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Eternally inflating universes lead to an infinite number of Boltzmann brains but also an infinite number
of ordinary observers. If we use the scale factor measure to regularize these infinities, the ordinary
observers dominate the Boltzmann brains if the vacuum decay rate of each vacuum is larger than its
Boltzmann brain nucleation rate. Here, we point out that nucleation of small black holes should be counted
in the vacuum decay rate, and this rate is always larger than the Boltzmann brain rate, if the minimum
Boltzmann brain mass is more than the Planck mass. We also discuss nucleation of small, rapidly inflating
regions, which may also have a higher rate than Boltzmann brains. This process also affects the distribution
of the different vacua in eternal inflation.
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I. INTRODUCTION

If the observed dark energy is in fact a cosmological
constant, our Universe will expand forever and will soon
approach de Sitter space. There will be an infinite volume
in which many types of objects may nucleate. In particular,
there will be an infinite number of Boltzmann brains [1],1

human brains (or perhaps computers that simulate brains)
complete with our exact memories and thoughts, that
appear randomly as quantum fluctuations. Human beings
(and their artifacts) can arise in the ordinary way for only a
certain period of time after the big bang, when there are still
stars and other necessities of life, but Boltzmann brains can
arise at any time in the future. So one might conclude that
the Boltzmann brains infinitely outnumber ordinary
humans, and thus, that we are Boltzmann brains, a non-
sensical conclusion [3] because our observations on which
we base this conclusion would have no connection to the
actual Universe in which we live.
However, in any scenario such as the above, it is also

possible for new inflating regions to nucleate, leading to
eternal inflation. In that case, there will be an infinite
number of ordinary observers in addition to the infinite
number of Boltzmann brains, so we may hope to avoid the
conclusion that we are Boltzmann brains.2 In order to know
what to expect in cases with infinite numbers of observers,
we need a measure: a procedure to regulate the infinities

and produce a sensible probability distribution. Any mea-
sure faces a number of difficulties [5–7], and we do not
have any principle to tell us which measure is correct. An
obvious selection criterion is that the measure should not
make predictions that are in conflict with observation. This
removes most of the measures that have been suggested so
far. The proper time measure suffers from the “youngness
paradox,” predicting that the CMB temperature should be
much higher than observed [8]; the causal patch measure
predicts that the cosmological constant should be negative
with an overwhelming probability [9]; the pocket based
measure suffers from a “Q catastrophe,” predicting either
extremely small or large values of the density fluctuation
amplitude Q [10,11]. A measure that fares reasonably well
is the scale factor cutoff measure [12–14]. Other measures
that have not been ruled out by observations (such as the
light cone time cutoff, apparent horizon cutoff and four-
volume cutoff measures) make predictions very similar to
the scale factor cutoff. (For more details and references,
see, e.g., [15].)
In the present paper, we shall adopt the scale factor cutoff

measure, which wewill discuss in more detail below. In this
measure, the ratio of Boltzmann brains to ordinary observ-
ers in a given vacuum is roughly given by the ratio of the
Boltzmann brain nucleation rate ΓBB

i to the total decay rate
of that vacuum Γi. Here, ΓBB

i is the rate at which Boltzmann
brains form per unit (physical) volume of vacuum i, and Γi
is proportional to the total rate at which volume flows out of
vacuum i (a precise definition of Γi will be given below).
We point out here that there are two processes that are

not always considered that influence the vacuum decay
rate. The first is the nucleation of small black holes. This
process removes volume from the vacuum and so contrib-
utes to Γi. The rate is largest for the smallest black holes.
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2Don Page [4] argued for a more drastic solution: vacuum

decay on a scale similar to or shorter than the present Hubble time
avoids the infinite volume in which Boltzmann brains may form.
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As we will discuss below, it is always larger than the
Boltzmann brain nucleation rate, if the minimum
Boltzmann brain mass is larger than the Planck mass,3

so the Boltzmann brain problem is solved in that case.
The other process is the nucleation of small regions of

