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We study the impact of cosmological scale modifications to general relativity on the dynamics of halos
within voids by comparing N-body simulations incorporating Hu-Sawicki fðRÞ gravity, with jfR0j ¼ 10−6

and 10−5, to those of ΛCDM. By examining the radial velocity statistics within voids classified based on
their size and density-profile, as “rising” (R-type) or “shell” (S-type), we find that halo motions in small
R-type voids, with effective radius <15 Mpc=h, reveal distinctive differences between fðRÞ and ΛCDM
cosmologies. To understand this observed effect, we study the linear and nonlinear fifth forces, and develop
an iterative algorithm to accurately solve the nonlinear fifth force equation. We use this to characterize the
Chameleon screening mechanism in voids and contrast the behavior with that observed in gravitationally
collapsed objects. The force analysis underscores how smaller R-type voids exhibit the highest ratios of
fifth force to Newtonian force, which source distinguishable differences in the velocity profiles and thereby
provide rich environments in which to constrain gravity.
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I. INTRODUCTION

The observed late time acceleration of the universe [1,2]
has been shown through a broad set of cosmological
observations to be consistent with the inclusion of a
cosmological constant term Λ in the Einstein equations,
equivalent to introducing a form of dark energy [3–9].
When comparing observational values of Λ to predictions
from high energy physics, one finds a mismatch of
Λobs=Λtheory ≃ 10−120, motivating a search for alternative
theories to ΛCDM, including those which induce a
deviation from general relativity (GR) on cosmological
scales ∼1=Λobs.
The landscape of modified theories of gravity is

extremely broad [10]. A feature shared across many of
them is a new scalar degree of freedom which mediates the
“fifth force” and parametrizes deviations from GR. Due to
observational constraints, any viable theory of gravity
which modifies GR on cosmic scales to account for the
late time acceleration, must also have a mechanism to
“screen” the fifth force in solar systemlike environments, to
reduce to GR and pass local tests of gravity. Theories
employing the chameleon mechanism [11] feature a scalar
field nonminimally coupled to matter such that the mass of
the field becomes large in regions of high density, thereby
suppressing the fifth force. The most popular class of such
models is fðRÞ gravity, which modifies GR by replacing
the Einstein-Hilbert action with a general function of the

Ricci Scalar fðRÞ. Hu and Sawicki [12] demonstrated that
this function can be chosen to match a ΛCDM cosmology
without the need to include dark energy, making it a viable
alternative to GR. By conformally transforming the metric,
it can be shown that fðRÞ gravity is equivalent to GR plus a
nonminimally coupled scalar field which undergoes
Chameleon screening (see [13] or [14] for a review). An
alternative screening mechanism is provided by the
Vainshtein mechanism [15], seen in “braneworld” theories
of gravity such as nDGP [16]. Here the scalar mediating the
fifth force is screened whenever its derivatives grow large,
such as in the vicinity of sizable overdensities, see for
example [17].
Voids by definition are underdense regions of the cosmic

web [18], where due to the low density, potential mod-
ifications to gravity may become unscreened and lead to
observational differences from GR. There has been a
wealth of research using cosmological simulations that
incorporate the effects of modified gravity theories to study
void statistics in fðRÞ [19–25], nDGP [26,27], and Galileon
[28,29] gravity scenarios. Voids have also been shown to
provide a rich environment to investigate dark energy
through multiple observable quantities. This includes void
number counts as function a of size [30–34], void density
profiles (void-halo correlation function) [35–39] and void
dynamics and velocity profiles [40,41]. The impact of voids
on weak gravitational lensing [42–47], redshift space
distortions and gravitational redshift effects [48–56], the
integrated Sachs-Wolfe effect [57,58], and the kinetic
Sunyaev-Zel’dovich effect [59] have also been studied.
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Recent galaxy and CMB surveys have demonstrated how
observational data from voids can provide cosmological
constraints. The Sloan Digital Sky Survey (SDSS) has
provided a wealth of observational data including void
density profiles [60], void lensing profiles [61], redshift
space distortions around voids [62–64]. The Dark Energy
Survey (DES) data has been used to study weak gravita-
tional lensing around voids [65,66], and to combine DES-
detected voids to derive Planck CMB void lensing
signatures [67]. Upcoming spectroscopic and photometric
experiments, such as DESI [68], Euclid, the Nancy Grace
Roman Space Telescope (previously WFIRST) [69,70] and
the Rubin Observatory LSST survey [71,72], will provide
new opportunities to further probe gravity on large scales
within void environments.
The paper is structured as follows: Section II lays out the

formalism used in this paper—including the modified
gravity modeling in Sec. II A, the cosmological simulations
utilized in Sec. II B, and the void identification and
classification scheme in Sec. II C. In Sec. III we present
the main findings of the paper—summarizing the effects of
modified gravity on void density profiles in Sec. III A, and
the impact on halo radial velocity profiles within the voids
in Sec. III B. The findings are analyzed in Sec. IV—
discussing the impacts of linear and nonlinear estimates of
the fifth force in Secs. IVA and IV C respectively, and
how screening behaves in voids in IV D. In Sec. V the
conclusions of the work are drawn together along with the
implications for future research.

II. FORMALISM

A. Modified gravity theory and model

A flat Friedmann-Roberston-Walker (FRW) metric in
Newtonian gauge with sign convention ð−;þ;þ;þÞ is
assumed

gμνdxμdxν ¼ a2ðτÞ½−ð1þ 2ΦÞdτ2 þ ð1 − 2ΨÞγijdxidxj�
ð1Þ

in whichΦ is the Newtonian gravitational potential,Ψ is the
spatial curvature perturbation and γij is the 3D spatial metric.
The spatial comoving coordinates are given by xi with i, j
running from 1 to 3. μ; ν run from 0 to 3 including τ ¼ x0,
the conformal time defined by dτ ¼ dt=a, where aðτÞ is the
cosmological scale factor normalized to a ¼ 1 today.
In fðRÞ gravity, the Einstein-Hilbert action [73] is

replaced by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
½Rþ fðRÞ� þ Lmðψ iÞ

�
ð2Þ

where fðRÞ is a function of the Ricci scalar, R. In this paper
we consider the form of fðRÞ proposed by Hu and Sawaki
[12], one of the most widely studied fðRÞ models in the
literature, in which the modification takes the form:

fðRÞ ¼ −m2
c1ðR=m2Þn

c2ðR=m2Þn þ 1
; ð3Þ

with effective mass scale m ¼ H0

ffiffiffiffiffiffiffiffiffi
Ωm0

p
, H0 the Hubble

constant, Ωm0 the fractional energy density in matter today
and c1, c2 and n free parameters in the model.
By varying equation (2) with respect to the metric, one

obtains the modified Einstein equations,

Gμν þ fRRμν − gμν

�
1

2
fðRÞ −□fR

�
−∇μ∇νfR ¼ 8πGTμν

ð4Þ

where □ ¼ gμν∇ν∇μ and fR ≡ dfðRÞ
dR is given in the high

curvature regime limit, R ≫ m2, by

fR ≃ −n
c1
c22

�
m2

R

�
nþ1

: ð5Þ

Contracting (4) with gμν gives the trace equation,

□fR ¼ 1

3
ðR − fRRþ 2fðRÞ − 8πGρmÞ; ð6Þ

where the subhorizon limit is assumed and Tμ
μ ¼ −ρm is

taken to be dominated by cold dark matter. Equation (6) can
be viewed as an equation of motion for the scalar field fR
with the right hand side acting as a driving term from an
effective potential dVeff

dfR
.

Requiring that the background expansion history match
that from ΛCDM further constrains the Hu-Sawicki model
parameters. For a ΛCDM expansion history, one relates the
background value of the Ricci scalar to the cosmological
matter composition,

R̄ ¼ 3m2

�
a−3 þ 4

ΩΛ0

Ωm0

�
; ð7Þ

where ΩΛ0 is the energy density of a cosmological constant
that would give rise to the observed expansion history. In
tandem with minimizing Veff ,

dVeff
dfR

¼ 0, this fixes c1
c2
¼ 6 ΩΛ

Ωm
,

leaving c1
c2
2

and n as the remaining free model parameters.

