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In the framework of classical scale invariance, we consider quadratic gravity in the Palatini formalism
and investigate the inflationary predictions of the theory. Our model corresponds to a two-field scalar-
tensor theory, which involves the Higgs field and an extra scalar field stemming from a gauge Uð1ÞX
extension of the Standard Model, which contains an extra gauge boson and three right-handed neutrinos.
Both scalar fields couple nonminimally to gravity and induce the Planck scale dynamically, once they
develop vacuum expectation values. By means of the Gildener-Weinberg approach, we describe the
inflationary dynamics in terms of a single scalar degree of freedom along the flat direction of the tree-level
potential. The one-loop effective potential in the Einstein frame exhibits plateaus on both sides of the
minimum and thus the model can accommodate both small and large field inflation. The inflationary
predictions of the model are found to comply with the latest bounds set by the Planck collaboration for a
wide range of parameters and the effect of the quadratic in curvature terms is to reduce the value of the
tensor-to-scalar ratio.

DOI: 10.1103/PhysRevD.104.023521

I. INTRODUCTION

The combined analysis of the latest cosmological data
based on various observations such as the cosmic micro-
wave background (CMB), the large scale structures, the
supernova data etc., favor [1] a flat, homogeneous and
isotropic Universe. Cosmic inflation [2–5] not only natu-
rally explains the aforementioned features of the Universe,
but quite importantly, when treated quantum mechanically,
it also provides a mechanism for the production of the
necessary primordial anisotropies, which act as seeds for
the generation of the large scale structures that we observe
today. Data from the Planck mission combined with
previous observations [6] have severely constrained the
parameter space of the inflationary models and essentially
ruled out many of those, including the simplest ones where
a scalar field is minimally coupled to gravity. On the other
hand, more involved models such as the Starobinsky [2],
where an R2 term is added to the Einstein-Hilbert action,
seem to lie within the allowed range. This kind of non-
minimal models belongs in the general class of scalar-
tensor theories [7–22]. In such models, the scalar field ϕ

typically couples to gravity via a term of the form ξϕ2R,
where ξ is a dimensionless coupling constant and R is the
Ricci scalar. It is noteworthy that this type of coupling
allows for the Planck scale to be generated dynamically
when ϕ develops a vacuum expectation value (VEV).
The dynamical generation of the Planck scale is usually

achieved in scale-invariant theories [23–70], where the
running of the inflaton quartic coupling induces symmetry
breaking à la Coleman-Weinberg. Scale invariance posits
that the Lagrangian of a theory should not contain any
ad hoc mass parameters. Utilizing the restrictive power of
scale invariance, one can built three more terms that respect
the symmetry: the Starobinsky term αR2 and the terms
βRμνRμν and γRμνσλRμνσλ, where Rμνσλ and Rμν are the
Riemann and Ricci tensors, respectively, and α, β and γ are
dimensionless constants. This gravitational theory is called
quadratic gravity and has recently received a lot of
attention as a possible realization of quantum gravity
[35,47,62,63,70–81]. Of course, in extended theories of
gravity, the issue of the correct formulation arises, i.e.,
whether one should employ the metric or the Palatini
formalism when varying the action.
It has been known that the Palatini formulation [82,83] of

general relativity (GR) (first-order formalism) is an alter-
native to the well-known metric formulation (second-order
formalism). In the latter, the spacetime connection is the
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usual Levi-Civita one, while in the Palatini approach the
connection Γλ

μν and the metric gμν are treated as indepen-
dent variables. In the context of GR, the two formalisms
are equivalent at the level of the field equations, with the
Levi-Civita connection in the Palatini approach being
recovered on shell. When nonminimal couplings between
gravity and matter [20–22,65,84–121] or/and fðRÞ theo-
ries1 [69,70,80,122–140] are considered, the resultant field
equations are no longer the same and thus the two
formalisms lead to different cosmological predictions. A
remarkable example is the Starobinsky model of inflation
[2], where the addition of anR2 term in the usual Einstein-
Hilbert action is translated to a new propagating scalar
degree of freedom which plays the role of the inflaton. In
the Palatini formalism there are no extra propagating
degrees of freedom, therefore the inflaton has to be added
ad hoc in the action. The advantage of considering the
Palatini formulation is that the addition of the R2 term
can be used to reduce the tensor-to-scalar ratio r [124].
Thereby, various models where inflation is driven by a
scalar field can be rendered again compatible with the
observations [125,126]. Furthermore, the addition of a
symmetric Ricci tensor squared term RðμνÞRðμνÞ in the
Einstein-Hilbert action has the same effect as the pure
R2 term (see [141]), at least with respect to the modifica-
tion of the scalar potential, and consequently leads to the
reduction of the tensor-to-scalar ratio [124]. The main, but
not significant, difference between these two quadratic
scale-invariant terms is that in the Einstein frame (EF) the
R2 term translates also to a second-order kinetic term, while
the RðμνÞRðμνÞ term yields a series of higher-order kinetic
terms. These higher-order kinetic terms are nevertheless
negligible at least during slow roll.
In this paper we construct a model of scale-invariant

quadratic gravity, where the Planck scale is dynamically
generated through the VEVs of a scalar field ϕ and the
Higgs h, which are nonminimally coupled to gravity
through terms of the form ξiΦ2

i R, where Φi ¼ ϕ; h. The
extra scalar field ϕ stems from a generalUð1ÞX extension of
the Standard Model (SM) gauge structure that contains an
extra gauge boson Xμ and three right-handed neutrinos NR

that can generate masses for the SM neutrinos via a type-I
seesaw mechanism. The model can easily accommodate
dark matter in a natural way and we outline three distinct
possibilities. Moreover, the mass of the Higgs and the
electroweak scale is generated through a portal coupling
between ϕ and h of the form λhϕh2ϕ2. Thus, the addition of
the extra scalar field ϕ is necessary to preserve the scale
invariance of our model since the known Higgs mass term
contained in the SM Lagrangian is not scale invariant.

The rest of the paper is organised as follows: In Sec. II,
we describe the beyond SM (BSM) part of the model,
along with the extended gravity part that contains terms
quadratic in curvature and is studied in the Palatini for-
mulation. We also briefly describe the dark matter candi-
dates that can arise from our setup. Then, in Sec. III, we
employ the Gildener-Weinberg approach [142] (which is a
generalization of the Coleman-Weinberg mechanism [143]
to multiple fields) in order to obtain the flat direction of
the tree-level potential. Along the flat direction, the theory
effectively becomes single field and by computing the
quantum corrections we obtain the one-loop effective
potential, which is stable due to the extra Uð1ÞX gauge
boson. In Sec. IV, we introduce an auxiliary field Σμν in
order to parametrize the terms quadratic in curvature. By
applying a Weyl rescaling and a disformal transformation
of the metric, we obtain the EF representation of the theory.
In the process, higher-order kinetic terms arise, but these
have been shown to not significantly influence the infla-
tionary [132] and reheating [139] dynamics. At the same
time, the EF potential is modified and develops plateaus
on both sides of the VEV. In Sec. V, we obtain the
inflationary predictions of the model in the slow-roll
approximation and impose constraints on the free param-
eters. Finally, we summarize and conclude in Sec. VI.
Further details about the disformal transformation are
relegated to the Appendices.
We use natural units ℏ ¼ c ¼ kB ¼ 1 and the metric

signature ð−;þ;þ;þÞ throughout. We also use M2
P ¼ 1 in

most formulas except when we want the dimensionality to
be explicit.

II. THE MODEL

We begin the discussion of our model by describing the
scale-invariant Uð1ÞX extension of the SM that we use
[144–162], which contains a complex scalar field Φ, a
gauge boson Xμ and three right-handed neutrinos Ni

R. We
also outline three distinct possibilities for the model to
accommodate dark matter candidates. Subsequently, we
focus on the gravity part of the theory and study it in the
Palatini formalism.

