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We investigate an inflationary model constructed from minimally modified gravity (MMG) theories. We
study MMG theory in the form of f(H) o« H'*? gravity, where H is the Hamiltonian constraint in Einstein
gravity and p is a constant. Inflation is difficult to achieve in this theory of gravity unless an additional
scalar field playing the role of the inflaton is introduced in the model. We find that the inflaton with an
exponential potential can drive inflation with a graceful exit, different from the case of Einstein gravity. The
slow-roll parameter for both the exponential and power-law potentials is inversely proportional to number
of e-foldings, similar to the case of Einstein gravity. We also find for the scalar perturbation that the
curvature perturbation on super-Hubble-radius scales grows rapidly during inflation unless p ~ 0. For the
tensor modes, the amplitude of the perturbations is constant on large scales up to the lowest order in
the slow-roll parameter, and the sound speed of the perturbations can deviate from unity and vary with time

depending on the form of f(H).
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I. INTRODUCTION

Cosmic inflation [1-3] is a standard framework that
addresses issues in the hot big bang model and provides a
mechanism for the generation of primordial density per-
turbations. In the standard scenario, inflation can be
achieved by introducing extra degrees of freedom in the
Universe. In the case of Einstein gravity, the extra degrees
of freedom may be in the form of fields minimally coupled
to gravity, called the inflaton. Alternatively, the extra
degrees of freedom can be parts of degrees of freedom
of the gravitational interaction. The extra degrees of free-
dom of gravity can be obtained by assuming a nonminimal
coupling between the extra field and curvature terms in the
action. This class of theories is called scalar-tensor theories
of gravity [4]. Moreover, the extra degrees of freedom of
the gravitational interaction can also be obtained due to
nonlinear curvature terms in the action. The simplest
example of this class of gravity is f(R) gravity [5].

However, in the cuscuton models [6—8] it has been
shown that the acceleration of the Universe can be achieved
even though the minimally coupled extra degree of freedom
is a nondynamical field. This implies that theories that have
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two dynamical degrees of freedom can also drive the
acceleration of the Universe. Alternative theories to
Einstein’s theory of gravity, which have two degrees of
freedom as the FEinstein’s theory, have been studied in
various contexts [9—17]. Such theories can be constructed
by supposing that the temporal diffeomorphism is broken,
while the spatial diffeomorphism is still invariant. In
general, if the diffeomorphism invariant is broken in this
way, the theories can have an extra degree of freedom,
similar to scalar-tensor theories of gravity [18]. However, if
the Lagrangians of theories are linear functions of the lapse
function, the theories can have two tensorial degrees of
freedom for gravity under suitable conditions. This class of
theories is called minimally modified gravity (MMG)
theories [10,13]. Nevertheless, these conditions cannot
be satisfied if matter appears in the action. To ensure that
this class of theories still has two tensorial degrees of
freedom for gravity when matter appears in the theories, we
have to impose the gauge-fixing condition [11,19,20].
Cosmology with this class of theories has been investigated
in Refs. [8,20]. In Ref. [20], it has been shown that a late-
time Universe with this class of gravity theories is more
preferred by observational data than the ACDM model.
Matter coupling in this class of theories has been discussed
in Refs. [20-22].

© 2021 American Physical Society
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Here we investigate inflation due to this class of gravity
theories. This work is organized as follows. First, we
review MMG theories in the next section. We investigate
background inflation in Sec. III. We study cosmological
perturbation in Sec. IV, and we conclude in the last section.