It is customary in the literature to not specify c1
c2
2

, but
instead specify fR0, or the background field value at z ¼ 0,

f̄R0 ≃ −
nc1
c22

�
3

�
1þ 4

ΩΛ0

Ωm0

��
−ðnþ1Þ

: ð8Þ

In this analysis, n ¼ 1 and two values of jfR0j ¼ 10−6

and 10−5 are considered, referred to as F6 and F5,
respectively.
Under these assumptions, and noting for the Hu-Sawicki

model, f̄R ≪ 1 and δR ≃ dR
dfR

δfR ≫ R̄δfR, Eq. (6) can be
simplified, giving
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∇2fR ¼ 1

3
a2δRðfRÞ −

8

3
a2πGρ̄δ; ð9Þ

where δX denotes perturbations in a quantity X relative to
the homogeneous background value, ∇2 ¼ γij∇i∇j (after
imposing the quasistatic approximation) and δ≡ δρ=ρ̄. The
remaining perturbed Einstein equations lead to

∇2Φ ¼ 16

3
πGa2ρ̄δ −

1

6
a2δRðfRÞ: ð10Þ

Equations (9) and (10) together completely specify the total
gravitational potential Φ. To highlight the phenomenology
at play, one can compare the modified gravity model to that
of regular GR, by defining an effective Newtonian potential
that would be derived using the standard Poisson equation
in GR, in the subhorizon limit,

∇2ΦN ¼ 4πGa2ρ̄δ: ð11Þ

Test particles moving along modified geodesics of the
metric of the Jordan frame will experience a total gravi-
tational force per unit mass given by

gtotal≡−
1

a2
∇Φ¼−

1

a2
∇ΦN þ 1

2a2
∇fR≡gN þg5; ð12Þ

where ∇ again is the (spatial) comoving gradient arising
from γij. On its surface, (12) may look as though fR is
acting to decrease the gravitational force from its
Newtonian value, however this is not the case. Looking
at (9) and (11), one can see that fR and ΦN have couplings
to matter of the opposite sign, meaning that in the presence
of a spherical overdensity, − 1

a2 ∇ΦN and þ 1
2a2 ∇fR will

both points toward the matter source, so that gravity is
enhanced relative to its Newtonian value. Another way to
see this is to rewrite (10) as

∇2Φ ¼ 4

3
∇2ΦN −

1

6
a2δRðfRÞ: ð13Þ

Physically, δRðfRÞ acts as an environment-dependent
mass term in the field equation for fR [74]. In this form, it is
clear that gravity is at most enhanced by 1=3 from its
Newtonian value, with δRðfRÞ acting to decrease that
enhancement.
Using (5), and writing fR ¼ f̄R þ δfR explicitly,

δR ¼
�

f̄R0
f̄R þ δfR

� 1
nþ1

R̄0 − R̄; ð14Þ

which is nonlinear in δfR. These nonlinearities are respon-
sible for the “chameleon”mechanism [11,75], which greatly
suppresses the fifth force in high density environments.
A positive δ entering as a source into (9) will act to make

δfR positive due to the negative matter coupling. Given

(14), fR must be strictly negative, so that overdense regions
with δ > 0 push δfR positive which causes the combination
f̄R þ δfR to grow smaller in magnitude, thereby turning on
the nonlinearities contained in δR. We note that, depend-
ing on the model’s value of f̄R0, high density may not
necessarily imply high curvature as shown in [76], indi-
cating that the degree of screening is highly dependent on
the specific value of f̄R0 for a given model.
Taking into account the sign requirement,

fR ¼ −jf̄R0j
�

Ωm;0 þ 4ΩΛ;0

a−3Ωm;0 þ 4ΩΛ;0

�
nþ1

þ δfR: ð15Þ

The interior of void regions feature a negative δρ which
pushes the δfR field to a negative value, thereby gradually
turning off the screening mechanism and enhancing the
modifications to gravity. Since the source term in (9)
pushes δfR negative, and thus away from the nonlinear
effects, we can linearly approximate δR ≃ dR

dfR
δfR, and (9)

becomes

∇2fR;lin ¼ a2μ2δfR;lin −
8

3
πGa2ρ̄δ; ð16Þ

with the background scalar mass given as

μ2 ¼ 1

3ðnþ 1Þ
R̄

jf̄R0j
�
R̄
R̄0

�
nþ1

¼
�

1

2997

�
2 1

2jf̄R0j
ðΩm0a−3 þ 4ΩΛ0Þnþ2

ðΩm0 þ 4ΩΛ0Þnþ1
½ðh=MpcÞ2�:

ð17Þ

To quantitatively capture the difference between the
full and linearized fifth forces, we introduce a “screening
factor,” αðxÞ, defined through,

∇fR;full ¼ αðxÞ∇fR;lin: ð18Þ

The total gravitational force can then be written as

gtotal ¼ −
1

a2
∇ΦN þ α

1

2a2
∇fR;lin: ð19Þ

Respectively, fR;lin and α each speak to different aspects
of the physics contained in the full nonlinear field equa-
tion (9), and provide complementary perspectives on the
modified gravity phenomenology in voids.

B. Cosmological simulations

In this paper we use the N-body ELEPHANT (extended
lensing physics using analytic ray tracing) simulations
described in [77,78]. The ELEPHANT simulations were
created using the code N-body code ECOSMOG [79,80],
which itself is based on the gravitational N-body code
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RAMSES [81]. The code uses an adaptive mesh, which
is refined based on the local density of particles in order
to numerically solve the nonlinear field equation (9)
accurately.
We consider 5 sets of initial conditions, each realized at

zi ¼ 49, and evolved forward until z ¼ 0 using either GR
(baseline), F6 (weakly modified) or F5 (strongly modi-
fied) cosmologies. Each simulation has a volume of
10243ðMpc=hÞ3 and features 10243 dark matter particles
of equal mass.
The cosmological parameters are chosen to match those

from the 9-year WMAP release [82], namely Ωb ¼ 0.046,
Ωc¼0.235,Ωm¼0.281,ΩΛ¼0.719, h¼0.697, ns¼ 0.971,
and σ8 ¼ 0.820.

C. Void identification and classifications

Voids are identified using the void finder VIDE (void
identification and examination toolkit) [83]. VIDE imple-
ments an enhanced version of the void finding algorithm
ZOBOV (zones bordering on voidness) [84]. ZOBOV is a
parameter free void finding algorithm which uses Voronoi
tessellation followed by a watershed algorithm to identify
voids. Each void is assigned an effective radius,

Reff ¼
�
3Vvoid

4π

�
1=3

; ð20Þ

where Vvoid is the comoving void volume according to the
watershed transformation, which means that we also
always take Reff to be comoving. Each void is also assigned
a “macrocenter” (from hereon referred to as center), which
is given by,

Xv ¼
1P
iVi

X
i

xiVi ð21Þ

where xi is the comoving position of the ith halo in the void
and Vi is the corresponding cell volume assigned to each
halo during the Voronoi tessellation. The sum is taken over
all halos whose Voronoi cells constitute the same void. All
position and velocities in our analysis are in real space as
opposed to redshift space.
Voids are located using halo data (identified using the

Rockstar halo finding algorithm [85]) rather than the
underlying particle data, to most closely align with astro-
physical observables.
The default VIDE criteria for a void is any “catchment

basin” identified by the watershed transform with an
average number density within r ¼ 0.25Reff from the
center is less than 0.2n̄ as determined from the halo data.
Analyses [86–88] that utilize the VIDE prescription have
shown that this criteria is too strict, and that it can make
void identification highly susceptible to Poisson fluctua-
tions, which can exclude well-defined void regions because
of the presence of a single halo within 0.25Reff . Following

these authors, we do not impose the central density criteria,
and consider all local “catchment basins” as voids in our
analysis. We have, however, checked that imposing the
criteria does not alter the findings in our work, beyond the
smaller void sample increasing the signal covariance.
Subvoids, or “child” voids as identified by VIDE, are not

considered in this work in an attempt to keep the analysis
focused on void environments which are as uniform as
possible.
Following Ceccarelli et al. [35], and similar to other

authors [89,90], one can classify voids based on their
density profiles. Heuristically, S-type (S for “shell”) voids
are those in which the central void region is surrounded by
a large overdense shell, whereas R-type (R for “rising”)
voids feature a much smaller shell in comparison, remain
underdense for a larger r=Reff range, and more smoothly
rise to the background density. The R-type and S-type
characterizations are respectively aligned with the void-in-
void and void-in-cloud descriptions proposed by Sheth and
van de Weygaer [30].
Each void is classified by considering the average

integrated density, Δ, obtained from the void radial density
profile as defined by the halo distribution. Δ is defined as

ΔðRÞ ¼ 1
4
3
πR3

Z
R

0

4πr2δ̄ðrÞdr; ð22Þ

where r is the radial coordinate taken from each void center,
δ̄ðrÞ is the average halo number density contrast of the shell
at radius r, and R is the integral cutoff, given in terms ofReff .
To classify each void, we average out to a cutoff of R ¼ Reff
and identify those voids with ΔðReffÞ < 0 as R-type, and
those with ΔðReffÞ > 0 as S-type. The sensitivity of the
analysis to the cutoff scale was assessed by varying it out to
1.3Reff ; none of the central results depend on the value in
this range.

