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2Cosmology, Universe and Relativity at Louvain, Institute of Mathematics and Physics,
Louvain University, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium

3Department of theoretical physics at the ENS Paris-Saclay, University of Paris-Saclay,
avenue des Sciences, 91190, Gif-sur-Yvette, France
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The possibility to detect gravitational waves (GW) from planetary-mass primordial black hole (PBH)
binaries with electromagnetic (EM) detectors of high-frequency GWs is investigated. We consider two
patented experimental designs, based on the inverse Gertsenshtein effect, in which incoming GWs passing
through a static magnetic field induce EM excitations inside either a TM cavity or a TEM waveguide. The
frequency response of the detectors is computed for post-Newtonian GWwaveforms. We find that such EM
detectors based on current technology may achieve a strain sensitivity down to h ∼ 10−30, which generates
an EM induced power of 10−10 W. This allows the detection of PBH binary mergers of mass around
10−5 M⊙ if they constitute more than 0.01 percent of the dark matter, as suggested by recent microlensing
observations. We envision that this class of detectors could also be used to detect cosmological GW
backgrounds and probe sources in the early Universe at energies up to the grand unified theory scale.
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I. INTRODUCTION

Gravitational waves (GW), first introduced by Einstein
in 1916 [1,2] as a linear regime of the field equations of
general relativity, were directly detected for the first time in
2015 by the LIGO/Virgo Collaboration [3]. These ground-
based detectors use laser interferometry techniques, but
there also exist other detection strategies. Einstein’s equiv-
alence principle implies that all types of energies produce
and experience gravity in the same way. The energy of
electromagnetic (EM) radiation must therefore source
gravity just like compact objects do and, the other way
around, gravity (e.g., gravitational waves) can manifest
itself in the physical characteristics of electromagnetic
radiation. This is the basic principle behind the EM
detection (or emission) of GWs.
The use of EM fields to both generate and detect GWs

has actually been considered for decades, for instance
based on the (inverse) Gertsenshtein effect [4] relying on
the coupling between GWs and EM waves in the presence
of a strong static magnetic field. However, the weakness

of this coupling makes any GW detection extremely
challenging. Therefore, experimental efforts have mostly
concentrated on ground-based detectors based on laser
interferometry, probing a rather low frequency range
(typically 1–10 kHz). But this technique is not suited
for the detection of high-frequency GWs (HFGWs), EM-
based detectors are more suited to detect them. Section II
presents a short historic review of HFGW detectors that
have been built or proposed. The interested reader will
find more details about detection strategies and potential
high-frequency sources in a recent review [5].
In this paper, we propose two novel patented [6]

experimental designs of resonant high-frequency EM
detectors, based on the inverse Gertsenshtein effect, oper-
ating at MHz or GHz frequencies and feasible with current
technology. We numerically compute the EM signal pro-
duced by passing HFGWs and consider planetary-mass
primordial black holes (PBHs) as their potential sources.
The detectors are constituted by either a waveguide or a
cavity immersed in a transverse static magnetic field. This
outer magnetic field serves two purposes in our design.
First, a proper (transverse) orientation of this field is
mandatory to convert HFGWs into EM waves through
the inverse Gertsenshtein mechanism. Second, the external
magnetic field boosts the output signal through a resonance
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mechanism on specific radiation modes that are excited by
the passing HFGWs.
There exists a broad range of hypothetical astro-

physical or cosmological sources of HFGWs with
frequencies from kHz to THz (see Ref. [5] and
references therein), such as exotic compact objects,
PBHs, inflation, reheating, oscillons, cosmic strings and
other topological defects, large curvature fluctuations,
and phase transitions in the early Universe. Some
sources produce transient signals, like the merging of
compact objects, while cosmological sources typically
induce a permanent stochastic GW background. In
particular, HFGW detectors operating at MHz and
GHz frequencies might probe new physics up to the
scale of the grand unified theories.
In this paper, we focus on the particular case of

transient signals from the merging of light (planetary-
mass scale) PBHs. Their existence is still hypothetical
but motivated by several recent observations, such as
microlensing events towards the Galactic bulge, recently
detected by OGLE [7,8] and suggesting that such PBHs
may constitute between 1% and 10% of dark matter
(DM). LIGO/Virgo observations provide additional
motivations for the existence of PBHs in the stellar
range [9–11] and a unified scenario with a wide mass
distribution imprinted by the known thermal history of
the Universe has been presented in Ref. [12]. PBHs may
originate from the gravitational collapse of primordial
inhomogeneities in the early Universe. Above a mass
mPBH ≈ 1011 kg, their evaporation time through the
Hawking-Bekenstein mechanism is much larger than
the age of the Universe. Beyond these motivations, the
GW waveform from PBH mergers is well known, which
allows us to simulate the exact detector response. Our
work therefore aims at paving the road towards an
experimental realization of a HFGW detector with a
good enough strain sensitivity, of order h ∼ 10−30, to
detect various GW sources.
The paper is organized as follows. After reviewing

previous proposals of EM-based HFGW detectors in
Sec. II, in Sec. III we introduce the theory behind the
Einstein-Maxwell system and the Gertsenshtein effects.
Section IV applies the theory to the case of two detector
designs based on a resonant waveguide and a cavity, in an
external static magnetic field. Section V is devoted to the
computation of the expected rate and signal from planetary-
mass PBH mergers. In Sec. VI we gather these calculations
to compute the expected signal in our detectors, in terms of
frequency response and induced EM power, for different
realistic designs and different PBH masses. Finally, we
compute forecasted limits on the possible PBH abundance,
for two possible binary formation channels (primordial
binaries and tidal capture in clusters). We discuss our
results and present some perspectives in the conclusion
(Sec. VII).

II. BRIEF HISTORY OF ELECTROMAGNETIC
AND HFGW DETECTORS

The use of EM fields to both generate and detect GWs has
actually been considered for decades. While Weber [13]
envisioned the importance of both the generation and
detection of GWs as early as 1960, in 1962 Gertsenshtein
[4] discovered a resonance mechanism allowing to produce
GWs from EM waves in the presence of a strong static
magnetic field. Later, in Refs. [14,15], this mechanism
was studied in greater details using Einstein’s equations,
scattering theory, and Feynman perturbation techniques.
Gertsenshtein’s mechanism was applied to astrophysics by
Zeldovich [16]. Grishchuk and Sazhin [17–19] then intro-
duced purely electromagnetic generators of GWs, using
transverse magnetic/electric (TM/TE) resonant cavities.
They envisioned GWemission-reception laboratory experi-
ments and concluded that they might be experimentally
feasible [18,19], which would open the road to futuristic
technologies based on GW physics [20]. Resonant cavities
and EM waveguides were then considered as possible
detectors of gravitational radiation, either emitted by natural
or artificial sources [18–26].
Using EM detectors of GWs would allow to explore

higher frequency ranges than with laser interferometry,
typically from kHz to 100 GHz when using radio frequen-
cies or from 100 GHz to THz when using microwaves.
Investigations of electromagnetic GW detectors began in
the 1970s [14,18,19,21–25,27]. Those detectors either
make use of the conversion of GWs to photons [14], the
excitation or modification of resonant modes of EM cavities
and waveguides [18,19,21–25,28], the change of the polari-
zation plane of an EMwave due to the passing GWs [27], or
induced birefringence of the interior of the cavity [26].More
recently, Ejlli et al. [29] used available data from experi-
ments designed for the detection of weakly interacting slim
particles to set limits on the stochastic GW background
through graviton-to-photon conversion in the ultrahigh-
frequency band (above 1 THz). Bentley et al. [30] also
proposed a method to reduce the noise of interferometric
GW detectors at high frequency (kHz). Other types of
HFGW detectors have been recently proposed [31,32,32–
34], using optically trapped dielectric microspheres in a
cavity, resonance between a graviton and a magnon that is
based on the Dirac equation in a curved spacetime, or high-
frequency phonon-trapping acoustic cavities.

