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Most cosmological data analysis today relies on the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric, providing the basis of the current standard cosmological model. Within this framework, interesting
tensions between our increasingly precise data and theoretical predictions are coming to light. It is therefore
reasonable to explore the potential for cosmological analysis outside of the exact FLRW cosmological
framework. In this work we adopt the general luminosity-distance series expansion in redshift with no
assumptions of homogeneity or isotropy. This framework will allow for a full model-independent analysis
of near-future low-redshift cosmological surveys. We calculate the effective observational ‘Hubble’,
‘deceleration’, ‘curvature’ and ‘jerk’ parameters of the luminosity-distance series expansion in numerical
relativity simulations of realistic structure formation, for observers located in different environments and
with different levels of sky-coverage. With a ‘fairly-sampled’ sky, we find 2% and 15% cosmic variance in
the ‘Hubble’ and ‘deceleration’ parameters for scales of 200 Mpc=h (corresponding to density contrasts of
∼0.1 in the simulated model universe), respectively. On top of this, we find that typical observers measure
maximal sky-variance of 7% and 550% in the same parameters, as compared to their analogies in the large
scale FLRW model. Our work suggests the inclusion of low-redshift anisotropy in cosmological analysis
could be important for drawing correct conclusions about our Universe.
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I. INTRODUCTION

Modern cosmology has been shaped by the success of
the standard Λ cold dark matter (ΛCDM) model in
providing a consistent fit to almost all of our cosmological
observations to date. At the base of this model lies the
assumption that the Universe is everywhere close to a
Friedmann-Lemaître-Robertson-Walker (FLRW) solution
to the Einstein field equations, in such a way that the
FLRW model is an accurate lowest order description of the
kinematic and dynamic properties of the Universe. Among
the observations consistently fit within ΛCDM are the
temperature fluctuations in the cosmic microwave back-
ground (CMB) radiation e.g., [1] the baryon acoustic
oscillation (BAO) imprint on the galaxy distribution
[2,3], and the distances to supernovae of type Ia (SNIa)
[4,5]. It is worth noting that the ΛCDM model has
historically been adjusted by the addition of dark matter
and dark energy in order to facilitate the explanation of
data. These dark components remain unexplained in the
standard model of particle physics.

Amongst the successes of the ΛCDM model lie some
interesting tensions between our observational data and
theoretical predictions. The most prominent tension in the
ΛCDM paradigm is that of the inferred value of the Hubble
parameter (H0) from CMB observations and the direct
measurement of H0 from observations of nearby SNIa and
Cepheids [6–9]. While many attempts have suggested
mechanisms for a partial or total relief from this tension,
no one solution has yet been accepted by the community,
and so the search continues (see e.g., [10–12]).
The assumption of a spatially homogeneous and iso-

tropic FLRW model underpins analytic distance relations
used to interpret most cosmological datasets. For example,
the luminosity-distance redshift relation of the class of flat
FLRW metrics is used for, the measurement of the Hubble
constant using the local distance ladder [6,7] and the
measurement of present epoch acceleration of the
Universe [13,14]. Similarly, the FLRW geometrical
assumption is at the core of conventional detections of
the BAO feature in the matter distribution [15,16] and the
inference and analysis of the CMB Planck power spec-
trum [9,17].
The sparsity of available cosmological data has histor-

ically made the FLRW assumption justified, since exact
model symmetries were needed in order to a priori
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constrain the model universe enough to infer cosmological
information. However, the amount of data is predicted to
grow by orders of magnitude in near future surveys [18–
20]. As an example, upcoming datasets of SNIa in the
2020’s will count hundreds of thousands of supernovae and
cover a large proportion of the sky (see [21] and references
therein). The improved constraining power of datasets like
these will allow current model assumptions to be relaxed
and open the door for fully model independent analysis of
cosmological data.
A number of studies have taken steps towards this goal and

considered general, analytic distance measures [22–26].
Specifically, Heinesen [26] presented the series-expanded
luminosity distance redshift relation without making
assumptions on the metric tensor of the Universe, or the
field equations prescribing it. Coefficients in this series
expansion contain a finite set of physically interpretable
geometric degrees of freedom describing the luminosity
distance in a given direction on the observer’s sky. This
representation allows for fully model-independent analysis
of low redshift data.
Until cosmological surveys have reached the size and

sky coverage necessary for model-independent analyses, it
is useful to investigate the expected impact of inhomoge-
neity and anisotropy within this framework in realistic
numerical simulations. Numerical relativity (NR) has
proven a promising avenue for cosmological simulations
of nonlinear structure formation without assumptions of a
global ‘background’ metric of the Universe [27–31].
In this work, we calculate the coefficients of the general

luminosity distance series expansion in realistic cosmologi-
cal simulations performed with numerical relativity. We
sample structures on scales where the FLRW assumption
is considered valid in most cosmological analysis.
Considering observers in different local environments, and
with different levels of sky coverage, allows us to assess the
impact of both inhomogeneity and anisotropy on effective
cosmological parameters. This work is a first step towards an
upcoming in-depth analysis on the effect of survey geometry
on the interpretation of observations in a locally anisotropic
universe.
In Sec. II we review the general luminosity-distance

redshift relation presented by Heinesen [26], and used in
this paper. In Sec. III we present details of our simulations,
including initial data, gauge, and postprocessing analysis.
We present our results in Sec. IV and conclude in Sec. V.
Greek indices represent space-time indices and take values
0…3, while Latin indices represent spatial indices and take
values 1…3, and repeated indices imply summation. We
use geometric units with G ¼ c ¼ 1.

II. THE LUMINOSITY DISTANCE IN A GENERAL
SPACE-TIME

Here we formulate the series expansion of luminosity-
distance in redshift, valid in a general universe model. We

first give a brief review of the FLRW expression for the
series expanded luminosity distance in Sec. II A, after
which we provide the analogous expression valid for a
general space-time setting in Sec. II B.

A. FLRW luminosity-distance redshift relation

Before describing the luminosity distance in a general
geometry, we review the series expansion for luminosity
distance in redshift under the FLRW geometrical
assumption as per Visser [32]. We consider a class of
emitters and observers with worldlines that are orthogonal
to the homogeneous and isotropic spatial sections of the
FLRW model. In this setting, the luminosity distance, dL,
between a causally connected pair of emitters and observers
is determined up to third order in redshift, z, by

dL;FLRWðzÞ ¼ dð1ÞL;FLRWzþ dð2ÞL;FLRWz
2 þ dð3ÞL;FLRWz

3: ð1Þ

The coefficients

dð1ÞL;FLRW ≡ 1

Ho
; dð2ÞL;FLRW ≡ 1 − qo

2Ho
;

dð3ÞL;FLRW ≡ −1þ 3q2o þ qo − jo þ Ωko

6Ho
ð2Þ

of the series expansion are given in terms of the Hubble,
deceleration, jerk and curvature parameters:

H ≡ _a
a
; q≡ −

ä
aH2

;

j≡ _ä
aH3

; Ωk ≡ −k
a2H2

; ð3Þ

where a is the scale factor, an overdot represents
a derivative with respect to the FLRW proper time, and
k ∈ f−1; 0; 1g determines the spatial sections as being
‘open’, ‘flat’ or ‘closed’, respectively. The subscript o
indicates evaluation at the point of observation. No
assumptions about the field equations governing the scale
factor have been imposed in formulating (1)–(3).
Homogeneous and isotropic cosmological analysis which
does not rely on the assumptions on field equations is
sometimes referred to as ‘FLRW cosmography’ [33]. The
vast majority of analyses of cosmological surveys, for
instance of standardizable candles, is based on either
FLRW cosmography or FLRW predictions within a par-
ticular field theory. An example of the latter is the use of
general relativity with a dust source and a cosmological
constant, which is used to model the late Universe in the
ΛCDMmodel. As we shall see in the following section, the
FLRW parameters (3), and the corresponding coefficients
(2) of the luminosity distance series expansion, generalize
in nontrivial ways in the presence of inhomogeneity and
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anisotropy, with possibly crucial implications for the
interpretation of cosmological data.

B. General luminosity-distance redshift relation

We now consider the luminosity distance to astrophysi-
cal sources as a function of their redshift in general
universe models. Specifically, we make no assumptions
about the metric tensor of the space-time or the field
equations prescribing it.1 Here we state the final result of
the detailed derivations, which can be found in [26] along
with a discussion of physical implications and application
to the analysis of cosmological data. The luminosity
distance in the vicinity of the observer is in this case given
by the general expression

dLðzÞ ¼ dð1ÞL zþ dð2ÞL z2 þ dð3ÞL z3 þOðz4Þ; ð4Þ

with coefficients

dð1ÞL ¼ 1

Ho
; dð2ÞL ¼ 1 −Qo

2Ho
;

dð3ÞL ¼ −1þ 3Q2
o þQo −Jo þRo

6Ho
; ð5Þ

where the anisotropic parameters are defined as

H ¼ −
1

E2

dE
dλ

; ð6aÞ

Q≡ −1 −
1

E

dH
dλ

H2
; ð6bÞ

R≡ 1þQ −
1

2E2

kμkνRμν

H2
; ð6cÞ

J≡ 1

E2

d2H
dλ2

H3
− 4Q − 3: ð6dÞ

Here, kμ is the four-momentum of the incoming null ray,
and the operator d

dλ ≡ kμ∇μ is the directional derivative
along the null ray with affine parameter λ. The photon
energy function as measured by an observer with four–
velocity uμ is E≡ −kμuμ, and Rμν is the Ricci curvature
tensor of the space-time. The set of anisotropic parameters
fH;Q;J;Rg formally enter the series expansion of dL in
the same way as the FLRW parameters fH; q; j;Ωkg in the
expansion of dL;FLRW, and reduce to these parameters in the
limit of exact homogeneity and isotropy. We thus denote
fH;Q;J;Rg the effective observational Hubble, deceler-
ation, jerk and curvature parameters. Comparing the

parameters (6) with their FLRW limits in (3), we see that
1=E plays the role of an effective ‘scale factor’ on the null
cone of the observer.
The effective observational Hubble parameter H can be

rewritten as a multipole series in the unit vector eμ defining
the incoming spatial direction of the null ray (i.e., the
position of the astrophysical source on the sky as seen by
the observer, see Appendix B 3)