III. RESULTS

A. Void density profiles

Structure growth is promoted in fðRÞ theories, with
greater numbers of halos and higher masses. This also leads
to the number of voids being enhanced [23,24].
In this analysis we consider voids with 5 Mpc=

h < Reff < 55 Mpc=h, constituting approximately 98%
of all voids across simulations and redshifts. Across five
realizations and using halos as the density tracer, at z ¼ 0,
37,514 voids are found in GR simulations, 42,093 voids in
F6, and 44,941 voids in F5. Similarly at z ¼ 0.5, 40,508
voids are identified in GR, 45,534 voids in F6, and 47,987
voids in F5.
Table I summarizes the properties of the voids at z ¼ 0.5

for the three cosmologies. The fractional distribution of
voids as a function of size is consistent across the scenarios,
with just slightly less than three quarters of identified voids
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having Reff < 25 Mpc=h regardless of cosmology. The
divisions between R and S-type classifications are similar
across the three cosmologies, with ∼50% of the voids
identified as R-type averaging over all scales, and with the
fraction of R-type voids ranging from ∼45% to ∼80% as
one moves from the smallest to largest voids. The fractional
distributions as a function of size and morphology do not
significantly change between z ¼ 0.5 and z ¼ 0, again
regardless of model. It should be noted that although the
smallest size bin extends down to 5 Mpc=h, only approxi-
mately 15% of voids in the 5–15 Mpc=h bin are themselves
smaller than 10 Mpc=h, with a mean comoving size of
roughly 12.3 Mpc=h, a trend that holds across redshift and
cosmology. Other size bins are more uniform in their
distributions.
The density contrast profile of each void is calculated

using the average halo or particle number density contrast
δðrÞ ¼ ðnðrÞ − n̄Þ=n̄ in spherical shells around the void’s
center. While the density profile of each void can be
computed from either the particle or halo data, the void
center and radius are always determined from the halos. In
this way, the void identification is aligned with observa-
tional tracers, and also provides a consistent center to
compare the radial density and velocity properties derived
from the halo and particle data. Although unobservable,
density profiles from the particle data are important as they
allow a consistency check on the halo data, and a
mechanism to determine the full gravitational potential
within voids.
Void density profiles are presented in Fig. 1 using a

rescaled radial coordinate r̃ ¼ r=Reff averaging sums
across the voids in the simulated samples to mitigate
Poisson noise, as outlined in [88]. Integrated density
contrast profiles, Δðr̃Þ, are shown from the halo data (used
in the classification of voids) whereas unintegrated density
contrast profiles δðr̃Þ are shown from the particle data (used
to later calculate underlying gravitational forces) for R and

S-type voids in GR and F5 at z ¼ 0. The density profiles are
found to have a common form across void sizes when
expressed in terms of this r̃ radial coordinate, consistent
with [36,91]. This common form is also shared with the F6
voids, which are not shown. R-type voids with Reff >
15 Mpc=h have an average density profile which smoothly
rises from an interior underdense region to an external
region of essentially mean density. The smallest R-type
voids feature some qualitative differences when compared
to the larger R-type voids, with a smaller interior under
density and an overdense shell at r > Reff . The S-type voids
consistently feature a large overdense shell, peaking at
r ∼ Reff , and dwarfing that of their R-type counterparts. As
one moves from smaller to larger voids, the density profiles
of both R and S-type voids begin to have smaller overdense
shells, consistent with the profiles shown in [91].
The particle density data at r < Reff are consistent with

the findings in [20] in which fðRÞ gravity is found to have
“emptier, more steeply-walled voids.” The halo profiles
show less pronounced differences between GR and the
modified theories. The relative importance of the small
differences between the particle density profiles and the
fifth forces in F5 and F6 to the halo radial velocities will be
considered later.

B. Radial velocity profiles

Given the suggested challenges in differentiating
between GR and modified gravity cosmologies with the
halo density profiles alone, we now consider the potential
of a second observable statistic, the void radial velocity
profiles. As with the density profiles, the velocity profiles
can be constructed from either the simulated halo or particle
data separately. Doing so allows us to perform a consistency
check between the biased tracers and the CDM particle
distribution. For a givenvoid, and given comoving distance r
from the void center, the radial velocity profile is computed
by averaging over all tracers interior to r. This integrated
measuremaximizes the signal to noise relative to considering
individual radial shells, especially when halos are consid-
ered. The integrated radial velocity profile is given by

V̄ðrÞ ¼ 1

NðrÞ
X
j

θðr − jxj −XvjÞvj · r̂; ð23Þ

where xj and vj are respectively the position and peculiar
velocity of the jth tracer (halo or particle), Xv is the void
center, r is the comoving distance from Xv to the edge of
spherical region being averaged over, r̂ is the radial unit
vector, θ is the Heavyside function and NðrÞ ¼ P

j θðr −
jxj −XvjÞ is the total number of tracers interior to the radial
coordinate r. We neglect halos within 2.5 Mpc=h of the void
center from the analysis, as when taking the radial compo-
nent of thevelocity, the innermost halos are themost affected
by potential uncertainties in the halo-determined void center.

TABLE I. Summary of the properties of voids identified at z ¼
0.5 across the five realizations of each of the three cosmological
models, GR, F6 and F5. The distribution of voids for each
cosmology as a function of size, parameterized by the effective
radius Reff is shown [left columns], as is the fraction of voids in
each size bin that are identified as R-type [right columns].

% of all voids
in this Reff bin

% of voids in this Reff
bin that are R-type

ReffðMpc=hÞ GR F6 F5 GR F6 F5

5–15 18% 20% 20% 47% 47% 47%
15–25 50% 51% 51% 53% 52% 53%
25–35 22% 20% 20% 56% 57% 57%
35–45 6% 5% 5% 67% 69% 71%
45–55 2% 2% 2% 75% 79% 78%
All voids 54% 54% 55%
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Figure 2 gives the radial velocity profiles derived from
particle data at z ¼ 0 for the three cosmologies, separating
voids by size and classification. Within each void, the
outflow velocities for both S and R-types increase in
magnitude with increasing void size, however in larger

voids the outflows peak at smaller r̃ ¼ r=Reff. The particle
velocity profiles at z ¼ 0 across the three cosmologies are
distinct in R-type voids at all sizes with the exception of GR
and F6 in the largest voids with the strength of the outflow
correlated with the strength of the modification to gravity.

FIG. 1. The integrated number density contrast profiles from the halos Δ̄halos [upper panels] and the unintegrated number density
contrast profiles from the particles δ̄particles [lower panels], averaged across all voids, for the R-type [left panels] and S-type classifications
[right panels] in GR [full line] and F5 [dot dashed] at redshift z ¼ 0. Voids are binned by size: Reff ¼ 5–15 Mpc=h [blue], 25–35 Mpc=h
[orange] and 45–55 Mpc=h [green].

FIG. 2. The mean integrated radial velocity profiles from the particle data, V̄part, for R-type voids [upper panels] and S-type voids
[lower panels] at redshift z ¼ 0. Data for voids of size Reff ¼ 5–15 Mpc=h [left], 25–35 Mpc=h [center], and 45–55 Mpc=h [right] are
shown for GR [full, red line], F6 [blue dashed line] and F5 [green dot-dashed line].
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We find that the differences are most pronounced in the
smallest voids, Reff < 15 Mpc=h, with both F6 and F5
models distinguishable from GR at the peak of the outflow
at r ∼ 0.9Reff . While the intermediate scale voids with
Reff ≈ 20–40 Mpc=h are most numerous, the relative
differences in the outflows are much smaller than that of
the smallest voids. While we find differences between GR
and F5 in the largest voids, we are unable to distinguish
between GR and F6 in the largest R-type voids,
Reff > 40 Mpc=h, however these voids are far less numer-
ous, as shown in Table I, and therefore the sample variance
is greater.

By comparison, velocity profiles in the small and
intermediate S-type voids, with Reff < 40 Mpc=h, do not
show significant differences across the three cosmologies,
especially between GR and F6. For a given void size, the
outflows are of the same magnitude across cosmologies and
are limited to the void interiors, r≲ Reff . We do find
velocity profile differences between GR and F5 in the large
S-type voids concentrated well inside the void, at
r≲ 0.75Reff , but again are unable to use these voids to
distinguish between GR and F6.
Figure 3 shows the integrated velocity profiles derived

from halos in R-type voids at z ¼ 0 and z ¼ 0.5. We find

FIG. 3. The mean integrated radial velocity profiles from the halos, V̄halos, for R-type voids at redshift z ¼ 0 [upper panels] and z ¼ 0.5
[lower panels]. Data for voids of size Reff ¼ 5–15 Mpc=h [left], 25–35 Mpc=h [center], and 45–55 Mpc=h are shown for GR [full, red
line], F6 [blue dashed line] and F5 [green dot-dashed line].