III. EINSTEIN-MAXWELL SYSTEM AND THE
GERTSENSHTEIN EFFECTS

The Einstein-Maxwell system models the interplay of
gravitation and electromagnetism by the coupling of their
respective field equations (in SI units1),

1The relevant fundamental constants of the Einstein-Maxwell
system are Newton’s constant G, the speed of light c, and the
(vacuum) magnetic permeability μ0.
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Rμν ¼
8πG
c4

TðemÞ
μν ; ð1Þ

∇μFμν ¼ −μ0Jν; ð2Þ
where

TðemÞ
μν ¼ 1

μ0

�
gαβFμαFνβ −

1

4
gμνFαβFαβ

�
ð3Þ

is the Maxwell stress-energy tensor, where Fμν ¼ ∂μAν −∂νAμ is the Faraday tensor of the electromagnetic field, gμν
and Aμ are the metric and four-vector potential, ∇μ is the
covariant derivative with respect to gμν, Rμν is the Ricci
tensor, and Jν is the four-current density. In general
relativity, the interplay between gravitation and electro-
magnetism is twofold: first, spacetime is curved by the
energy of the electromagnetic field as ruled by Eq. (1), and
second, at the same time the propagation of the electro-
magnetic field Fμν is governed by the covariant Maxwell
equations in curved spacetime [Eq. (2)]. For a small
electromagnetic compactness GEEM=ðc4LÞ ≪ 1, where
EEM is the EM energy stored in some physical system
of length L, the gravitational sector of the system can be
safely treated in the weak-field limit [35].
First, one can consider the gravitational perturbations

arising from EM sources in the Einstein field equations.
Considering EM configurations consisting in a superposi-
tion of a static field FðsÞ

μν and a varying one FðvÞ
μν , the

quadratic terms in Eq. (3) yield three general classes of
electromagnetically induced gravitational perturbations
around a Minkowski background,

gμν ¼ ημν þ cμν þ wμν þ hμν; ð4Þ
where ημν ¼ diagð−1;þ1;þ1;þ1Þ is the Minkowski met-
ric and cμν, wμν, hμν ≪ 1 represent the metric perturbations.
In the above equation, (i) cμν represents the static gravi-
tational field generated by some external static magnetic or
electric field (from a coil or a capacitor) and arises from the

quadratic term in FðsÞ
μν in Eq. (3), while (ii) wμν is a

gravitational wave generated by the varying EM [for which

the source is the quadratic term in FðvÞ
μν in Eq. (3)] and

(iii) hμν is another gravitational wave generated by the

coupling between the external static field FðsÞ
μν and some

EM wave FðvÞ
μν [crossed terms in Eq. (3)]. The case (i) was

studied in Ref. [35] but does not give rise to a GW since the
outer EM field is static. Case (ii) was studied for light
propagating pulses in Refs. [36,37] and in Refs. [17–19,38]
for EM waves in resonant hollow cavities.2 Case (iii)

actually corresponds to what is called the direct
Gertsenshtein effect [4,16]. This Gertsenshtein effect is
a wave resonance mechanism in which light passing
through a region of uniform magnetic field, perpendicular
to the direction of light propagation, produces GWs. A
monochromatic EM wave leads to an outgoing GW of the
same frequency. Electromagnetic generation of GWs is a
very faint process, due to the extreme weakness of
gravitational coupling. Indeed, the metric perturbations
hμν produced through the Gertsenshtein mechanism have
an amplitude of order

hμν ∼
4GB0E0L2

c5μ0
; ð5Þ

where L is the size of the region in which the magnetic
field and the EM wave interact, and B0 and E0 are the
amplitudes of the static magnetic and varying electric
fields, respectively. To give an idea, in order to generate a
strain h ≈ 10−21 with B0 ≈ 10 T and E0 ≈ 1 MV=m, one
needs a truly astronomical size for the interacting region,
L ≈ 106 km. Therefore, while the direct Gertsenshtein
effect can be used to build electromagnetic GW gener-
ators, its practical application constitutes an extreme
experimental challenge.
Second, ripples in spacetime can also interact with a

static magnetic field to produce an outgoing EMwave. This
inverse Gertsenshtein effect is described by the Maxwell
equations (2) on a perturbed background. An obvious
application of this effect is the detection of GWs passing
into a transverse static magnetic field, GWs will be
converted into EM waves. One possible way to derive
the equations governing the inverse Gertsenshtein effect is
to develop the covariant derivative in Eq. (2) at first order in
metric perturbations, and to treat these as an effective
current density. We follow here a different approach, based
on a covariant generalization of the EM wave equations,3

gαβ∇α∇βFμν þ RμναβFαβ þ Rα
μFνα þ Rα

νFαμ ¼ 0; ð6Þ

where Rμναβ is the Riemann tensor. This set of equations
describes the propagation of EM waves on a curved
spacetime. In the case of a flat Minkowski spacetime,
the wave equation (6) reduces to the classical wave
equation gαβ∇α∇βFμν ¼ 0.
Let us now consider a small perturbation hμν propagating

on a Minkowski background, such that the metric is given
by gμν ¼ ημν þ hμν at first order (hμν ≪ 1). If this pertur-
bation satisfies the Lorenz gauge condition, ∂μhμα ¼ 0, one
gets from Eq. (6) the linearized wave equation for the
Faraday tensor (see also Ref. [19]),2In Ref. [17], a special case of a hollow spherical cavity in an

outer radial magnetic field was briefly considered, giving rise to
an admixture of terms wμν [case (ii)] and hμν [resonance—case
(iii)] which were not identified as such nor exploited by the
authors.

3These are obtained from the two groups of covariant Maxwell
equations ∇μFμν ¼ 0 and ∇κFμν þ ∇μFνκ þ ∇νFκμ ¼ 0, which
can be combined to retrieve Eq. (6).
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gαβ∇α∇βFð1Þ
μν ¼ hακ∇ðηÞ

α ∇ðηÞ
κ Fð0Þ

μν

−∂ρð∂μhαν−∂νhαμÞFð0Þρα

− ð∂γhαβþ∂αhβγ −∂βhγαÞ
× ðηαμ∇ðηÞ

γ Fð0Þ
νβ−ηαν∇ðηÞ

γ Fð0Þ
μβÞ¼ Sμν:

ð7Þ

In the above equation, we have assumed that the total
EM field Fμν is the superposition of some background EM
field Fð0Þ

μν with which the metric perturbation hμν interacts
to produce an EM perturbation Fð1Þ

μν. In the following, we
focus on the magnetic conversion of GWs into photons, i.e.,
the interaction between a passing GWand an external static
magnetic field (Fð0Þ

μν is purely magnetic) which results in
an EM wave emission. Equation (7) governs the inverse
Gertsenshtein effect.
Under the assumption of a uniform static magnetic

field, the first and third source terms in Eq. (7), both
including∇ðηÞ

γ Fð0Þ
αβ, identically vanish, leaving as the only

source term the one with second derivatives of the metric
perturbations,

Sμν ¼ −∂αð∂μhβν − ∂νhβμÞFð0Þαβ· ð8Þ

We can now apply this theory and conceive a specific
experiment for the detection of HFGWs produced, e.g., by
inspiraling PBHs.

IV. RESONANT ELECTROMAGNETIC
DETECTORS OF HFGWs

In this section, we describe two detector designs that are
based on the patents in Ref. [6]. The detection principle is
based on the inverse Gertsenshtein effect, and thus a
passing GW interacts with an intense static magnetic field.
If the direction of the incoming GW is not collinear with the
magnetic field, faint transverse EM waves are generated
and these can be further amplified by EM resonators. The
experimental setup consists of either a waveguide or a
cavity whose axis of symmetry is orthogonal to the
magnetic field. Such a setup is similar to haloscopes that
are used for the search for axions, like the ADMX
experiment [39,40], except for the orientation of the outer
magnetic field. As shown below, it is mandatory that it is
orthogonal to the axis of the cavity/waveguide in order to
detect GWs.
A theorem by Choquet-Bruhat [41] established that both

direct and inverse Gertsenshtein effects require the con-
dition of orthogonality between the external EM field and
the direction of GW propagation. This theorem starts from
the hypothesis that incoming or generated GWs have a
Wentzel-Kramers-Brillouin form and are of high frequen-
cies. The equation of propagation in Ref. [41] is then
obtained after a development in frequency. We propose

below a variant of Choquet-Bruhat’s demonstration
with a development in the amplitude instead of frequency.
We first assume that the incoming GW is a plane wave,
hμν ¼ aμνeiωΦ, with a general varying phase, Φ ¼ ΦðxαÞ.
The goal is to show that the constant EM field must be
orthogonal to the direction of propagation of the incoming
plane wave, in order to produce an EM wave. In other
words, no EM wave can be generated from the interaction
between a constant EM field and a GW, unless the first one
is orthogonal to the direction of propagation of the second
one. In order to show this, we demonstrate that a vanishing
source term Sμν ¼ 0 in Eq. (7) is equivalent to the condition
ΦαFαμð0Þ ¼ qΦμ, where q is a real constant andΦα ¼ ∂αΦ.
Since we assume that Eð0Þ and Bð0Þ are constants in our
problem, the source term is given by Eq. (8). Therefore, the
nonzero part of Sμν is the exterior derivative of an effective
four-current density: Jeffμ ¼ ∂αhβμFαβð0Þ. We can thus
rewrite our source term as

Sμν ¼ ∂νJeffμ − ∂μJeffν

¼ ðΦνJeffμ −ΦμJeffν Þ0 with ð·Þ0 ≡ ∂ð·Þ=∂Φ:

The last line is obtained as a result of the plane-wave
approximation (the amplitude aμν above is constant), which
implies that the partial derivative ∂ν is equivalent to Φν

∂
∂Φ.