HðeÞ ¼ 1

3
θ − eμaμ þ eμeνσμν; ð7Þ

where θ is the volume expansion rate, σμν is the volume
preserving deformation (shear tensor), and aμ is the four–
acceleration of the observer congruence (see Appendix B
for mathematical definitions of these variables). We note
that the representation of H in (7) is exact, i.e., the
truncation at quadrupolar order is a fundamental property
of any observer congruence description and follows from
the definition (6a). The multipole coefficients fθ;−aμ; σμνg
represent nine scalar degrees of freedom in total. The
effective deceleration parameter can also be written in exact
form as an multipole series in eμ as truncated at the order of
the 16-pole

QðeÞ ¼ −1 −
1

H2ðeÞ ðq
0 þ eμq

1

μ þ eμeνq
2

μν

þ eμeνeρq
3

μνρ þ eμeνeρeκq
4

μνρκÞ; ð8Þ

with coefficients

q
0 ≡ 1

3

dθ
dτ

þ 1

3
Dμaμ −

2

3
aμaμ −

2

5
σμνσ

μν;

q
1

μ ≡ −
1

3
Dμθ −

2

5
Dνσ

ν
μ −

daμ
dτ

þ aνωμν þ
9

5
aνσμν;

q
2

μν ≡ dσμν
dτ

þDhμaνi þ ahμaνi − 2σαðμωα
ν −

6

7
σαhμσαν;

q
3

μνρ ≡ −Dhμσνρi − 3ahμσνρi;

q
4

μνρκ ≡ 2σhμνσρκi; ð9Þ

where the operator d
dτ ≡ uμ∇μ is the directional derivative

along the four–velocity field uμ of the observer congruence,
ωμν is the vorticity tensor describing the rotational defor-
mation of the observer congruence, and triangular brackets
hi denote the traceless and symmetric part of the tensor in
the involved indices. Similarly the effective observational
curvature parameter RðeÞ can be written as a series in eμ

truncated at the 16-pole level, whereas JðeÞ is truncated at
the order of the 64-pole [see Appendix B in [26] for the
multipole series representations of RðeÞ and JðeÞ�. The
coefficients of the multipole series expressions of
fH;Q;J;Rg are given in terms of physically interpretable
kinematic variables and the curvature of space-time. Due to

1In practice we must impose a minimal set of assumptions for
the Taylor series expansion to be well defined on the space-time
domain of interest. See [26] for details.
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their truncated multipole series in eμ, the effective obser-
vational parameters are given in terms of a finite set of
degrees of freedom. This property makes the described
cosmographic representation of dL powerful for fully
model independent analysis of cosmological data.
The multipole coefficients that determine the effective

observational parameters fH;Q;J;Rg for each direction
on the sky of the observer are covariantly given in terms of
the kinematic variables θ, σμν, ωμν and the four–acceler-
ation aμ of the observer congruence, and their covariant
derivatives, along with space-time curvature invariants.
These covariant quantities are of fundamental interest in
cosmology, and could be directly measured in, e.g., large
datasets of supernovae using this formalism.
Inhomogeneities and anisotropies in general give rise to

nontrivial corrections to the FLRW coefficients of (4); the
effective observational parameters fH;Q;J;Rg are sen-
sitive to the local environment of the observer and the
direction of the astrophysical source. Even though the
parameters fH;Q;J;Rg formally replace the FLRW
parameters fH; q; j;Ωkg in the series expansion of lumi-
nosity distance, their physical interpretation are in general
not those of the FLRW space-time. For instance, Q does
not in general measure the physical deceleration of space,
and is thus not necessarily positive in a decelerating
universe model. Similarly, R does not in general relate
simply to the Ricci curvature of spatial sections, as Ωk does
in FLRW.
For the series expansion (4) to be well defined, we

require the effective Hubble parameter H to be differ-
entiable and of constant sign everywhere in the domain of
application of the series (see [26] for a detailed discussion
on regularity requirements of the general series expansion).
For expanding universe models this translates into the
requirement of positivity of H, which itself effectively
implies the need to impose a coarse-graining scale above
that of the largest collapsing regions.2 This ensures that the
redshift function is monotonic along the null ray, such that
there exists a cosmological notion of a distance-redshift
relation, i.e., for distance to be a single valued function of
redshift. In the context of our work, imposing a coarse-
graining scale translates to employing a smoothing pro-
cedure to exclude small-scale nonlinear dynamics in our
simulations, which we explain further in the next section.

III. NUMERICAL RELATIVITY SIMULATIONS

In this work, we wish to remain agnostic about the
existence of a global background cosmology of any kind, or
the smallness of any perturbations. We therefore use
numerical relativity simulations, which contain no a priori

imposed physical constraints on the form of the metric
tensor. This allows us to mimic as closely as possible the
generality of the formalism presented in Sec. II B.
We now present the general relativistic numerical simu-

lations used in our analysis. In Sec. III A we describe the
software used and the physical assumptions about the energy
momentum tensor. In Sec. III B we describe the initial
conditions of the simulations, chosen to be consistent with
the ΛCDM matter power spectrum at early times following
the recombination epoch. In Sec. III C we describe volume
average properties of the simulated space-time, and the
observers analyzed in the subsequent analysis.

A. Software and physical assumptions

We use the Einstein Toolkit (ET)3 [34,35], a free, open-
source numerical relativity code based on the Cactus4

infrastructure. The ET comprises modules (“thorns”) to
evolve the Einstein equations using the BSSNOK formal-
ism [36–38] alongside the equations of general-relativistic
hydrodynamics, while also providing thorns for initial data,
analysis, and the handling of adaptive mesh refinement and
message passing interface. The ET has long been used for
simulations of compact relativistic objects and the emission
of gravitational waves. Recently, the ET has also been
applied to simulations of inhomogeneous cosmology
[29,39–41], and has proven to be a reliable tool to study
nonlinear structure formation.
In this work, we use the McLachlan thorn ML_BSSN

[42] in combination with GRHydro [43,44] to evolve
cosmological initial data provided by FLRWSolver [29]
(see also Sec. III B below). We refer the reader to [45] for
further specifics on the simulations. However, we note here
that GRHydro adopts a fluid approximation (i.e., no colli-
sionless particles) and that our simulations contain no dark
energy (Λ ¼ 0). We therefore compare our numerical cal-
culations to the flat, matter-dominated Einstein-de Sitter
(EdS)model (in linewith our initial conditions, see Sec. III B
below). While not explicitly enforced, we find that our
simulations converge to EdS behaviour when averaged over
the largest scales (see Sec. III C below and also [40] for a set
of similar simulations).
Our simulations have resolutionN3withN ¼ 128, andwe

choose physical coarse-graining scales such that individual
grid cells have length 100 h−1Mpc and 200 h−1Mpc,
corresponding to total domain lengths of 12.8 h−1 Gpc
and 25.6 h−1Gpc, respectively. We also perform lower-
resolution simulations with N ¼ 32 and 64 to show that
our results are robust to changes in resolution (see
Appendix C). We choose this method of coarse graining
to strictly exclude small-scale nonlinearities, to ensure the
positivity requirements of H in the generalized series
expansion are met (see discussion in Sec. II B). However,2In FLRWuniverse models, the requirement of constant sign of

H is satisfied per construction. However, in the presence of
inhomogeneity and anisotropy, care must be taken to ensure the
requirement of a well-behaved series expansion (4).

3https://einsteintoolkit.org
4https://cactuscode.org
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in Appendix C we present simulations with a resolution-
independent smoothing procedure and note that we find
consistent results.
Our chosen coarse-graining scales are, respectively,

comparable to and larger than the estimated ‘1%’ statistical
homogeneity scale of ∼100 h−1Mpc measured from gal-
axy catalogs [46,47]. At these scales, typical density
contrasts are expected to be ∼1% at the present epoch in
the ΛCDM model. Note however that our simulations will
have larger density contrasts both due to the absence of a
cosmological constant and to our volume-based definition
of the ‘present epoch’ in our simulations (see Sec. III C).
The coarse-graining scales of our analysis can nevertheless
be considered conservative, as density contrasts are still

within the linear regime in which the FLRW metric is
usually considered safe as a lowest order description.
Figure 1 shows the 25.6 h−1 Gpc, N ¼ 128 simulation

used in this work. Panels, top left to bottom right, show
the rest-mass density field relative to the global average,
the expansion scalar, shear scalar σ2 ≡ 1

2
σμνσμν, and four–

acceleration magnitude each normalized by the global
expansion,Hall. We show two–dimensional slices through
the midplane of the domain at effective redshift zeff ¼ 0
(see Sec. III C below for definitions of zeff and Hall). The
expansion scalar, shear tensor, and four–acceleration
shown here are the quantities subsequently used to
calculate the observational effective cosmological
parameters.