FIG. 4. The ratio of the mean peak radial velocities, V̄, in the R-type voids for the F5 [green lines] and F6 [blue lines] cosmologies
relative to those observed in GR are compared at z ¼ 0 [left panel] and z ¼ 0.5 [right panel]. Results derived from the halos [full lines]
and particles [dot-dashed lines] are given as a function of void size, Reff .
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trends consistent with those shown in the particle data—the
outflow component of the velocity profiles in small R-type
voids again offer the best opportunity to differentiate
between the three cosmologies while the distinguishing
power of the other larger sized voids falls off with
increasing Reff .
The effects of modified gravity on the R-type velocity

profiles as a function of void size are summarized in Fig. 4 by
showing the ratio of the mean integrated velocity in the
modified gravity models relative to that in the GR, evaluated
at the peak value of both. The peak velocity is modified most
in the smallest 5–15 Mpc=h voids. At z ¼ 0.5 the velocity
ratio computed from the halos in these voids is 1.08� 0.06
for F6 and1.22� 0.07 for F5. The halo ratios are shown to be
consistent with those results derived directly from the
particles. As void size increases, the ratio of the peak values
in GR and F6 becomes more consistent with unity.

IV. ANALYSIS

To get a better intuition for the fifth force acting in void
environments, the full fifth force can be understood in terms
of the linearized fifth force from (16) and the screening (or
enhancement) factor α using (18). Analysis of the linear-
ized field equation for various sizes and types of voids will
inform us to how the fifth force contained in (16) interacts
with different void scales and density profile shapes, while
analysis of the screening factor, α, will inform us of the
effects of the nonlinear chameleon mechanism, and devia-
tions from the forces obtained in the linearized limit.

A. Interpretation using the linearized fifth force equation

Voids of the same classification display similar density
profiles in terms of r̃ ¼ r=Reff , as shown in Fig. 1. Thus, to
understand differences in the linearized fifth force within
voids of the same classification, it is instructive to use the
same normalized coordinate and its dimensionless reci-
procal space equivalent, k̃ ¼ kReff , giving

ΦNðk̃Þ ¼ −
4πGa2ρ̄R2

eff

k̃2
δðk̃Þ; ð24Þ

δfR;linðk̃Þ ¼
8
3
πGa2ρ̄R2

eff

k̃2 þ μ2a2R2
eff

δðk̃Þ: ð25Þ

Assuming spherical symmetry, this change of variables
allows the linearized fifth force g5;lin and the Newtonian
force gN in (19) to be expressed as,

gNðr̃Þ · r̂¼−
1

aReff
∂ r̃ðΦNÞ

¼16π2Gρ̄
Z

k̃2dk̃δðk̃ÞWNðk̃;Reff ;aÞ∂ r̃

�
sinðk̃ r̃Þ
k̃ r̃

�
;

ð26Þ

g5;linðr̃Þ · r̂¼
1

2aReff
∂ r̃ðδfR;linÞ

¼16π2Gρ̄
3

Z
k̃2dk̃δðk̃ÞW5ðk̃;Reff ;aÞ∂ r̃

�
sinðk̃r̃Þ
k̃r̃

�
:

ð27Þ

Here gðr̃Þ · r̂ is the physical magnitude of the Newtonian or
fifth force in the radial direction with r̂ the physical radial
unit vector, not the comoving radial basis vector, which
accounts for the factor of 1=a instead of 1=a2. The effects
of void scale are encapsulated within what we will
henceforth refer to as the window functions for the
Newtonian force and fifth force, respectively:

WNðk̃; ReffÞ ¼
aReff

k̃2
; ð28Þ

W5ðk̃; Reff ; aÞ ¼
aReff

k̃2 þ a2μ2ðaÞR2
eff

: ð29Þ

A heuristic understanding of the effect of scale can be
obtained from by considering the window functions of the
above integrals evaluated at the particular wave-mode k̃0
around which k̃20δðk̃0Þ is peaked. Given the commonality of
δðr̃Þ, k̃0 is not expected to significantly change as one moves
across different Reff size bins for voids of a given classi-
fication. Thus, by considering how the window functionW5

evaluated at k̃0 varies as a function of Reff and redshift z, we
can get a good idea for how the linearized fifth force varies
with scale and redshift within each class of voids.
Fixing k̃0, the window function for the fifth force is

peaked at Rmax
eff ¼ k̃0=aμ. At redshift z ¼ 0.5, we find for R-

type voids in F6 that k̃0 ¼ 3.5, which when combined with
the corresponding value of μ ¼ 0.56h=Mpc, translates to a
peak in the window function at Rmax

eff ¼ 9.3 Mpc=h. For R-
type voids in F5, we have a very similar value of k̃0 ¼ 3.4,
but due to the smaller mass term of μ ¼ 0.18h=Mpc we
have a peak in the F5 window function at a larger value of
Rmax
eff ¼ 29 Mpc=h. This means that over the range of Reff

studied, the F6 window function decreases with increasing
Reff , while in F5, the window function maintains a more
consistent value. These properties are minimally affected
by the change in redshift between z ¼ 0 and z ¼ 0.5.
When thinking about potential observations, it can be

useful to consider the relative, as well as the absolute,
strength of the fifth force in comparison to the Newtonian
gravitational force, to better assess the statistical distin-
guishability of the modified gravity effects. Given the
similarities between the radial density profiles of voids
of different sizes, the difference between the Newtonian
gravitational force and the linearized fifth force can be
effectively captured by the differences between the respec-
tive window functions,
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W5ðk̃0; Reff ; aÞ
3WNðk̃0; Reff ; aÞ

¼ k̃20
3ðk̃20 þ a2μ2ðaÞR2

effÞ
ð30Þ

where the factor of 3 is due to the relative factor of 3
between the coupling constants. In the right-hand panel of
Fig. 5 it is shown that, for a given value of k̃0, the ratio is a
strictly decreasing function of Reff . Physically, this is
because, as Reff changes, there is always tension between
the Yukawa suppression acting to decreasing the fifth force
(denominator of W5), and the amount of under density
sourcing the fifth field and increasing the fifth force
(numerator of W5), both of which increase with Reff .
Since the Newtonian potential does not suffer from
Yukawa suppression (no mass term in denominator), WN
strictly grows with Reff , and always at a faster rate thanW5.

B. Toward solving the full nonlinear fifth-force equation

In the discussion so far, the effects of scale have been
highlighted by focusing on the peak of the density function in
reciprocal space. Although this approach places the depend-
ence on Reff front and center, it neglects the contributions
from the full δðr̃Þ profile, obscures the fact that the shell
theorem has been explicitly violated, and does not extend to
solving the full field in (9). Motivated to understand explicit
effects of void shape, and to eventually solve (9) exactly, (16)
is solved again but this time using a Green’s function
approach.
Under the assumptionof spherical symmetry,ϕ5ðr̃; R̃Þ, the

Green’s function to the linearized field equation for a
spherical matter shell located at R̃, is defined implicitly
through

∇2
r̃ϕ5ðr̃; R̃Þ ¼ a2μ2R2

effϕ5ðr̃; R̃Þ −
8

3
πGa2ρ̄R2

effδ
ð1Þðr̃ − R̃Þ

ð31Þ

where δð1Þðr̃ − R̃Þ is the 1D Dirac delta function, not to be
confused with the density contrast δðr̃Þ. Once ϕ5ðr̃; R̃Þ is
known, δfR;lin can be reconstructed via

δðr̃Þ ¼
Z

dR̃ðδðR̃Þδð1Þðr̃ − R̃ÞÞ → δfR;lin

¼
Z

dR̃ðδðR̃Þϕ5ðr̃; R̃ÞÞ ð32Þ

Equation (31) can be solved analytically by standard meth-
ods involving contour integration, yielding

ϕ5ðr̃;R̃Þ¼
8πaGρ̄
3μ

R̃
r̃
Reff

�
e−aR̃Reffμ sinhðar̃ReffμÞ; r̃≤ R̃

e−ar̃Reffμ sinhðaR̃ReffμÞ; r̃> R̃

ð33Þ

Since g5ðr̃Þ ¼ 1
2aReff

∂ r̃ðδfRÞr̂, a new Green’s function
can be defined explicitly for the fifth force rather than for
the field,

F 5ðr̃; R̃Þ

¼ 1

2aReff
∂ r̃ðϕ5ðr̃;R̃ÞÞ

¼4πGρ̄
3μ

R̃

×

8<
:

e−aR̃Reff μ
r̃

h
ðaReffμÞcoshðar̃ReffμÞ− sinhðar̃ReffμÞ

r̃

i
; r̃≤ R̃

sinhðaR̃ReffμÞ
r̃

h
−ðaReffμÞe−ar̃Reffμ− e−ar̃Reff μ

r̃

i
; r̃> R̃:

ð34Þ

For comparison the equivalent Green’s functions for the
Newtonian potential and force with spherical symmetry are
the familiar functions

FIG. 5. [Left] The magnitude of the window functionW5 in (29) evaluated at the wave number k̃0 where the reciprocal space quantity
k̃2δðk̃Þ is peaked, for R-type voids at redshifts of z ¼ 0 [full line] and z ¼ 0.5 [dot-dashed line] for F5 [green] and F6 [blue]. [Right] The
ratio of the fifth force and Newtonian window functions, in (30), evaluated at the same k̃0.
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ϕNðr̃; R̃Þ ¼ −4πGρ̄a2R2
effR̃