higher-energy inflating false vacuum. In the usual Lee-
Weinberg [17] process, a region larger than the Hubble
distance in the old vacuum tunnels to the new vacuum. But
here we are considering a localized fluctuation that yields a
region of the new vacuum large enough to inflate but much
smaller than the old Hubble distance [18–20]. The higher
the energy of the new vacuum, the smaller the region of it
that is necessary for inflation. Thus, this process (unlike
Lee-Weinberg tunneling) is least suppressed when the
daughter vacuum energy is the highest. The most likely
process is to produce the highest energy inflating vacuum.
If this is at the Planck scale, suppression is similar to that of
Planck-scale black hole production. Otherwise, it is more
suppressed than that.
Nucleation of small high-energy regions is not discussed

in most treatments of multiverse physics. We shall com-
ment on the reason for that below and explain why we
believe it should be included. This process upends the
conventional wisdom that low-energy vacua are most likely
to tunnel to other low-energy vacua. Uptunneling is still
suppressed when the parent vacuum energy is small, but
now the most likely daughters are the ones with the highest
energy. To compute the probabilities in the scale factor
measure, we construct a transition matrix between vacua
and find its eigenvector whose eigenvalue is least negative.
This is usually made up almost entirely by a single
“dominant vacuum” [21,22], whose total decay rate is
the least. The measures of other vacua depend on tunneling
processes leading to them from the dominant vacuum.
When we take into account production of small high-
energy inflating regions, we can still find the dominant
vacuum, but the details do not matter. The likeliest
transition out of the dominant vacuum is to jump directly
to the highest energy possible. At very high energies,
transitions are little suppressed, so all vacua are quickly
populated. The chance of any specific low-energy (and in
particular anthropically allowed) vacuum depends now on
how it may be reached by a sequence of transitions from
high energies, with little effect from the details of the
dominant vacuum.
The rest of this paper is organized as follows. In the next

section, we review the scale factor measure and the
resulting distribution of the different vacua and discuss
the effects of nucleating black holes and small high-energy

regions. In Sec. III, we discuss the nucleation rates of black
holes, Boltzmann brains, and regions of different vacuum.
We discuss the effects of these processes on the Boltzmann
brain problem in Sec. IV and on the distribution of the
different vacua in Sec. V. We conclude in Sec. VI.

II. THE SCALE FACTOR CUTOFF

The scale factor measure was introduced by Linde and
collaborators (e.g., [12]) and was worked out in detail in
[13,14,23]. It is based on constructing a scale factor time
that represents (the logarithm of) the total expansion that
each point in spacetime has experienced. To make it well
defined, we must start with some initial spacelike hyper-
surface Σ and follow a congruence of geodesics orthogonal
to Σ. The scale factor time is then given by

η ¼
Z

t

0

θ

3
dt0; ð1Þ

where t is proper time, and the expansion θ ¼ uμ;μ, with
uμ ¼ dxμ=dt the tangent vector to the geodesics. In a
homogeneous region of the Universe, the scale factor a is
just exp η.
To use this as a measure, we consider all events that take

place before some cutoff time ηc. There are a finite number
of these, so assigning probabilities is straightforward. Then,
we take the limit of the probabilities as ηc grows with-
out bound.
Unfortunately, when structures form, the local universe

contracts instead of expanding, so η is not monotonic; we
must make some provision for this case [14]. One plan
would be to use a modified scale factor time η̃, where η̃ðxÞ
is given by maximizing η over all points in the causal past
of x. Thus, η̃ cannot decrease, and we avoid the possibility
that an event allowed by the cutoff is in the future of a point
excluded by the cutoff.4 A number of other possibilities
have been suggested [14,23].
It will not be important to our analysis here exactly how

this issue is resolved, but for definiteness, we will use the
above “maximum η” prescription. At any given scale factor,
almost all the volume is in regions that are expanding. In
such a region, the distance between two geodesics of the
congruence is just their distance on the initial surface times
the expansion of the scale factor. If we select an evenly
spaced, very large but finite set of representative geodesics
on the initial surface, all of these geodesics will represent
equal volumes on the cutoff surface. Thus, the fraction of
volume in each type of region is just the fraction of the
initial geodesics that are there.
We will be interested in the number of Boltzmann brains

and ordinary observers that appear in different vacua. Let us
3A similar argument was made in [16] in the context of the

“watcher measure.” This measure makes the assumption that the
big crunch singularities in anti–de Sitter (AdS) bubbles lead to
bounces, where contraction is followed by expansion, so that
geodesics can be continued through the crunch regions. We do
not adopt this assumption in the present paper.