A. Uð1ÞX extension of the Standard Model

We consider the Uð1ÞX extension of the SM based on
the gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY × Uð1ÞX. In
Table I we present the matter fields of this model which
contains the SM matter fields along with three generations
of right-handed neutrinos Ni

R (i ¼ 1; 2; 3) and a Uð1ÞX
complex scalar field Φ, whose VEV will generate the
mass of the vector boson Xμ as well as the masses of
the right-handed neutrinos. This Uð1ÞX extension can be
recognized as a linear combination of the Uð1ÞY and the
Uð1ÞB−L gauge group, with the latter being free of gauge
and gravitational anomalies. The existence of the three

1Throughout this paper we use different symbols for the
curvature scalar and tensors, which in the metric formulation
we denote by R, while in the Palatini approach by R.
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right-handed neutrinos plays a crucial role to this anomaly
cancellation. Following [163] we introduce the real param-
eters xH and xΦ which are used in the determination of the
Uð1ÞX charge of the field Φ, that is given by

QX ¼ YxH þQBLxΦ; ð2:1Þ

with Y and QBL being its hypercharge and B − L charge
respectively. Two interesting choices for the parameters xH
and xΦ are the choice ðxH; xΦÞ ¼ ð0; 1Þ, which corresponds
to the Uð1ÞB−L model and the ðxH; xΦÞ ¼ ð−2; 1Þ choice
which coincides with the SM with an additional Uð1ÞR
symmetry.
The covariant derivative associated with the Uð1ÞY ×

Uð1ÞX gauge interaction is defined as

Dμ ¼ ∂μ − iðg1Y þ g̃QXÞBμ − igXQXXμ; ð2:2Þ

where g1 and gX are the Uð1ÞY and Uð1ÞX gauge couplings
respectively. In (2.2), the possible kinetic mixing between
the two Uð1Þ gauge bosons can be ignored for simplicity
assuming that the mixing coupling g̃ vanishes at the Uð1ÞX
symmetry breaking scale.
In the known SM Yukawa sector we need to add the

BSM Yukawa sector arising from the Uð1ÞX extension
which reads

LBSM
Yukawa ¼ −yijDl̄i

LHNj
R −

1

2
yiMΦN̄iC

R Ni
R þ H:c:; ð2:3Þ

where yD and yM are the Dirac and Majorana Yukawa
couplings respectively. Also, without loss of generality, the
Majorana Yukawa couplings are assumed to be already
diagonal in our basis. Furthermore, it is interesting to note
that in this setting a lepton asymmetry can be generated
from decays of the heavy right-handed neutrinos into SM

leptons at high temperatures. Then, the lepton asymmetry
can be converted into a baryon asymmetry via electroweak
sphalerons [164,165] (see also [151,166,167]).
Assuming that the Uð1ÞX complex scalar field Φ devel-

ops a nonzero VEV vϕ and working in the unitary gauge,
we have that

Φ ¼ 1ffiffiffi
2

p ðϕþ vϕÞ: ð2:4Þ

Thus, the BSM scalar Lagrangian and the gravity
Lagrangian are given by

LBSM
scalar ¼ −

1

2
gμν∂μϕ∂νϕ −

1

4
λϕϕ

4 þ 1

4
λhϕh2ϕ2;

Lgravity ¼
1

2
ðξϕϕ2 þ ξhh2ÞgμνRμνðΓÞ; ð2:5Þ

where h is the Higgs field also written in the unitary gauge
and ξϕ, ξh are the nonminimal couplings between gravity
and matter. Note that the Ricci tensor depends only on the
connection Γ since we are working in the Palatini formal-
ism. Also, there are no mass terms for either ϕ or h since the
theory must respect classical scale invariance. The reduced
Planck mass MP is generated dynamically when ϕ and h
develop their VEVs,

M2
P ¼ ξϕv2ϕ þ ξhv2h: ð2:6Þ

Associated with the Uð1ÞX and the electroweak symmetry
breaking, the Uð1ÞX gauge boson Xμ and the Majorana
right-handed neutrinos Ni

R acquire their masses as

MX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2xΦgXvϕÞ2 þ ðxHgXvhÞ2

q
≃ 2xΦgXvϕ;

MNi
R
¼ yiMffiffiffi

2
p vϕ: ð2:7Þ

The part of the action that contains the scalar ϕ and the
Higgs h is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ðξϕϕ2 þ ξhh2ÞgμνRμνðΓÞ

−
1

2
gμν∂μϕ∂νϕ −

1

2
gμν∂μh∂νh − Vð0Þðϕ; hÞ

�
; ð2:8Þ

with the tree-level potential given by

Vð0Þðϕ; hÞ ¼ 1

4
ðλϕϕ4 − λhϕh2ϕ2 þ λhh4Þ: ð2:9Þ

Note that the coupling constants λϕ, λh and λhϕ are
dimensionless, assumed to be positive and the minus sign
in front of the portal coupling term is introduced to allow

TABLE I. The matter fields of the Uð1ÞX extension of the SM
along with the corresponding charges. In addition to the SM
particle content (i ¼ 1; 2; 3), three right-handed neutrinos Ni

R
(i ¼ 1; 2; 3) and a Uð1ÞX complex scalar field Φ are introduced.
The Uð1ÞX charge is determined by the two real parameters,
xH and xΦ, as QX ¼ YxH þQBLxΦ with its hypercharge Y and
B − L charge QBL.

SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞX
qiL 3 2 1=6 ð1=6ÞxH þ ð1=3ÞxΦ
uiR 3 1 2=3 ð2=3ÞxH þ ð1=3ÞxΦ
diR 3 1 −1=3 ð−1=3ÞxH þ ð1=3ÞxΦ
li
L 1 2 −1=2 ð−1=2ÞxH þ ð−1ÞxΦ

eiR 1 1 −1 ð−1ÞxH þ ð−1ÞxΦ
H 1 2 1=2 ð1=2ÞxH
Ni

R 1 1 0 ð−1ÞxΦ
Φ 1 1 0 ðþ2ÞxΦ
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for the spontaneous breaking of the symmetry due to the
running of the coupling constants.

B. Potential dark matter candidates

An interesting feature of the Uð1ÞX model under con-
sideration is that it can provide us with viable dark matter
candidates in a minimal and natural way.
(1) A first possibility is that the extra gauge boson Xμ

constitutes dark matter [168–170]. TheUð1ÞX gauge
group contains an intrinsic Z2 discrete symmetry,
which automatically renders Xμ stable. Note, how-
ever, that this statement applies if that Uð1ÞX is
sequestered and has no tree-level mixing with the
hypercharge. In that case, no mixing can be gen-
erated at the one-loop level either.

(2) A second possibility arises by introducing a Z2

parity and imposing one of the three right-handed
neutrinos to be odd, while the others are even
[171,172]. Thus, the odd right-handed neutrino
becomes stable and can be a DM candidate. The
rest of the right-handed neutrinos suffice to produce
the observed neutrino oscillations.

(3) A third possibility arises by adding an extra Dirac
fermion ζ, which is singlet under the SM gauge
group and has a generic Uð1ÞX chargeQX [173]. It is
worth noting that the addition of the Dirac fermion
does not spoil the anomaly cancellation of theUð1ÞX
extended SM. The ζ field interacts with the SM
particles due to Uð1ÞX gauge interactions and its
relic freeze-out abundance is calculated through the

processes ζζ̄⟷
Xμ

ff̄, where f is a SM fermion. On
the other hand in [174], a freeze-in DM scenario is
studied, where either Xμ or the right-handed neu-
trinos can be light of the order 100 MeV to 1 GeV.