FIG. 1. Rest-mass density, expansion rate, shear, and acceleration (panels; top left to bottom right, respectively) in a 1283 resolution
simulation with a box size of 25.6 h−1 Gpc. Each panel shows a two–dimensional slice through the three–dimensional
domain at zeff ¼ 0.
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B. Initial data and numerical gauge

FLRWSolver is a thorn for the ET5 developed by
Macpherson et al. [29] to generate and implement initial
conditions for the linearly-perturbed, flat FLRW metric in
longitudinal form, namely

ds2¼−aðηÞ2ð1þ2ϕÞdη2þaðηÞ2ð1−2ϕÞδijdxidxj; ð10Þ

where η is conformal time, aðηÞ is the background scale
factor, and ϕ ≪ 1. The initial density fluctuations are
Gaussian-random and drawn from a user-provided matter
power spectrum. We use CLASS6 to generate the input
matter power spectrum (in the longitudinal gauge) at
redshift z ¼ 1000, with h ¼ 0.7 and otherwise default
parameters [48]. The corresponding metric perturbation
ϕ in (10) and the velocity field vi are calculated via the
linearized Einstein equations in the EdS model (see [29] for
details). Sampled scales depend on the physical size of the
domain and the numerical resolution; the largest mode
sampled is the physical side length of the total cubic
domain, and the smallest mode is 2× the physical size of
the grid cells.7 The length scales quoted in our paper in
units of Mpc/h are given in terms of our choice of h ¼ 0.7
in CLASS. However, h ¼ 0.7 does not correspond to the
present epoch Hubble parameter of our simulations, which
is on average well approximated by the Hubble parameter
of an EdS space-time (see Sec. III C).
The metric is assumed to be of the form (10) on the initial

hypersurface, and implicitly for the first few time steps in
order to specify the extrinsic curvature Kij ∝ ∂tγij on the
initial slice. Throughout the simulation, however, the metric
is best described in the general 3þ 1 form

ds2 ¼ −α2dt2 þ γijdxidxj; ð11Þ

where t is coordinate time, α is the lapse function
(representing the freedom of choice of coordinate time
t), γij is the spatial metric, and we have forced the shift
vector (describing the shift in spatial coordinates between
subsequent time slices) βi ¼ 0 throughout the simulation
for convenience. We choose a harmonic-type evolution of
the lapse function, namely ∂tα ¼ −α2K=3, where K ¼ Ki

i
is the trace of the extrinsic curvature. In the linear regime,
this translates to α0=α ¼ a0=a, i.e., ϕ0 ¼ 0 for our choice of
initial metric (10), and therefore equates to choosing the
pure growing mode of the linear density perturbation, δ (see
[29]). Once the perturbations grow nonlinear, this

interpretation of our gauge choice is no longer applicable,
nor is the metric (10).

C. Postprocessing analysis

We use a new version of the analysis code mescaline
written specifically for ET data (see [40]) to calculate the
terms in the series expansion (5). mescaline adopts a
uniform Cartesian grid with periodic boundary conditions
i.e., employing a torus condition on the topology of the
spatial sections. Otherwise, the code is completely general,
with no physical assumptions on the form of the metric or
the fluid model of the energy momentum tensor.
We place 1000 observers at pseudorandomly chosen

positions within the simulation domain. The observers are
comoving with the fluid flow, such that they are moving
along world lines defined by the fluid four–velocity
uμ ≡ dxμ

dτ , where τ is the proper time. In terms of 3þ 1

variables, the four–velocity can be split into its time and
space components u0 ¼ Γ=α, and ui ¼ Γvi, respectively
(for βi ¼ 0). Here, vi is the three–velocity with respect to
the Eulerian observer, and Γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vivi

p
is the Lorentz

factor. We note the distinction between the fluid four–
velocity uμ—the physical time direction of the fluid flow in
the simulation—and the normal vector nμ describing the
arbitrary foliation of the simulation.
For each observer, we choose 300 pseudorandom lines of

sight similar to the number of SNe used in the local
measurement of H0 in [49]. We focus on two different
examples of sky-sampling for each observer (see
Appendix B 3 for details on how the sky-samplings are
generated). First is the case of a ‘fairly-sampled’ sky, in
which the lines of sight are chosen pseudo-randomly across
the observer’s whole sky. Figure 2(a) shows an example of
this distribution for one observer, which we refer to in the
text and figures as the ‘FullSky’ sample. Second, we
consider an ‘unfairly-sampled’ sky, in which the lines of
sight are chosen pseudorandomly across one half of the
observer’s sky. Figure 2(b) shows an example of this
distribution, which we refer to in the text and figures as
the ‘HalfSky’ sample.
For each line of sight, eμ, of the sky-maps we calculate

the observational effective Hubble parameter (7) using θ,
σμν, and aμ as evaluated at the observer’s position. The
remaining effective cosmological parameters (6) are sub-
sequently built using the Ricci tensor and derivatives of H
(see Appendix B for details of these calculations, including
a consistency test using an analytic metric).
In this work we focus on calculations of the effective

cosmological parameters, rather than dLðzÞ itself. However,
in Appendix A we discuss the quality and convergence of
the approximation of the general series expansion (4) in the
context of the simulations used here.
We also use mescaline to assess the average dynam-

ics of the simulation relative to the EdS model. This
includes a calculation of the effective scale factor,

5FLRWSolver is not yet available as a part of the ET;
however, you can find the public version at https://github.com/
hayleyjm/FLRWSolver_public.

6http://class-code.net
7We also perform simulations with structures below 10× the

grid cell size cut out (see Appendix C 1), and find similar results.
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aDðtÞ≡
�
VDðtÞ
VD;ini

�
1=3

; ð12Þ

where VDðtÞ≡
R
D

ffiffiffi
γ

p
d3X is the volume of a domain D on

the spatial surfaces, γ is the determinant of the spatial
metric describing these surfaces, and VD;ini ≡ VDðtiniÞ is
the volume on the initial slice, with aD;ini ¼ 1 for a given
domain (for full details on the averaging procedure, see
[40]). We also define the “effective redshift”, zeff , in
order to find appropriate spatial surfaces in which to place
our observers.8 Specifically, this is defined from (12)
with D taken to be the total simulation domain, i.e.,

zeffðtÞ þ 1≡ aD;allðt0Þ
aD;allðtÞ

; ð13Þ

where aD;allðt0Þ≡ 1000 is the value of the scale factor
defining the ‘present epoch’ surface with t ¼ t0, which
arises from our choice of zeffðtiniÞ þ 1 ¼ 1000. We also
define the global average expansion rate,

Hall ≡ 1

3
hθiD;all ≡ 1

3

1

VD;all

Z
D;all

θ
ffiffiffi
γ

p
d3X; ð14Þ

where hiD;all is the average over the entire simulation
domain. In ourN ¼ 128 simulations, the globally-averaged
expansion rate at the present epoch, Hallðzeff ¼ 0Þ, coin-
cides with the EdS value, H0;EdS, to within 1%.
Cosmological parameters averaged over the whole

domain for this simulation are Ωm ≈ 1.02, ΩR≈
−2 × 10−4, and ΩQ ≈ 1.7 × 10−6 for matter, curvature,
and backreaction, respectively (see [40] for details on
the calculation of these parameters). Therefore, in terms of
the cosmological parameters, the simulations converge to the
EdS background model at the scale of the entire simulation
domain with an accuracy of ∼2%. This deviation from the
background EdS model value of Ωm ¼ 1 can be assigned to
numerical errors (see Appendix C).

IV. RESULTS AND DISCUSSION

Here we present the main findings of our analysis. In
Sec. IVAwe analyze anisotropies of effective cosmological
parameters of the luminosity distance across the individual
observer’s skies. In Sec. IV B we consider the same
cosmological parameters averaged over the observer’s skies
for two simple choices of survey geometries and analyze
the variance between observers. In Sec. IV C we discuss the
implications of our analysis for the Hubble tension present
in the ΛCDM paradigm.

A. Sky variance of observational effective parameters

Figure 3 shows sky-maps of the observational effective
Hubble, deceleration, curvature, and jerk parameters (6),
relative to their respective EdS values (top left to bottom
right, respectively). We show maps measured by a single
observer with lines of sight9 in directions of the 12 × N2

side
HEALPix10 [52] pixels for Nside ¼ 32. We note the
distinction between the resolution of the sky-maps,
Nside ¼ 32, and the resolution of the simulation in which
we place the observers, N ¼ 128.
For this particular observer, we notice that the dominant

form of anisotropy in the effective Hubble parameter is the
quadrupole, i.e., the contribution from the shear tensor
dominates the four–acceleration term in (7). The dipole is
the dominating anisotropy in the effective deceleration
parameter, which can be attributed to the two first terms of

q
1

μ in (9) involving the spatial gradient of the expansion rate
and of the shear tensor, respectively. The octopole moment
is also visible in the angular distribution of the effective
deceleration parameter, which can be assigned to the first

(a)

(b)

FIG. 2. Example sky-maps for one observer with 300 lines of
sight, representing the approximately isotropic (top) and aniso-
tropic (bottom) sky coverage used in this work.

8See Rasanen [50,51] for plausible arguments for zeff as a good
lowest order approximation for the measured redshift in space-
times with slowly evolving structure and statistical homogeneity
and isotropy.

9We note that for this observer we have used a larger number
of lines of sight than our main results in order to create
smoother maps. All results are presented with 300 lines of sight.