4Such a situation would lead to an inverse Guth-Vanchurin [6]
paradox, where an observer may wake up without ever having
gone to sleep.
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start by defining fiðηÞ to be the fraction of comoving
volume in vacuum i at time η. In expanding regions, the
expansion factor a is the same everywhere on the constant-
η surface, so fi gives the fraction of physical volume.
In contracting regions, we must make some adjustment, as
described above. But such regions will not matter, as we
discuss later.
The fi obey the rate equation [21],

dfj
dη

¼
X
i

ð−κijfj þ κjifiÞ; ð2Þ

where κij is the fraction of volume currently in vacuum j
that transitions into vacuum i per unit scale factor time or
equivalently, the chance per unit scale factor time for an
observer in vacuum j to transition to vacuum i.
We can express κij in terms of Γij, the rate of tunneling

events that produce vacuum i per unit physical spacetime
volume of vacuum j. In general,

κij ¼
Vij

Hj
Γij; ð3Þ

where Vij is the volume of space at a given time where a
given tunneling event would lead to a given observer
transitioning to the new vacuum. The expansion rate Hj

of vacuum j in the denominator is the conversion between
scale factor time and physical time.
In the Coleman-De Luccia process, a small region of

lower-energy vacuum appears by tunneling and then
expands to the horizon size. In the Lee-Weinberg process,
a superhorizon region of a higher-energy vacuum appears
by tunneling and then contracts in comoving size so the
final comoving volume is just the comoving horizon at the
time of nucleation. In either case, Vij ¼ ð4π=3ÞH−3

j .
Here, we will discuss two more processes. The first is the

nucleation of black holes. A certain set of geodesics will
fall into the black hole, hit the singularity, and be removed
from the congruence.5 They will reach a maximum η before
they start to converge near the black hole; for larger η they
will not be counted in the scale factor measure. They thus
represent a flow of volume fraction out of the vacuum in
which the black holes nucleate. In that sense, the process is
similar to the creation of anti–de Sitter vacua that then
collapse. We will describe black hole nucleation by a

transition rate κ0j for each vacuum j and include it in
Eq. (2) by including i ¼ 0 in the sum.
If a black hole of massM lives for a time long compared

to the Hubble time, it will capture all geodesics within
radius [16],

rc ∼
�
GM
H2

�
1=3

; ð4Þ

which is the radius at which the attraction of the black hole
gravity is balanced by the repulsive force due to the
cosmological constant. The volume of geodesics absorbed
is thus

Vc ∼
GM
H2

: ð5Þ

If the black hole is short-lived compared to the Hubble
time, we can neglect the cosmological constant. A particle
starting from rest at radius rwill fall into the black hole on a
time scale,

t ∼ r3=2ðGMÞ−1=2: ð6Þ

We want t < te, where the evaporation time is6 te ∼G2M3.
From this, we find that the capture radius and volume are

rc ∼G5=3M7=3 ∼ GM

�
M
MPl

�
4=3

ð7Þ

Vc ∼ G5M7 ∼ ðGMÞ3
�

M
MPl

�
4

: ð8Þ

We will also consider the formation of regions of higher
cosmological constant Λi that are smaller than the horizon
of the parent vacuum j but larger than their own horizon.
Such a region will inflate inside, but the outside will
collapse into a black hole. As we mentioned in the
Introduction, this nucleation process is often omitted in
studies of multiverse dynamics. The main reason is that it
does not fit into the standard Coleman-De Luccia formal-
ism, where tunneling transitions are described by instan-
tons. There are no known instantons corresponding to
nucleation of small high-energy inflating regions. However,
quantum transitions allowed by the conservation laws
should occur with some nonzero probability. The state
of a quantum field in de Sitter space is similar to a thermal
state, and one expects that fluctuations of the scalar field ϕ

and/or its velocity _ϕ will occur in localized regions of
5Quantum gravity may resolve the singularity. It is not clear

whether geodesics are still meaningful in such a scenario, but if
they are we must ask where the geodesics go. A similar question
affects the fate of geodesics after the crunch in anti–de Sitter
regions. This was analyzed in [24,25] with the conclusion that the
geodesics may travel through into new inflating vacua. Such a
result would not affect our conclusions here, but if the geodesics
instead return to the parent universe and resume expanding, black
hole nucleation would not remove volume fraction.