C. Palatini quadratic gravity

In the metric formulation of gravity, the large number
of symmetries of the Riemann tensor allows one to con-
sider only a few quadratic terms, namely R2, RμνRμν

and RμνσλRμνσλ. Furthermore, by virtue of the Gauss-
Bonnet theorem the homonymous term R2 − 4RμνRμν þ
RμνσλRμνσλ reduces to a topological surface term in four
dimensions and thus solving for the quadratic in the
Riemann tensor term one ends up with

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ αR2 þ βRμνRμν

�
: ð2:10Þ

This Lagrangian has been proven to be renormalizable in
all orders of perturbation theory [71], but this comes with
the cost of a ghostlike antigraviton state [73,76].
On the other hand, in the Palatini formulation the

situation is slightly more complicated when adding quad-
ratic curvature invariants to the action. In contrast to the
metric case there is now a plethora of invariants that can be
constructed out of the Ricci and Riemann tensors
[141,175]. Actually there are three different nonvanishing
contractions of the Riemann tensor, so the Ricci tensor can
be defined as2

Rμν ¼ Rλ
μλν; R̂μ

ν ¼ gλσRμ
σνλ and R0

μν ¼ Rλ
λμν:

ð2:11Þ

The most general Lagrangian second order in the Riemann
tensor contains 16 possible contractions and can be
written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½αR2 þ β1RμνRμν þ β2RμνRνμ þ β3RμνR̂
μν þ β4RμνR̂

νμ

þ β5R̂μνR̂
μν þ β6R̂μνR̂

νμ þ β7R̂μνR0μν þ β8R0
μνR0μν þ β9RμνR0μν

þ γ1RμνσλRμνσλ þ γ2RμνσλRμσνλ þ γ3RμνσλRνμσλ þ γ4RμνσλRνσμλ

þ γ5RμνσλRσνμλ þ γ6RμνσλRσλμν�: ð2:12Þ

The quadratic action above is too complicated, therefore in
order to make our computations analytically tractable, we
will work under several simplifying assumptions. First, we
assume that the spacetime connection is symmetric

Γλ
μν ¼ Γλ

νμ, like the Levi-Civita one. Additionally, we
discard the terms constructed from the Riemann tensor. In
order to consider an invariant action under projective
transformations, which does not introduce extra gravita-
tional degrees of freedom, we assume only a symmetric
Ricci tensor. Nonsymmetric Ricci and therefore metric
tensors contain new gravitational degrees of freedom and
can lead to instabilities [176]. Then, the action that we
consider in the Jordan frame (JF) containing the ϕ, the

2Although the Ricci tensor is not unique, the Ricci scalar is and
can be defined as R ¼ gμνRμν ¼ gμνR̂μν, while the third possible
contraction gμνR0

μν vanishes due to the symmetry of the metric
tensor.
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Higgs h and the nonminimal couplings between gravity and
matter reads3

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
½ðξϕϕ2þ ξhh2ÞgμνRμνþαR2þ βRμνRμν�

−
1

2
gμν∂μϕ∂νϕ−

1

2
gμν∂μh∂νh−Vð0Þðϕ;hÞ

�
; ð2:13Þ

where the most general classically scale-invariant poten-
tial that can be constructed out of two real scalar fields is
given by (2.9). Notice that one could consider a doublet of
inflatons without including the RμνRμν term or add RμνRμν

without adding a doublet of inflatons. Nevertheless, we
have included both extensions in the action for reasons
of generality as well as for practical reasons associated
with the lowering of the tensor-to-scalar ratio to observa-
tionally viable values and the dynamical generation of
the Planck mass. More precisely, the specific choice of
higher-curvature extension of the action is justified on
the grounds of considering a general gravity sector that
respects classical scale invariance and goes beyond the R2

term that is known to lower the predicted value for the
tensor-to-scalar ratio. This way, we will be in a position to
investigate the interplay between the higher-curvature
corrections and the overall effect that they have on the
inflationary predictions. The inclusion of the extra scalar is
deemed necessary for the dynamical generation of the
Planck scale mainly via the VEVof the extra scalar field in
order to avoid an unnaturally large value for the non-
minimal coupling constant of the Higgs field with gravity
that would be otherwise required.
With the aim of eventually recasting the action (2.13) in

the EF where the gravity sector consists solely of the
Einstein-Hilbert term, we will start by performing a Weyl
rescaling of the metric of the form

gμν → Ω2gμν; Ω2 ¼ ξϕϕ
2 þ ξhh2: ð2:14Þ

The quadratic in curvature terms are invariant under the
rescaling (2.14) in contrast to the Einstein-Hilbert term
which rescales as R → Ω2R and so the action takes the
form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
½gμνRμν þ αR2 þ βRμνRμν�

−
1

2Ω2
gμν∂μϕ∂νϕ −

1

2Ω2
gμν∂μh∂νh −

Vð0Þðϕ; hÞ
Ω4

�
:

ð2:15Þ

Following the notation of [69] we will call this frame the
“intermediate frame” to account for the fact that, even
though we have eliminated the nonminimal coupling that
appears in the JF, we have not dealt with the quadratic
terms yet.

III. GILDENER-WEINBERG APPROACH

Classically scale-invariant models containing multiple
scalar fields are usually studied with the help of the
Gildener-Weinberg formalism [177].4 In this approach,
the perturbative minimization is realized at a definite
energy scale due to the running of the coupling constants
in the full quantum theory. Initially, one identifies the flat
directions (FD) of the tree-level potential in the field
space. These are directions along which the first derivatives
of the potential with respect to each of the fields vanish.
The flatness of the tree-level potential entails that the
dynamics of the system is governed by the one-loop
corrections which dominate along the FD. This way, the
flatness is removed perturbatively and the physical vacuum
of the theory is singled out from the valley of degenerate
minima along the FD. In this section, we make use of the
Gildener-Weinberg formalism and eventually end up with a
single-field inflationary action.

A. Tree-level minimization

The tree-level potential after the Weyl rescaling of the JF
action is given by

Uð0Þðϕ; hÞ≡ Vð0Þðϕ; hÞ
Ω4

¼ ðλϕϕ4 − λhϕh2ϕ2 þ λhh4Þ
4ðξϕϕ2 þ ξhh2Þ2

:

ð3:1Þ
The first derivatives of Uð0Þðϕ; hÞ with respect to the two
fields vanish along the trajectories in field space that satisfy
the following conditions:

∂ϕUð0Þðϕ; hÞ ¼ 0 ⇒ h2 ¼
�
λhϕξϕ þ 2λϕξh
λhϕξh þ 2λhξϕ

�
ϕ2; ð3:2Þ

∂hUð0Þðϕ; hÞ ¼ 0 ⇒ ϕ2 ¼
�
λhϕξh þ 2λhξϕ
λhϕξϕ þ 2λϕξh

�
h2: ð3:3Þ

A trajectory corresponds to a FD if it simultaneously
satisfies both Eqs. (3.2) and (3.3). Notice that, in our
model, the two extremization conditions yield the same
constraint and consequently they directly correspond to the
FDs of Uð0Þðϕ; hÞ. The two different signs correspond to
the two independent FDs of the tree-level potential. We
consider ϕ and h to be positive definite and so, the relevant
FD for our analysis is the one defined by the condition

3From now on we consider only the symmetric Ricci tensor
RðμνÞ and in order to speed up notation we discard the paren-
theses.