II. MINIMALLY MODIFIED GRAVITY THEORIES

Minimally modified gravity theories are the modified
theories propagating two tensorial degrees of freedom,
like Einstein’s theory of gravity. Generally, most popular
modified theories of gravity always generate extra degrees
of freedom in the theories. The extra degrees of freedom
can be related to the broken diffeomorphism invariant in the
construction of the theories. However, we can construct
theories that have two tensorial degrees of freedom even if the
full diffeomorphism invariant is broken. We can construct
MMG theories by supposing that the Hamiltonian of the
theories is linear in the lapse function and imposing a suitable
constraint. Square root gravity and exponential gravity are
the MMG theories that we obtain using this method [10].
However, there is an interesting class of MMG theories,
f(H) theory, in which the Lagrangian of the theory is a
function of the Hamiltonian constraint H in Einstein gravity
This class of MMG theories can be constructed in another
way using the Hamiltonian construction [13].

In order to construct the MMG theories we break the
temporal diffeomorphism invariant, which is conveniently
represented by the Arnowitt-Deser-Misner (ADM) decom-
position. In the ADM formalism, one can write the line
element in the form

ds*> = (N7 + N N')dr?
+ hij(N'dt + Ndx')(NVdt + Ndx/), (1)

where h;;, N, and N are the three-dimensional induced

metric, the lapse function, and the shift vector, respectively.
We are interested in MMG theories in the form of f(H)
theory, the action of which can be written in the form

S[his NN

l/’

= %/ d4x./\/’\//71L’G

—mT%’/d“xN\/E{LC
f.e(C)

where m, = 1 //87G is the reduced Planck mass, / is the

(KK - K?) —f(C)], @)

detemnnant of the metric h;; s a and
1
K. - D; D
i =557 iy = DN =DN). (3

Here, D; is the covariant derivative compatible with the
metric h;; and a dot denotes a derivative with respect to time
t. The vanable C can be computed from

C——KUKU_K2 R 4
BTG @

From the above expressions, f(C) is an arbitrary function
of C, f . denotes the derivative of f(C) with respect to C,
and we see that C has the same dimension as the three-
dimensional Ricci scalar R, i.e., its dimension is massZ.
Moreover, the action reduces to the action for Einstein
gravity if f . = 1.

To study possible models of inflation from this theory
of gravity, we add an extra scalar field to the above
action as

S[hi; NN ) = / d4xN\/E[m7§LG+X—V(¢) G

Here we suppose that the field has a standard kinetic term,
where X = —0,¢0"¢/2 is the kinetic term of the scalar
field and V is the potential term. However, the degrees of
freedom in the theory increase when the scalar field is
simply added to the action. To ensure that the theory still
has two tensorial degrees of freedom for gravity, we have to
fix the gauge degree of freedom in the theory. Using the
choice of gauge presented in Ref. [20], the Hamiltonian of
the gauge-fixing term is written in the form

gf_/dxf,v <\/E> (6)

where 4 is a Lagrange multiplier and 7 is the trace of the
momentum conjugate to the induced metric. Imposing this
gauge fixing, the action for f(H) becomes

=5 [ @V (4 R2=os N7 )= 110

N 2K
+ o [K”K,- i —K? —WDM"

2/?/2 (D, Z? H

+2X—2V(¢)}, (7)

where A, is another Lagrange multiplier, and in this case C
becomes

3 2K
KiK;;—K*-=—D " -

TCoT LT e

NZ

The above expression for C can be obtained by varying the
action (7) with respect to 4. Varying the action with respect
to C, N/, and N* yields, respectively,
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Variation with respect to the scalar field gives us the
evolution equation for the scalar field as

o[-

~ 0 [%N"éﬁ +NVh (h"f —A%) aﬂ/)}
+NVhV, =0, (12)

where the subscript , denotes a derivative with respect to
the scalar field ¢.