6We note that magnetically charged black holes may be much
more stable. They can lose their magnetic charge only by
emission of magnetic monopoles, which typically have large
masses, so their emission may be strongly suppressed. The black
hole may even be absolutely stable if monopole solutions of
corresponding magnetic charge do not exist.
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space. If the fluctuation is large enough, the field may
acquire enough energy to fly over a potential barrier into a
high-energy vacuum. And if the fluctuation extends over a
superhorizon region in the new vacuum, it will produce an
inflating baby universe [19,20].
Geometrically, it is clear that a rapidly inflating daughter

region will be connected by a wormhole to the slowly
inflating parent universe. The wormhole will close up in
about one light crossing time, and both of its mouths will be
seen as black holes.7 After the black hole evaporates, the new
inflating region is disconnected from the original universe,
but there is no problem in applying the scale factor measure
to the resulting set of disconnected universes.
If we could ignore gravitational effects, it would be easy

to compute the energy necessary to create such a region.
Let Ui be the energy density of the daughter vacuum. The
expansion rate is thus Hi ∼

ffiffiffiffiffiffiffiffiffi
GUi

p ¼ ffiffiffiffiffiffi
Ui

p
=MPl. The min-

imal volume to inflate would be a sphere of radius H−1
i ,

which thus contains a volume,

Vnuc
i ∼M3

Pl=U
3=2
i ; ð9Þ

and a mass,

Mnuc
i ∼M3

Pl=U
1=2
i : ð10Þ

This is modified by gravitation, but we will assume here
that the effect is only to change the numerical factors that
we did not compute, and so Eqs. (9) and (10) give the
correct order of magnitude.
The new inflating volumemust be surrounded by a bubble

wall that interpolates between the two vacua. This is the
same wall as in Lee-Weinberg and the inside-out version of
the Coleman-De Luccia bubble wall. Suppose it is possible,
as one normally expects, for a small bubble of vacuum j to
form inside a Hubble volume of vacuum i. That means that
the energy of this wall around a sphere of radius smaller than
1=Hi is less than the energy of the displaced volume of
vacuum i. In the present case, we have a larger sphere, of
radius 1=Hi, which increases the ratio of volume to surface
energy. So the wall energy will be much less than Mnuc

i ,
which is the energy of the sphere of vacuum i of radius 1=Hi,
and there is no important correction toMnuc

i , from the wall.
Upon nucleation, we expect that the geodesics inside

volume Vnuc
i will travel into the new inflating region.8

Shortly after that, the nucleated region will collapse into
a black hole, and more geodesics will later fall into the
black hole and end at the singularity, according to Eq. (7).
So this process gives

κij ∼
Vnuc
i

Hj
Γij ∼ ΓijH−1

j H−3
i ; ð11Þ

and in addition, contributes

∼ΓijH−1
j M3

PlH
−6
i ; ð12Þ

to κ0j.
Calculation of the relative abundance of Boltzmann

brains and ordinary observers involves comparisons of
extremely small numbers, such as tunneling transition rates
κij and Boltzmann brain nucleation rates. The tunneling
actions are typically large, so these rates are double
exponentially suppressed. The preexponential factors have
therefore little effect, even though they can be very small or
large. For this reason, the factors multiplying Γij in Eqs. (3),
(11), and (12) can be ignored, and we will omit them from
now on.