4See also [35,145,152,154,155,178–217] for various applica-
tions of the formalism.
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vh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λhϕξϕ þ 2λϕξh
λhϕξh þ 2λhξϕ

s
vϕ; ð3:4Þ

where the fields are at their VEV along the FD since it
corresponds to the minimum of the potential. Note that for
ξh ≪ 1, if vϕ ∼MP and λh ∼ 0.1, we find that the portal
coupling needs to be extremely small, λhϕ ∼ 10−30. Upon
employing Eq. (3.4) we can compute the value of
Uð0Þðϕ; hÞ along the FD in terms of the coupling constants
of the model

Uð0Þ
min ≡Uð0Þðvϕ; vhÞ ¼

ð4λhλϕ − λ2hϕÞM4
P

16½λϕξ2h þ ξϕðλhϕξh þ λhξϕÞ�
:

ð3:5Þ

Notice that the minimum of the tree-level potential (3.5)
can be negative, zero or positive depending on the value of
the combination 4λhλϕ − λ2hϕ. On the contrary, had we
applied the Gildener-Weinberg approach to the JF tree-
level potential (2.9) instead, the identification of the
resulting extremization conditions would impose the con-
straint λ2hϕ ¼ 4λhλϕ and consequently, the minimum of
(2.9) would be fixed to zero. This freedom in specifying the
minimum of the potential will play an important role in the
next section where the one-loop corrections will be taken
into account.
Having identified the FD of the tree-level potential we

can move on to the computation of the mass matrix. Its
elements are given by

M2
ij ≡ ∂2Uð0Þ

∂Φi∂Φj

				
Φi¼vΦi ;Φj¼vΦj

; ð3:6Þ

where we denote ðΦ1;Φ2Þ ¼ ðϕ; hÞ and υΦi are their
respective VEVs. In terms of the ratio of the two VEVs
we can define the mixing angle ω that corresponds to the
angle between the h ¼ 0 axis in field space and the FD (see
Fig. 1) as follows:

ω≡ arctan

�
vh
vϕ

�
¼ arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕhξϕ þ 2λϕξh
λϕhξh þ 2λhξϕ

s !
; ð3:7Þ

where in the last equality we have employed the condition
(3.4). We may now perform an orthogonal rotation
described by the transformation�

ϕ

h

�
¼
�
cosω − sinω

sinω cosω

��
s

σ

�
; ð3:8Þ

in order to move from the initial frame of fields ðϕ; hÞ to the
“FD frame” ðs; σÞ where the direction of the so-called

“scalon” field s is identified with the FD and σ is the
perpendicular direction.
Then, we may write the potential in terms of the FD

frame fields in order to compute the mass matrix directly
in that frame with ðΦ1;Φ2Þ ¼ ðs; σÞ. The advantage of
performing the rotation to the FD frame prior to the
computation of the mass matrix is that the resultant matrix
is diagonal. Thus, the mass eigenvalues for the fields ðs; σÞ
lie in the main diagonal and are given by the following
expressions:

m2
s ¼ 0; ð3:9Þ

m2
σ ¼

M4
Pðλhϕξh þ 2λhξϕÞð2λϕξh þ λhϕξϕÞ2½ðλhϕ þ 2λϕÞξh þ ð2λh þ λhϕÞξϕ�

8v2h½λϕξ2h þ ξϕðλhϕξh þ λhξϕÞ�3
; ð3:10Þ

where we have once again employed Eq. (3.4). As
expected, the mass of s is exactly zero at tree level since
it corresponds to the pseudo-Goldstone boson of broken
classical scale symmetry. However, as we will see next,
when quantum corrections are taken into account a nonzero

mass will be generated for it. Furthermore, we identify
the mass mσ with the measured value of the Higgs boson
mass.
Along the FD (σ ¼ 0) the only relevant degree of

freedom is the scalon s which is related to ϕ and h via

FIG. 1. The normalized tree-level potential Uð0Þðϕ; hÞ=Uð0Þ
min

(3.1) and its flat direction (cyan line). We also plot the nor-
malized one-loop corrected potential along the flat direction
UeffðscÞ=Ueffð0Þ (3.22) (red curve) and the normalized inflaton
potential ŪðscÞ=Ūð0Þ (4.18) (green curve). The values of the
parameters are α̃ ¼ 109, ξs ¼ 10−3, and M ≃ 0.0357. For illus-
trative purposes we have chosen the values of the couplings λϕ,
λh, λhϕ such that the mixing angle (3.7) has the unrealistic value
of ω ≃ 0.732.
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s2 ¼ ϕ2 þ h2; s ¼ ϕ

cosω
¼ h

sinω
: ð3:11Þ

The above relations can be easily verified by a simple
inspection of the field space in Fig. 1. Upon employing
Eqs. (3.11) we may rewrite the noncanonical kinetic terms
for h and ϕ in terms of s as

1

Ω2

�
1

2
gμν∂μϕ∂νϕþ 1

2
gμν∂μh∂νh

�
¼ 1

Ω2

�
1

2
gμν∂μs∂νs

�
;

where the nonminimal coupling functional expressed in
terms of s has the following form:

1

Ω2
¼ 1

ξϕϕ
2 þ ξhh2

¼ 1

ξss2
: ð3:12Þ

In the last equation, we have defined an “effective” non-
minimal coupling constant for the scalon as

ξs ≡ ξϕ cos2 ωþ ξh sin2 ω: ð3:13Þ

Finally, we perform the following field redefinition in order
to render the kinetic term of s canonical:

sc − vc ¼
Z

s

vs

1ffiffiffiffi
ξs

p ds0

s0
¼ 1ffiffiffiffi

ξs
p ln

s
vs

: ð3:14Þ

The field sc is the one that drives inflation in our model and
thus we shall refer to it as the inflaton field.

B. One-loop effective potential

The one-loop corrections along the flat direction for the
canonical field sc at the scale Λ may be written as

Uð1ÞðscÞ ¼ As4c þ Bs4c ln
s2c
Λ2

; ð3:15Þ

where in our model

A ¼ 1

64π2v4s

�
M4

h

�
ln
M2

h

v2s
−
3

2

�
þ 6M4

W

�
ln
M2

W

v2s
−
5

6

�

þ 3M4
Z

�
ln
M2

Z

v2s
−
5

6

�
þ 3M4

X

�
ln
M2

X

v2s
−
5

6

�

− 6M4
NR

�
ln
M2

NR

v2s
− 1

�
− 12M4

t

�
ln
M2

t

v2s
− 1

��
;

ð3:16Þ

B ¼ M4

64π2v4s
;

M4 ≡M4
h þ 3M4

X þ 6M4
W þ 3M4

Z − 6M4
NR

− 12M4
t :

ð3:17Þ

Minimizing (3.15), we can determine the scale Λ as

Λ ¼ vs exp

�
A
2B

þ 1

4

�
: ð3:18Þ

Then, we can express the one-loop correction as

Uð1ÞðscÞ ¼
M4

64π2v4s
s4c

�
ln
s2c
v2s

−
1

2

�
: ð3:19Þ

One can see that the addition of theUð1ÞX gauge symmetry
and in particular the mass of the extra gauge boson Xμ can
render M4 positive if 3M4

X − 6M4
NR

≳ ð317 GeVÞ4, which
in turn implies that the one-loop potential is bounded from
below at large field values. From the one-loop corrections
we can obtain the radiatively generated mass for the s
scalar,

m2
s ¼

M4

8π2v2s
: ð3:20Þ

Notice that at the minimum, the one-loop correction (3.19)
is negative. With this observation, the choice to consider the
one-loop corrections in the intermediate frame (2.15), and
not in the JF action (2.13) is justified. Had we opted for the
latter, the extremization conditions for the tree-level JF
potential would fix its value to zero along the flat direction,
as we have already mentioned, and thus the full one-loop
effective potential (tree levelþ one loop) would correspond
to an anti–de Sitter vacuum. This issue can of course be
easily circumvented by including a positive cosmological
constant in the effective potential in order to reach a
Minkowski vacuum, albeit in this case, the model ceases
to be scale invariant and instead is characterized as
quasiscale invariant.
We now require that the full one-loop effective potential

is zero at vs which can be realized once we assume that

4λhλϕ − λ2hϕ > 0, so that Uð0Þ
min > 0. Then we may write

UeffðvsÞ ¼ Uð0Þ
min þ Uð1ÞðvsÞ ¼ 0; ð3:21Þ

which finally yields

UeffðscÞ ¼
M4

128π2

�
s4c
v4s

�
2 ln

s2c
v2s

− 1

�
þ 1

�
: ð3:22Þ

Note that the condition (3.21) effectively means that the
cosmological constant can potentially be generated from
two or higher-order loop corrections.
The VEVof the inflaton sc is associated with the reduced

Planck mass via the value of the effective nonminimal
coupling constant (3.13) as
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v2s ¼
M2

P

ξs
; ð3:23Þ

and thus, it is evident that in principle vs can be super-
Planckian for ξs < 1. Indeed, as wewill see in Sec. V, this is
exactly the case in our model since observationally viable
inflation requires ξs ≲Oð10−3Þ.
Finally, the effective action along the FD written

explicitly in terms of the inflaton field reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
½gμνRμν þ αR2 þ βRμνRμν�

−
1

2
gμν∂μsc∂νsc −UeffðscÞ

�
: ð3:24Þ

In the next section, our objective is to identify and employ
the appropriate transformations in order to remove the
higher-curvature terms and eventually recast the effective
action (3.24) in the EF with the gravity sector consisting
solely of the Einstein-Hilbert term.