2

(
1
R̃
; r̃ ≤ R̃

1
r̃ ; r̃ > R̃

ð35Þ

and using FNðr̃; R̃Þ ¼ − 1
aReff

ð∂ r̃ϕNðr̃; R̃ÞÞ,

FNðr̃; R̃Þ ¼ −4πGaρ̄ReffR̃2

(
0; r̃ ≤ R̃
1
r̃2 ; r̃ > R̃

ð36Þ

recovering the shell theorem from Newtonian gravity.
Comparing (36) to (34) for a given matter shell, the fifth
force causes the attraction of a point particle both interior
and exterior to the shell, whereas the Newtonian gravita-
tional force only attracts an exterior particle.
Focusing on r̃ < R̃ in (34), the piece which explicitly

violates the shell theorem, for given values of a, Reff , and μ
the average force interior to a mass shell will be maximized
if the mass shell is placed at R̃max ¼ 2.73

aReffμ
. Considering this

force has no Newtonian analog, maximizing this contribu-
tion to the fifth force will greatly enhance the ratio of g5 to
gN . Looking at the void density profiles shown in Fig. 1, we
can see that our actual void density profiles have “mass
shells” of various sizes located at approximately R̃ ∼ 1.
Plugging in values for F6 at z ¼ 0.5, we see that mass shells
in this range are most effective if Reff is taken to be
∼7 Mpc=h—in reasonable agreement with the Reff ¼
9 Mpc=h estimate previously from the window function
arguments. Repeating this calculation for F5 again at
z ¼ 0.5, we find the Reff which makes these shells most
effective is ∼23 Mpc=h, relative to the earlier window
function estimate of Reff ¼ 29 Mpc=h.

C. Interpretation using the nonlinear
fifth force equation

In the previous section we considered solutions to the
linearized field equation. In order to understand the full
response to the modified gravity theory we need to also
determine whether the nonlinear solution differs signifi-
cantly from the linearized one, as parameterized through
the screening factor, α. In this section we outline the
iterative procedure we develop, using Green’s functions, to
solving the nonlinear field (9) in voids.
For most voids it is expected that the nonlinear screening

from the chameleon mechanism will be minimal in rare
environments, and the linearized solution will be close to
the full nonlinear solution. Thus, to begin the algorithm, the
linearized field equation (16) is solved using the Green’s
function method given by (32) and (33) to obtain an initial
estimate of the full solution fR;ð0Þ ¼ fR;lin. In rare instances
in which the linear solution is unphysical, i.e., δfR;lin >
ð−f̄RÞ so that fR;lin > 0, we smoothly modify the initial
δfR;ð0Þ such that it remains strictly negative, and sufficiently
close to ð−f̄RÞ to be an effective initial trial. The algorithm
proceeds by modifying the current estimate at each iterative

step until it is determined that it has converged to the full
nonlinear solution. To characterize the degree to which the
current estimate differs from the full solution, the ith
iterative solution fR;ðiÞ is plugged back into (9), and terms
are rearranged in order to define a new density profile,

δðiÞ ¼
∇2fR;ðiÞ − 1

3
a2δRðfR;ðiÞÞ

− 8
3
a2πGρ̄

: ð37Þ

In lieu of comparing fR;ðiÞ to the full solution fR, the latter
of which is unknown, one can instead compare δðiÞ to the
density function, δreal from the particles in the simulation by
defining

ϵðiÞðr̃Þ ¼ δrealðr̃Þ − δðiÞðr̃Þ: ð38Þ

If the difference between the iterative density estimate
and that from the particles is greater than a desired
tolerance, then we define a new field φðiÞ defined as

φðiÞ ¼ fR;full − fR;ðiÞ: ð39Þ

Taking ∇2
r̃φðiÞ,

∇2
r̃φðiÞ ¼

1

3
a2R2

effðδRðfR;ðiÞ þ φðiÞÞ − δRðfR;ðiÞÞÞ

−
8

3
a2R2

effπGρ̄ϵðiÞ ð40Þ

Here, the linearization is done not around the background
value of the field, but around fR;ðiÞ, such that (40) becomes

∇2
r̃φlin;ðiÞ ¼

1

3
a2R2

eff

�
δR
δfR

����
fR;ðiÞ

�
φlin;ðiÞ −

8

3
a2R2

effπGρ̄ϵðiÞ

¼ a2R2
effμ

2
effðr̃Þφlin;ðiÞðr̃Þ −

8

3
a2R2

effπGρ̄ϵðiÞðr̃Þ;
ð41Þ

with μ2effðr̃Þ explicitly given as

μ2effðr̃Þ ¼
�
1

3

δR
δfR

����
fR

�
¼ −

R̄0

3ðnþ 1ÞfRðr̃Þ
�

f̄R;0
fRðr̃Þ

� 1
nþ1

:

ð42Þ

This expression is similar to (16), except the effective
“effective mass” term, μ2eff , is now a function of r̃ rather
than a constant. Since μ2effðr̃Þ is a smooth function, the
solution to this equation can be accurately approximated by
slightly modifying the previous Green’s functions to
include μ2effðr̃Þ given above, as
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φGðr̃; R̃Þ ¼
8πaGρ̄
3μeffðr̃Þ

R̃
r̃
Reff

×

�
e−aR̃Reffμeffðr̃Þ sinhðar̃Reffμeffðr̃ÞÞ; r̃ ≤ R̃

e−ar̃Reffμeffðr̃Þ sinhðaR̃Reffμeffðr̃ÞÞ; r̃ > R̃

ð43Þ

with

φlin;ðiÞðr̃Þ ≈
Z

dR̃ðϵðiÞðR̃ÞφGðr̃; R̃ÞÞ: ð44Þ

After each iterative step, we check to see if ϵ has
converged and, if not, the next iterative step is taken with
new trial solution, fR;ðiþ1Þ ¼ fR;ðiÞ þ wφlin;ðiÞ where w is a
numerical weight. The default value of w ¼ 1 is used,
except in rare cases in which the initial linear solution
strongly deviates from the nonlinear solution, parametrized
by jϵðiÞj > 0.3, in which we use w ¼ 0.75 to allow the
solution to evolve more conservatively and avoid interative
trials “overshooting” and taking unphysical values. The
iterative procedure is repeated until jϵðiÞðr̃Þj < 0.0075 over
the range 0.2 < r̃ < 4.8 (the lower limit avoids numerical
ambiguities with the ∇2 term at r̃ ¼ 0) after which fR;ðiÞ is
considered to have sufficiently converged to the solution
the full nonlinear field equation.
The algorithm is run for each void individually and then

the results are averaged. For an individual void, the force
profile is calculated using the density contrast from the
particles out to r̃ ¼ 5, at which point the field is taken to be
effectively at its background value.
GR [full, red line], F6 [blue dashed line] and F5 [green

dot-dashed line]
Figure 6 presents the fifth force per unit mass calculated

with the iterative approach for R-type voids in F5 and F6 at
z ¼ 0 and z ¼ 0.5. As an indicator of the convergence
process, for F6 at z ¼ 0.5, 93% of R-type voids meet the

convergence criteria after a single iterative step beyond the
linear solution, and 99% of R-type voids after three
iterations. Only 0.05% of R-type voids fail to converge
below jϵðiÞðr̃Þj < 0.05 after ten iterations and were
excluded from the force analysis. Although not shown,
we found good agreement between the fifth force calcu-
lated from the average density profile using the average Reff
within each size bin, and the average of the fifth forces
calculated for each density profile individually.
In F6, the magnitude of the peak of the fifth force is a

strictly decreasing function of Reff , and acts at smaller r̃ as
one goes to larger voids. This is consistent with the
characteristics of the velocity profiles in Figs. 2 and 3,
and the F6 window function peaking at smaller Reff, as
shown in Fig. 5. In F5, there is far less dependence on void
size, consistent with the broad maximum in the F5 window
function that spans the intermediate size voids in Fig. 5. For
completeness, the rightmost panel of Fig. 6 shows the
Newtonian force in GR, which is a strictly increasing
function of void size.
Figure 7 and Table II show the relative importance of the

Newtonian force and the total force, including the fifth
force for z ¼ 0.5 voids. The relative strength of the fifth
force is largest in the smallest voids both for F6 and F5. For
F6 at z ¼ 0.5, the fifth force is 17%� 0.4% of the
Newtonian force in GR at its peak in the smallest voids,
while it contributes a significantly smaller fraction,
2%� :05%, at the peak in the largest voids.
The ratio of the Newtonian forces, gN;fðRÞ=gN;GR differs

slightly from unity when comparing F5 and F6 to GR,
resulting from small differences in the particle density
profiles shown in Fig. 1 in early r=Reff bins. In F5, the
magnitude of the fifth force is much larger than this
difference in Newtonian forces. In F6, the fifth force is
much larger in small voids, while it is more comparable to
the difference in Newtonian forces in the 25–35 Mpc=h
and 45–55 Mpc=h voids. Interestingly, the sets of voids
with the largest fractional difference in Newtonian forces