III. NUCLEATION RATES

In this section, we review the usual nucleation rates for
the Coleman-De Luccia and Lee-Weinberg cases and
discuss nucleation of black holes, small inflating regions,
and Boltzmann brains.9

A. Coleman-De Luccia and Lee-Weinberg nucleation

A metastable vacuum j may decay to a lower energy
vacuum i through bubble nucleation. If we ignore the
effects of gravitation, we have the situation discussed by
Coleman [32]. It proceeds by forming a bubble whose total
energy is zero because the decreased energy of the vacuum
inside compensates for the energy in the bubble wall.
Including gravitation [33] leads to corrections, but these are
small if the bubble size is small compared to the Hubble
distance in both parent and daughter vacua. After forma-
tion, the bubble will expand rapidly because the force on
the wall due to the difference in vacuum energies is larger
than the effect of surface tension. Disregarding the pre-
exponential factor, the bubble nucleation rate is given by

Γij ∼ e−I−Sj ; ð13Þ
7This process is similar to that described in [26]. It is also

related to the process of [27], but in that paper, the authors
propose deliberately constructing a region of high-energy vac-
uum that is not large enough to inflate and hoping that it tunnels
to the inflating state, while here we propose creating the region as
a fluctuation in de Sitter space.

8A geodesic congruence is not well defined when the space-
time undergoes a discontinuous change, as in quantum tunneling.
But it should be possible to estimate, by an order of magnitude,
what fraction of the initial comoving volume goes into each
vacuum. This is typically all one needs in any anthropic analysis.

9There is some controversy about the nucleation of objects in
de Sitter space. References [28,29] claimed that there is no such
nucleation, while [30] critiqued the claims of [29]. Reference [31]
discussed the possibility that Boltzmann brains might form even
in Minkowski space. Here, we will adopt the conventional view
that objects nucleate in de Sitter space with the usual Boltzmann
suppression and do not appear in Minkowski space.
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where I < 0 is the instanton action and Sj ¼ π=H2
j is the

Gibbons-Hawking entropy of the parent vacuum j.
Lee and Weinberg [17] have argued that the same

instanton should describe the inverse transition from i to
j, where the daughter vacuum has a higher energy than the
parent vacuum. The corresponding transition rate is

Γji ∼ e−I−Si : ð14Þ
It follows that the upward and downward transition rates
are related by

Γji=Γij ∼ eSj−Si : ð15Þ

If the two vacuum energies are significantly different,
the upward transition rate is very strongly suppressed.
Equation (15) can be interpreted as an expression of
detailed balance between vacuum transitions in the multi-
verse. It fits well with the widely accepted picture of
quantum de Sitter space as a thermal state [2].
Analytic continuation of the instanton to the Lorentzian

regime indicates that in the case of upward tunneling, the
initial size of the bubble is larger than the parent vacuum
horizon H−1

i . The high-energy bubble is pushed inward
because the vacuum energy density outside is smaller than
the density inside, and thus, the inside pressure is more
negative. But since the bubble is outside the Hubble
distance, it is carried outward by the Hubble expansion,
even though locally it accelerates inward.

B. Black hole nucleation

In general, we expect an arbitrary object of mass M that
is much smaller than the Hubble distance to appear in de
Sitter space at a rate proportional to

expð−2πM=HÞ ¼ expð−M=TÞ: ð16Þ

The latter expression gives the likelihood of finding such an
object in a thermal bath in the Gibbons-Hawking temper-
ature T ¼ H=ð2πÞ.10 The former expression has been found
by instanton calculations; for example, see [34] for the
nucleation of monopoles and [35] for the nucleation of
black holes. The calculation of black hole nucleation rate in
[35] is somewhat controversial, since it is based on an
instanton with a conical singularity. Exclusion of such
instantons leads to the conclusion that only maximal black
holes of horizon radius equal to the cosmological horizon
can nucleate in de Sitter space [36]. However, regular
instantons do exist for nucleation of electrically or mag-
netically charged black holes of submaximal mass [37].

In the limit of a small mass, the corresponding nucleation
rate is given by Eq. (16). We note also that Eq. (16) would
give the rate to nucleate a distribution of dust that would
collapse into a black hole.