IV. EINSTEIN FRAME REPRESENTATION

In this section, in order to obtain the predictions of the
model for the cosmological observables, we will pass from
the intermediate frame of Eq. (2.15) or (3.24) into the EF
applying the procedure which was outlined in [141] (see
also [218]).

A. The Legendre transformation

The action (3.24) can be cast in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Cðgμν; RμνÞ þ Lmðgμν; sc; ∂μscÞ

�
;

ð4:1Þ

where we have defined the “curvature” function

Cðgμν; RμνÞ ¼ gμνRμν þ αR2 þ βRμνRμν; ð4:2Þ

and the matter Lagrangian density

Lmðgμν; sc; ∂μscÞ ¼ −
1

2
gμν∂μsc∂νsc −UeffðscÞ: ð4:3Þ

From this point onward the ∂μsc dependence in the argu-
ment of Lm will be ignored for brevity. Now, upon
introducing the auxiliary field Σμν the action becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Cðgμν;Σμν; scÞ þ

1

2

∂C
∂Σμν

ðRμν − ΣμνÞ

þ Lmðgμν; scÞ
�
: ð4:4Þ

It is trivial to see that the variation δS=δΣμν ¼ 0 gives that
Σμν ¼ Rμν. The advantage of action (4.4) is that it is linear
in the Ricci tensor so it is one step closer to the final
EF action. We introduce the new variable qμν which is
defined as

ffiffiffiffiffiffi
−q

p
qμν ¼ ffiffiffiffiffiffi

−g
p ∂C

∂Σμν
; ð4:5Þ

where q ¼ detðqμνÞ and qμνqμλ ¼ δνλ. Using (4.5) we can
solve the Σμν in terms of the gμν, sc and qμν, thus the action
can be written as

S ¼
Z

d4x

� ffiffiffiffiffiffi−qp
2

qμνRμν −
ffiffiffiffiffiffi−gp
2

� ∂C
∂Σμν

Σμνðqμν; gμν; scÞ − Cðqμν; gμν; scÞ − 2Lmðgμν; scÞ
��

: ð4:6Þ

The gravitational sector of (4.6) is the typical Einstein-Hilbert term for the metric qμν. Varying the action (4.6) with respect
to gμν (see Appendix A) will give us gμν as a function of qμν, sc and ∂μsc. This way we obtain that

1ffiffiffiffiffiffi−gp δS
δgμν

¼ −
1

4ðβ þ 4αÞ
ffiffiffiffiffiffi−qpffiffiffiffiffiffi−gp qσλgσμgλν

þ 1

4β

q
g

�
qσλqρδgλδgρνgσμ −

α

β þ 4α
qδρgδρqσλgσμgλν

�

þ 1

2
gμν

�
1

β þ 4α

�
1

2
þ α

8β

q
g
qλσgλσqρδgρδ

�
−
q
g
1

8β
qλσqδρgλδgσρ

�

þ 1

2
gμν

�
1

2
gλσ∂λsc∂σsc þ UeffðscÞ

�
−
1

2
∂μsc∂νsc ¼ 0; ð4:7Þ
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which will help us to solve the metric gμν in terms of the
metric qμν and the inflaton field.5

B. The disformal transformation

Another useful type of metric transformation is the
disformal transformation [219–223], a generalization of
the well-known conformal transformation. It can be used in
order to bring complicated actions, e.g., (3.24), into the EF.
This is of the form

gμν ¼ Aqμν þ B∂μsc∂νsc; ð4:8Þ

where the coefficients A and B are functions of sc and Xq

with

Xq ≡ −
1

2
qμν∂μsc∂νsc: ð4:9Þ

The relation that correlates the determinants of the metrics
gμν and qμν can be easily obtained upon substituting the
general form of the disformal transformation (4.8) into
det ðqμσgμνÞ ¼ q−1g. That is,

g ¼ qA3ðA − 2BXqÞ: ð4:10Þ

For our computation we also need the inverse metric gμν.
Following [224] we obtain that

gμν ¼ Āqμν þ B̄qμλqνσ∂λsc∂σsc; ð4:11Þ

where

Ā ¼ 1

A
; B̄ ¼ −

B
A2 − 2ABXq

: ð4:12Þ

Finally, using (4.9) and (4.11) it is quite trivial to prove that
the kinetic terms for the metric gμν can be expressed in
terms of the kinetic terms for the metric qμν as

Xg ¼ ĀXq − 2B̄Xq
2: ð4:13Þ

Now, we can substitute (4.8) and (4.13) in (4.7). This
substitution will give us two algebraic equations. Each
equation arises from the requirement that the coefficients of
qμν and ∂μsc∂νsc must vanish identically. These equations
are listed below:

1

16βð4αþ βÞR5

�
4ð4αþ βÞA2 − 4βA

ffiffiffiffiffiffi
R5

p
− 4αAR2 − ð4αþ βÞR3 þ 4βR5 þ αR2

2

�

þUeffðscÞ
2

−
Xg

2
¼ 0; ð4:14Þ

1

16βð4αþ βÞR5

�
4ð4αþ βÞR4 − 4βR1

ffiffiffiffiffiffi
R5

p
− 4αR2R1 − ð4αþ βÞBR3 þ 4βBR5 þ αBR2

2

�

þ BUeffðscÞ
2

−
BXg

2
−
1

2
¼ 0; ð4:15Þ

where the functions Ri are given in Appendix B. Equa-
tions (4.14) and (4.15) accorded well with Eqs. (6.44) and
(6.45) of [141]. Our aim is to solve the system [(4.14) and
(4.15)], but this a very difficult task. However, we can
approximate the solutions assuming that in the slow-roll
approximation the higher-order kinetic terms are negligible
at least during inflation [132], but also during reheating
[139]. Thus the approximate solution is of the form

A ¼ a0 þ a1Xq þOðX2
qÞ;

B ¼ b0 þ b1Xq þOðX2
qÞ: ð4:16Þ

By substituting (4.16) in the system (4.14) and (4.15) and
expanding in terms of the kinetic term (4.9), we can solve
for the coefficients ai, and bi after forcing that the
coefficient of each order vanishes identically. These co-
efficients are listed in Appendix B.
Having done all the groundwork, we can substitute the

solution (4.16) with the coefficients (B2) to the matter
sector (A3) and expand again in the kinetic term. This gives
us the final EF action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−q

p �
1

2
qμνRμν þ KðscÞXq − ŪðscÞ þOðX2

qÞ
�
;

ð4:17Þ

with

5Equation (4.7) has been also derived in [141], with a missing
1=2 factor in the parentheses in the third line. We think that this is
only a misprint as our final results are in absolute agreement with
those of [141].