III. BACKGROUND EVOLUTION

We now consider the evolution of the spatially flat
Friedmann universe for the theory described in the previous
section. Due to the homogeneity and isotropy of the
Friedmann universe, A" = 1, NV = 0, and therefore

ds? = —di* + a*(1)8,;dx'dx, (13)

where a(t) is a cosmic scale factor. For the Friedmann
universe, the constraint in Eq. (10) and the expression for C
in Eq. (8) are given by

f:—%(X+V) :—% P +2V), (14)
P P

szc = —6H", (15)

where H = a/a is the Hubble parameter. The evolution
equation for the scalar field inflaton in the Friedmann
universe is

$+3Hp+V,=0. (16)

The slow-roll parameter € = -H /H? can be computed by
differentiating Eq. (15) with respect to time to obtain C, and

substituting the resulting C into the time derivative of
Eq. (14). The result is

_nfc Cf,cc

where 5 = ¢ /(H?m3). The above relation reduces to the
usual relation for e for Einstein gravity when f . =1. It
follows from Eq. (17) that € < 1, which is required during
inflation, when n < 1 or |f . + 2Cf ..| < 1. However, the
latter condition is difficult to achieve, so slow-roll inflaton
is needed for inflation in this theory. The case n <1
corresponds to the slow-roll evolution of the inflaton
field ¢. Under the slow-roll approximation, || < [Hd|,
Eq. (16) becomes

dg Vg
— =, 18
dN  3H? (18)
where N = Ina is the number of e-foldings.
In order to study the evolution of the background
universe, we have to specify the form of f(C). Here, we
suppose

f(C) = —A<—C)l+p, (19)

where A is a constant with dimension of mass® and p is a
constant parameter. We then obtain from Eq. (15) that

fo=(14p) [A(f’jm}_ 1)

Hence, we obtain the modified Friedmann equation by
substituting the above expression into Eq. (14) as

1+
:|2pApl 1
)
my A

{ o P2, (22)

A1+ p)?

Using the slow-roll condition, V > d), we can write
Eq. (22) as

2+l 2p+1
275 (1 N[V \Tr
Tl Ut Dy . (23)
6 my A
Substituting Eq. (23) into Eq. (18), we get
d 2-r/(+p) Yy
’_ % (24)

AN AL+ pP

where V = V/(m2A). The above equation can be written in
integral form as

~2p+l1

NN ¢N ‘/ 1+p
/ dN = 2P/(+PIA(1 + p)2/ de . (25)

0 be Ve
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where the subscript , denotes evaluation at the end of
inflation, while the subscript , denotes evaluation at the
moment when particular modes of cosmological perturba-
tions generated during inflation cross the horizon. For the
form of f given by Eq. (19), the slow-roll parameter € in the
slow-roll approximation is

_2pi1
2 Fepn vy
mp N (1 + p)* 5

(26)

In the slow-roll approximation, we can write f . in terms of
the potential as

fo=(+p)2r77, (27)
C = —A2TF VT, (28)

To integrate Eq. (25) and compute € in terms of the number
of e-foldings, we have to specify the potential V of the
scalar field. As illustrative examples, we consider two cases
where V takes either an exponential or power-law form.

A. Exponential potential

We first consider the potential in the form
V(p) = VoAmie™, (29)

where qZEgb/m,,, while V; and A are dimensionless
constants. Substituting the above potential into Eq. (25)
and performing an integration, we get

zp/(1+p)(1 +p)?

— Apyp/(14p) _ pidep/(1+p)
W 2 pygp/er) e ¢ J. (30)

We can calculate ¢, by using the slow-roll parameter. Since
€ =1 at the end of inflation, we get from Eq. (26) that

22p+1)
2p+1 *
ZW(l +p)3vg/<1+l7)

e/ (14p) —

(31)

Substituting the above equation into Eq. (30), we get

27/0+2)(1 4 p)3

2 py- Pl eI, (32)
0

NN+N*:

where

2p+1
2p

(33)

*

Inserting Eq. (32) into Egs. (26) and (18), we can write ¢
and 5 in terms of the number of e-foldings as

N. (p+1)°

=—) = 34
VEN AN, TR N Y

Using Eqgs. (27) and (32), we have

2R2p+1)1
N)=f_. (N N,)=—"—-, 35
f,c( ) f,c*( N+ *) 2(1 +P>2 € ( )
where f ., is defined as
2p

= 36

It follows from the above calculations that the inflaton with
an exponential potential has a graceful exit in this theory of
gravity. This result is different from that in Einstein’s theory
of gravity. The moment of the graceful exit is described
by Eq. (31).