10http://healpix.sf.net
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term of q
3

μνρ involving the spatial gradient of the shear
tensor. The effective curvature parameter has similar
angular distribution to the effective deceleration parameter,
which is due toQ entering the definition ofR in (6) where
it dominates the anisotropic signal. The quadrupole domi-
nates the effective jerk parameter, which can be assigned to
the second spatial gradient of the expansion rate entering its
quadrupole moment (see Appendix B of [26]).
Even though the maps in Fig. 3 are valid for a single

observer, we see common signatures between observers.11

Specifically, the quadrupolar anisotropy tends to dominate
H, the dipolar and octopolar signal typically dominates Q
and R, while the quadrupole and the 16-pole typically
dominate the sky distribution of J. This is because, in
general, spatial gradients of kinematic variables dominate
the anisotropic effects over the observer’s sky (with the
exception of the spatial gradient of aμ here, due to the small
four–acceleration amplitude of the observers). While the
amplitude of the anisotropies in H, Q, R, and J are
expected to vary with smoothing scale (and the associated
density contrast), the qualitative anisotropic signatures of
the effective cosmological parameters found in these
simulations are expected to be robust to the choice of
smoothing scale and/or the inclusion of a cosmological

constant, as long as the observers are well described as
comoving with the matter source in a general relativistic
dust description.
We assess the level of anisotropy across an observer’s

sky by calculating the maximal sky-deviation Δ for each
parameter (similar to [53]), e.g., for H

ΔðHo=H0;EdSÞ≡Ho;max −Ho;min

H0;EdS
; ð15Þ

where Ho;max is the maximum value of H across an
observer’s sky, and Ho;min is the minimum. Figure 4 shows
the maximal sky-variance Δ for the effective Hubble,
deceleration, curvature, and jerk parameters, relative to
their EdS counterparts (panels; left-to-right, respectively)
as a function of the observers local density contrast, δo.
Points show Δ for 1000 observers, each with 300 ‘FullSky’
lines of sight, placed in the simulation with a 200 h−1Mpc
coarse-graining scale. Horizontal dashed lines show the
average over all observers. Here we can see the anisotropic
signature as viewed by an observer is largely uncorrelated
with the density contrast at the observer’s position. While
the amplitude of these anisotropic effects will depend on
the smoothing scale (and therefore the typical density
contrasts in the simulation as a whole) observers with
small δo can measure the same level of anisotropy as
observers with large jδoj, within a given model universe.
In Table I we show the mean and maximum Δ across all

FIG. 3. Sky-maps of the effective Hubble, deceleration, curvature, and jerk parameters (top-left to bottom-right, respectively) for one
observer measured in directions of the 12 × N2

side HEALPix pixels with Nside ¼ 32. Each parameter (with the exception of the
curvature) is normalized by its respective EdS value.

11The particularly interested reader can find the equivalent of
Fig. 3 for 100 different observers here: https://drive.google.com/
drive/folders/1o-Q_rM0QE5LGkSioKFAPpRgmELUK_k9T.
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observers shown in Fig. 4, and for 1000 observers with the
same lines of sight placed in the simulation with
100 h−1 Mpc smoothing length.
Analyses of the FLRW Hubble and/or deceleration

parameters in SNe [53–57] and galaxy data [58,59] come
to diverse conclusions regarding the level of anisotropy in
such data. These studies employ different phenomenologi-
cal anisotropic modelling and consider different survey
geometries. The truncation of the cosmographic represen-
tation and the relevant choice of smoothing scale will vary
according to the redshift coverage of the survey in question
(see Appendix A for discussions on the level of approxi-
mation of the luminosity distance Taylor series expansion)
and we thus expect different survey geometries to yield
different empirical results on anisotropy in effective cos-
mological parameters. We should note that these works
adopt FLRW cosmographic expansions—as truncated
according to FLRW model arguments—in their search
for anisotropy, which makes a direct comparison to our
analysis difficult.
Typical observers in our analysis have dipolar contribu-

tion to the deceleration parameter dominating over the
monopolar contribution. This signature has interestingly
been seen for us as observers in [57] where the dipolar

contribution to the deceleration parameter was found to
dominate over the monopole out to scales of z ∼ 0.1 in an
empirical examination of SNe data.

B. Sky averages of observational effective parameters

Figures 5 and 6 show our calculations of sky averages of
the effective cosmological parameters in the simulation
shown in Fig. 1 (200 h−1 Mpc smoothing). Panels, top-left
to bottom-right, show the effective observational Hubble,
deceleration, curvature, and jerk parameters, respectively,
each relative to their respective EdS parameter counterpart
in (2). Points represent the effective parameters of indi-
vidual observers as averaged over 300 lines of sight
distributed according to a ‘FullSky’ sample (Fig. 5) and
a ‘HalfSky’ sample (Fig. 6). See Fig. 2 for examples of
these sky samplings. Horizontal axes indicate the local
density contrast δo ≡ ρo=hρiD;all − 1 at each observer’s
position. Dashed lines of the same color as the points in
each panel show the average over all 1000 observers (i.e.,
the average over all points), and dot-dashed black lines
show the ΛCDM value of the corresponding parameter
(those panels without these lines are those where the
ΛCDM reference lies outside the limits of the plot).
In Table II we show the standard deviation for each

distribution in Figs. 5 and 6, as well as the same calculation
in a simulation with a smaller coarse-graining scale of
100 h−1 Mpc. The variances in the effective Hubble and
jerk parameters show no appreciable change moving from
the ‘FullSky’ to the ‘HalfSky’ sampling, for both smooth-
ing scales. However, we see drastic change in the effective
deceleration and curvature parameters. For the decelera-
tion, Qo, we see an ∼6.6× (∼4.7×) increase in standard
deviation when sampling only half of each observer’s sky
with a smoothing length of 100 ð200Þ h−1Mpc. The
curvature parameter, Ro, shows a ∼7.5× (∼6.2×) increase
in standard deviation in the same case. These changes in
variance can be visualized using the example observer sky
map in Fig. 2. Consider averaging over our ‘HalfSky’
distribution for the effective Hubble and jerk parameters for

FIG. 4. Panels (left-to-right) show the maximal sky-variance (15) for the effective Hubble, deceleration, curvature, and jerk parameters
relative to their EdS counterparts. Points show Δ for 1000 observers in a simulation with a 200 h−1 Mpc coarse-graining scale. Dashed
horizontal lines show the average over all observers.

TABLE I. Anisotropy of effective cosmological parameters
across typical and extreme observers’ skies. We show the mean
and maximum sky-deviation Δ (15) over 1000 observers in
simulations with effective smoothing lengths of 100 and
200 Mpc=h.

100Mpc=h smoothing 200 Mpc=h smoothing

Observer
mean

Observer
max

Observer
mean

Observer
max

ΔðHo=H0;EdSÞ 0.091 0.19 0.067 0.15
ΔðQo=q0;EdSÞ 18 53 5.5 14
ΔðRoÞ 9.01 26 2.8 7.2
ΔðJo=j0;EdSÞ 790 4199 106 340
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this observer. Since the quadrupolar mode is dominating
the signal, cutting the sky in half (in the way we have done)
should have minimal effect on the measured variance in
those parameters. Considering either the effective deceler-
ation or curvature parameter, cutting the sky in half should
affect the measured variance by this observer due to the
dominance of the dipole.
Comparing Figs. 5 and 6 shows us that an observer can

infer drastically different effective cosmological parame-
ters when not fairly sampling their whole sky. However, we
emphasise that the variances presented here are valid only
for our specific ‘HalfSky’ distribution, and averages across
different anisotropic sky-samplings will produce different
variances. It is also important to note that the corrections to
the EdS model expectation of the cosmological parameters
decrease with an increase in smoothing scale. The choice of
a physically relevant smoothing scale is therefore important
and depends on the redshift span of the survey in question.

For instance, to consistently model a survey with minimum
redshifts of 0.02, corresponding to distances from the
observer of ∼100 h−1 Mpc, we should not employ larger
smoothing scales than ∼100 h−1Mpc in our modelling. To
ensure a consistent fit for the entire survey, the highest-
redshift data should also be well approximated by the same
cosmographic representation as the lowest-redshift data. In
Appendix A, we show that a consistent cosmographic
representation of luminosity distance considering redshifts
∼0.02 out to z ∼ 1 (and even z ∼ 0.15) is difficult in the
presence of anisotropy. However, we stress that the inter-
pretation of the observational effective cosmological param-
eters presented here remains valid as long as z < 1 even if the
truncated third order expansion (4) breaks down as an
accurate approximation of the exact function z ↦ dLðzÞ.
We intend to investigate these issues relating to smooth-

ing scale, and the impact of survey geometry on cosmo-
logical inference, in future work.

FIG. 5. Effective cosmological parameters (6) relative to their EdS counterparts (panels) calculated in an inhomogeneous numerical
relativity simulation. Points show individual observers, with local density δo, averaged over 300 randomly chosen lines of sight across
their whole sky [see Fig. 2(a)]. Dashed lines of the same color show averages over all points on each panel, and dot-dashed lines show
ΛCDM parameters relative to EdS.
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C. Implications for a measurement
on the local Hubble constant

The sky averages shown in Fig. 5 are representative of
the monopole (isotropic) contribution to the effective
parameters. Focusing on the effective Hubble parameter
(top left panel, with variances in the top row of Table II), we
find isotropic variances of 2–3% with respect to the EdS
value, with maximum variances of up to 5% (7.5%) on
scales 200 ð100Þ h−1Mpc. This represents the variance in
the θ=3 term in (7) when moving between different
positions in the simulation. Figure 5 shows a clear and
physically expected correlation between values of θ=3 and
the local density. For similar local density contrasts δ (and/
or similar smoothing scales) we find the above variance is
in broad agreement with cosmic variance in the FLRW
local Hubble parameter studied analytically [60,61] and in
the context of Newtonian N-body [62–64] and NR simu-
lations [45].