Because a GW verifies the eikonal ΦμΦμ ¼ 0 (if not, it is
inconsistent and vanishes with a change of coordinate
[41]), multiplying the above expression by Φμ gives that
Sμν ¼ 0 ⇔ ΦμJeffμ ¼ 0, and thus Φν is orthogonal to Jeffμ .
Since Φμ does not vanish, this yields the equivalence
Sμν ¼ 0 ⇔ Jeffμ ¼ 0. Let us now show the central result

Sμν ¼ 0 ⇔ Jeffμ ¼ 0 ⇔ ΦαFαμð0Þ ¼ qΦμ: ð9Þ

For plane waves hμν ¼ aμνeiωΦðxαÞ, we have that ∂αhλν ¼
Φαh0λν. Therefore, the effective four-current can be sim-
plified to

Jeffν ¼ Fαλð0ÞΦαh0λν

If ΦαFαμð0Þ ¼ qΦμ, then Jeffν ¼ qΦλh0λν. In the meantime,
the Lorenz gauge condition, ∂μhμν ¼ 0, is equivalent to
Φμh0μν ¼ 0 in the plane-wave approximation. So we can
conclude that the effective four-current density Jeffν van-
ishes. Now, let us prove the implication in the reverse way.
Let us assume Jeffν ¼ 0 and move to radiative coordi-

nates, that is to say, Φ ¼ x0 so we have directly Φ0 ¼ 1
and Φi ¼ 0. The GW obey to the eikonal, so the time-
components of the Minkoswki metric are η00 ¼ 0 and
η0i ¼ Φi. In such a comobile coordinate system, the
significant components of the wave are the hij. The source
term becomes
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Jeffν ¼ Φ0F0λð0Þh0λν þΦiFiλð0Þh0λν
¼ F0λð0Þh0λν
¼ F0jð0Þh0ij:

So, the fact that Jeffν ¼ 0 implies that F0j ð0Þh0ij ¼ 0.
At any point of spacetime, we can choose a spatial
coordinate system such that F0j ð0Þ ¼ Aδj1. Then, we have
F0j ð0Þh0ij ¼ 0, which leads to Ah0i1 ¼ 0, and so A ¼ 0 since

the GW is nonzero. Thus, F0j ð0Þ ¼ 0 ¼ qΦj, because
Φj ¼ η0j ¼ 0. Knowing that Φ0 ¼ 1 and Φi ¼ 0, we can
show that F0j ð0Þ ¼ ΦαFαj ð0Þ. We can also consider that
Φ0 ¼ 0 and Fα0 ¼ −F0α to conclude thatΦαFαμ ð0Þ ¼ qΦμ.
This completes our demonstration. Let us now particularize
the final result ΦαFαμ ð0Þ ¼ qΦμ in an illustrative case.
In Cartesian coordinates, we can write down the null
vector Φα ¼ ðk; 0; 0; kÞ, where k is the wave vector of
the incident GW which is therefore propagating along the z
direction. The above-mentioned condition (9) now leads
to two constraints on the EM field: Ex þ By ¼ 0 and
Ey − Bx ¼ 0. If one considers the case when there is no
electric field, this condition implies that the components of
the outer magnetic field that are transverse to the direction
of GW propagation vanish: Bx ¼ By ¼ 0. In other words,
any longitudinal magnetic field Bz does not produce any
EM wave via the inverse Gertsenshtein effect (since
Sμν ¼ 0). To produce GWs by this mechanism, one needs
Sμν ≠ 0 or, equivalently, a nonvanishing magnetic field in
the direction transverse to the GW propagation (B⊥ ≠ 0).
This is the reason why experiments like ADMX [39] do

not have the right configuration to detect GWs. Indeed,
they use a longitudinal outer magnetic field which can
therefore only interact with GWs propagating transversely
to it. This interaction can only produce EM waves that are
in the same direction as the constant magnetic field, but this
is forbidden in the TM cavity they are using (since only
transverse excitation modes are allowed, not longitudinal
ones). To turn a haloscope into a HFGW detector, one
simply needs to rotate the outer magnetic field by a quarter
of a turn.
Let us now present our proposed experimental setups.

One can either consider the resonance of the induced EM
waves inside a cylindrical cavity of radius R or inside a
waveguide made of two (or more) concentric open cylin-
ders with inner radius R1 and outer radius R2. We denote by

L the length of the resonators and by Bð0Þ
ext the external

magnetic field, which is assumed to be of constant
magnitude for simplicity. A schematic representation of
our cavities can be found in Fig. 1.
We briefly present here the responses of these cavities to

an incoming GW signal. The interested reader will find the
details of the computations at the end of this paper, in the
Appendix. In the following, we assume c ¼ 1. The starting
point is the induction of EM waves when the GW passes

perpendicularly to the static magnetic field, as described by
Eq. (7). Considering the outer magnetic field along the x

direction,
⃗

Bð0Þ
ext ¼ Bð0Þ

ext e⃗x·, we obtain the following wave
equation for the induced magnetic field B⃗ð1Þ:

�
−
∂2

∂t2 þ Δ⃗
�
B⃗ð1Þ ¼ Bð0Þ

ext

0
BB@

∂2hþ
∂z2 cosðϕÞ þ ∂2h×∂z2 sinðϕÞ

− ∂2hþ
∂z2 sinðϕÞ þ ∂2h×∂z2 cosðϕÞ

0

1
CCA;

ð10Þ
where hþ and h× are the usual polarizations of the incoming
GWin the traceless-transverse gauge. Although there is also
an induced electric field E⃗ð1Þ, the response of the detector is
dominated by the induced magnetic field, as we shall
see below.
We can then project Eq. (10) onto the proper functions of

the Laplacian operator in cylindrical coordinates. This
spectral decomposition is given by

Bð1Þ
r;ϕðt; r;ϕ; zÞ ≈

X
k;m;n

b̂r;ϕk;m;nðtÞ · ψ r;ϕ
kmnðr;ϕ; zÞ; ð11Þ

where ψ r;ϕ
kmnðr;ϕ; zÞ are the cylindrical harmonics that

satisfy the boundary conditions of our EM cavities. The
result of this spectral decomposition allows to reduce the
above wave equation (10) to an ordinary differential
equation describing a forced harmonic oscillator for each
spectral mode b̂r;ϕk;m;n in our cavity:

d2b̂r;ϕk;m;n

dt2
þ Ω2

knb̂
r;ϕ
k;m;n ¼ ŝr;ϕk;m;nðtÞ; ð12Þ

where Ω2
kn are the proper frequencies of the resonant

cavities and ŝr;ϕk;m;nðtÞ are the spectral coefficients of the
source of the wave equation (10).

