕÞ ¼ 12H2ξf0ðϕÞ; ð62Þ

while the Friedmann equation (42) is significantly simpli-
fied and becomes

3M2
PlH

2 þ 6ξfðϕÞH2 ¼ VðϕÞ: ð63Þ

Based on the discussion following Eqs. (42) and (43),
regarding the slow-roll approximations, the dominant
parameters during the slow-roll period are ϵG1, ϵN1, and
ϵN2. Hence, if we are interested in the early phase’s
predictions, we can, as a first approximation, keep only
the first-order contributions in regards to these parameters.
We thus acquire

F s ¼ Gs ≈M2
PlϵG1: ð64Þ

Inserting this into the squared sound-speed relation (A7),
we obtain c2s ¼ 1 during the slow-roll period [equivalently
maintaining only ϵG1, ϵN1, and ϵN2 in the general expression
(52) gives c2s ¼ 1].
We proceed by calculating the inflationary observables.

Using expression (A9) for the power spectrum at first order,
we obtain

PR ≈
H2

8M2
Plπ

2ϵG1
; ð65Þ

which coincides with (26) if one keeps only the first-order
contribution. Interestingly enough, at first order the NMC
term does not have an effect on the scalar power spectrum
value, since the only ϵ parameter appearing is ϵG1.
Concerning the tensor-to-scalar ratio r, using (A9)

and (A10) we find

r ≈ 16ϵG1 þ
16ϵG1

ϵG1 þ ϵN2

ϵN1: ð66Þ

Unlike the scalar power spectrum, this result clearly shows
the effect of the combined theory. In particular, during slow
roll we have ϵN1 < 0, which implies that the NMC term
lowers the standard result, which is r ¼ 16ϵG1, namely,
improving the tensor-to-scalar ratio to values that are in
better agreement with the observations. Hence, the very low
tensor-to-scalar ratio, which is a characteristic result of the
NMC term, is maintained in the combined theory.
Concerning the scalar spectral index ns, using (A9)

and (A11) in the case of the present combined scenario, we
obtain
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ns ≈ 1þ −3ðϵG3 þ ϵG4Þ þ 2ϵG1ðϵG1 þ ϵN1 þ ϵN2Þ
ϵG1ðϵG1 þ ϵN1 þ ϵN2 − 1Þ : ð67Þ

Note that here we cannot ignore the terms ϵG3 and ϵG4 as we
have done until now, since the rest of the terms are of
second order in the ϵ parameters. As expected, when the
NMC-related parameters go to zero, we can recover the
result (27) of the stand-alone GNMDC model.
In summary, when a ϕ-dependent GNMDC and the

NMC terms are comparable, the scenario can be completely
healed from the c2s < 0 unstable region. Additionally, the
value of the tensor-to-scalar ratio not only remains inside
the Planck 2018’s contour plots, but it is increasingly
improving as the NMC contribution becomes more sig-
nificant. Finally, the scenario can, in principle, be healed
from the unitarity problem, because as the GNMDC term
becomes more significant in the slow-roll period, the
magnitude of ξϕ2� decreases significantly. These features
make the combined scenario at hand better than its
individual counterparts. We emphasize that all the above
results hold as long as GðϕÞ is ϕ dependent, and thus at the
bottom of the potential it becomes negligible.

IV. NUMERICAL INVESTIGATION

In this section, we perform a full numerical study in
order to demonstrate, by use of specific examples, the
general results of our theory obtained in the previous
section, most importantly Eqs. (54) and (66). To satisfy
the ansatz that GNMDC becomes negligible at the end of
inflation, we choose a monomial or polynomial form for
GðϕÞ, however, other similar forms still produce viable
results.
To numerically elaborate, we consider, then, specific

NMC and GNMDC functions. For the former, i.e., for the
coupling function fðϕÞ, we choose the most well-studied
case of the stand-alone NMC scenario, namely,
fðϕÞ ¼ ξϕ2, while for the latter we consider the well-

studied monomial form (29), namely, GðϕÞ ¼ αϕα−1

2Mαþ1. We
then provide and discuss an example with a polynomial

form GðϕÞ ¼ P
i
αiϕ

αi−1

2M
αiþ1

i

. Additionally, in order to have

increased theoretical justification, and to compare with
the literature, we consider the scalar field to be the Higgs
boson and thus its potential to be the known quartic Higgs
one [79,107], namely,

VðϕÞ ¼ λϕ4

4
: ð68Þ

Finally, in what follows, we have imposed the normaliza-
tion that the scalar power spectrum value at k ¼
0.05 Mpc−1 is PR ¼ 2.2 × 10−9 [108]. Additionally, the
initial conditions are selected in order for the produced
models to yield 40, 50, and 60 e-folds.