C. Small inflating regions

As discussed above, it is possible to nucleate a much
smaller bubble of higher energy vacuum i. As seen from the
outside, the force on the bubble wall will cause it to shrink,
leading the bubble to collapse into a black hole. However,
if the bubble volume is larger than Vnuc

i , it will inflate on the
inside, leading to a new inflating region of vacuum i.
What is the rate at which such regions are produced? The

simple conjecture is that it is proportional to

e−M
nuc
i =T ∼ e−M

3
Pl=ðT

ffiffiffiffi
Ui

p Þ ∼ e−M
2
Pl=ðHiHjÞ; ð17Þ

as we would expect for any object of mass Mnuc
i . However,

there are some caveats. New small inflating regions cannot
be produced by any classical process, because their
production violates the null energy condition [38]. Thus,
a classical thermal state would not produce regions such as
these, perhaps casting some doubt on the use of a thermal
expression above. This is a fundamentally quantum proc-
ess, so perhaps it can be described by an instanton, but such
an instanton is not known.11 A similar situation was
discussed by Farhi et al. [27], who considered tunneling
from a small initial false vacuum seed in asymptotically flat
space to an inflating baby universe inside of a black hole.
They constructed an instanton for this process but found
that its metric is degenerate. The instanton action could still
be calculated, but it is not clear that such pathological
instantons are legitimate. Fischler et al. [40] considered the
same problem using the Hamiltonian formalism and found
no inconsistencies. The nucleation rate they found agrees
with the result of [27] based on the degenerate instanton.
But this issue remains controversial.
Nucleation of high-energy inflating regions can also be

pictured as a two-step process. First a bubble of high-energy
vacuum i having radiusR < H−1

i spontaneously nucleates in
the parent vacuum j, and then this bubble tunnels to an
inflating baby universe contained inside of a black hole by
the process discussed in [27,40]. One expects that the rate
for the first step isΓ ∼ expð−2πM=HjÞ, whereM is themass
of the bubble, and the tunneling action is estimated as [27,40]
S ∼ ðMPl=HiÞ2. Farhi et al. [27] find that the minimal bubble
mass required for the tunneling is M2

Pl=2Hi; then the
nucleation rate is Γ ∼ expð−πM2

Pl=HiHjÞ. For Hi ≫ Hj,
this is the dominant factor determining the nucleation rate of
baby universes. This is in agreement with the estimate
in Eq. (17).10More precisely, the nucleation rate is proportional to

expð−F=TÞ ¼ expð−M=T þ SÞ, where F is the free energy
and S is the entropy of the nucleating object. This takes account
of the possibility of nucleating the object in various microstates.
The correction, however, is small in cases of interest to us here.

11Euclidean solutions with small false vacuum bubbles have
been discussed in [39], but their interpretation as instantons is
somewhat questionable.
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Another possible objection to nucleation of inflating baby
universes is that it is in conflict with the detailed balance
condition (15). This condition however does not follow from
any fundamental principle. It is violated in particular by
transitions between de Sitter and anti–de Sitter vacua, which
are necessarily present in any multiverse theory.
As we argued above, inflating baby universes should

nucleate at some nonzero rate, even in the absence of
instantons, because this process is allowed by all con-
servation laws. A calculation of their nucleation rate was
attempted in [20].12 This calculation appears to be reliable
when the energies of the two vacua and the height of the
barrier separating them are all sub-Planckian and are
comparable to one another. But in the opposite limit, when
Hi ≫ Hj, the initial fluctuation is strongly influenced by
gravitational effects and the calculation of its probability
requires a quantum theory of gravity. Here, we shall assume
that the nucleation rate in this case is given by Eq. (17),
which seems to be a plausible guess.

D. Boltzmann brains

Finally, we expect Boltzmann brains to appear at the rate
given by Eq. (16) with brain mass MBB. This process is
dominated by the lightest brains that need to be considered
for anthropic reasoning. These may not actually be brains,
per se, but tiny computers that stimulate human thought
sufficiently well to be considered in anthropics.13 We will
assume here that MBB > MPl ≈ 2 × 10−5 g. This is correct
for a human brain and for any computer that we have built
so far. It is not correct if the only restriction is the
fundamental-physics limit on the number of bits that the
computer can store [23], i.e., if we are not concerned with
what this computer might be made of and how it can
operate. The minimum mass of a working computer is
uncertain. See [23] for further discussion.

IV. THE BOLTZMANN BRAIN PROBLEM

To avoiddominationbyBoltzmannbrains requires that the
rate of Boltzmann brain production ΓBB

i is less than the
vacuum decay rate Γi ¼

P
j Γij in every vacuum i [14,23].