FIG. 1. Schematic representation of the experimental designs: a
cylindrical TM cavity (top) and TEM waveguide (bottom), in an
external static and transverse magnetic field.
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The energy variation ΔE inside the cavity is given at the
leading order by (see the Appendix for details)

ΔE ≈
2πB0

μ0
·
X
k

Ikb̂k;1;0ðtÞ; ð13Þ

where the coefficients Ik arise from the spatial averaging in
the transverse directions (these adimensional quantities
depend on the cavity geometry only). Let us recall that
the numbers k, m label the transverse decomposition in the
radial and azimuthal directions, while the number n labels
the different longitudinal modes. We can see that only the
ðk; 1; 0Þ modes, which are constant in the longitudinal
direction z (since n ¼ 0), contribute to the energy variation
at first order in Bð1Þ. Since these ðk; 1; 0Þ modes do not
propagate along z, one can see that there is no spatial phase
shift with this energy variation at first order. These ðk; 1; 0Þ
modes of the induced magnetic field are sourced by

ŝr;ϕk;1;0ðz; tÞ ¼ πB0L2Ik

Z
L=2

−L=2

∂2hþðz; tÞ
∂z2 dz: ð14Þ

The detailed computations from Eq. (7) to Eqs. (12)–(14)
are available at the end of this paper, in the Appendix.
A dimensional analysis of Eq. (13) leads to the following

estimation for the order of magnitude of the induced energy
variation inside the resonator:

ΔE ≈
2πB2

0L
3

μ0
HGWF ; ð15Þ

where HGW is the (dimensionless) amplitude of the strain
of the GW and F is an adimensional geometrical factor4

accounting for the shape of the resonator (length and
diameter). This factor F is of the order of unity when
the spectrum of the incoming GW matches the resonance
bandwidth. In the other cases, we must consider a fre-
quency-dependent geometrical factor F ðωÞ.
Please note that with our model there is no temporal

phase shift in the conversion process. Indeed, there is no
imaginary part in the Fourier transform of ΔE and so the
complex argument is null. This is mainly due to the fact that
Eq. (12) is purely harmonic, without any dissipation, and
therefore no phase shift can happen. Instead of a derivation
in the time domain, one could also use a frequency
approach of the cavity responses to demonstrate this, but
this goes beyond the scope of this paper. However, the
ohmic losses of energy in the sidewalls of the cavities could
be represented by a dissipative term in Eq. (12), and so a
phase shift could appear in the conversion process for
resistive cavities. Although ohmic losses will lower the

efficiency of the resonance mechanism investigated here,
this can be avoided by working with superconducting
cavities.

V. HFGWs FROM PLANETARY-MASS
PRIMORDIAL BLACK HOLE MERGERS

PBH binaries may have formed through two different
channels: first, in the early Universe, when two PBHs form
sufficiently close to each other for their dynamics to
decouple from the expansion of the Universe, before the
matter-radiation equality [11,42]; second, by tidal capture
in dense environments [9,10], such as ultra-faint dwarf
galaxies. In this section, we review the motivations to
consider planetary-mass PBHs binaries and we estimate
their expected merging rate and gravitational-wave signal,
for these two channels. We then calculate the astrophysical
range of resonant electromagnetic detectors as a function of
their strain sensitivity. Finally, we compute for each
formation channel the limits that could be set on the
abundance of planetary-mass PBHs.

A. Motivations

The progenitor masses and low effective spins of the
black hole mergers detected by LIGO/Virgo have revived
the interest for PBHs in the ½1–100�M⊙ range [9–11,43].
However, it is debated if PBHs could constitute only a
small fraction, or up to the totality of the DM in the
Universe. In this context, detecting a subsolar black hole
would almost clearly point to a primordial origin.5 Going
beyond the simplest but unrealistic assumption of a
monochromatic mass function, the distribution of PBHs
could span several decades of masses, as is the case if
curvature fluctuations at the origin of PBH formation are
nearly scale invariant—a generic prediction of inflation—
or come from a broad peak in their power spectrum. Then,
the known thermal history of the Universe, in particular the
QCD transition at ∼100 MeV and the electroweak epoch at
∼100 GeV, should have left imprints in the PBH mass
function [12,46], even if we do not know the mechanism at
the origin of these curvature fluctuations. These features
take the form of a high peak at the solar mass scale and two
bumps at ∼30M⊙ and ∼10−5M⊙. Such an extended mass
function could explain a series of puzzling observations
(see Refs. [12,47] and references therein) such as unex-
pected microlensing events, LIGO/Virgo black hole merg-
ers, some properties of ultra-faint dwarf galaxies,
unexpected correlations in x-ray and infrared cosmic
backgrounds, and supermassive black holes at high red-
shifts. The bump in the planetary-mass range is consistent
with recent detections of star and quasar microlensing

4In other words, we extract all of the dimensional factors in
Eq. (13), leaving just one adimensional expression that depends
on the geometry of the detector and its frequency sensitivity.

5However, see Refs. [44,45] for another subsolar black hole
formation channel, with different spin predictions, in a specific
dark matter scenario.
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events [7,48,49], which suggest a DM fraction of fPBH ∼
0.01 made of compact objects, quite much more than one
can expect for floating planets, but that could be expected
for PBHs in the unified scenario presented in Ref. [12].
Recently, the possible detection of a stochastic GW back-
ground at nHz frequencies by NANOGrav [50] may also
hint at the existence of PBHs with planetary [51] or stellar
[52–54] masses, and Wang et al. [55,56] put some con-
straints on the PBH abundance for the current detectors to
probe a stochastic GW background made of PBHs.
However, all of these observations could have another
origin and the derived limits are still subject to large
astrophysical uncertainties. In the future, it is therefore
important to find complementary ways to probe the
existence of such objects, and to distinguish their nature
and origin.
As we show in this paper, HFGW detectors will have the

ability to detect or set new limits on the abundance of light,
subsolar PBHs, of mass mPBH ∼ 10−5M⊙. HFGWs are
indeed produced during the merging phase of such light
PBHs. The frequency associated with the innermost stable
circular orbit (ISCO), when the GW emission is close to
maximal, is given by

fISCO ¼ 4400 Hz
ðm1 þm2Þ=M⊙

; ð16Þ

where m1 and m2 are the masses of the two binary
components. A frequency of 200 MHz thus corresponds
to a PBH mass of 10−5 M⊙, the same order as the mass of
the lenses at the origin of the microlensing events reported
in Ref. [7]. Nevertheless, for being an interested HFGW
signal, one needs to investigate if the merging rate of such
PBHs can lead to at least Oð1Þ mergers per year within the
HFGW detector range.
PBHs therefore constitute a target of much interest for

our experimental concept of EM detection of HFGWs.
From the amplitude and spectral response of the resonant
detectors, we will characterize the expected signals from
PBH mergers for a large range of progenitor masses in the
interval ½10−8; 10−3�M⊙, located at 1 Gpc distance. Then,
for a given detector sensitivity, we will compute the
expected limits on the PBH abundance.

B. Gravitational waves from inspiraling binaries

A good estimation of the GW strain produced at a given
frequency fGW during the inspiraling phase of a black
hole binary is provided by the post-Newtonian approxi-
mation [57],

h ≈
2

D

�
GM
c2

�
5=3

�
πfGW
c

�
2=3

; ð17Þ

where M≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the binary chirp
mass and D is the distance to the observer. The GW

emission is close to maximal at the ISCO frequency and,
for a given chirp mass, for equal mass binaries,
m1 ¼ m2 ¼ mPBH. For an experiment with a detector strain
sensitivity hdet at this maximal frequency, the correspond-
ing astrophysical reach Dmax is given by

Dmax ≈ 1.6 ×
ðmPBH=M⊙Þ
hdet × 1020

Mpc: ð18Þ

For instance, for a strain sensitivity of hdet ∼ 10−25 and
mPBH ∼ 10−5 M⊙, eventual mergers towards the Galactic
center, in the Milky Way DM halo, or in satellite ultra-faint
dwarf galaxies, could be detected. For a better sensitivity
down to hdet ∼ 10−30, corresponding to the optimal sensi-
tivity of the proposed designs of resonant EM detectors,
one would probe planetary-mass PBH mergers in more
distant galaxies.

C. Merging rate of primordial binaries

If PBHs are spatially randomly distributed at formation,
it happens that two PBHs form so close to each other that
their gravitational attraction overpasses the effect of the
Hubble-Lemaître expansion at some point before matter-
radiation equality. In such a case, they directly form a
binary whose orbital parameters and lifetime depend not
only on the two black hole masses but also on the mass and
distance of the nearest PBHs. Eventually, it takes of the
order of the age of the Universe for the PBH binary to
merge. The merging rates τ today associated with this
binary formation channel and an arbitrary mass function
have been evaluated in Refs. [58–61] as