Starting with the monomial GNMDC scenario, in Fig. 1
we depict the evolution of the scalar field for the various
cases. The main observation from this graph is the fact that,
although in the stand-alone GNMDC scenario, the oscil-
lations of ϕ (and consequently of _ϕ) are quite wild, in the
combined scenario the period of the field oscillations
increases. This will play a crucial role in the following
analysis since it is the cause of the c2s instabilities healing in
the combined scenario.
As a next step we calculate the inflationary observables

and, in particular, the scalar spectral index and the tensor-
to-scalar ratio, using the exact expressions of the Appendix.
In Fig. 2, we present the obtained results for the stand-alone
cases of NMC and GNMDC, as well as for the combined
scenario. Additionally, for transparency, in the same figure
we provide the 1σ and 2σ contours of the Planck 2018 data
[108]. As we observe, the simple NMC gives very
satisfactory predictions, however, due to the unitarity
violation, this model has to be abandoned. The simple
GNMDC scenario solves the unitarity issue, however, it
leads to quite large r values and, moreover, it leads to
instabilities related to c2s . We observe that, in the combined
NMCþ GNMDC scenario that alleviates the unitarity
issue, one can improve the obtained r values, bringing
them back inside the Planck 2018 contours, and moreover,
the larger the α value is, the larger is the improvement.
Specifically, one observes that, for the same value of α
(dashed lines for α ¼ 3, dotted lines for α ¼ 5), as ξ grows,
the tensor-to-scalar ratio lowers. Moreover, for the same
value of ξ (blue lines for ξ ¼ 1500, red lines for ξ ¼ 2000),
as α grows, r also lowers. This result is also expected since
this is one of the effects of the sole GNMDC term [94].

FIG. 1. The evolution of the scalar field in three different cases:
For GNMDC with α ¼ 5, NMC with ξ ≈ 8000, and the combi-
nation of NMCþ GNMDC with α ¼ 5 and ξ ¼ 2000, respec-
tively. All three models yield 60 e-folds and PR ¼ 2.2 × 10−9.
One can observe the lengthening of the period of oscillations, as
well as the larger initial value of the field, in the case where NMC
becomes more important (ξ grows). Finally, note that, when the
two theories are combined, ξϕ2� remains less than MPl.

KARYDAS, PAPANTONOPOULOS, and SARIDAKIS PHYS. REV. D 104, 023530 (2021)

023530-10



In conclusion, monomial GNMDC models with larger α
would, in fact, be more desirable in the context of the
combined theory proposed in this work, due to the
enhancement of the gravitational friction effect that the α
parameter essentially quantifies. However, if one considers
a polynomial GNMDC, the same effect can actually be
obtained, since inflation can be carried by two or more
“frictious” terms present in a polynomial GNMDC. We
demonstrate such a scenario later.
Let us now examine the evolution of c2s in order to verify

that the combined scenario can indeed heal the c2s insta-
bilities of the stand-alone GNMDC. In Fig. 3 we depict the
evolution of c2s for various cases. As one can clearly see,
while in the stand-alone GNMDC (i.e., for ξ ¼ 0) the c2s
wildly oscillates between positive and negative values,
when we switch on the NMC contribution, we obtain a
significant decrease of the oscillatory behavior and a
stabilization to positive values. In particular, in the com-
bined scenario, we observe that near the end of inflation the
GNMDC contribution smooths out, while the NMC term
remains coleading alongside the standard GR (i.e., of the
minimally coupled scalar field) terms. However, it is known
that the stand-alone NMC as well as the GR terms have no
instability issues. Hence, the c2s < 0 problem is healed.
In order to provide a more transparent picture of the above

relative effect of theGNMDCand theNMC contributions, in
Fig. 4 we present the contribution of the terms related to the
GNMDC and the NMC in the Klein-Gordon equation (40).