B. Power-law potential

In this section, we apply a potential of the form
V(g) = VomyAg? (37)
to Eq. (25). After integrating, we obtain

_Pat2p+2

-9 ] (39)

2P/(1+p)(1 + p)3Vg/(l+”> $1’4+2p+2
N — |: I+p
N q(pg+2p +2) N

Using the condition € = 1 at the end of inflation, we can
calculate ¢, as

2p+1
G _ g @p )

e - 3 /(1+p) "
(1+ppvg?

(39)

Substituting the above expression into Eq. (38), we get

or/ (1+p)(1 +p)? Vg/ (I+p) (quﬁ”z 40)
q(pq+2p+2) N

NN +N* -

where

q(2p +1)

T 2pg+2p+2) 4

*

Then, we can calculate
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— N*

B NN + N* '
g2 (1 + p)2(Pq—ﬂ—1)

B 22pv(2)1’ (pg+2p + 2)2(17q+17+1)

] 1/(pg+2p+2)

En and

NN
x (Ny + N,)~2(pat1+p)

Using Egs. (27) and (40), we have

Pq

f,(‘(N) — f7c*(N+N*)pq+2p+2

q(2p+1) )qu%
—f. . @3
T *<2(pq+2p+2)€ 43)

where

4Py3P gap 2 4 2)ar\ 1/ (Pa+2p+2)
fc*E< 0’9" (pg +2p +2) ) R

(1 + p)2qp—2p—2

C. Numerical results

In this subsection we solve the evolution equations for
the background universe numerically and plot the results in
Figs. 1-3. The models in our plots are shown in Table I. In
Fig. 1, we plot the evolution of ¢ for both the exponential
and power-law potential cases. From this figure, we see that
for both forms of potential, the inflationary epoch can take
place such that the slow-roll parameter € increases from a
small value during the early stage towards one at the end of
inflation. The main different feature of different models
comes from the different evolution of f .. As will be seen in
the next section, f . controls the evolution of the curvature
perturbation during inflation. The evolutions of f . are
plotted in Figs. 2 and 3. According to Eq. (35), f. is
proportional to 1/¢ for the exponential potential, so for this
form of potential f . can increase several orders of

1.0 —————

0.8+ 1
L ———-26
L | - 3
L | - 47
0.6 - ——5

0.4+

0.2

0.0
0

FIG. 1. Plots of the slow-roll parameter € as a function of the
number of e-foldings for the models 1-7. In the plots, models 1-7
correspond to lines 1-7, respectively.
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FIG.2. Plots of f . as a function of the number of e-foldings. In
the plots, lines 1-3 represent models 1-3, respectively.

0.4"‘“1““1““1““1““1““4

0 10 20 30 40 50 60
A‘\“Y
FIG. 3. Plots of f . as a function of the number of e-foldings. In

the plots, lines 8—12 represent models 8—12, respectively.

magnitude throughout the inflationary epoch. This con-
clusion agrees with the plot in Fig. 2. However, for the
power-law potential, Eq. (43) shows that the rate of change
of f . decreases when g and p decrease. When p — 0, the
model for the power-law case reduces to Einstein gravity
such that f . = 1. Nevertheless, it follows from Eq. (34)
that there is no Einstein limit for the case of the exponential
potential. The dependence of f . on the parameters p and ¢
for the case of the power-law potential is shown in Figs. 2

TABLE I. Models used in the numerical calculation.

No. Model 1 2 3 4 5 6
Potential et P Pt 0747 0.085¢'7  0.002¢°
P 1 1 1 1 1/5 1/21
No. Model 7 8 9 10 11 12
Potential ~ 0.05¢' 0.02¢' 0.00054> 0.0001¢> 0.02¢> 0.5¢>

/10 15 1)21 1/21  1/21 1)21
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and 3. From the figures, we see that the variation of f .
decreases when p and ¢ decrease.