Let us review the basic argument. Consider somevacuum i in
which there are ordinary observers. First, we rewrite Eq. (2),

dfi
dη

¼ Mijfj; ð18Þ

whereMij ¼ κij − δijκi. In the limit where the cutoff grows
without bound, this situation can be analyzed by finding the
least negative eigenvalue −q of the matrix M and the

corresponding eigenvector s so that
P

jκijsj−κisi¼−qsi.
The fraction of volume near the cutoff surface in each
vacuum i is then given by si. The number of Boltzmann
brains in that vacuum is proportional to siΓBB

i because most
of the volume is near the cutoff surface. Meanwhile, the
number of ordinary observers is proportional to the rate
at which new vacuum of type i is created, which isP

j κijsj ¼ ðκi − qÞsi. Ordinary observers are generally
found in collapsed regions, which require some adjustment
to the scale factor measure. However, this adjustment is
insignificant compared to the double-exponential nature of
Γi and ΓBB

i , so it will not be important here.
Now q is generally smaller than the total decay rate of the

dominant vacuum, which is less than that of vacuum i.
(Since there is only one dominant vacuum, it is very unlikely
that it is able to support Boltzmann brains. If it is, Boltzmann
brains would certainly dominate [14,23].) Both κi and q are
tiny numbers, and generally, they are quite far apart. Soq can
be ignored, and we find κijsj ≈ κisi; i.e., the rate of creation
and the rate of decay are nearly equal. We are not concerned
with differences in prefactors, so κi and Γi are interchange-
able, and the condition to avoidBoltzmannbrain domination
in vacuum i is that ΓBB

i < Γi. References [14,23] show that
the condition to avoid Boltzmann brain domination overall
is that ΓBB

i < Γi in every vacuum.
Included in κi is κ0i, the rate of formation of black holes.

The rate for black holes of mass M is proportional to
expð−M=TÞ, so it is dominated by the smallest black hole
possible. Let us say this has amassMBH

min, which is around the
Planck mass. Thus, κi is at least of order expð−MPl=TÞ.
Meanwhile, ΓBB

i is of order expð−MBB=TÞ, where MBB is
the minimum Boltzmann brain mass. With our assumption
that MBB > MPl, it follows that ΓBB

i ≪ Γi, and there is no
problem with Boltzmann brains.
The question of Boltzmann brain dominance involves

comparing the number of Boltzmann brains and ordinary
observers before the cutoff, so it may be counterintuitive
that it is affected by the production of black holes, which
are neither of these. Here is a way to understand how this
happens. Consider a multiverse up until a scale factor
cutoff. Most of the volume is near the cutoff, so we only
need to look there. Most ordinary observers are in regions
that were created not long before the cutoff and thus still
have conditions where observers can live. But Boltzmann
brains are in regions that were formed long ago, so we need
to know how much volume these regions have.
Let us put a large but finite number of evenly spaced

fiducial particles on the initial surface, traveling along the
geodesics that we used to define the scale factor measure. In
expanding regions, equal scale factor time means an equal
amount of expansion, so each particle represents the same
amount of spatial volume.Then the ratio of different volumes
is just the relative number of particles that they contain.
The effect of the black holes is to swallow up some of

these particles so that they do not reach the cutoff surface.

12Nucleation of small inflating regions was discussed earlier
by Carroll and Chen [18] and by Brown and Dahlen [19], but
their estimates of the nucleation rate were much smaller than
Eq. (17).

13See [41] for some discussion of the difficulty in determining
what systems should be included in anthropic reasoning.
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The result is that the volume of a given vacuum on the cutoff
surface is smaller than it would be without black hole
formation. Thus, si, the fraction of the cutoff surface in
volume i, is inversely proportional to the decay rateΓi. Black
hole nucleation increasesΓi and so decreases si. The number
of Boltzmann brains in this vacuum is then proportional to
ΓBB=Γi. This leads to the criterion used above.
The process of removing particles by black hole for-

mation is extremely slow. A Planck-scale black hole
removes only a fraction of order H3=M3