In addition to this variance based on inhomogeneity
(observer position) we have an anisotropic contribution to
the effective Hubble parameter H, which will vary across
each observer’s sky. In this work, the anisotropy in H

FIG. 6. Effective cosmological parameters (6) relative to their EdS counterparts (panels) calculated in an inhomogeneous numerical
relativity simulation. Points show individual observers, with local density δo, averaged over 300 randomly chosen lines of sight across
half of their whole sky [see Fig. 2(b)]. Dashed lines of the same color show averages over all points on each panel, and dot-dashed lines
show ΛCDM parameters relative to EdS.

TABLE II. Cosmic variance of observational effective cosmo-
logical parameters (6). We show standard deviations of the
distribution of sky averages—for the ‘FullSky’ and ‘HalfSky’
distributions (see Fig. 2)—for 1000 observers placed in simu-
lations with effective smoothing lengths of 100 and 200 Mpc=h.

100 Mpc=h smoothing 200 Mpc=h smoothing

σðsky avgsÞ ‘FullSky’ ‘HalfSky’ ‘FullSky’ ‘HalfSky’

σðHo=H0;EdSÞ 0.028 0.028 0.019 0.020
σðQo=q0;EdSÞ 0.35 2.3 0.15 0.70
σðRoÞ 0.16 1.2 0.056 0.35
σðJo=j0;EdSÞ 170 164 23 23
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comes primarily from the shear tensor, i.e., the third term in
(7). The top row of Table I shows that typical observers
measure 9.1% (6.7%) maximum deviation inH across their
sky for 100 ð200Þ h−1 Mpc coarse-graining scales. We also
find that 37% (7.6%) of the observers measure > 10%
maximal deviation Δ inH across their sky. However, this is
not necessarily indicative of how many observers will
measure a sky-average of H to be ∼10% larger than the
global mean as found in [7] for the local FLRW Hubble
parameter. The specific survey geometry will affect the
number of observers we find to measure a higher local H.
We intend to investigate the role of anisotropy in context of
the Hubble tension in detail in future work.

V. CONCLUSIONS

The general luminosity-distance redshift relation pre-
sented by Heinesen [26] offers the potential to completely
relax the assumptions of exact homogeneity and isotropy at
the base of most cosmological data analysis. Additional
degrees of freedom introduced—because of the lack of
assumptions made—means that more cosmological data is
required in order to use this framework to convey fully
model-independent data analysis.
We have calculated the observational effective cosmo-

logical parameters (6) in simulations with realistic initial
conditions evolved with numerical relativity. Our simula-
tions therefore share the qualities of the general formalism
in that they contain no assumptions of a global background
metric. We have used conservative coarse-graining scales to
study the variance of these parameters on scales where the
simulated model universe is well within the linear regime of
density contrasts. We find that effective cosmological
parameters can be significantly anisotropic across the
observers’ skies (see Fig. 2 for an example), with correc-
tions to the relevant FLRW parameters even in the
monopole limit of a fairly sampled sky.
Considering a cosmographic representation of luminos-

ity distance with a 200 h−1Mpc smoothing scale, our main
conclusions are:
(a) The effective Hubble parameter has 2% cosmic

variance between observers relative to the EdS value
in the monopole limit, i.e., a fairly-sampled sky. We
find that ∼1% of observers measure a Hubble param-
eter > 5% different from the EdS value in this limit
(see Table II and Fig. 5).

(b) Maximal quadrupolar anisotropies in the effective
Hubble parameter across an observers sky are typi-
cally 7%, and can be as large as 15% (see Table I).

(c) A uniform sky-average of the effective deceleration
parameter has standard deviation of 15% between
observers relative to the EdS value (see Table II).

(d) The dipolar signal of the effective deceleration param-
eter dominates the monopolar contribution for typical
observers, with the mean observer seeing a 550%

deviation between highest and lowest value on their
sky (see Table I).

(e) A half-sampled sky can bias some observers mea-
surements such that they measure acceleration without
any actual accelerated expansion of space.

As a final note, since our study is concerned only with
large scales—and therefore small density contrasts—we
expect our results to be well approximated in the weak-field
limit of general relativity. Therefore, a re-analysis of the
general observational effective parameters in the context of
weak-field N-body cosmological simulations [i.e., gevo-
lution, see [65–67] ], or simulations using the fully-
constrained formulation of GR i.e., GRAMSES, see [68,69]
may produce similar results. This could also be investigated
in the context of constrained cosmological simulations
reconstructing the environment surrounding the local
group, as done in [70].
Our main conclusions suggest that the consideration of

local anisotropies could be important for cosmological
analysis. The anisotropic cosmographic representation of
luminosity distance [26] used in this work gives us a
framework to interpret near-future large cosmological
surveys in a completely model-independent way. This
may be necessary to ensure we draw correct conclusions
about the cosmic expansion and acceleration of the
Universe.
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APPENDIX A: CONVERGENCE OF THE SERIES
EXPANSION

We now examine the convergence and quality of the
approximation of the Taylor series (5). For investigating
these properties of the series expansion in detail, we must
ideally employ ray tracing algorithms for comparison to the
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exact expression. Employing ray tracing is indeed our goal
for future work, but for the purpose of analyzing the results
of this paper, we shall rely on crude order of magnitude
arguments. We can note that the FLRW series expansion of
luminosity distance in redshift is convergent for redshifts of
z < 1, after which the series in general breaks down [72].
Following the arguments in Sec. 4.1 of [72], we might
define Ho, Qo and Jo through the series expansion of
1=ð1þ zÞ≡ Eo

E around the point of observation in the
following way:

1

1þ z
¼ 1þHoEoΔλ −

1

2
ðQo þ 1ÞH2

oE2
oΔλ2

þ 1

6
ðJo þ 4Qo þ 3ÞH3

oE3
oΔλ3 þOðΔλ4Þ; ðA1Þ

where Δλ≡ λ − λo, and where λ is an affine parameter of
the null ray. We see that the series expansion (A1) has a
pole at z ¼ −1 for each null ray, and the radius of
convergence must thus be at most jzj ¼ 1, such that the
series also fails to converge at z > 1. Consequently, when
inverting this series, to obtain Δλ as a function of z, we
should not expect this series to be convergent for z > 1
either. Thus, we do not expect (5) to converge beyond
z > 1, but have no reason to believe that it will diverge at
smaller scales either, if the regularity requirements dis-
cussed in [26] are satisfied in addition (which is the case in
our analysis).
The quality of the approximation of the Taylor series (5)

truncated at third order can however be very poor at
redshifts approaching 1, and we expect this to be the case
in the present simulation setup for most observers for the
following reason. Spatial gradients of order (n − 1) of

kinematic fluid variables enter in the nth coefficient dðnÞL in

(5) [see for instance q
1

μ and q
3

μνρ in (9) which contain the
first order spatial gradient of the expansion rate and of the
shear tensor, respectively]. We can make the following

order of magnitude estimate of the nth term dðnÞL zn in the
Taylor series (5) in terms of the smoothing scale ΔX of the
simulation and Ho

���� d
ðnÞ
L zn

dð1ÞL z

����≲ 1

n!
zn−1

ðΔXHoÞn−1
sup

�����ΔHo

Ho

����
�
; n ≥ 2 ðA2Þ

where ΔHo is the increase of Ho to a neighboring grid
cell of the observer, and sup denotes the supremum
(here corresponding to the maximum value) over all
grid cells. Substituting the EdS value of the Hubble
constantH0;EdS ≈ 45 km=s=Mpc forHo, gives 1=ðΔXHoÞ∼
50 × 100 h−1Mpc=ΔX.
Let us first consider ΔX ¼ 100 h−1Mpc for which we

use the estimate supðjΔHo=HojÞ ∼ 0.1 which corresponds
to ∼3 × σðH=H0;EdSÞ given in Table II. With these values

we have jdðmÞ
L =dð1ÞL × zm−1j≲ 0.01 for all m ≥ 4 when

z≲ 0.03. The coarse-graining scale of ΔX ¼
100 h−1 Mpc itself corresponds to z ∼ 0.02. We therefore
expect the Taylor series expansion as truncated at third
order to approximate the exact luminosity distance to
within one percent for 0.02≲ z≲ 0.03.
Let us next consider ΔX ¼ 200 h−1 Mpc. We have a

similar order of magnitude estimate of supðjΔHo=HojÞ ∼
0.1 for these scales. In this case we satisfy jdðmÞ

L =

dð1ÞL × zm−1j≲ 0.01 for all m ≥ 4 when z≲ 0.06. The
coarse-graining scale of ΔX ¼ 200 h−1Mpc corresponds
to z ∼ 0.04, and we expect the truncated Taylor series (5) to
provide an approximate luminosity distance to within one
percent for 0.04≲ z≲ 0.06.
If we, for instance, wanted to approximate scales

out to z ¼ 0.15, the minimum integer, mmax, satisfying

jdðmÞ
L =dð1ÞL × zm−1j≲ 0.01 for all m ≥ mmax is mmax ¼ 9

(18) for a smoothing scaleΔX ¼ 200 ð100Þ h−1 Mpc Thus,
in order to obtain a consistent cosmography valid from
scales of 200 h−1 Mpc (z ≈ 0.04) and out to z ¼ 0.15, with
error terms of ≲1%, we expect to have to include terms up
to 8th order in the series expansion of dL.
We note that as long as we remain within the radius of

convergence of the Taylor series expansion of dL in z, the
interpretation of the parameters fH;Q;J;Rg as effective
observational Hubble, deceleration, curvature and jerk
parameters is preserved. While the radius of convergence
must be examined in detail with ray tracing codes, we
a priori have no reason to expect failure of convergence
before jzj ¼ 1 is reached, as per the discussion above.
It might seem surprising that the cosmographic repre-

sentation of luminosity distance (5) is not perturbatively
close the analogous expression for the background EdS
model, since the smoothing scales employed in the present
analysis are such that density contrasts are within the linear
regime. However, the higher order effective cosmological
parameters fQ;J;Rg can be nonlinear even if the density
field is in the linear regime on account of the spatial
gradients entering the various multipole coefficients [see,
for instance, the multipole expansion ofQ in (9)]. Since our
analysis is in the linear density contrast regime, we expect
our results to be repeatable in Newtonian simulations.
We could of course have employed even larger coarse-

graining scales, for a well-behaved Taylor series out to
larger z. However, this would come at the price of a poorly
approximated distance-redshift relation at small scales. Our
analysis suggests that a well-defined, collective cosmo-
graphic representation of distance-redshift data from scales
∼100 h−1Mpc and up to redshifts of z ∼ 1 is challenging.