IV. EVOLUTION OF PRIMORDIAL DENSITY
PERTURBATIONS

In this section we consider the evolution of primordial
perturbations generated in the inflationary model intro-
duced in Sec. II. In the following consideration, we
concentrate on scalar and tensor perturbations which
provide the model predictions, and we set m, = 1.

A. Scalar perturbations

To study linear perturbations in this theory, we para-
metrize perturbations in the lapse function and shift
vector as

N =a(r)(1 + a), N;=a(r)dy, (45)
where a and y are scalar perturbations, 7 = f dt/a is the
conformal time, and the background of the lapse function is
the scale factor a(z). The induced metric can be decom-
posed in terms of scalar perturbations as

hij = a(2)*((1 + 2£)6;; + 20,0, E), (46)
where £ and E are the other scalar-perturbation variables.
Due to the spatial diffeomorphism invariant, we can set
spatial gauge degrees of freedom such that £ = 0. Here, we
use the perturbation variables introduced in Ref. [20]:

5py a x
—=0;+3—=(1 , =¥ -
Py ¢+ az( +W¢)}( [0 7’

!

where ¥, @, 64, and 0, describe the two metric perturba-
tions, the density contrast in the inflaton field, and the
velocity perturbation in the inflaton field, respectively. In
the above and subsequent expressions, the wave number of
the perturbation modes in Fourier space is denoted by &,
and a prime denotes a derivative with respect to conformal
time. These perturbation variables can reduce to gauge-
invariant combinations in Newtonian gauge in the context
of Einstein gravity. Usually, perturbations during inflation
are described by the curvature perturbation in the comoving
gauge, because the curvature perturbation in this case is
constant on large scales when entropy perturbations and
isotropic perturbations disappear [23]. For this reason, we
study the scalar perturbations using the following pertur-
bation variables:

~, 3 (1/ a (9¢
5¢E§¢+P;(1+W¢)0¢’ €E®+_ﬁ’

a’6’¢ 9:#
a=¥Y—-—————= 4
* ak> K (48)

The above perturbation variables can become gauge-
invariant combinations in the comoving gauge for the case
of Einstein gravity.

In principle, to investigate the primordial density per-
turbations generated during inflation, we should construct
the action for second-order perturbations in which the
primordial perturbations are described by canonical vari-
ables. However, the action for perturbations for this theory
is rather complicated due to the scale dependence of the
gauge-fixing term in the action. Thus, instead of construct-
ing this action, we concentrate on the evolution of the
curvature perturbation on large scales, whose evolution
equation can be obtained from the evolution equations for
perturbations presented in Ref. [20]. The necessary equa-

a a
=—® -y, =-"0,+7, 47 :
¢ 2% Yo K2 T (47) tions are
|
A>Hf 3 f. 1 k r
0=0a +H¥+ azfgccq)+r1k2 61y H> 2J€CC—2 a’ % — 1 H>0,, (49)
2k a 3al,I"
— i fe—®——pyb 0,, 50
3/ e an® 3% " er, % (50)
(4f cck? —a’f ol GQ(fzc - 1)
0= ‘P = : b — . 25
+ a2F2 Fz ce ¢
1
+ Brna a*f o(f% = 1)(I" + 2HT) + 2H j;fcc (2f% KT, — 9a’TTy) | 1H20,, (51)
1
where H = d’/a and
1
I'= 3 (/)45 + P¢), (52)
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2
Fl = Fazf’c + §k2, (53)

2
Fz = Fa2 + §k2f’c. (54)

Equations (49)—(51) are completed by the conservation
equations for the perturbations,

(55)

2

0=6,-K¥- K255+ H(1 =3c2)0,.  (56)