SCALE-INVARIANT QUADRATIC GRAVITY AND INFLATION … PHYS. REV. D 104, 023521 (2021)

023521-9



KðscÞ ¼
1

1þ α̃UeffðscÞ
and ŪðscÞ ¼

UeffðscÞ
1þ α̃UeffðscÞ

;

ð4:18Þ

where we have defined the “effective” higher-curvature
coupling α̃≡ 2β þ 8α. To avoid ghosts we require that
K > 0 and thus α̃ > 0. This is true if both α and β are
positive, but also if β > −4α. Regarding the magnitude of
the parameter α̃, according to [139], unitarity consider-
ations suggest that α̃≲ 1021.
We have thus far mentioned various potentials and in

order to demonstrate their qualitative differences we plot
them collectively in Fig. 1. The surface with the color
gradient corresponds to the normalized two-field tree-level

JF potential Uð0Þðϕ; hÞ=Uð0Þ
min as given in Eq. (3.1). Its FD

which we have identified by means of the GW approach is
depicted with the cyan line. Once quantum corrections are
taken into account, the one-loop corrected potential (3.22)
with a unique minimum singled out from the valley of
degenerate vacua along the FD is obtained and we depict it
with the red curve in its normalized form UeffðscÞ=Ueffð0Þ.
Finally, the normalized inflationary potential ŪðscÞ=Ūð0Þ
for our model (4.18) is depicted with the green curve.
Notice that ŪðscÞ exhibits plateaus on both sides of the
minimum and thus it is suitable for both small field infla-
tion and large field inflation i.e., excursions of the inflaton
field in the regions sc < vs and sc > vs respectively.
In the end, having started with a general scale invariant

action which involves adimensional matter-gravity and
matter-matter couplings, we have obtained an action with
a noncanonical scalar field that is minimally coupled to the
usual Einstein-Hilbert action at the expense of negligible
higher-order kinetic terms and a modified potential, which
as we will see next is suitable for successful inflation in
accordance with observations.

V. SLOW-ROLL APPROXIMATION AND
CONTACT WITH OBSERVATIONS

In this section, in order to constrain the parametric space
of our model, we compare its predictions for the cosmo-
logical observables with their corresponding latest obser-
vational bounds as set by the Planck collaboration.

A. Inflationary observables and number of e-folds

The number of e-folds elapsed during the inflationary
phase can be obtained in terms of the potential ŪðscÞ and
the kinetic term coupling function KðscÞ as

N⋆ ≡ Nðsc⋆Þ ¼
Z

sc⋆

sc;end

KðscÞ
ŪðscÞ
Ū0ðscÞ

dsc; ð5:1Þ

where primes are used to denote differentiation with respect
to the argument, while the subscripts “⋆” and “end” denote
quantities at the time of horizon crossing of the pivot scale
k⋆, and at the end of inflation respectively. The potential
slow-roll parameters (PSRPs) are defined as

ϵðscÞ≡ 1

2KðscÞ
�
Ū0ðscÞ
ŪðscÞ

�
2

;

ηðscÞ≡ 1

ŪðscÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
KðscÞ

p �
Ū0ðscÞffiffiffiffiffiffiffiffiffiffiffiffi
KðscÞ

p �0
: ð5:2Þ

During slow-roll inflation ϵðscÞ ≪ 1 and jηðscÞj ≪ 1 and
inflation ends, to a very good approximation, when
ϵðscÞ ¼ 1. The values of the cosmological observables in
the slow-roll approximation can be obtained in terms of the
PSRPs evaluated at the time of horizon crossing ϵ⋆ ≡
ϵðsc⋆Þ and η⋆ ≡ ηðsc⋆Þ. The observables that are relevant
for our analysis are the tensor-to-scalar ratio

r ≃ 16ϵ⋆; ð5:3Þ

the tilt of the scalar power spectrum

ns ≃ 1 − 6ϵ⋆ þ 2η⋆; ð5:4Þ

and the amplitude of scalar perturbations

As ≃
1

24π2
Ūðsc⋆Þ
ϵ⋆

: ð5:5Þ

The Planck collaboration [6] has set the following bounds
on the values of the observables:

As ≃ 2.1 × 10−9; ns ¼
� ð0.9607; 0.9691Þ; 1σ region

ð0.9565; 0.9733Þ; 2σ region;
r≲ 0.056: ð5:6Þ

The number of e-folds at the pivot scale k⋆ assuming instantaneous reheating can be very well approximated as [6,225]

N⋆ ¼ ln

��
π2

30

�1
4 ðgs;0Þ13ffiffiffi

3
p T0

H0

�
− ln

�
k⋆

a0H0

�
þ 1

4
ln

�
Ū2ðsc⋆Þ
ρend

�
−

1

12
ln½gs;reh�; ð5:7Þ
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where the subscripts “0” and “reh” denote quantities at the
present epoch and reheating phase respectively. With ρ we
denote the energy density. The entropy density degrees of
freedom gs have the values gs;0 ¼ 43=11 and gs;reh ¼
Oð100Þ in our model and for reheating temperatures
∼1 TeV or higher. At the present epoch the CMB temper-
ature and the Hubble constant are T0 ¼ 2.725 K and H0 ¼
67.6 km=s=Mpc respectively and we fix the pivot scale to
k⋆ ¼ 0.002 Mpc−1. Being more accurate we should cal-
culate ρend by taking into account that the Hubble slow-roll
parameter ϵ1 ≡ − _H=H2 is exactly ϵ1 ¼ 1 at the end of
inflation. This condition gives that ρend ¼ 3Ūðsc;endÞ=2.
Using this and writing (5.7) in terms of the potential (3.22)
we can make explicit the dependence of the number of e-
folds on the parameter α̃, that is,

N⋆ ¼ 64.3þ 1

4
ln

�
2U⋆

eff
2ð1þ α̃Uend

eff Þ
3Uend

eff ð1þ α̃U⋆
effÞ2

�
: ð5:8Þ

In [69,131], the higher-order kinetic terms appearing in the
action (4.17) have been taken into account in the calcu-
lation of ρend, but as it is shown there, only an insignificant
correction arises in the numerical factor of the number
of e-folds. In addition, in [131,140] the reheating mecha-
nism in R2 Palatini inflationary models has been studied,
but beyond the case of instantaneous reheating, allowing a
wider range for the number of e-folds for various values of
the equation of state parameter.

B. Small and large field inflation

Prior to performing the full parametric space investiga-
tion for the inflationary predictions of the model, we
mention some asymptotic limits with respect to the value
of the effective nonminimal coupling ξs. For ξs ≪ 1 and
α̃ ¼ 0 we find that the predictions for both small field

inflation (SFI) and large field inflation (LFI) correspond to
those of quadratic inflation,

ns ≃ 1 −
2

N⋆
; r0 ≃

8

N⋆
; ð5:9Þ

where r0 denotes the tensor-to-scalar ratio for α̃ ¼ 0. On the
other hand, for ξs ≫ 1 we find

ns ≃ 1 −
3

N⋆
; ð5:10Þ

for both SFI and LFI, while

r0 ≃
16

N⋆
ðfor LFIÞ; r0 ≃ 0 ðfor SFIÞ; ð5:11Þ

FIG. 2. The predictions for the tensor-to-scalar ratio (r) and the tilt of the scalar spectrum (ns) as ξs ranges from ξs ≪ 1 to ξs ≫ 1 for
various values of α̃. For each one of the curves, the black dot corresponds to the ξs → 0 limit (see Table II) and ξs increases
monotonically as we move away from it along each one of the two directions on the curve. The upper (lower) part of a curve with respect
to its ξs → 0 limit corresponds to the predictions of large (small) field inflation. On the left (right) panel, the predictions are depicted in
linear (logarithmic) scale.