Rprimðm1;m2Þ≡ dτ
d lnm1d lnm2

≈
1.6×106

Gpc3yr
f2PBHfðm1Þfðm2Þfsup

×

�
m1þm2

M⊙

�
−32
37

�
m1m2

ðm1þm2Þ2
�
−34
37

; ð19Þ

where fðmÞ is the today density distribution of PBHs
normalized to one (

R
fðmÞd ln m ¼ 1) and fPBH is the

integrated DM fraction made of PBHs. We also define an
effective parameter

f̃PBHðmPBHÞ≡ fPBHfðmPBHÞf1=2sup ð20Þ

that includes a rate suppression factor (fsup) to take into
account the possible rate suppression due to binary
disruption by early-forming clusters, an effect put in
evidence by N-body simulations when fPBH ≳ 0.1 [62].
In such a case, one can recover the LIGO/Virgo merging
rates inferred from the recent detections of GW190425,
GW190521, and GW190814 involving at least one BH in
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the mass gaps, with fPBH ¼ 1 and fsup ≃ 0.0025 [63]. In
the opposite case, fsup ¼ 1 and f̃PBH simply represents the
DM density fraction made of PBHs at a given mass and
within a unit logarithmic mass interval.
If one considers the merging rates of equal-mass binaries

that produce the largest strain signal, one gets

RprimðmPBHÞ ≈
3.1 × 106

Gpc3 yr
f̃2PBH

�
mPBH

M⊙

�
−0.86

: ð21Þ

In turn, one can determine the radius of the sphere in which
one expects one event per year,

Dprim
1 ¼

�
4π

3
Rprim

�
−1=3

≈ 4.2 Mpc × f̃−2=3PBH

�
mPBH

M⊙

�
0.29

: ð22Þ

For simplicity we neglected the effects of redshift,
which are anyway insignificant for most of the considered
cases. For instance, in the scenario of Refs. [12,63]
with fPBH ¼ 1, fsup ¼ 0.0025, and fð10−5M⊙Þ ≃ 10−2,
one gets Dprim

1 ð10−5M⊙Þ ≈ 23 Mpc. Using Eqs. (17) and
(18), one then obtains the required GW strain sensitivity to
detect one of these merger events per year,

hprim1 ≈ 3.8 × 10−21f̃2=3PBH

�
mPBH

M⊙

�
0.7

ð23Þ

≈ 8.3 × 10−19f̃2=3PBH

�
Hz
f

�
0.7
; ð24Þ

which can be typically targeted by GW experiments
detecting frequencies from kHz up to GHz. This relation
can be inverted to obtain a limit on the DM fraction at a
given mass (if fPBH < 0.1) in the case of null detection, as a
function of the strain sensitivity,

f̃PBH ≲ 9.1

�
hdet
10−20

�
3=2

�
mPBH

M⊙

�
−1.07

: ð25Þ

However, the strain sensitivity of the detector depends on
the waveform and signal duration, which depend
on the PBH mass. It is thus more adequate to compute a
limit on the PBH abundance taking these effects into
account and instead assuming an EM power sensitivity,
which we do in the next section. For instance, with the two
proposed experimental designs and a power sensitivity of
10−10 W, we obtain limits that are competitive with the
current microlensing limits at the same mass scale. These
are represented in our final Fig. 7.
Finally, we point out that when our analysis was

being finalized, the authors of Ref. [64] claimed that the
rates from primordial binaries are highly suppressed

compared to previous calculation. The reason is a subtle
general-relativistic effect arising when one considers geo-
desics in black hole exterior spacetime metrics that
are Friedmann-Lemaître-Robertson-Walker asymptotic. If
this claim is correct, primordial binaries are by far outside
the reach of EM detectors, but one can nevertheless
consider the merging rates inside PBH clusters, which
we detail below.

D. Merging rate from PBH clusters

The second binary formation channel is through dynami-
cal capture in dense PBH halos. Like any other DM
candidate, PBHs are expected to form halos during the
cosmic history, and their clustering properties determine the
overall merging rate. For instance, for a monochromatic
mass spectrum and a standard Press-Schechter halo mass
function, one gets a rate [9]

Rcapt ∼ f2PBH ×Oð1–100Þ yr−1Mpc−3 ð26Þ

that is independent of the PBH mass. For more realistic
extended mass functions, the abundance, size, and evolu-
tion of DM halos, partially or entirely made of PBHs, is
impacted by several effects; see, e.g., Refs. [65–75]. Let us
mention a Poissonian noise from the discrete nature of
PBHs, a seeding effect from heavy PBHs, the enhancement
of the primordial power spectrum at the origin of PBH
formation, the dynamical heating and evaporation of
clusters, etc. These effects can either boost or suppress
the merging rates from clusters and make the whole
clustering dynamics a rather complex and model-dependent
process, subject to large uncertainties. Invoking clustering
is also crucial to evade microlensing limits on stellar masses
[76,77] in scenarios with fPBH ¼ 1. As an alternative to
using uncertain theoretical predictions, one can instead
infer an upper limit on the PBH merging rate from LIGO/
Virgo observations; see, e.g., Ref. [63]. The merging rate
from tidal capture in PBH clusters for an arbitrary mass
function is given by [10,63]

Rcaptðm1; m2Þ≡ dτ
d ln m1d ln m2

≈ Rclustf2PBH × fðm1Þfðm2Þ

×
ðm1 þm2Þ10=7
ðm1m2Þ5=7

yr−1Gpc−3; ð27Þ

where Rclust is an effective parameter encompassing the
clustering properties. For fPBH ¼ 1 and Rclust ≈ 450, these
rates are consistent with the latest LIGO/Virgo observa-
tions, for a broad PBH mass function impacted by the
transient reduction of the critical threshold of PBH for-
mation at the QCD epoch. As already mentioned, this effect
is unavoidable and may have induced a peak around
2.5M⊙ and a bump around 30M⊙ in the PBH mass
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function. In this scenario, around one percent of the DM
could be made of planetary-mass PBHs around 10−5M⊙.
Like for primordial binaries, we define an effective
parameter

f̃PBH ≡
�
Rclust

450

�
× fPBHfðmPBHÞ ð28Þ

representing the DM density fraction at a given mass and
per logarithmic mass interval, in the above-mentioned
scenario. One then obtains the merging rate for equal-mass
binaries,

RcaptðmPBHÞ ¼ 1.2 × 103f̃2PBH; ð29Þ

the corresponding source distance Dcapt
1 ,

Dcapt
1 ≈ 58 Mpc × f̃−2=3PBH ; ð30Þ

and the required experimental strain sensitivity to detect
one event per year,

hcapt1 ≈ 2.7 × 10−22f̃2=3PBH

�
mPBH

M⊙

�
: ð31Þ

This GW signal is therefore typically lower than that for
PBH binaries on planetary-mass scales.
Finally, like for the case of primordial binaries, we have

derived the expected limits on f̃PBH for a given exper-
imental strain sensitivity,

f̃PBH ≲ 2.5 × 104
�
hdet
10−20

�
3=2

�
mPBH

M⊙

�
−3=2

: ð32Þ

As an example, if hdet ¼ 10−30 and mPBH ¼ 10−5, one gets
f̃PBH ≲ 7 × 10−4, which is better than the current micro-
lensing limits. Again, it is more accurate to assume a power
sensitivity rather than a strain sensitivity. Doing so, the
corresponding limits on f̃PBH are represented in our
final Fig. 7.

VI. PROBING PBH MERGERS WITH RESONANT
EM DETECTORS OF HFGWs

Let us consider GW trains produced during the final
inspiraling phase of PBH binaries of different masses and
passing through the resonator, and let us analyze the
induced EM radiation. For simplicity, we consider a GW
propagation collinear with the longitudinal axis of the EM
resonator and perpendicular to the outer magnetic field. In
this case, the GW can be approximated by a plane wave,
i.e., hþ;× ¼ hþ;×ðz; tÞ since the radius of the detector is
much smaller than the incoming wavefront for a distant
source. Some inclination of the direction of the incoming
GW would result in a signal of lower amplitude, since only

the component of the GW in the direction of the outer
magnetic field contributes to the inverse Gertsenshtein
effect. Yet, this ideal case allows to illustrate the physical
process and to estimate the expected response of the
detector and the output signal. We have computed the
typical EM signals for resonators of various shapes. Post-
Newtonian time-domain GW waveforms are generated by
using the LALSuite library [78], assuming a 4PN approxi-
mation. For all of the simulations, we choose a signal
sampling frequency that is four times the ISCO frequency
[Eq. (16)]. The initial frequency of the signal is set to
fISCO=25. In Fig. 2, we provide an example of the GW
waveform produced by the merging of a PBH binary with
component masses of 10−5M⊙ and located at a distance of
1 Gpc. The amplitude of the GW strain at reception,
denoted HGW, is of order 10−28 and the signal duration
is of order 10−5 s.
Then, by using Eq. (13) and solving the forced harmonic

oscillator equations (12), we compute the induced EM
power for the two designs of resonators. Our results are
displayed in Fig. 3, for 1-m long resonators in a 5 T
constant magnetic field. The radius of the resonators is set
to 5 m, and for the transverse electromagnetic (TEM)
coaxial design we consider a 10 cm inner radius. As
expected, the induced power increases near the merger.
In each case, we have also computed the frequency
spectrum of the induced power, which exhibits peaks
corresponding to the resonance frequencies, coming from
Eqs. (A10) and (A11) in the Appendix. The power rms
values are 1.00 × 10−10 W for the TEM resonator and
1.03 × 10−10 W for the TM resonator.
Figure 4 shows the first five proper frequencies of the