FIG. 6. The mean fifth force per unit mass, g5, in R-type voids in F6 [left] and F5 [center] along with the Newtonian force, gN , at
z ¼ 0.5 along with the standard error on the mean [shaded regions]. The profiles are shown for voids increasing in size from
5–15 Mpc=h [blue lines] to 45–55 Mpc=h [purple lines].
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are also those with the largest fractional fifth forces,
indicating that the fifth force is playing an active role in
shaping these environments.
It is frequently stated in the literature that fðRÞ gravity

can provide a maximum enhancement of a factor of 4=3
over Newtonian gravity in GR. This is derived from the
ratios of the coupling constants in (9) and (11). In the
context of specific matter distributions, however, an
enhancement greater than 4=3 can be obtained under the
assumption of spherical symmetry. As an example, if a thin
spherical shell of radius R were considered, the ratio g5=gN
would be infinite at the points 0 < r < R interior to the

shell without contradicting the theoretical mode, since the
Newtonian force within the shell would be zero, while the
fifth force will be nonzero, as described in Sec. IV B. It is in
this context that the values in Table II for gTotal;fðRÞ=gN;GR

should be understood. The values >4=3 are a result of the
assumption of spherical symmetry, combined with small
differences in the underlying density profiles used to
calculate gN in GR and gTotal in F5 and F6. Assumptions
of spherical symmetry have shown to be reasonable and to
give results which match those directly from simulations
e.g., for nDGP models of gravity [26]. Collectively, these
results underline why velocity profiles within small R-type

FIG. 7. The mean Newtonian, gN , [upper panels] and total forces gTotal (fifth and Newtonian combined) in GR [full, red line], F6 [blue
dashed line] and F5 [green dot-dashed line] for R-type voids for sizes Reff ¼ 5–15 Mpc=h [left panels], 25–35 Mpc=h [center],
45–55 Mpc=h [right]. Standard errors on the mean are shown as shaded regions around the mean.

TABLE II. A summary of the mean ratios of the fifth forces, g5 [left columns], Newtonian gN;fðRÞ [central
columns] and total forces, gTotal;fðRÞ [right columns] experienced in R-type voids in fðRÞ relative to the Newtonian
forces experienced in GR, gN;GR. Results are shown for voids of various sizes, for both F5 and F6 scenarios at z ¼ 0

and z ¼ 0.5. Errors are the 1σ errors on the mean values.

Model z Void Size (Mpc=h) g5=gN;GR gN;fðRÞ=gN;GR gTotal;fðRÞ=gN;GR

F6 0 5–15 0.15� 0.004 1.04� 0.03 1.17� 0.03
25–35 0.03� 0.0004 1.03� 0.01 1.06� 0.01
45–55 0.01� 0.0004 1.02� 0.02 1.03� 0.02

0.5 5–15 0.17� 0.004 1.06� 0.03 1.22� 0.04
25–35 0.04� 0.0004 1.02� 0.01 1.06� 0.01
45–55 0.02� 0.0005 1.01� 0.02 1.02� 0.02

F5 0 5–15 0.39� 0.009 1.09� 0.03 1.47� 0.04
25–35 0.17� 0.001 1.05� 0.01 1.22� 0.01
45–55 0.08� 0.002 1.04� 0.02 1.12� 0.02

0.5 5–15 0.41� 0.01 1.12� 0.04 1.53� 0.04
25–35 0.19� 0.002 1.05� 0.01 1.24� 0.01
45–55 0.10� 0.003 1.02� 0.03 1.12� 0.02
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voids present a robust method to isolate distinctive sig-
natures of modified gravity resulting from the direct action
of the fifth force.

D. The chameleon mechanism and screening factor, α

The quality of the match between the solutions of the
linearized and the full nonlinear field equation is encapsu-
lated by the screening factor α in (18). Before we present
our results for the screening factors, it is instructive to first
consider the effective mass previously defined in (42). The
effective mass, μ2eff , is a useful measure of the total amount
of screening at play, whereas the screening factors will only
inform us to additional screening or enhancement on top of
the linear fifth force solutions. Here, the effective mass can
be written in a more explicit way, separating the field fR
into fR ¼ f̄R þ δfR:

μ2effðr̃Þ ¼ −
R̄0

3ðnþ 1Þðf̄R þ δfRðr̃ÞÞ
�

f̄R;0
f̄R þ δfRðr̃Þ

� 1
nþ1

ð45Þ

where f̄R is explicitly given in (15).
In Figure 8, the average value of μ2eff is shown, evaluated

at the location of the peak fifth force within each void in the
F6 simulations, and averaged over all voids within the same
classification and size bin. μ2eff calculated in this way is
found to be a decreasing function of Reff , and decreases
more sharply at a redshift of z ¼ 0.5 than at z ¼ 0. It is
consistently smaller in R-type voids compared to the
similarly sized S-type voids.
Examining (9), due to the sign of the matter coupling,

regions of δ > 0 act to drive δfR positive, closer to its fully
screened value of 8πGρ̄δ and likewise regions of δ < 0 act
to drive δfR negative. As per the chameleon mechanism,

looking at (45), overdense regions drive δfR positive,
causing the entire field f̄R þ δfR to grow smaller in
magnitude, and thereby increasing the effective mass over
from its background value. R-type voids feature a smaller
overdense shell than the S-type voids, as shown in Fig. 1,
and thus a smaller accompanying value of μeff .
The greater variation in δfR at z ¼ 0.5 relative to z ¼ 0

can be understood by noting that a2μðaÞ2, the combination
of which acts as the linear mass term in (16), is smaller at
z ¼ 0.5 than z ¼ 0 due to the explicit inclusion of the scale
factor. Thus, the δfR field typically acquires larger values at
z ¼ 0.5 compared to z ¼ 0, and thus more extreme values
of μ2eff . This trend will not continue to earlier redshifts as
a2μðaÞ2 is minimized for z ≃ 0.4 and is a strictly increasing
function with increasing redshift beyond this point.
Figure 9 shows how α, when evaluated at the location of

the peak outwards fifth force, varies as a function of void
size within R-type and S-type voids for both F5 and F6. The
figure shows that in voids, the linear solutions provide a
reasonable but not exact solution to the nonlinear equations
(when they agree perfectly, α ¼ 1).
As one moves to lower redshifts, the linearized field in

(16) provides an increasingly accurate approximation to the
full field equation within void environments of all classi-
fications and sizes. This can be explained using (15) and
(45). Equation (45) shows how the nonlinear effects, which
act to greatly increase the field’s mass kick in when
δfR ∼ jf̄Rj, cause fR to approach 0 from below. In (15),
one can see that as a → 0, jf̄Rj grows larger in magnitude,
and δfR is allowed to operate over a larger range of values
before nonlinear effects become significant. Related is the
fact that as f̄R grows larger in magnitude, the μeff curves in
Figure 8 flatten out; for larger values of jf̄Rj, changes in
δfR cause smaller changes to μeff . Thus, as z → 0, it
becomes harder to trigger additional screening or

FIG. 8. The effective mass calculated at the peak of the fifth force, μ2eff , in F6 for R-type [left panel] and S-type [right panel] voids. The
effective mass estimates obtained analytically using (45) are shown for z ¼ 0 [grey full lines] and z ¼ 0.5 [purple full lines] along with
the homogeneous background value μ2ðzÞ [dot-dashed lines]. The results from simulated void data, labeled by the ReffðMpc=hÞ of the
respective size bins are also shown [triangle markers].
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enhancement, meaning the linear equation, which contains
neither of these effects, becomes a better approximation.
The average value of α calculated at the peak of the fifth

force is a monotonically increasing function of Reff with the
exception of small S-type voids in F5. Ignoring this
exception for the time being, the monotonic trend is a
reexpression of that first observed in Fig. 8. Larger voids
have smaller overdense shells, and thus the underdense
centers can provide more nonlinear enhancement through
the chameleon mechanism compared to their small counter-
parts. When viewing these figures, one must keep in mind
that the value of α for a given void class, radius, and redshift
conveys the fractional change from the screening that is
already accounted for in the linearized fifth force equation,
rather than the total amount of screening at play, indicated
by μ2eff.
The exception to the trends in α for small (5–15 Mpc=h)