From this graph it becomes clear that, although during the
slow-roll era the contributions from NMC and GNMDC are
comparable, when the oscillations start the NMC terms
dominate completely over the GNMDC terms, and since
NMC alone leads to c2s ¼ 1 its complete dominance in the
combined model is adequate to bring c2s away from the
unstable region (caused by stand-alone GNMDC). Hence,
the GNMDC contribution to the c2s at the end of inflation is
overpowered by the NMC contribution and the wild oscil-
lations of the sound speed are damped much earlier in this
scenario. Note that this damping of oscillations is more
efficient for larger α values, which as we mentioned above

FIG. 3. The squared sound-speed evolution for the scenario at
hand, for α ¼ 5, with ξ ¼ 0, 1500, and 2000, respectively. It is
clear that, as the NMC contribution becomes more significant (ξ
increases), the oscillations in its value are damped and c2s is
corrected toward 1.

FIG. 4. The contribution of the terms related to the GNMDC
(continuous lines) and to the NMC (dashed lines) in the Klein-
Gordon equation (40), for α ¼ 5 and ξ ¼ 2000. It is clear than,
when the oscillations start, the NMC terms dominate over the
GNMDC terms and hence the GNMDC effects are negligible,
even though during the slow-roll era they are comparable. The
standard GR terms are intentionally omitted in order to make the
graph simpler.

FIG. 2. 1σ (purple) and 2σ (light purple) contours for Planck
2018 results (Planckþ TT þ lowP) [108], on the r − ns plane,
alongside the predictions of the scenarios at hand. The NMC
scenario corresponds to the dot-dashed line. For the GNMDC
(purple lines) we have chosen to show two cases, one with α ¼ 3
(dashed line) and one with α ¼ 5 (dotted line). The same
convention is used for the combined NMCþ GNMDC scenario
in terms of α, where we also have the color code of blue lines for
ξ ¼ 1500 and red lines for ξ ¼ 2000. It is evident that the NMC
term lowers the r value as it becomes more significant, as
compared to the GNMDC alone. Very low r values are a main
feature of NMC of the form ϕ2. Moreover, one observes that, for
the same value of ξ, as α grows, r is also lowered, as reported in
[94] too. Finally, the growing dots represent 40, 50, and 60 e-
folds, respectively.
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lead also to better r values. Hence, overall, larger α values
would be more desirable.
This brings up the question of whether this is a realistic

scenario. Quantum corrections should, in fact, bring about
terms that might be of lower order, so one should check the
resulting phenomenology. However, if one chooses a
polynomial form for GðϕÞ, a very similar phenomenology
occurs, since, unless the various terms of the polynomial
are finely tuned, there will still be only one monomial term
that drives the slow roll and hence it will produce very
similar results.
Moreover, even in the case that two or more terms are

actually of the same order of magnitude, the phenomenol-
ogy is still, qualitatively, the same, since the results of
Sec. III are independent of the exact form of the GNMDC.
They are only based on the fact that the GNMDC should
become negligible at the end of inflation. Nevertheless, we
later provide a numerical example of such a scenario for
demonstrative purposes.
In conclusion, in the combined scenario, when inflation

starts, the gravitational friction effect due to the GNMDC
term is what causes the model to produce a significant
amount of e-folds without having to resort to ξϕ2� > MPl
values, as in the stand-alone NMC case, and this is what
alleviates the unitarity issue. At the same time, the NMC
term causes the r of the model to be significantly lowered,
and thus be in better agreement with observations, as
compared to the stand-alone GNMDC case. Finally, when
inflation ends and the oscillations start, the NMC terms
remain more significant than that of the GNMDC, which
leads to the fast eradication of the oscillations in the c2s
value, healing the theory of instabilities. These features and
advantages of the combined scenario are among the main
results of the present work.
Before closing this section, we note another role of the

GNMDC parameter α on the results. In the combined
scenario, even α values can still lead to viable inflation.
This is not the case when GNMDC is considered alone [94]
due to its inability to satisfy the corresponding requirement
(41), which essentially disqualifies the area of the phase
space corresponding to desirable observables. The fact that in
the combined scenario allα values can be used is a significant
advance in the richness of the resulting phenomenology.
This also holds for a polynomial GNMDC form: when

an even-valued α term becomes important, the polynomial
GNMDC numerics become unstable due to the above
constraint. This can be ameliorated or even healed when
it is combined with NMC.
As a further numerical demonstration of the effects of the

NMCþ GNMDC scenario, we include a model resulting
from a polynomial GNMDC form, namely,

GðϕÞ ¼
X
i

αiϕ
αi−1

2Mαiþ1
i

;

where i is a subscript that defines which and how many
corresponding terms are taken into account. As a demon-
stration, we pick