TEM and TM cavities as a function of their outer radius,
within the range 10 cm to 10 m, for a detector of length 1 m.
For the TM resonator, these frequencies range from
10 MHz to 10 GHz, while the TEM waveguide can reach
higher frequencies for the same detector size. In the case of
an outer radius almost equal to the inner one (thin case), the
resonance frequencies can be 1 order of magnitude larger

FIG. 2. Left: GWwaveform hþ for the final inspiraling phase of
a PBH binary with component masses of 10−5 M⊙, at a distance
of 1 Gpc, in the post-Newtonian (4PN) approximation. Right:
corresponding GW signal power spectrum.
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than for a TM resonator. We point out that it would even be
possible to use several concentric TEM waveguides to
further extend the range of resonance frequencies.
Figure 4 therefore illustrates how one could play with
the geometry of the experimental setup in order to
optimize the detector response to some motivated GW
signal. The PBH mass is another parameter to consider.
For the same detectors as in Fig. 3, we have simulated the
detection of the signal for two additional PBH masses of
10−3 and 10−7M⊙, and the corresponding power spectra
are shown in Fig. 5. For 10−3M⊙, the resonance frequen-
cies are higher than the ISCO frequency. The resulting EM
power spectrum in the detector exhibits a continuous set of
frequencies that matches the incoming GW power spec-
trum followed by the excitation of the detector resonance
frequencies that constitutes the highest values in the
induced radiation power spectrum. The continuous set
of induced frequencies comes from the particular solution
of the forced oscillator (12), while the excitation of the
detector resonance frequencies comes from the general
solution.
In the 10−7 M⊙ case, the detector resonance frequencies

are lower than the main GW signal frequencies. Therefore,
we have a clear separation between the EM power spectrum
that is induced by the resonance frequencies of the detector

and the one induced by a range of frequencies inherited
from the incoming GW signal. In Fig. 5, the part of the
power spectrum induced by the resonance frequencies is
overestimated. Indeed, the numerical fast fourier transform

FIG. 3. Top: time evolution of the induced EM power in the two
resonators. Bottom: GW signal power spectrum (blue) and
induced power spectrum (green). The detectors are 1 m long,
in a 5 T constant magnetic field. The outer radius is 5 m, and for
the TEM coaxial case the inner radius of 10 cm. The peaks in the
power spectrum correspond to the resonance frequencies, repre-
sented by the red dots.

FIG. 4. First five proper frequencies of the cavity (TM
resonator, straight lines) and the waveguide (TEM resonator,
dashed line) as a function of their outer radius (assuming a length
of L ¼ 1m and an inner radius of R1 ¼ 0.1m for the waveguide).

FIG. 5. Same as the bottom panel of Fig. 3, but for a PBH mass
of 10−3 M⊙ (top panel) and 10−7 M⊙ (bottom panel). In the first/
second case, the GW frequency is below/above the resonance
frequencies (represented by the red points) of the detector.
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(FFT) of the incoming GW leads to a plateau at low
frequencies, as shown in Fig. 2. As a result, this plateau will
be excited by the proper frequencies of the cavity, leading
to an overestimation of this part of the induced power
spectrum. We show below how to avoid this numerical
limitation.
Finally, we have computed the power in a 1-m long

resonator of radius 5 m in a 5 T magnetic field, induced by
the merging of PBHs with a broad range of masses. Our
results are summarized in Table I. We find that the induced
power is maximal for a PBH mass around 10−5 M⊙, i.e.,
when the corresponding GW frequency lies within the
range of the resonance frequencies. In Fig. 6 we show the
rms power as a function of the PBH mass, for the same
experimental configuration. In order to do so, we have
considered 41 simulated signals of PBH mergers for 61
different PBH masses (i.e., 41 signals per discretization
point in mass, and with each of these signals corresponding
to different initial frequency ranging from fISCO=30 to
fISCO=10). Because of the numerical problem at masses
beyond 10−6 M⊙ (poor resolution of the FFT of the GW

signal at low frequencies), we extrapolate our data with the
expected behavior that we will develop further in this
section. When the GW spectrum covers the fundamental
resonance modes of the detector, its response is maximal
and this occurs for PBH masses covering 2 orders of
magnitude around 10−5M⊙.
In addition, we also show in Fig. 6 the rms energy

variation inside the cavity, as a function of the PBH mass.
The induced energy typically corresponds to millions of
photons. It is well above the sensitivity of the ADMX
experiment, which has achieved an effective instrumental
noise temperature of order Oð1Þ K at similar frequencies
[39,40] and with a similar value of the magnetic field.
Further work is however needed in order to more accurately
quantify the energy or power sensitivity that could be
achieved with a similar technology.
For masses larger than 10−4M⊙, the frequencies asso-

ciated with the GWs are smaller than the proper frequencies
of the cavity and so the amplitude of the total solution of
Eq. (12) is proportional to the amplitude of the source term,
divided by the square of the proper frequencies of the

FIG. 6. rms values of the induced power (left) and energy variation (right) in the TEM (blue) and TM (red) detectors as in Table I, as a
function of the PBH mass, for mergers located at a distance of 1 Gpc. The excitation of resonant frequencies boosts the signal in the
range between 10−6 and 10−4 M⊙. Below 10−6 M⊙, we plot as dashed lines the expected behavior due to numerical limitation in our
simulations. Asymptotic behavior coming from our analysis is plotted as black dotted lines.

TABLE I. GW signal duration, maximal strain, ISCO frequency, and the corresponding induced power in the resonant cavity or
waveguide, for different values of the PBH mass. The detectors are 1 m long for an outer radius of 5 m. The inner radius in the TEM case
is 10 cm. The transverse static magnetic field is set to 5 T. The minimal frequency of the GW waveform signal is set to fISCO=25. The
bandwidth of the resonant frequencies considered is ½2 × 107; 2 × 108� Hz.
mPBH (M⊙) Time (s) HGW fISCO (Hz) PRMS TEM (W) PRMS TM (W)

10−3 5.43 × 10−3 1.15 × 10−26 2.20 × 106 2.37 × 10−14 3.19 × 10−14

10−4 5.43 × 10−4 1.37 × 10−27 2.20 × 107 2.98 × 10−12 4.96 × 10−12

10−5 5.43 × 10−5 1.40 × 10−28 2.20 × 108 1.00 × 10−10 1.03 × 10−10

10−6 5.43 × 10−6 1.17 × 10−29 2.20 × 109 1.51 × 10−11 6.31 × 10−12
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cavity. So the behavior of the particular solution is the same
as the source term. From Eq. (10), we know that the source
term is proportional to the second time derivative of the
strain. On the one hand, the GW strain is proportional to
PBH mass [see Eq. (17)]. On the other hand, the maximal
GW frequency is inversely proportional to the PBH mass.
As a result, the energy released in the detector goes like
1=mPBH, which explains the linear decreases observed at
large mass.
As mentioned earlier, because of a numerical limitation

we do not plot the induced energy and rms power for
masses smaller than 10−6M⊙. Nonetheless, we can
extrapolate the expected behavior of the mass dependence.
The analysis is the same as in the large-mass regime except
that this time it is the proper frequencies of the cavity that
are smaller than the frequencies associated with the GWs.
Thus, the amplitude of the total solution of Eq. (12) is now
proportional to the amplitude of the source term, divided by
the square of the GW frequencies. As these frequencies are
inversely proportional to the PBH mass, the behavior of the
energy released in the detector is m2

PBH times what it was in
the previous case. So the energy variation goes like mPBH.
We will show this in a forthcoming paper by using a
frequency domain approach.
Finally, we observe that there is no significant difference

between the TEM and the TM detectors, highlighting some
robustness with respect to the choice of the experimen-
tal setup.
As a final step, we have combined our calculations of the

PBH merging rates and the induced power as a function of
the PBH mass for mergers at a fixed distance of 1 Gpc, in
order to forecast limits on the PBH abundance for a fixed

detector sensitivity of 10−10 Wand a survey of one year. To
do so, we have used the calculated values of D1 for the two
binary formation channels. Given that the GW strain is
inversely proportional to the distance of the source, the EM
power released in the detector is also inversely proportional
to the distance; see Eq. (15). Our final results are displayed
in Fig. 7. We can clearly see that the resonance plays a role
by boosting the detection limits to be as low as f̃PBH ≲ 10−8

for primordial binaries, and f̃PBH ≲ 10−4 for tidal capture in
clusters. Resonant EM-based HFGW detectors could there-
fore set unprecedented and independent limits on the
abundance of planetary-mass PBHs.