S-type voids in F5 can be traced back to the explicit
violation of the shell theorem by the fifth force in the r̃ < R̃
branch of (34), which is where the dominant fraction of the
outward fifth force in these voids originates. In the limit
that μ → 0, the shell theorem is restored, whereas in the
opposite limit of μ → ∞, the field is infinitely massive and
cannot propagate. Both limits lead to the same result in (34)
of F 5ðr̃; R̃Þ → 0 for r̃ < R̃, with an intermediate value of μ
maximizing the average fifth force interior to any mass
shell. Analogous to the discussion in Sec. IV B, if one
integrates over r̃ < R̃, we find the average fifth force inside
a matter shell located at R̃ to be maximized for
μmax ≃ 2.73=aR̃Reff . If we consider values specific to the
5–15 Mpc=h S-type voids in F5 at z ¼ 0.5, with R̃ ∼ 1.0
(the location of the peak overdensity in small S-type voids)
and Reff ∼ 12.1 Mpc=h (the mean S-type void size in the
smallest bin), we find μmax ∼ 0.34h=Mpc. This is larger

than the z ¼ 0.5 background values of μ ¼ 0.177 Mpc=h
in F5. Thus, increasing μeff from its background value will
have the effect of increasing the outward fifth force in the
smallest S-type voids in F5. This is exactly what the
chameleon mechanism does, increasing the mass of the
field at the peak of the fifth force within these voids on
average by 13% up to μ ¼ 0.20h=Mpc. The story breaks
down and reverts to the more intuitive case for R-type voids
and the larger S-type voids in F5, with most of their fifth
force coming instead from the r̃ > R branch of (34). For
both types of voids in F6, the linear mass term at z ¼ 0.5 of
μ ¼ 0.56h=Mpc at z ¼ 0.5, is much greater than the
corresponding μmax in all sizes of voids; further increases
to μeff will only dampen the fifth force in F6 voids.
It is instructive to compare the screening factor we have

obtained in the voids to the approximate screening factor
screening for spherically compact objects proposed by
Khoury and Weltman [11,75] for large, spherically over-
dense objects of radius Robj in fðRÞ gravity, as

�
ΔRobj

Robj

�
¼
8<
:min

�
3
2

���� f̄R0ΦN

����
�

Ωm0þ4ΩΛ0
Ωm0a3þ4ΩΛ0

�
nþ1

;1

�
if ΦN <0

1 if ΦN ≥0:

ð46Þ

Comparing our void screening factor α against this, we
find substantial differences. Most notably, whereas the void
screening factor α allows for enhancement of the fifth force
beyond the linearized value, no such enhancement is
allowed when using (46) in the case of dense objects.
There is also a difference in how the two screening factors
treat F5 versus F6. With the void screening factor α, R-type
voids in F6 consistently receive a larger fractional enhance-
ment over their linearized fifth force values than their F5

FIG. 9. The value of the screening factor, α, calculated at the peak value of the fifth force. F6 [blue] and F5 [green] models
as a function of void size are shown for the R-type [left] and S-type voids [right] at z ¼ 0 [full lines] and z ¼ 0.5 [dot dashed
lines].
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counterparts, whereas in (46), due to the explicit inclusion
of jf̄R0

j, dense objects are screened a factor of 10 more
heavily in F6 than in F5.
Using the average density profile in each of our Reff size

bins as explicit examples, we can calculate both α and
ðΔRobj=RobjÞ at the location of each profile’s peak fifth
force and compare.
Considering R-type voids at z ¼ 0.5, we find the average

profile of the 5–15 Mpc=h size bin to have α ¼ 0.98
whereas the dense object screening factor gives a markedly

different answer of ðΔRobj

Robj
Þ ¼ 0.21. For 15–25 Mpc=h and

25–35 Mpc=h, we find α ¼ 1.07 and α ¼ 1.14 whereas

ðΔRobj

Robj
Þ ¼ 0.83 and ðΔRobj

Robj
Þ ¼ 0.80 for each size range

respectively, indicating that while the forces are actually
enhanced over their linearized values, the dense object
screening factor would add additional nonlinear screening.

In the larger size bins, we have ðΔRobj

Robj
Þ ¼ 1, while in each

case α takes a value greater than one, α ¼ 1.16, and α ¼
1.18 in the 35–45 Mpc=h and 45–55 Mpc=h bins
respectively.
These results have implications for studying voids in

fðRÞ gravity using hybrid simulation techniques, that
combine N-body and Lagrangian perturbation theory
approaches [92,93]. These implement the Chameleon
mechanism through the use of the compact object screening
factor ðΔRobj=RobjÞ and have been shown to create cluster-
ing statistics that agree well with results with full N-body
simulations which solve the nonlinear field equations.
These statistics, however, principally focus on regions of
high density. Our work provides an approach to be able to
extend these hybrid approaches to the study of voids, by
analytically calculating α using iterative method developed
here to solve the full nonlinear field equation for the fifth
force, in regions where the compact object form does
not apply.

V. CONCLUSIONS

In this paper, we determine how halo velocities within
voids can be used to discriminate between GR and fðRÞ
gravity by contrasting void velocity profiles across classi-
fications and a range of void sizes.
Voids are identified in snapshots from N-body simula-

tions at z ¼ 0 and z ¼ 0.5 using the void finder VIDE and
are classified based on their halo density profiles as either
R-type (rising) or S-type (shell), and analyzed in groups
based on their effective radius, Reff . We find few observable
differences in the halo-derived density profiles in voids of
either classification or size, although when dark matter
particles are used as tracers, we find slightly emptier voids
at small r=Reff in modified gravity scenarios consistent
with previous work [20].

We find that the velocity profiles of R-type voids in
modified gravity scenarios are much more distinguishable
from their GR counterparts than for S-type voids. This
effect is most pronounced in the smallest with voids
5ðMpc=hÞ < Reff < 15ðMpc=hÞ, which provide the best
dynamical opportunity to distinguish between F6, the most
weakly modified gravity scenario considered, and GR. The
difference in velocity profiles is observed in both the halo
and particle velocity profiles, and at z ¼ 0.5 and z ¼ 0. The
peak velocities in these voids, using the halo data, is found
to be 13%� 8% larger at z ¼ 0 and 8%� 6% larger at
z ¼ 0.5 in F6, and 28%� 8% at z ¼ 0 and 22%� 7% at
z ¼ 0.5 in F5 when compared to GR.
We undertake a detailed analysis of the fifth and

Newtonian forces and are able to attribute the signal in
the small voids to the action of the fifth force as opposed to
underlying differences in void populations or density
profiles across the simulations. The analysis of the linear-
ized field equation through the use of the window functions
shows that the linearized fifth force in F6 will be a
decreasing function of void size, whereas in F5 there will
be much less size dependence on the magnitude of the
linearized fifth force. The ratio of the linearized fifth force
in either modified gravity scenario to that of the Newtonian
force is shown to be maximized in small voids.
We develop an iterative procedure, using Green’s func-

tions, to solve the nonlinear field equation in voids under
the assumption of spherical symmetry. The method effi-
ciently enables the fifth force to be calculated in each void
individually, rather than just for the mean density profile.
Comparing the linear and full solution to the field

equation, we compute the screening factor α. We find that
in all voids, α is of order unity, but differs from unity
depending on the size and void classification in both F5 and
F6. The screening factor α is found to be consistently larger
(meaning less screening is occurring) in R-type voids
compared to S-type voids, and large voids compared to
small voids. The value of α is more easily displaced from
unity in either direction at z ¼ 0.5 compared to z ¼ 0,
indicating that nonlinear effects are more important at
earlier redshifts.
Focusing on F6, we can see there is competition between

the screening or enhancement to the fifth force given by α,
which is found to increase with Reff , and the linearized fifth
force analysis, which states that the magnitude of the fifth
force should decrease with increasing Reff . Considering R-
type voids in F6 at z ¼ 0.5, we find that despite a larger
average screening factor of α ¼ 1.13 in voids with
Reff ¼ 45–55 Mpc=h, the largest fifth force is found to
be in the smallest voids with Reff ¼ 5–15 Mpc=h, which an
average screening factor value of α ¼ 1.00. This result
shows that ultimately, the linear force analysis dictates the
trends which occur in the full nonlinear fifth force with
changing Reff .
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We also find screening in voids cannot be effectively
captured using the widely-used screening factor approxi-
mation developed for spherically overdense bodies in [11],
and given explicitly in (46). Considering F6 again at
z ¼ 0.5, we find severe mismatch between the values of
α and ðΔRobj=RobjÞ both calculated for the same density
profile at the location of the peak fifth force—with the
worst discrepancy coming in the voids with the largest
distinguishing velocity signal. Given these actual discrep-
ancies, as well theoretical concerns around the lack of
potential enhancement to gravity when using the
ðΔRobj=RobjÞ screening factor, we discourage the use of
hybrid codes which implement this screening factor when
studying cosmic voids, and instead encourage the use of
alternative methods.
Our results present tantalizing prospects for constraining

the properties of gravity through looking at void statistics
with redshift space distortion measurements from DESI,

Euclid and the Roman Telescope. Photometric surveys,
such as the Rubin Observatory LSST survey, will also
provide additional valuable information to accurately
determine the density profiles that aid the characterization
of void sizes and classifications. Determining the full
observational implications for upcoming large scale struc-
ture surveys will be the focus of future work.