APPENDIX B: mescaline CALCULATIONS

mescaline is a postprocessing analysis code for
Einstein Toolkit data [40]. Here we use an extended version
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of mescaline to calculate each of the terms in the series
expansion (4) for a chosen number of observers (randomly
placed in the simulation domain) each with a chosen
number of lines of sight eμ (either randomly chosen across
the whole sky or within a restricted region).
mescaline contains no physical assumptions on the

form of the metric, fluid, or extrinsic curvature. mesca-
line reads data output from the Einstein Toolkit, in
hierarchical data format 5 (HDF5), and is therefore written
in terms of 3þ 1 variables associated with the coordinate
representation (11) of the general metric. Specifically, it
reads the spatial metric γij, the extrinsic curvature
Kij ∝ ∂tγij, the lapse function α, the rest-mass density ρ,
and the three-velocity vi of the fluid (with respect to the
Eulerian observer comoving with the foliation defined by t)
for the whole spatial grid for all relevant time steps. The
code enforces a gauge condition with shift vector βi ¼ 0
(but for any α and ∂tα), and a uniform Cartesian grid with
periodic boundary conditions (equivalent to applying a
torus condition on the topology of the spatial sections). All
derivatives (in time and space) are taken using fourth-order
finite differences.
In this Appendix we outline the key calculations required

for each of the terms (5). To calculate the effective Hubble
parameter, H, we need the volume expansion rate, shear
tensor and four-acceleration, respectively defined as

θ≡∇μuμ;

σμν ≡ bαμb
β
ν∇ðαuβÞ −

1

3
θbμν;

aμ ≡ uν∇νuμ: ðB1Þ

Here, uμ is the four-velocity of the fluid (which we choose
to coincide with the four-velocity of the observers), round
brackets imply symmetrization over indices,∇μ is the Levi-
Civita connection (covariant derivative) associated with
gμν, and bμν ≡ gμν þ uμuν is the spatial projection tensor in
the frame of the fluid flow.

1. Derivatives along the null ray

To calculate the effective cosmological parameters (6),
we need the first and second derivatives ofH along the null
ray i.e., the derivatives with respect to affine parameter λ. In
terms of 3þ 1 variables, these are

dH
dλ

¼ kμ∇μH; ðB2Þ

¼ k0∂tHþ ki∂iH; ðB3Þ

and therefore

d2H
dλ2

¼ ðk0Þ2∂2
tHþ 2k0ki∂t∂iHþ kikj∂i∂jH

−
∂tH
α

½ðk0Þ2∂tαþ 2k0ki∂iα − kikjKij�
− ∂iH½ðk0Þ2αγij∂jα − 2αk0kjKi

j þ kjkkΓi
jk�; ðB4Þ

where t is the coordinate time of the simulation,
∂μ ≡ ∂=∂xμ, and Γi

jk are the Christoffel symbols associated
with the spatial metric γij. In deriving (B4), we have used
the time components of the four-Christoffel symbols
associated with the metric gμν, namely,

ð4ÞΓ0
00 ¼

1

α
∂tα; ð4ÞΓi

j0 ¼ −αKi
j; ðB5aÞ

ð4ÞΓi
00 ¼ αγij∂jα; ð4ÞΓ0

0i ¼
1

α
∂iα; ðB5bÞ

ð4ÞΓ0
ij ¼ −

1

α
Kij; ðB5cÞ

and we note that for βi ¼ 0 we have ð4ÞΓi
jk ¼ Γi

jk.

2. Four-Ricci tensor

For the effective curvature parameter, R, we need the
components of the (symmetric) four-Ricci tensor, Rμν. In
terms of 3þ 1 variables, the time-time component is

R00 ¼ α∂jðαÞ∂iγ
ij þ αγij∂i∂jαþ α∂tK

þ αΓi
jiγ

jk∂kα − α2KijKij; ðB6Þ
the time-space components are

R0i ¼ α∂iK − α∂jK
j
i − αΓj

kjK
k
i þ αΓj

kiK
k
j ; ðB7Þ

and the spatial components are

Rij ¼ ð3ÞRij þ KKij − 2Kl
jKil

−
1

α
ð∂tKij þ ∂i∂jα − ∂kðαÞΓk

ijÞ; ðB8Þ

where ð3ÞRij is the Ricci tensor of the spatial surfaces,
and K ¼ Ki

i.

3. Direction vector

The photon four–momentum, kμ, of an incoming null ray
can always be decomposed based on the observer four–
velocity, uμ, in the following way

kμ ¼ Eðuμ − eμÞ; ðB9Þ
where E≡ −kμuμ is the observed energy of the photon, and
eμ denotes the spatial direction of observation satisfying the
orthonormal requirement
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gμνeμeν ¼ 1; eμuμ ¼ 0: ðB10Þ

The directionvector eμ specifies the photon four–momentum
uniquely up to the normalizationE.Wegenerate sky-maps of
lines of sight of the observers in our analysis (see Fig. 2 for
example sky-maps) by setting

ei ¼ Dmi; ðB11Þ

where mi are pseudorandom numbers. To generate the so-
called ‘FullSky’ distribution (see Fig. 2a) for each observer,
each component of mi is drawn from a uniform distribution
over the range ½−1; 1Þ. To generate the ‘HalfSky’distribution
(see Fig. 2b) two of the components of mi are drawn from a
uniform distribution over the interval ½−1; 1Þ, while the
remaining component is constrained to the range [0, 1). The
normalization factor D and the time-component12 e0 are
determined from the constraints (B10), which give

e0 ¼ �miuiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20γijm

imj − α2mimjuiuj
q ; ðB12Þ

D ¼ ∓ u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20γijm

imj − α2mimjuiuj
q : ðB13Þ

4. Analytic test

The calculations of H and its derivatives (B2) and (B4),
as presented above are new in mescaline. We must
therefore test these calculations against a suitable analytic
solution to ensure they are accurate, with errors converging
at the expected rate.
Rather than passing in simulation output HDF5 data, we

use the mescaline test suite to pass in an analytic form of
the metric, extrinsic curvature, and matter content. This
analytic metric is then passed through the regular, general
mescaline routines which produce output as usual. We
can then directly compare the output effective parameters
with the analytic solutions to follow.
This test is not intended to place error bars on the results

presented in the main text (see Appendix C). Here, we are
isolating the mescaline calculations from the NR
simulations, and not only ensuring that we have small
errors, but that these calculations are accurate in reproduc-
ing a known analytic solution.
We test our calculations using a linearly-perturbed EdS

metric specified by the metric (10), which (to linear order in
ϕ) has extrinsic curvature

Kij ¼ −a0ð1 − 3ϕÞδij; ðB14Þ

where a is the EdS scale factor and the operator 0 represents
a derivative with respect to EdS conformal time η. The
metric perturbation, ϕ, is required to have small amplitude,
i.e., jϕj ≪ 1. The coordinate time satisfies t ¼ η for this test
due to our choice of lapse function. Solving the perturbed
Einstein equations for the above metric, we find that the
density contrast and the velocity perturbation of the fluid
are given by

δ ¼ −
3

2
ðQainitξÞ2∇2ϕ − 2ϕ; ðB15Þ

vi ¼ Q
ξ
δij∂jϕ; ðB16Þ

with δ≡ ρ=ρ̄ − 1, where ρ̄ is the EdS background density.
The constant Q≡ −1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πρ�ainit

p
is specified by the back-

ground rest-mass ρ� ≡ ρ̄a3 and the initial value of the scale
factor, ainit. The operator ∇2 ≡ δij∂i∂j is the spatial
Laplacian, and the scaled conformal time is

ξ≡ 1þ
ffiffiffiffiffiffiffiffiffiffi
2πρ�

3ainit

s
η:

We note that the metric (10) and extrinsic curvature (B14)
along with the density perturbation (B15) and the velocity
(B16) are the equations used to specify initial data in
FLRWSolver [29,40].
The four–acceleration is subdominant in this test model

setup, and therefore we neglect aμ for the case of this test
only. This will have no effect on the validity of the test,
since derivatives are calculated using finite differences of
H—with no explicit reference to the specific form of H
itself. Therefore, for this section only, the effective Hubble
parameter (7) takes the form H ¼ 1

3
θ þ eμeνσμν.