αϕα−1

2Mαþ1
1

þ ðα − 1Þϕα−2

2Mα
2

; ð69Þ

with α ¼ 4, while the NMC coupling is κ ≈ 2000. The
coupling coefficients should be such that these two terms as
a whole are of comparable magnitude. If not, then one of
the terms would dominate during slow roll, essentially
reducing the model to the monomial form presented earlier.
We reiterate that such a scenario is not viable in the sole
GNMDC case, since even values of α are problematic.
A polynomial form still falls within the ansatz needed for

the results of Sec. III to hold, namely, that the GNMDC
becomes negligible near the end of inflation. The results
shown therein, then, still hold, since this modification
affects only the exact form of the ϵGi

parameters and not
their overall behavior.
Definitely, picking initial conditions and scales for the

combined theory, with a polynomial GNMDC, is a tedious
task as compared to the monomial case. Nevertheless, by
imposing the ansatz discussed earlier, regarding the mag-
nitude of the various terms of the GNMDC, one can obtain
results that are well within observational bounds. The
overall picture is very similar to the monomial case, as
one can see in Fig. 5, which was expected since the ϵGi

show a similar behavior.

FIG. 5. 1σ (purple) and 2σ (light purple) contours for Planck
2018 results (Planckþ TT þ lowP) [108], on the r − ns plane,
alongside the predictions of the polynomial GNMDCþ NMC
scenario. To demonstrate that the resulting phenomenology is
very similar to the monomial case of Fig. 2, we present two cases,
one with M1 ¼ M2 and one with M1 ¼ 10M2. The growing dots
represent 40, 50, and 60 e-folds, respectively. The corresponding
models when NMC is not included are not stable due to the
constraint (41).
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V. CONCLUSIONS

It is widely accepted that for modern cosmology to
explain the hot big bang and the primordial perturbations
observed through the CMBR it has to be complemented by
an initial inflationary period. There is a variety of ways to
achieve inflation, the most well studied of which is the
inclusion of a scalar field, that through its dynamics affects
the evolution of the infant Universe. Given that the only
scalar field actually observed in nature up to now is the
Higgs field, it would be the prime candidate for such a
scenario.
The basic scenarios in which the Higgs field is minimally

coupled to gravity have been excluded from Planck
observations [108]. The next candidate is to allow the
Higgs field to couple nonminimally with gravity. NMC
Higgs inflation, with a quadratic coupling of the form
fðϕÞ ¼ ϕ2, has been shown to yield results in very good
agreement with the observations and, particularly, low
tensor-to-scalar ratio, while the squared sound speed of
the scalar perturbations is identically equal to 1, and thus
the scenario is free from instabilities. However, this model
leads to unitarity violation, which in turn is undesirable if
one wished to quantize the theory.
The consideration of nonminimal derivative couplings of

the scalar field to gravity is shown to solve the unitarity
issue, while still leading to satisfactory inflationary observ-
ables, due to the presence of a gravitational friction that
lowers the initial values needed to produce a long slow-roll
period and thus a significant amount of e-folds.
Nevertheless, these models lead to perturbative instabilities
and, in particular, to c2s < 0. Although one could construct
GNMDCs that could improve the instability issue, consid-

ering, for instance, a coupling function of the form αϕα−1

Mαþ1 ,
potential problematic behavior still remains.
In this work, we constructed the combined scenario of

NMC and of GNMDC, which maintain the advantages of
the individual models, but remove their individual dis-
advantages. In the combined scenario, a long enough
inflationary phase can be easily achieved, while the initial
value of the scalar field and the scale of the NMC term are
such that it remains sub-Planckian, a feature not possible in
the single-field NMC scenario. These attractive features are
achieved due to the GNMDC term that brings about the
gravitational friction effect that extends the slow-roll phase,
allowing for lower initial values of ϕ�. Additionally, near
the end of inflation, at the bottom of the potential, when a
suitable GNMDC term is chosen, it becomes negligible,
while the NMC term dominates completely.
To demonstrate this, we have chosen to include two

examples, one with a GNMDC of monomial form and one
of polynomial form, that satisfy the above ansatz (however,
other GNMDC forms should also be viable, as long as they
become negligible at the end of inflation). In both cases, we
show that a desirable phenomenology is achieved. At the