Pl of the Hubble
volumewhere it forms. More importantly, such a black hole
only occurs once in every expðMBH

min=TÞ Hubble volumes.
Thus, we must wait a time of order expðMBH

min=TÞ Hubble
times before this effect is important. During this time, the
universe expands by a factor expðexpðMBH

min=TÞÞ. In our
present Universe, this is about expðexpð1060ÞÞ, a remark-
ably large number. Nevertheless, the scale factor measure
instructs us to consider the limit where the scale factor goes
to infinity, so the required scale factor to reach a steady-
state situation does not matter.
Also included in κi is the nucleation of small inflating

regions. This removes particles from the parent vacuum at a
rate ∼ expð−M2

Pl=ðHmTÞÞ, where Hm is the highest infla-
tion rate in the landscape. It is often assumed that
Hm ∼MPl, in which case this effect is comparable to that
of black hole nucleation.

V. VACUUM DYNAMICS

The possibility of less-suppressed tunneling to higher
energy vacua changes the distribution of different possible
states and thus the results to be expected under anthropic
reasoning. The fraction of the volume in some vacuum i
according to the scale factor measure depends on the
tunneling rates to get from the dominant vacuum to
vacuum i [21]. To reach any anthropically allowed vacuum
from the dominant vacuum, we generally need an upward
jump, or many such jumps, followed by many downward
jumps.14 Which vacua are easily reached depends on which
process we consider.
If we consider only the Lee-Weinberg process, there is a

large suppression factor given by Eq. (15). This suppression
is less important when the two vacua are close in energy.
Thus, the favored vacua are thosewhich can be reached from
the dominant vacuum by small upward jumps followed by
downward jumps. Depending on the structure of the land-
scape, these vacua may be sparse enough that the anthropic

explanation of the cosmological constant does not
work [21,22].
However, when we consider the formation of small

regions of high-energy vacuum j, the mass of the
region is Mnuc

j ∼M2
Pl=Hj, and the suppression goes as

expð−M2
Pl=ðHiHjÞÞ. Thus, the least suppressed transitions

are those to the largest Hi. Furthermore, there is little
dependence on which is the dominant vacuum, because
wherever one starts, the same high-energy vacua are
preferred. From those vacua, one must then drop, generally
in a number of steps, to the anthropic region. This pattern of
transitions generally leads to a much smoother distribution
of probabilities for the different vacua [43].

VI. CONCLUSION

In an eternally inflating universe, there is the possibility
of Boltzmann brain domination, meaning that anthropic
reasoning would lead to the nonsensical conclusion that we
are Boltzmann brains. In the scale factor measure, this
disaster is avoided when the rate of Boltzmann brain
nucleation is smaller than the vacuum decay rate in each
vacuum (and the dominant vacuum does not support
Boltzmann brains). If one considers decay only by the
Coleman-De Luccia and Lee-Weinberg processes, this may
not be the case (but see [44] for a claim that vacuum decay
rates in string theory are always larger than ΓBB). However,
we showed above that black hole nucleation should be
included in the vacuum decay rate, and this process is much
less suppressed than Boltzmann brain production, under a
rather mild assumption that the mass of a Boltzmann brain
should be greater than the Planck mass. Thus, we should
not expect to be Boltzmann brains.
We also discussed the nucleation of small regions of

inflating high-energy vacuum. If vacua of high enough
energies exist, this process also would prevent Boltzmann
brain domination. In any case, it modifies the probability
distribution of the various vacua, likely giving a more
uniform distribution for different anthropic possibilities
and guaranteeing that anthropic explanations of the small-
ness of the cosmological constant are not affected by highly
nonuniform probability distributions across anthropic vacua.
We finally mention the swampland conjectures which

have been intensively discussed in recent years (see [45] for
an up-to-date review and references). According to these
conjectures, metastable de Sitter vacua do not exist, and
many models of eternal inflation are also ruled out.
However, it was shown in [46] that eternal inflation driven
by inflating domain walls may still be possible. It would be
interesting to apply the considerations of the present paper
to this kind of multiverse models.
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14The dominant vacuum is likely to have a very low super-
symmetry breaking scale η�. Its energy density U� ≲ η4� is then
likely to be extremely small. It is also reasonable to expect that
this nearly supersymmetric vacuum can support neither ordinary
observers nor Boltzmann brains. For a discussion of the expected
properties of the dominant vacuum in string theory, see [42] and
references therein.
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