To first order in all perturbations (and their derivatives),
the expansion scalar and shear tensor are, respectively,

θ ¼ 3a0

a2
ð1 − ϕÞ þQ

ξ
∇2ϕ; ðB17Þ

σij ¼
Qa2

ξ

�
∂i∂jϕ −

1

3
∇2ϕδij

�
; ðB18Þ

with σ00 ¼ σ0i ¼ 0, and δij is the Kronecker delta. The first
derivatives of H appearing in (B2) and (B4) are

∂ηH ¼
�
a00

a2
−
2ða0Þ2
a3

�
ð1 − ϕÞ þ 1

9a
∇2ϕ

− eiejσij

�
2Hþ 1

Qainiξ

�
; ðB19Þ

12The coordinate system ft; xig used in the simulations is in
general not adapted to the fluid flow, and we will thus in general
have e0 ≠ 0.

LUMINOSITY DISTANCE AND ANISOTROPIC SKY-SAMPLING … PHYS. REV. D 104, 023525 (2021)

023525-15



∂iH ¼ −
a0

a2
∂iϕþ Q

3ξ
∂ið∇2ϕÞ þ 2ekelσkl∂iϕ

þQa2

ξ

�
ekel∂i∂k∂lϕ −

1

3
δklekel∂ið∇2ϕÞ

�
; ðB20Þ

where H ¼ a0=a is the conformal Hubble parameter. The
second time derivative of H is

∂2
ηH ¼ 6H

�
H2

a
−
a00

a2

�
ð1 − ϕÞ − a0

9a2
∇2ϕ

− eiejσij

�
2H0 þ 1

3ðQainiξÞ2
−
�
2Hþ 1

Qainiξ

�
2
�
;

ðB21Þ

its time-space cross derivative is

∂i∂ηH ¼ −∂iðϕÞ
�
a00

a2
−
2ða0Þ2
a3

�
þ 1

9a
∂ið∇2ϕÞ ðB22Þ

−
Qa2

ξ
ekel

�
∂i∂k∂lϕ −

1

3
∂ið∇2ϕÞδkl

�

×

�
2Hþ 1

Qainiξ

�
; ðB23Þ

and its second spatial derivative is

∂i∂jH ¼ ∂i∂jϕ

�
2ekelσkl −

a0

a2

�

þ Q
3ξ

∂i∂jð∇2ϕÞð1 − a2ekelδklÞ

þQa2

ξ
ekel

�
4∂iðϕÞ∂j∂k∂lðϕÞ

−
4

3
∂iðϕÞ∂jð∇2ϕÞδkl þ ∂i∂j∂k∂lðϕÞ

�
: ðB24Þ

To linear order, the components of the Ricci tensor are

R00 ¼ −3H0 þ∇2ϕ; ðB25Þ

R0i ¼ 2H∂iϕ; ðB26Þ

Rij ¼
��

H2 þ a00

a

�
ð1 − 4ϕÞ þ∇2ϕ

�
δij; ðB27Þ

and the spatial Christoffel symbols are

Γi
jk ¼

1

ð1 − 2ϕÞ ½δ
il∂lðϕÞδjk − ∂jðϕÞδik − ∂kðϕÞδij�: ðB28Þ

We choose a single mode form of the perturbation ϕ,
namely

ϕ ¼ ϕ0

X
i

sin
�
2πxi

L

�
; ðB29Þ

where L ¼ 1 is the length of the test domain, and we set
ϕ0 ¼ 10−8 to ensure that higher-order contributions remain
below the level of numerical errors.
We use the above expressions to calculate the analytic

form of the first (B2) and second (B4) derivatives of H
along the null ray. We then use these, along with the
analytic Ricci tensor components above, to calculate the
analytic solutions for the effective cosmological parame-
ters (6).
We run mescaline for 1000 randomly placed observ-

ers each with 300 randomly chosen lines of sight. For each
observer, and for each individual line of sight, we calculate
the effective cosmological parameters (6) using the com-
pletely general mescaline routines, given the analytic
metric (10) and extrinsic curvature (B14), and compare to
the analytic expressions shown above. We define the
relative error for the Hubble parameter as

errðHÞ≡ Ho

Ho;analytic
− 1; ðB30Þ

which we calculate along all 300 line of sights for each
observer.
Figure 7 shows the absolute value of the relative error for

the effective Hubble, deceleration, curvature, and jerk
parameters (panels, left-to-right, respectively). Points show
(B30) averaged over all lines of sight for a single observer.
Blue points are for a 163 grid, yellow for a 323 grid, and
green for a 643 grid. The relative error remains below 1%
for the effective curvature parameter, below 0.1% for the
effective jerk parameter, and below 10−4% for the effective
Hubble and deceleration parameters, even for the coarse
resolutions used here.
The errors in these calculations should reduce at a rate

defined by the order of accuracy of the scheme used when
increasing the resolution. The rate of convergence, C, for a
set of errors at three resolutions is calculated as e.g., for the
Hubble parameter,

CðHÞ≡ errðHÞlow − errðHÞmid

errðHÞmid − errðHÞhigh
; ðB31Þ

where a subscript ‘low’ refers to the error for the lowest
resolution, ‘mid’ for the middle resolution, and ‘high’ for
the highest resolution. For fourth-order accurate deriva-
tives, and when doubling the resolution for each increase,
the expected rate of convergence is Cexp ¼ 16. Figure 8
shows the convergence rate (B31), relative to the expected
value, for the errors in the effective cosmological param-
eters shown in Fig. 7. All parameters show the expected
rate of convergence for fourth-order accurate calculations.
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APPENDIX C: NUMERICAL CONVERGENCE
AND ERROR BARS

In the previous section we assessed the level of error in
the mescaline calculations alone, excluding any addi-
tional numerical error associated with performing NR
simulations. Our main results will contain additional
sources of error to those addressed in the previous section.
Here we compare simulations at several resolutions to
assess convergence and quantify the error bars on our main
results.
The simulations presented here use the Einstein Toolkit

paired with FLRWSolver for initial data. Our numerical
setup is the same as presented in Macpherson et al. [40],
except that we use different power spectra for the initial
conditions. We use the BSSNOK formalism to evolve our
cosmological space-times, which means the constraint
equations are not explicitly enforced as a part of this
evolution. The level of violation in the constraints therefore
tells us how closely our simulations are matching a solution
of Einstein’s equations. Any violation arises either as a
result of constraint violation in the initial data, or numerical
error produced during the simulation. We assume linear
perturbations in our initial conditions, and therefore we
have an initial violation of size second-order in the

perturbations. We expect the violation due to numerical
error will dominate by the end of the simulation. We use
mescaline to calculate the L1 norm of the dimensionless
Hamiltonian constraint violation, which for the N ¼ 128

simulations with 100 (200) h−1 Mpc smoothing lengths we
find to be 0.6% (1.1%). We refer the reader to Macpherson
et al. [40] for further details on the constraint violation and
studies on its convergence in a set of simulations using the
same numerical methods as used here.

1. Controlled-mode simulations

We perform simulations at three different numerical
resolutions to calculate error bars for our main results
via a Richardson extrapolation. The Richardson extrapo-
lation method requires keeping the physical system in
question fixed with the change of resolution, such that the
error associated with the numerical resolution can be
isolated. The simulation shown in Fig. 1, and any others
quoted in the main text, represent a “full” power spectrum
sampling, i.e., the initial data contains modes down to the
minimum possible wavelength (equal to the physical scale
spanned by two grid cells). As we increase numerical
resolution (reduce the size of grid cells) we therefore
change the physical local structure at each observer’s

FIG. 7. Errors for the effective Hubble, deceleration, curvature, and jerk parameters (panels; left-to-right, respectively), for the test case
of an analytic, linearly-perturbed EdS metric passed into mescaline. Each point shows the relative error for an individual observer,
averaged over 300 lines of sight. Colors represent different numerical resolutions, as indicated in the legend.

FIG. 8. Convergence rate (B31) relative to the expected value, C=Cexp, for the effective Hubble, deceleration, curvature, and jerk
parameters (panels, left-to-right, respectively). The convergence here is for the errors shown in Fig. 7 at resolutions 163; 323, and 643.
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position. These simulations are thus not suitable for a
Richardson extrapolation.
Therefore, as in [40], we perform a set of simulations in

which small-scale structure is removed from the initial data,
and only long-wavelength modes are sampled initially (see
also [31,73]). If these modes are sufficiently large, we
expect the structures at all points in the domain to remain
similar between resolutions. We perform three simulations
with domain length 2 h−1Gpc at resolution N3 for N ¼ 32,
64, and 128, in which we have excluded any power at scales
below 10Δx;32, where Δx;32 is the grid spacing for the N ¼
32 simulation. Higher resolution initial data is obtained by
interpolating the lower-resolution data. The minimum
modes therefore have wavelength ∼625 h−1 Mpc in all
initial data. As an example, Fig. 9 shows a two–
dimensional slice through the N ¼ 64 test simulation, with
the density field, ρ, in the left panel and the expansion
scalar, θ, in the right panel.
One might consider using simulations such as this for the

main results presented in this paper. While we do restrict
the minimum mode to wavelength ∼625 h−1Mpc for the
initial data for the simulations described in this Appendix,
there is no guarantee that structures below this scale will not
form later in the simulation. In this work, we wish to strictly
constrain any structures to be above the smoothing scale of
interest, which is why we choose individual grid cells to
coincide with this scale. However, we confirm that the
effective parameters are qualitatively similar in the con-
trolled-mode simulations when sampling similar physical
scales.