same time, at the end of inflation canonical gravity is
restored, and the scenario is healed from c2s instabilities due
to wild oscillations and with no superluminal scalar
perturbations that are related to the simple NMDC case.
Finally, another advantage of the present construction is
that, since the GNMDC contribution becomes negligible
after inflation ends, the theory can easily pass the recent
LIGO-VIRGO constraints on the gravitational wave speed
[109,110] (since it is known that the nonminimal derivative
coupling terms are among the ones that lead to a gravi-
tational wave speed different than one).
In summary, the combined scenario leads to inflationary

observables in agreement with observations, it is free from
c2s instabilities, and it alleviates the unitarity issue. Hence, it
does maintain the advantages of the individual scenarios
without sharing their disadvantages. Thus, inflationary
scenarios with nonminimal and derivative couplings to
gravity combined may serve as successful candidates for
the description of inflationary dynamics and other mech-
anisms related to inflation, like primordial black hole
formation, and deserve further investigation.
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APPENDIX: PERTURBATIVE ANALYSIS OF
SINGLE-FIELD INFLATION

For the perturbative analysis presented here briefly, we
mainly follow [25,91,103,104]. The second-order action of
the curvature perturbation written in the unitary gaugeR, is
of the form

Sð2ÞR ¼
Z

dtd3xa3
�
GS

_R2 −
F S

a2
ð∂RÞ2

�
; ðA1Þ

where a is the scale factor, and with the definitions

GS ≡ Σ
Θ2

G2
T þ 3GT; F S ≡ 1

a
d
dt

�
a
Θ
G2
T

�
− F T: ðA2Þ

Σ, Θ, GT , and F T are functions that depend on the Galileon
functions and the derivatives of the field (see [104]).
Specifically,

GT ≡ 2½G4 − 2XG4X − XðH _ϕG5X −G5ϕÞ�; ðA3Þ

F T ≡ 2½G4 − Xðϕ̈G5X þ G5ϕÞ�; ðA4Þ

Θ≡ − _ϕXG3X þ 2HðG4 − 4XG4X − 4X2G4XXÞ
þ _ϕðG4ϕ þ 2XG4ϕXÞ −H2 _ϕð5XG5X þ 2X2G5XXÞ
þ 2HXð3G5ϕ þ 2XG5ϕXÞ; ðA5Þ
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Σ≡ XðG2X þ 2XG2XXÞ þ 6H _ϕXð2G3X þ XG3XXÞ
− 2XðG3ϕ þ XG3ϕXÞ − 6H2G4

þ 6½H2ð7XG4X þ 16X2G4XX þ 4X3G4XXXÞ
−H _ϕðG4ϕ þ 5XG4ϕX þ 2X2G4ϕXXÞ�
þH3 _ϕXð30G5X þ 26XG5XX þ 4X2G5XXXÞ
− 6H2Xð6G5ϕ þ 9XG5ϕX þ 2X2G5ϕXXÞ: ðA6Þ

Then, with specified Galileon functions, one can calculate
the squared sound speed of the scalar and tensorial
perturbations via the formulas

c2s ≡ F S

GS
; c2T ≡ F T

GT
: ðA7Þ

These quantities have to be positive in order to avoid
gradient instabilities, i.e., exponential growth of perturba-
tion modes. On the same footing, to ensure that the kinetic
terms are positive and no ghost instabilities appear, the
constraints

GS > 0; GT > 0; ðA8Þ

must hold, too. For instance, in the NMC scenario, using
Eqs. (4)–(6), it is straightforward to prove that c2s ¼ 1,
hence no corresponding instabilities occur.

Furthermore, one can show that, in order to calculate the
power spectrum of the scalar and tensorial perturbations,
one simply needs to calculate [111]

PR ¼ G1=2
S

2F 3=2
S

H2

4π2
; PT ¼ 8G1=2

T

F 3=2
T

H2

4π2
; ðA9Þ

which are evaluated at the horizon crossing. Their quotient
is the tensor-to-scalar ratio r, namely,

r≡ PT

PR
: ðA10Þ

Furthermore, we introduce the scalar spectral index ns,
expressing the change of the logarithm of the scalar power
spectrum per logarithmic interval k, via the relation

1 − ns ≡ −
d lnPR

d ln k

				
k¼aH

; ðA11Þ

and likewise, the tensorial spectral index

nt ≡ −
d lnPT

d ln k

				
k¼aH

: ðA12Þ

The tensor-to-scalar ratio and the tensor tilt are related via
what is called the consistency condition and in standard
single-field inflation it takes the form r ≈ −8nt; never-
theless, in modified scenarios its form can be nonstandard.
In summary, the observables of an inflationary model are r,
ns, and PR.
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