FIG. 3. The normalized potential ŪðscÞ for ξs ¼ 0.001 and
various values of α̃. In the limit α̃ ≫ 1, the potential becomes
symmetric about its VEV and consequently the predictions for
small and large field inflation are identical.
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Note that the first limit corresponds to the prediction of
quartic inflation. When α̃ ≠ 0, the predictions for ns remain
the same but r gets modified as [69,124]

r ¼ r0
1þ α̃U⋆

eff
¼ r0

1þ 3
2
π2α̃Asr0

; ð5:12Þ

therefore, the presence of the parameter α̃ results in a
suppression of the value of tensor-to-scalar ratio.
Let us now turn to the full analysis of the parametric

space of our model with respect to its predictions for the
cosmological observables. For each given set of values for
the parameters α̃ and ξs, we have employed Eq. (5.8) to
obtain the number of e-folds that complies with the
constraints from reheating, while the value of M has been
fixed in each case such that we always have As ¼ 2.1 ×
10−9 at k⋆ ¼ 0.05 Mpc−1 in accordancewith the bounds set
by the Planck collaboration. For both SFI and LFI, we have
considered various values of α̃ and a wide range of values
for ξs ranging from ξs ≪ 1 to ξs ≫ 1 and in Fig. 2 we plot
the corresponding predictions for the tensor-to-scalar ratio
and the scalar tilt against the 68% (dark blue) and 95%
(light blue) C.L. regions for ns and r at k� ¼ 0.002 Mpc−1

as obtained with the combined data from Planckþ BK15þ
BAO [6].
The different curves correspond to fixed values of α̃,

while ξs ranges along the curves with the black dot on each
curve corresponding to the ξs → 0 limit. These dots also
designate the transition point between the predictions of

SFI and LFI with the lower (upper) part of each curve
corresponding to small (large) field inflation. Evidently in
the limit of small ξs the predictions of SFI and LFI are
identical. As we move away from the ξs → 0 limit along a
given curve in both directions ξs increases monotonically
with the top end of the curves corresponding to ξs values of
Oð108Þ and the bottom end (more clearly shown in the right
panel of Fig. 2) to values of Oð10−1Þ.
The effect of α̃ on the inflationary predictions is to

suppresses the value of r [cf. Eq. (5.12)]. This effect
becomes important for values α̃≳ 106–107. As the right
panel of Fig. 2 reveals, for sufficiently large values of α̃ the
predictions of SFI and LFI are identical along an extended
range of values of ξs. This can be understood via the shape
of the inflationary potential that becomes symmetric about
the location of the VEV for α̃ ≫ 1, see Fig. 3.
A further inspection of Fig. 2 reveals that for values of

α̃≲ 108.267 ≃ 1.85 × 108, LFI is not viable since its pre-
dictions lay outside the 95% C.L. region for the measured
values for r and ns. On the other hand, SFI complies with
observations for a finite range of values of ξs with the
smallest (largest) viable value of ξs yielding the largest
(smallest) predicted value for r for a given α̃, see also
Table III. This range is 2 × 10−4 ≲ ξs ≲ 4 × 10−3 and
consequently, via (3.23) the VEVof the inflaton is restricted
to 15MP ≲ vs ≲ 70MP. Furthermore, the finite range of
allowed values for ξs implies a corresponding finite range

TABLE II. The predicted values for the tensor-to-scalar ratio (r), tilt of the scalar spectrum (ns) and number
of e-folds (N⋆), in the limit ξs → 0 for various values of α̃.

α̃ 0 107 108 1.85 × 108 109 1010 1011 1012

r 0.13090 0.12526 0.09022 0.07134 0.02368 0.00282 0.00029 0.00003
ns 0.96727 0.96726 0.96717 0.96711 0.96681 0.96621 0.96563 0.96517
N⋆ 60.6 60.6 60.4 60.3 59.8 58.8 58.0 57.3

FIG. 4. The parameter M4 as a function of ξs, for the viable
range of values for ξs as given in Table III for small field inflation.
For α̃≳ 108.267 ≃ 1.85 × 108, the ξs → 0 limit is located in the
observationally viable 95% C.L. region of the r − ns plot and thus
there is no lower cutoff for the value of ξs. Consequently in this
case there is no upper cutoff for M4.

TABLE III. For α̃≲ 108.267 ≃ 1.85 × 108, only small field
inflation yields viable values for r and ns (see Fig. 2). Here,
we give the minimum and maximum values of ξs for which we
obtain viable predictions for various α̃. We also give the values of
M, r, ns and N⋆ for these marginal values of ξs.

Small field inflation

α̃ ξðminÞ
s

M r ns N⋆

0 0.0006267 0.0502432 0.0729636 0.968159 60.3
107 0.0005830 0.0510926 0.0730490 0.968233 60.3
108 0.0002017 0.0651665 0.0732724 0.968439 60.3

α̃ ξðmaxÞ
s

M r ns N⋆

0 0.0041417 0.0297085 0.0161109 0.957741 59.6
107 0.0041389 0.0297168 0.0160355 0.957747 59.6
108 0.0041367 0.0297308 0.0152745 0.957739 59.6
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of viable values for the parameter M as can be seen
in Fig. 4.
For values of α̃ ≳ 108.267 ≃ 1.85 × 108 the ξs → 0 limit is

located within the observationally viable 95% C.L. region
of the r − ns plot (see Fig. 2) and so SFI and LFI exhibit
only an upper cutoff, ξs ≲ 4 × 10−3, for the viable values of
ξs as it is shown in Table IV. This in turn implies a lower
cutoff, 15MP ≲ vs, for the VEV of the inflaton.
To summarize, in all the cases vs must be super-

Planckian which imposes that vs≃vϕ as vh ∼Oð10−16ÞMP.
It is then evident that the mixing angle as defined in
Eq. (3.7) will satisfy ω ≃ 0 and thus the flat direction, for
values of the parameters that lay in the viable regions of
the parametric space, will be nearly identified with the
direction of the field ϕ in field space, see Fig. 1.

VI. CONCLUSIONS

In this paper we have studied a model of scale-invariant
quadratic gravity in the context of the Palatini formula-
tion. The Planck scale is dynamically generated via the
Coleman-Weinberg formalism through the VEVs of the
scalar field ϕ and the Higgs field h. These scalar fields were
nonminimally coupled to gravity through terms of the form
ξiΦ2

i R, whereΦi ¼ ϕ; h. The extra scalar field ϕ originated
from an Uð1ÞX extension of the SM containing an extra
gauge boson Xμ and three right-handed neutrinos Ni

R. The
Higgs mass was generated through the portal coupling
λhϕh2ϕ2. This is exactly the significance of the addition of
the extra scalar field ϕ. Without it, the necessity of the
existence of a Higgs mass term with a dimensionful
coupling would have broken the scale invariance of our
model. A possible extra Z2 symmetry facilitates the sta-
bility of the potential dark matter candidates in the context

of our model. As discussed, these can be either the new
fermions of the model e.g., the right-handed neutrinos or
the extra Dirac fermion ζ, or the extra Uð1ÞX gauge boson.
We have employed the Gildener-Weinberg approach, the

generalization of the Coleman-Weinberg mechanism to the
multiple fields case, in order to identify the flat direction of
the tree-level potential. Along the flat direction, the theory
effectively becomes single field and by computing the
quantum corrections we obtain the one-loop effective
potential, which is stabilized due to the extra Uð1ÞX gauge
boson. In the effective single-field description, two param-
eters are important for our analysis namely the effective
nonminimal coupling ξs, which is constructed out of the
nonminimal couplings of ϕ and h and their mixing angle ω,
and the effective higher-curvature coupling α̃ which cor-
responds to a combination of the coupling constants of the
quadratic curvature corrections in the action. These quad-
ratic in curvature terms are the usual scale invariant terms
R2 and RðμνÞRðμνÞ. The fact that their effect on the infla-
tionary observables can be described collectively by the
common coupling α̃ reveals that their contribution to the
final EF potential is the same. On the other hand, the higher
order kinetic terms generated in the EF are not of the same
form, as the R2 term gives us only a second order kinetic
term, while the RðμνÞRðμνÞ term gives higher than the second
order terms. The study of such kinetic terms was out of the
scope of this paper as they are negligible at least during
slow roll.
In order to transform the action into the EF and compare