VII. CONCLUSION

The detection of dozens of black hole or neutron star
mergers by LIGO/Virgo and, more recently, the plausible
observation of a stochastic GW background with pulsar
timing arrays (PTAs) by NANOGrav, have revealed the
bright future of GW astronomy. LIGO/Virgo probe GW
frequencies between 10 and 104 Hz and PTAs of 10−9 Hz.
In the future, ground-based and space detectors like the
Einstein Telescope, Cosmic Explorer, and LISAwill fill the
gap between these two ranges and probe other GW sources
like intermediate-mass black hole binaries. On the other
side of the GW spectrum, HFGW detectors might be
equally interesting and probe cosmological stochastic
backgrounds or exotic planetary-mass compact objects
like PBHs. Motivated by recent claims that PBHs with
a wide mass distribution could explain, among other
things, the masses and spins of LIGO/Virgo black holes,
the NANOGrav observation, and the dark matter in the
Universe, we envisioned their detectability with two
designs of resonant EM detectors based on the inverse
Gertsenshtein effect and operating at frequencies of order
100 MHz.
The released energy in an EM resonator has been

calculated for fourth-order post-Newtonian GWwaveforms
corresponding to the final inspiraling phase of light PBH
binaries. The experimental apparatus consists in either a
1-m long cylindrical resonant cavity (TM) or a conducting
waveguide (TEM), together with a static 5 T magnetic field
orthogonal to their axis of symmetry. For a 5-m radius
resonator or a waveguide of inner radius 0.1 m, we found a
typical power variation of order of 10−10 W, detectable with
present technology. Similar resonant cavities have been
already built for axion searches, but their collinear mag-
netic field prevents the detection of HFGWs. We have also
studied the expected signal and its power spectrum for
different binary masses. Their merging rates have been
estimated for two PBH binary formation channels, in the
early Universe or due to tidal capture in dense clusters. The
optimal sensitivity is obtained for PBH masses of order
10−5M⊙. For the two considered models, we forecast the
stringent limits on the PBH abundance that could be set

FIG. 7. Expected limits on the effective parameter f̃PBH
corresponding to the dark matter density fraction in PBHs at a
given mass and per logarithmic mass interval in the two models
described in the text: primordial binaries (blue limit) and tidal
capture in halos (red limit). These limits are computed for the
proposed experimental designs of EM resonant HFGW detectors,
assuming a power sensitivity of 10−10 W, achievable with current
technology. The orange curve shows the possible abundance of
planetary-mass PBHs inferred from recent microlensing obser-
vations towards the Galactic bulge [7].
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with such experiments, of order f̃PBH ≲ 10−8 and
f̃PBH ≲ 10−4, respectively. Finally, one should keep in
mind that we can tune the parameters of the detector to
match the frequency range of highest interest.
Therefore, HFGWs have the ability to set new con-

straints on the fraction of dark matter made of light PBHs
that would be complementary to microlensing limits. In
particular, they could be used to distinguish between PBH
and planetary origins of recently detected microlensing
events towards the Galactic center, suggesting that about
one percent of the DM could be made of such objects.
HFGW detectors with similar designs could also be used

to detect cosmological stochastic GW backgrounds.
Frequencies around 100 MHz are of particular interest in
this context, because these are characteristic of GW sources
at energies close to the grand unified theory scale, like (p)
reheating, oscillons, phase transitions, or evaporating
PBHs. In particular, we point out that a strain sensitivity
down to h ∼ 10−30 for achievable TM and TEM detectors is
of the order of the typical amplitude of such cosmological
backgrounds. Ongoing research focuses on using a fre-
quency analysis of the resonance mechanism to get direct
information about the frequency sensitivity of our detector.
Another ongoing work is computing the power variation in
the detectors generated by a stochastic, almost isotropic
GW background. Another future research topic is to
characterize the expected experimental noise with such
detectors. The results for axion haloscope detection [39,40]
could be an interesting starting point.
In summary, resonant electromagnetic HFGW detectors

are ideal for probing various aspects of fundamental
physics, from early Universe cosmology to exotic compact
objects like planetary-mass primordial black holes. Our
work contributes to paving the way in this direction and
provides strong motivations to start the experimental
development of such detectors, with currently available
technology.
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APPENDIX: DETAILS OF COMPUTATIONS
FROM EQ. (7) TO EQS. (12)–(14)

In the Lorenz gauge, an incoming gravitational
plane wave can be written, in cylindrical coordinates
ðt; r;ϕ; zÞ, as

hrrðϕ; z; tÞ ¼ −hϕϕ ¼ hþðz; tÞ cosð2ϕÞ þ h×ðz; tÞ sinð2ϕÞ;
hrϕðϕ; z; tÞ ¼ −hþðz; tÞ sinð2ϕÞ þ h×ðz; tÞ cosð2ϕÞ;

where hrr, hϕϕ, hrϕ are the metric perturbations in the
noncoordinate basis ðcdt; dr; rdϕ; dzÞ and hþ and h× are
the usual polarizations of the incoming GW in the traceless-
transverse gauge.
The incoming GW will interact with the component of

the magnetic field that is perpendicular to its direction of
propagation. We therefore consider the outer magnetic field

along the x direction:
⃗

Bð0Þ
ext ¼ Bð0Þ

ext e⃗x. Any component of the
magnetic field that would be collinear to the direction of the

propagation of the gravitational plane wave,
⃗

Bð0Þ
ext ≈ e⃗z, does

not produce any EM wave through the inverse
Gertsenshtein effect. Indeed, since Fð0Þ

xy ¼ Bz, one has
that, from Eq. (8),

Sμν ¼ −∂xð∂μhyν − ∂νhyμÞFð0Þ xy þ ðx ↔ yÞ:

Each term in the above equation will identically vanish in
the case of a plane gravitational wave propagating along the
direction of the magnetic field [hþ;× ¼ hþ;×ðz; tÞ].
Let us now assume that our EM resonators are axially

symmetric along the z direction and examine Eq. (7) in
cylindrical coordinates. The external constant magnetic
field along the x direction gives rise to only two compo-
nents of the zeroth-order electromagnetic tensor,

Fð0Þ
rz ¼ Bð0Þ

ext sinðϕÞ;
Fð0Þ

ϕz ¼ Bð0Þ
ext cosðϕÞ;

in the noncoordinate basis ðcdt; dr; rdϕ; dzÞ. For an
incoming gravitational plane wave interacting with a
constant magnetic field along the x direction, Eq. (7)
can be written in terms of the induced electric and magnetic
fields E⃗ð1Þ, B⃗ð1Þ,

�
−

∂2

∂t2 þ Δ⃗
�
E⃗ð1Þ ¼ S⃗E; ðA1Þ

�
−

∂2

∂t2 þ Δ⃗
�
B⃗ð1Þ ¼ S⃗B; ðA2Þ

with the following source terms:

S⃗⊥E ¼ Bð0Þ
ext

∂2hþ
∂t∂z

� − sinðϕÞ
− cosðϕÞ

�
þ Bð0Þ

ext
∂2h×
∂t∂z

�
cosðϕÞ
− sinðϕÞ

�
;

ðA3Þ
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S⃗⊥B ¼ Bð0Þ
ext

∂2hþ
∂z2

�
cosðϕÞ
− sinðϕÞ

�
þ Bð0Þ

ext
∂2h×
∂z2

�
sinðϕÞ
cosðϕÞ

�
·

ðA4Þ
Equations (A2) and (A4) lead to Eq. (10) of this paper.
Our earlier demonstration is illustrated here, and indeed

the longitudinal components ðE; BÞð1Þz are not sourced since
SE;z ¼ SB;z ¼ 0 so that the induced radiation is purely

TEM: ðE;BÞð1Þz ¼ 0. In the above equations, Δ⃗ is the vector
Laplacian operator in cylindrical coordinates, which is
given by