ACKNOWLEDGMENTS

We wish to thank Baojiu Li for kindly providing the
ELEPHANT simulations, on behalf of [94] and Georgios
Valogiannis for assistance in their use. Thework ofC.W. and
R. B. is supported by DoE Grant No. DE-SC0011838,
NASA ATP Grant No. 80NSSC18K0695, NASA ROSES
Grant No. 12-EUCLID12-0004 and funding related to
the Roman High Latitude Survey Science Investigation
Team.

[1] S. Perlmutter et al. (Supernova Cosmology Project),
Astrophys. J. 517, 565 (1999).

[2] A. G. Riess et al. (Supernova Search Team), Astrophys. J.
607, 665 (2004).

[3] D. J. Eisenstein et al. (SDSS Collaboration), Astrophys. J.
633, 560 (2005).

[4] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A.
Peacock, A. C. Pope, and A. S. Szalay, Mon. Not. R. Astron.
Soc. 381, 1053 (2007).

[5] W. J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148
(2010).

[6] E. A. Kazin, J. Koda, C. Blake, and N. Padmanabhan, Mon.
Not. R. Astron. Soc. 441, 3524 (2014).

[7] D. Spergel, N. Gehrels, J. Breckinridge, M. Donahue, A.
Dressler et al., arXiv:1305.5422.

[8] P. Ade et al. (Planck Collaboration), Astron. Astrophys.
571, A16 (2014).

[9] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A13 (2016).

[10] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).

[11] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026
(2004).

[12] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[13] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[14] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).
[15] A. Vainshtein, Phys. Lett. 39B, 393 (1972).
[16] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,

208 (2000).
[17] P. Brax, A.-C. Davis, B. Li, and H. A. Winther, Phys. Rev. D

86, 044015 (2012).
[18] S. A. Gregory and L. A. Thompson, Astrophys. J. 222, 784

(1978).

[19] B. Li, G.-B. Zhao, and K. Koyama, Mon. Not. R. Astron.
Soc. 421, 3481 (2012).

[20] P. Zivick, P. Sutter, B. D. Wandelt, B. Li, and T. Y. Lam,
Mon. Not. R. Astron. Soc. 451, 4215 (2015).

[21] E. Perico, R. Voivodic, M. Lima, and D. Mota, Astron.
Astrophys. 632, A52 (2019).

[22] S. Contarini, F. Marulli, L. Moscardini, A. Veropalumbo, C.
Giocoli, and M. Baldi, arXiv:2009.03309.

[23] N. Padilla, D. Paz, M. Lares, L. Ceccarelli, D. G. Lambas,
Y.-C. Cai, and B. Li, IAU Symp. 11, 530 (2014).

[24] Y.-C. Cai, N. Padilla, and B. Li, Mon. Not. R. Astron. Soc.
451, 1036 (2015).

[25] C. T. Davies, M. Cautun, and B. Li, Mon. Not. R. Astron.
Soc. 490, 4907 (2019).

[26] B. Falck, K. Koyama, G.-B. Zhao, and M. Cautun, Mon.
Not. R. Astron. Soc. 475, 3262 (2018).

[27] E. Paillas, M. Cautun, B. Li, Y.-C. Cai, N. Padilla, J. Armijo,
and S. Bose, Mon. Not. R. Astron. Soc. 484, 1149 (2019).

[28] T. Baker, J. Clampitt, B. Jain, and M. Trodden, Phys. Rev. D
98, 023511 (2018).

[29] A. Barreira, M. Cautun, B. Li, C. Baugh, and S. Pascoli,
J. Cosmol. Astropart. Phys. 08 (2015) 028.

[30] R. Sheth and R. Weygaert, Mon. Not. R. Astron. Soc. 350,
517 (2004).

[31] A. Pisani, P. Sutter, N. Hamaus, E. Alizadeh, R. Biswas,
B. D. Wandelt, and C. M. Hirata, Phys. Rev. D 92, 083531
(2015).

[32] R. Wojtak, D. Powell, and T. Abel, Mon. Not. R. Astron.
Soc. 458, 4431 (2016).

[33] E. Adermann, P. J. Elahi, G. F. Lewis, and C. Power, Mon.
Not. R. Astron. Soc. 468, 3381 (2017).

[34] S. Contarini, T. Ronconi, F. Marulli, L. Moscardini, A.
Veropalumbo, and M. Baldi, Mon. Not. R. Astron. Soc. 488,
3526 (2019).

CHRISTOPHER WILSON and RACHEL BEAN PHYS. REV. D 104, 023512 (2021)

023512-16

https://doi.org/10.1086/307221
https://doi.org/10.1086/383612
https://doi.org/10.1086/383612
https://doi.org/10.1086/466512
https://doi.org/10.1086/466512
https://doi.org/10.1111/j.1365-2966.2007.12268.x
https://doi.org/10.1111/j.1365-2966.2007.12268.x
https://doi.org/10.1111/j.1365-2966.2009.15812.x
https://doi.org/10.1111/j.1365-2966.2009.15812.x
https://doi.org/10.1093/mnras/stu778
https://doi.org/10.1093/mnras/stu778
https://arXiv.org/abs/1305.5422
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1016/S0370-2693(00)00669-9
https://doi.org/10.1103/PhysRevD.86.044015
https://doi.org/10.1103/PhysRevD.86.044015
https://doi.org/10.1086/156198
https://doi.org/10.1086/156198
https://doi.org/10.1111/j.1365-2966.2012.20573.x
https://doi.org/10.1111/j.1365-2966.2012.20573.x
https://doi.org/10.1093/mnras/stv1209
https://doi.org/10.1051/0004-6361/201935949
https://doi.org/10.1051/0004-6361/201935949
https://arXiv.org/abs/2009.03309
https://doi.org/10.1017/S1743921316010528
https://doi.org/10.1093/mnras/stv777
https://doi.org/10.1093/mnras/stv777
https://doi.org/10.1093/mnras/stz2933
https://doi.org/10.1093/mnras/stz2933
https://doi.org/10.1093/mnras/stx3288
https://doi.org/10.1093/mnras/stx3288
https://doi.org/10.1093/mnras/stz022
https://doi.org/10.1103/PhysRevD.98.023511
https://doi.org/10.1103/PhysRevD.98.023511
https://doi.org/10.1088/1475-7516/2015/08/028
https://doi.org/10.1111/j.1365-2966.2004.07661.x
https://doi.org/10.1111/j.1365-2966.2004.07661.x
https://doi.org/10.1103/PhysRevD.92.083531
https://doi.org/10.1103/PhysRevD.92.083531
https://doi.org/10.1093/mnras/stw615
https://doi.org/10.1093/mnras/stw615
https://doi.org/10.1093/mnras/stx657
https://doi.org/10.1093/mnras/stx657
https://doi.org/10.1093/mnras/stz1989
https://doi.org/10.1093/mnras/stz1989


[35] L. Ceccarelli, D. Paz, M. Lares, N. Padilla, and D. G.
Lambas, Mon. Not. R. Astron. Soc. 434, 1435 (2013).

[36] E. Ricciardelli, V. Quilis, and J. Varela, Mon. Not. R.
Astron. Soc. 440, 601 (2014).

[37] B. Novosyadlyj, M. Tsizh, and Y. Kulinich, Mon. Not. R.
Astron. Soc. 465, 482 (2017).

[38] E. Massara and R. K. Sheth, arXiv:1811.03132.
[39] S. Nadathur, W. J. Percival, F. Beutler, and H. A. Winther,

Phys. Rev. Lett. 124, 221301 (2020).
[40] M. Aragon-Calvo and A. Szalay, Mon. Not. R. Astron. Soc.

428, 3409 (2013).
[41] D. G. Lambas, M. Lares, L. Ceccarelli, A. N. Ruiz, D. J.

Paz, V. E. Maldonado, and H. E. Luparello, Mon. Not. R.
Astron. Soc. 455, L99 (2016).

[42] E. Krause, T.-C. Chang, O. Dore, and K. Umetsu,
Astrophys. J. Lett. 762, L20 (2013).

[43] T. Chantavat, U. Sawangwit, P. Sutter, and B. D. Wandelt,
Phys. Rev. D 93, 043523 (2016).

[44] Y.-C. Cai, M. Neyrinck, Q. Mao, J. A. Peacock, I. Szapudi,
and A. A. Berlind, Mon. Not. R. Astron. Soc. 466, 3364
(2017).

[45] C. T. Davies, M. Cautun, and B. Li, Mon. Not. R. Astron.
Soc. 480, L101 (2018).

[46] C. T. Davies, M. Cautun, B. Giblin, B. Li, J. Harnois-
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