the predictions of the model with observations, the use of
both conformal and disformal transformations is required.
The one-loop corrections are taken in the intermediate frame,
that is after having performed the conformal transformation
that decouples the scalar fields from the Einstein-Hilbert
term, but before the disformal transformation that removes
the quadratic curvature terms from the gravity sector. It is in
this intermediate frame that we may have a one-loop
effective potential with a minimum at zero without invoking
a cosmological constant term that would render our model
“quasiscale invariant”. Upon recasting the action to the EF,
we end up with a modified effective potential ŪðscÞ in terms
of a canonical scalar field sc that plays the role of the
inflaton. The shape of the potential ŪðscÞ exhibits plateaus
on both sides of the minimum and thus both small field
inflation (SFI) and large field inflation (LFI) can be
accommodated in our model. The additional higher-order
kinetic terms that arise in the EF are negligible in the slow-
roll approximation, and sowe have retained only linear order
terms in our analysis. Applying the cosmological data on
inflation we were able to constrain the size of the VEV of
these scalar fields, and consequently the masses of the extra
gauge boson and the right-handed neutrinos.
In order to constrain the parametric space we have

considered the latest bounds on cosmological observables
as set by the Planck collaboration and we have found that

TABLE IV. For various α̃≳ 108.267 ≃ 1.85 × 108, and for both
small and large field inflation, we give the corresponding
maximum values of ξs that yield predictions that comply with
the observational bounds. We also give the values ofM, r, ns and
N⋆ for these marginal values of ξs.

Small field inflation

α̃ ξðmaxÞ
s

M r ns N⋆

109 0.0040967 0.0299033 0.0103843 0.957734 59.4
1010 0.0039033 0.0306853 0.0024263 0.957835 58.8
1011 0.0036767 0.0316817 0.0002763 0.957919 58.0
1012 0.0035200 0.0324432 0.0000280 0.957921 57.3

Large field inflation

α̃ ξðmaxÞ
s

M r ns N⋆

109 0.0028733 0.0245332 0.0248280 0.958142 60.0
1010 0.0025667 0.0259176 0.0027631 0.957819 59.0
1011 0.0020250 0.0286194 0.0002796 0.957922 58.1
1012 0.0017108 0.0306805 0.0000280 0.957918 57.4
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our model complies with observations for a wide range of
parameters. More precisely, for values of the parameter α̃ in
the range α̃≳ 1.85 × 108, both SFI and LFI support viable
inflation when ξs ≲Oð10−3Þ. In the large α̃ limit, the
inflationary potential becomes symmetric about its mini-
mum and consequently the predictions for the observables
of SFI and LFI are identical.
When α̃ ≲ 1.85 × 108, and independently of the value of

ξs, LFI is nonviable since the predicted values for the
tensor-to-scalar ratio and the tilt of the scalar power
spectrum lay outside the 95% C.L. region. On the other
hand, SFI exhibits regions in the parametric space that are
viable for any α̃ with ξs interpolating between a maximum
and a minimum value. Eventually, the largest viable value
for ξs in our model is obtained within the context of SFI and
is approximately ξs ≃ 4 × 10−3 which translates to a mini-
mum value for the VEVof sc in the vicinity of 15MP. It will
be interesting to investigate whether the rest of the short-
comings of the SM, such as the strong CP problem, can be
addressed in a similar setting where successful inflation can
be realized and the dark matter and baryon asymmetry
problems can be solved in a common framework.
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APPENDIX A: DETAILS ON THE VARIATIONS

Substituting (4.2) in (4.5) gives us that the auxiliary field
Σμν in terms of qμν and gμν reads

Σμν ¼
1

2β

ffiffiffiffiffiffi−qpffiffiffiffiffiffi−gp qκλgκμgλν−
1

2βþ 8α

�
1þα

β

ffiffiffiffiffiffi−qpffiffiffiffiffiffi−gp qκλgκλ

�
gμν;

ðA1Þ
and its trace is

Σ ¼ gμνΣμν ¼
−4

2β þ 8α
þ 1

2β þ 8α

ffiffiffiffiffiffi−qpffiffiffiffiffiffi−gp qκλgκλ: ðA2Þ

The part of the Lagrangian density that has to be varied with
respect to gμν is

ffiffiffiffiffiffi
−g

p
Lg ¼ −

ffiffiffiffiffiffi
−g

p �
1

2

∂C
∂Σμν

Σμν −
1

2
C − Lm

�

¼ −
ffiffiffiffiffiffi
−g

p �
α

2
Σ2 þ β

2
ΣμνΣμν þ 1

2
gμν∂μsc∂νsc þ UeffðscÞ

�
: ðA3Þ

Varying (A3) we obtain that

δð ffiffiffiffiffiffi
−g

p
LgÞ ¼ −

ffiffiffiffiffiffi
−g

p �
αΣδΣþ βgμγΣμνδðgρνΣγρÞ þ

1

2
∂μsc∂νscδgμν

�

−
1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν

�
−
α

2
Σ2 −

β

2
ΣμνΣμν −UeffðscÞ −

1

2
gκλ∂κsc∂λsc

�
: ðA4Þ

Substituting (A1) and (A2) in (A4) and after manipulations we have that

1ffiffiffiffiffiffi−gp δS
δgμν

¼ −
1

4ðβ þ 4αÞ
ffiffiffiffiffiffi−qpffiffiffiffiffiffi−gp qσλgσμgλν þ

1

4β

q
g

�
qσλqρδgλδgρνgσμ −

α

β þ 4α
qδρgδρqσλgσμgλν

�

þ 1

2
gμν

�
1

β þ 4α

�
1

2
þ α

8β

q
g
qλσgλσqρδgρδ

�
−
q
g
1

8β
qλσqδρgλδgσρ

�

þ 1

2
gμν

�
1

2
gλσ∂λsc∂σsc þ UeffðscÞ

�
−
1

2
∂μsc∂νsc ¼ 0: ðA5Þ
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APPENDIX B: THE FUNCTIONS
Ri, ai, AND bi

The functions Ri which have been displayed in
Eqs. (4.14) and (4.15) are listed below:

R1 ¼ Bð2A − 2BXqÞ;
R2 ¼ 4A − 2BXq;

R3 ¼ 4A2 − 4ABXq þ 4B2X2
q;

R4 ¼ AðR1 þ ABÞ − 2BR1Xq;

R5 ¼ A3ðA − 2BXqÞ: ðB1Þ

The coefficients ai, and bi which have been displayed in
Eq. (4.16) are6

a0 ¼
1

1þ α̃Ueff
;

b0 ¼
ðβ̃ − α̃Þ

ð1þ α̃UeffÞð1þ β̃UeffÞ
;

a1 ¼
β̃

2ð1þ β̃UeffÞ
;

b1 ¼
ðβ̃ − α̃Þð3β̃ − 2α̃þ ð2β̃ − α̃Þðα̃þ β̃ÞUeff þ α̃β̃2U2

effÞ
ð1þ α̃UeffÞð1þ β̃UeffÞ3

;

ðB2Þ

where we have defined α̃ ¼ 2β þ 8α, β̃ ¼ 4β þ 8α and
Ueff ¼ UeffðscÞ. As it seems, for α̃ ¼ β̃, the coefficients b0
and b1, like the rest of the higher order b coefficients of the
same series (4.16), are equal to zero. This is expected, as
the equality of the tilted factors is translated to an
elimination of the RμνRμν term and so the disformal
transformation is reduced again to the usual conformal.
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