Δ⃗ E⃗ ¼

0
BB@

∇2Er −
Er
r2 −

2
r2 ∂ϕEϕ

∇2Eϕ −
Eϕ

r2 þ 2
r2 ∂ϕEr

∇2Ez

1
CCA; ðA5Þ

where ∇2 is the scalar Laplacian: ∇2f ¼ ∂2
rf þ 1

r ∂rfþ
1
r2 ∂2

ϕf þ ∂2
zf. Any EM field inside an ideal resonator must

verify the boundary conditions along any perfectly con-

ducting surfaces: E⃗ð1Þ
k ¼ B⃗ð1Þ

⊥ ¼ 0⃗. Therefore, any wave-

guide with two concentric open cylinders will host EM field

configurations with Eð1Þ
z jr¼R1;R2

¼ Bð1Þ
r jr¼R1;R2

¼ 0, while a
cylindrical conducting cavity will host EM fields satisfying

Eð1Þ
z jr¼R¼Bð1Þ

r jr¼R ¼ 0 and Eð1Þ
r;ϕjz¼�L=2 ¼ Bð1Þ

z jz¼�L=2 ¼ 0.
The inhomogeneous wave equations (A1)–(A2) can be
efficiently solved using spectral methods, i.e., by approxi-
mating the unknown field ðE⃗; B⃗Þð1Þðt; r;ϕ; zÞ by a decom-
position over a basis of orthogonal functions that satisfy the
above-mentioned boundary conditions. Here, a natural
choice of such a basis is given by the following set of
cylindrical harmonics (omitting the useless longitudinal
component ψ z

kmn):

ψ r
kmn ¼Ckmn ·RkmðrÞ ·

�
cos

sin

�
ðmϕÞ ·

�
cos

sin

��
2πnz
L

�
;

ðA6Þ

ψϕ
kmn ¼∓Ckmn ·RkmðrÞ ·

�
sin

cos

�
ðmϕÞ ·

�
cos

sin

��
2πnz
L

�
;

ðA7Þ

where Ckmn are normalization coefficients and the radial
eigenfunctions RkmðrÞ are such that the boundary con-
ditions are satisfied. This is the case when

RkmðrÞ ¼ Ak:Jm−1ðαk:rÞ þ Ym−1ðαk:rÞ ðA8Þ

¼ Jm−1ðαk:rÞ ðA9Þ

for the waveguide and the cavity, respectively. In the above
equation, JnðrÞ; YnðrÞ are Bessel functions of the first and

second kind, respectively, and the constants Akm and αk are
solutions of the system

Ak:Jm−1ðαk:R1;2Þ þ Ym−1ðαk:R1;2Þ ¼ 0 ðA10Þ

for the case of the waveguide with two open conducting
cylinders and

Jm−1ðαk:RÞ ¼ 0 ðA11Þ

in the case of the cylindrical cavity.
The cylindrical harmonics ðψ⃗kmnÞT ¼ðψ r

kmn;ψ
ϕ
kmn;ψ

z
kmnÞ

are eigenfunctions of the vector Laplacian operator Δ⃗ in
cylindrical coordinates with the following eigenvalues:

Δ⃗ψ⃗kmn ¼ −
�
α2k þ

4π2n2

L2

�
ψ⃗kmn ¼ −Ω2

knψ⃗kmn: ðA12Þ

These eigenfunctions ψ r;ϕ
kmn constitute a complete ortho-

normal set with the scalar product

ðf; gÞ ¼
Z

R2ðRÞ

R1ð0Þ

Z
2π

0

Z
L=2

−L=2
fðr;ϕ; zÞgðr;ϕ; zÞr:dr:dϕ:dz;

where the different bounds of the integral over the radius
correspond to the case of a waveguide or a cavity.
Moving back to Eqs. (A1)–(A2), one can use a truncated

expansion in this basis as an approximation of the unknown
field. For instance, let us set

Bð1Þ
r;ϕðt; r;ϕ; zÞ ≈

X
k;m;n

b̂r;ϕk;m;nðtÞ · ψ r;ϕ
kmnðr;ϕ; zÞ; ðA13Þ

with

b̂r;ϕk;m;nðtÞ ¼ ðBð1Þ
r;ϕ;ψ

r;ϕ
k;m;nÞ;

so that the inhomogeneous wave equation (A2) now
reduces to a harmonic oscillator ordinary differential
equation for each mode b̂r;ϕk;m;nðtÞ [Eq. (12) in the paper],

d2b̂r;ϕk;m;n

dt2
þ Ω2

knb̂
r;ϕ
k;m;n ¼ ŝr;ϕk;m;nðtÞ; ðA14Þ

where ŝr;ϕk;m;nðtÞ are the spectral coefficients of the

source Sr;ϕB :

Sr;ϕB ðt; r;ϕ; zÞ ≈
X
k;m;n

ŝr;ϕk;m;nðtÞ · ψ r;ϕ
kmnðr;ϕ; zÞ:

In this approach, each mode b̂r;ϕk;m;nðtÞ that composes the

induced magnetic field B⃗ð1Þ behaves as a harmonic oscil-
lator driven by the corresponding mode of the source ŝr;ϕk;m;n.
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The general solution of such a system describes a resonance
process through a superposition of oscillations at proper
frequency Ωkn and a particular solution of the inhomo-
geneous equation. The latter can be easily obtained in the
Fourier space. Since the source of the induced magnetic
field is directly related to the second derivative of the metric
perturbation, resonance will be achieved when the incom-
ing GWs share some common frequencies with the coaxial
detector, as we have seen in the main text.
Fortunately, there are some simplifications allowing to

restrict to specific modes of the cylindrical harmonic deco-
mposition of the induced EM fields ðE⃗ð1Þ; B⃗ð1ÞÞ. First, in the
case of a plane gravitational wave with a direction of
propagation perpendicular to that of the outer magnetic
field B⃗ð0Þ, the source terms are given by Eqs. (A3)–(A4) and
therefore the induced EM fields will only have an azimuthal
mode number equal to one: m ¼ 1. Second, if one focuses
on the detection of the induced EM energy inside the
resonator, it suffices to consider that the components of
the induced magnetic fields that are in the same direction as
the outer strongmagnetic field. Indeed, theEMradiation that
is induced in the resonators will modify their EM energy
content. The total electromagnetic energy E inside the
waveguide is given by the classical formula

E ¼ 1

2

Z
V

�
ϵ0kE⃗k2 þ

kB⃗k2
μ0

�
dV;

where V is the volume of the waveguide. The dominant
contribution to the energy variation ΔE is given by the
coupling between the external magnetic field B⃗ð0Þ and the
induced one B⃗ð1Þ,

ΔE ¼ Etot − Eð0Þ ≈
1

μ0

Z
V
ðB⃗ð0Þ • B⃗ð1ÞÞdV; ðA15Þ

neglecting the terms in kE⃗ð1Þk2 and kB⃗ð1Þk2. Since
we have assumed here that the external magnetic

field lies in the x direction, one only needs to
compute

Bð1Þ
x ¼ Bð1Þ

r cosϕ − Bð1Þ
ϕ sinϕ

from Eqs. (A2) and (A4). In the case of an incoming plane
GWorthogonal to the outer magnetic field, only the modes

with m ¼ 1 (such that Bð1Þ
r ≈ cosϕ and Bð1Þ

ϕ ≈ − sinϕ; see
above) and n ¼ 0, i.e., constant in the z direction, will give a
nonvanishing contribution to the integral over the volume in
the computation of the energy. The important terms are
therefore sourced by Eq. (14),

ŝr;ϕk;1;0ðz; tÞ ¼ πB0L2Ik

Z
L=2

−L=2

∂2hþðz; tÞ
∂z2 dz; ðA16Þ

with the dimensionless quantity Ik given by

Ik ¼
Z

r2ðR=LÞ

r1ð0Þ
Rk;1ðLρÞρdρ; ðA17Þ

with ρ ¼ r=L, r1;2 ¼ R1;2=L and for a magnetic field along
the x direction.
In summary, the energy variation at the leading order is

given by Eq. (13),

ΔE ≈
2πB0

μ0
·
X
k

Ikb̂k;1;0ðtÞ; ðA18Þ

with b̂k;1;0ðtÞ ¼ b̂rk;1;0ðtÞ þ b̂ϕk;1;0ðtÞ ¼ 2b̂r;ϕk;1;0ðtÞ. The
modes b̂k;1;0ðtÞ are solutions of the forced harmonic
oscillator equation (A14) with a source term given by
(twice) Eq. (A16). This completes the detailed explanation
of how to obtain Eqs. (12)–(14).
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