2. Richardson extrapolation and definition of error

We expect that our numerical estimates of physical
quantities of interest will approach the “true” values of
the quantities (in the context of the approximations and
limitations of the simulations used) as we increase numeri-
cal resolution towards infinity, i.e., N → ∞. The rate at

which an estimated quantity will approach its “true” value
depends on the accuracy of the implemented scheme (i.e.,
how the error reduces as we increase resolution). The
Einstein Toolkit thorns which we use are fourth-order
accurate (as is mescaline) and we therefore expect
our numerical estimates to converge at a rate ∝ N−4.
Thus, we estimate the numerical error of a quantity by
calculating the same quantity at three different resolutions,
and fitting a curve of the form fðNÞ ¼ aþ b=N4, where a
and b are parameters determined using the SciPy13

package’s curve_fit function. Extrapolating the quan-
tity to very large N by using the determined function N ↦
fðNÞ (here we choose N ¼ 105, which ensures that the
value is stable) gives an estimate of the “true” value of that
quantity. We then define the error in, e.g.,H as the residual
between our highest-resolution calculation and the extrapo-
lated “true” value, normalized by the mean magnitude of
H, namely,

Herror≡HðN ¼ 128Þ −HextrapðN ¼ 105Þ
meanðjHðN ¼ 128ÞjÞ : ðC1Þ

Normalizing the error in this way produces an estimate on
the relative error while avoiding spurious large-magnitude
errors caused by near-zero values (especially relevant for
those parameters with distributions centred around zero).
In the controlled simulations described in the previous

section, we calculate the effective cosmological parameters
(6) at 1000 observer positions, keeping these positions
constant between resolutions. For each observer, we
randomly choose 300 lines of sight across the whole
observer’s sky (‘FullSky’ in Fig. 2a). The direction vector
eμ for each line of sight, for each observer, is determined
using the same random numbers mi (see Appendix B 3)
between resolutions. However, in order to ensure the
orthonormality requirements (B10), we require the
three–metric and fluid four–velocity at each location to
determine eμ from mi. Therefore, the direction vectors do
vary slightly between resolutions, however, we confirm that
the components of eμ generally converge at the expected
fourth-order rate.
We average the effective anisotropic cosmological

parameters of each observer over all 300 lines of sight,
and compare this average between resolutions using a
Richardson extrapolation. We also assess the convergence
of the parameters averaged over all 1000 observers.
Figure 10 shows an example of this process for the effective
Hubble, deceleration, and curvature parameters (panels,
left-to-right, respectively, see Appendix C 5 below for a
discussion on the error in the jerk parameter) for the
average over all 1000 observers. Points show calculations
from simulations at resolutionN (x-axis) and dashed curves
are the best-fit representing fourth-order convergence.

FIG. 9. Density (left panel) and expansion rate (right panel) for
our N ¼ 64 test simulation used to perform a Richardson
extrapolation of our results. We show a two–dimensional slice
through the domain at zeff ¼ 0, for a 2 h−1 Gpc domain length.

13https://scipy.org
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The asymptotic values in Fig. 10 can be interpreted as
reflecting the expected “true” values for each parameter (for
a particular coarse-graining scale) i.e., at infinite numerical
resolution. We note that we do not necessarily expect these
asymptotic values to correspond to their EdS counterparts,
since the points themselves represent different numerical
resolutions, and not different coarse-graining scales. We
can interpret each point in Fig. 10 in the same way as the
horizontal lines in, e.g., Fig. 5 (or Fig. 12) i.e., the average
over all observers. We further stress that the nonzero
asymptotic value of the effective curvature parameter, in
the right-most panel of Fig. 10, is not necessarily indicative
of a nonzero averaged spatial curvature in the simulation.
This is due to the fact the interpretation of the generalized
curvature parameter is not simply connected to the aver-
aged Ricci curvature of spatial sections, as it is in the
FLRW cosmography (see [26]).

3. Error calculation in controlled-mode simulations

Panels, left-to-right, in Fig. 11 show the error (C1) for the
effective Hubble, deceleration, and curvature parameters,
respectively, as a function of the local over-density at the
observer, δo. Points show the error in an observers line-of-
sight average measurement, and dashed black lines show
the average error over all observers, which yield ∼0.006%,

∼0.5%, and ∼4.6% for the effective Hubble, deceleration,
and curvature parameters, respectively. See Sec. C 5 below
for a discussion on the error in the jerk parameter. The
controlled-mode simulations used to quantify these errors
are sampling similar physical scales at zeff ¼ 0 (of the order
of hundreds of Mpc), and so we take the errors shown in
Fig. 11 to be representative of the level of error in our main
results.
As mentioned above, there is no guarantee that smaller-

scale structures will not develop in these controlled-mode
simulations. This also implies that differences in structure
growth between resolutions are possible. In turn, not all
observers will necessarily have similar enough local
environments, and in these cases we expect that calcula-
tions will not converge. This can simply be because
differences between resolutions are no longer purely due
to truncation error in the finite difference approximation of
derivatives.
This appears to be the cause of the largest-magnitude

errors in all parameters shown in Fig. 11. Specifically, we
find that for observers with the largest errors—mainly
coinciding with nonconvergence of the respective param-
eter—the local density δo also does not converge. This
indicates that the structure is physically different between
resolutions at the position of these observers and therefore a
meaningful comparison between resolutions is difficult.

FIG. 10. Example of the Richardson extrapolation process for effective Hubble, deceleration, and curvature parameters (panels, left-
to-right, respectively) for controlled-mode simulations with resolutions N ¼ 32, 64, and 128 (x-axis). Points are calculations from the
simulations averaged over 1000 observers, and dashed curves are the best-fit curves representing fourth-order convergence.

FIG. 11. Percentage relative error (C1) for effective Hubble, deceleration, and jerk parameters (panels, left-to-right) calculated via a
Richardson extrapolation. Points show the error in calculations averaged over 300 lines of sight for each observer, and black dashed lines
in each panel show the average error over all 1000 observers.
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4. Statistical convergence

As detailed above, in order to obtain convergence for an
individual observer we require the local structure at that
observer’s position to remain constant as we increase
resolution. However, as long as the simulations in question
continue to sample the same physical smoothing scale, we
expect to see statistically similar results across all observ-
ers, even when increasing numerical resolution. In this
section, we ensure that our main results exhibit statistical
convergence in this sense.
We perform three simulations each with a coarse-grain-

ing scale of 200 h−1 Mpc, with resolutions N ¼ 32, 64, and
128. The highest resolution of this set is the main
simulation presented in Fig. 1. Since we must maintain
the same minimum scales sampled, with each 2× increase
in resolution we also increase the total (physical) domain
size by a factor of 2. The simulation box sizes are therefore
6.4,12.8, and 25.6 h−1 Gpc, respectively. The size of the
box in code units remains the same for all simulations in
this study, and all initial data are different realisations of the
same power spectrum.
Points in Fig. 12 show the effective cosmological

parameters (6) as measured by 1000 observers (each
averaged over 300 ‘FullSky’ lines of sight) in these three
simulations (different colors, as indicated in the legend).
Dashed lines of the same color show the average over all

observers for each resolution. Qualitatively, we notice the
distribution in each parameter does not change drastically
with resolution. We perform a Kolmogorov-Smirnov (KS)
test to assess the null hypothesis that parameter distribu-
tions between resolutions N ¼ 64 and 128 are drawn from
the same distribution. We find that the KS test fails to reject
the null hypothesis at significance level α ¼ 0.15. We
therefore conclude that the results presented in the main
text regarding statistics across all observers are robust to
changes in resolution.

5. Error in the jerk parameter

For the controlled-mode simulations discussed in the
previous sections, we did not find the expected conver-
gence of the effective jerk parameter,Jo. We found that for
∼15% of observers, Jo is well behaved and converges at
the expected fourth-order rate. For these observers the
maximum relative error in Jo is ∼5%. However, for most
observers, and therefore for the average over all observers,
we do not see convergence.
We have attributed this to differences in the local density

gradients at late times, which, as discussed in the previous
sections, can be slightly different between resolutions. We
confirm that the jerk parameter converges at the expected
fourth-order rate at earlier times in the simulations, when
gradients are more similar between resolutions. We also
refer the reader to Sec. B 4, where Jo converges as
expected in an analytic test where gradients are constructed
to be exactly identical between resolutions. We note that for
the observers who do not show convergence at late times,
we also do not see convergence of the local density, δo,
whereas for those 15% who do show convergence, the local
density also converges. This strongly suggests the main
reason for this is due to differences in the local density field.
The dominant contribution to the jerk parameter is the
second derivative of H along the null ray (i.e., third
derivatives of the fluid velocity). If local structure is slightly
different between resolutions this will be more noticeable in
the calculation of higher-order derivatives. This explains
both why we see convergence in Jo at earlier times, and
why we see convergence of other parameters (which have
dominant contributions from lower-order derivatives) at
late times.
Since we cannot quantify error bars on Jo in a

controlled simulation that is still physically similar to
our main results, we choose to avoid making statements
on the jerk parameter for individual observers. From the
results of the KS test presented in the previous section, the
distribution of the jerk parameter across all observers
exhibits convergence.

FIG. 12. Effective cosmological parameters for three simula-
tions at different numerical resolution (different colored points
and lines), all with the same physical smoothing length of
200 h−1 Mpc. This figure shows the same as Fig. 5 for multiple
resolutions sampling the same physical scale.
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