After straightforward calculation, we obtain the evolution
equation for ¢ as

C”+K1Z:/+K2C:0, (57)

where the coefficients K; and K, are functions of the
number of e-foldings, wave number &, and H. The explicit
expressions for these coefficients are presented in the
Appendix. The curvature perturbation { is related to the
perturbation in the scalar field as

2

{=- 2. k2P¢ ¢+<H

2 9

212 T

In the region where k% /H? > O(e), Eq. (57) can be written
up to the lowest order in slow-roll parameters as

where v = z{, and in this case

The expression for z is computed from

Z:aexp{/dr<§f’c7-{(l—f,c)>}, (61)

where z reduces to z = a in the Einstein limit. For the
subhorizon modes, k> H, Eq. (59) is satisfied by the
solution [24]

e—ikc:‘r

= (62)

For the superhorizon modes, where k < H but k%/H? is
still larger than O(e), Eq. (59) is solved by the solution
v « z, where the proportional constant can be computed by
matching the solution for the subhorizon limit with that for
the superhorizon limit. However, we are not interested in
such a calculation here because the condition k/H > O(e)
is violated just a few e-foldings after the horizon crossing.
When this condition is violated, the evolution of { is time
dependent, as we will see below. For the case where
k?/H?* < O(e), the evolution equation for the curvature
perturbation up to the dominant contribution from k/H can
be written in the form

%+(3+A)%+( + B){; = 0. (63)
v”—z—”v+c?kzv =0, (59)
Z Here,
|
A= Wl_l)z P19 + (B = 9) + 4 (4F . = 3) =i (BF5 — 6% + 6/% +ef ,
—6f.—e+3)—63f -6 +6f%—4f .+ 1)+e(6f —12f4 +12f% - 17f,
+e1(fe—1)+8)IE+2n{52E - 2f .E — e(18f% = 36> + f2(5E - 27)
=3[ (E=27)=36) +27f = 27f7% +9m(fc = 1)*(fo + 1) = 81f% + 135f . — 54}], (64)

023511-7



JAKKRIT SANGTAWEE and KHAMPHEE KARWAN PHYS. REV. D 104, 023511 (2021)

107 107 T
10°
106,
10°
10°
10*
“wr “wr
10*E
1000
100 1000}
10
100+
1 1 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
N N
T 10! ——————————————————— e ————————
1015, 4
1011, 4
10"+ 1w
108 E
107 + 1
10°
U SR SRS S S SR SR ST ST ST S (S SUT SR SR (SN S SUT SUT S SN S S ST S S S S St U SR SRS S S SR SR ST ST ST S (S SUT SR SR (SN S SUT SUT S SN S S ST S S S S St
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
N N

FIG. 4. Plots of { as a function of the number of e-foldings. The top left, top right, bottom left, and bottom right panels represent the
evolution of ¢ for models 8, 10, 11, and 12, respectively. In all plots, the perturbation crosses the Hubble radius at N = 20.

1 —_ _ -
B= —Wf,c[4ﬂ3{€(—€1(f,c —1)(f(E=9)+9) - 6/SE+ 12,5 + 1087

—12/3(E + 18) + f2 (372 = 99) + f (387 — 198) — 180) + 1, (f . — 1)(e(9f3. — 92
Ff(E=18)+18) +3(fSE— fAE— f3(E+9) + f2(E+9) — f(E—18) — 18))

+ (=184 +36/% = 9fL(E—4) + (62 -99) +45) + 3(6/%E - 12/°.8

— FAE+54) +2f3(TE+ 54) + f2(18 = 13E) + 2f (E—T72) + E+ 72)}

+8(e —=3)E{eler(fe—1) +6f% = 12f4 + 122 = 17f . + 8) + ni(—€f . + €= 3>
+6fh —6f% +6f . —3)+€(4f . —3) = 6(3f5 — 6f% +6/% —4f .+ 1)}

= 27°{9F2E(m — 26 + 6) — 18 E(n — 2¢ +6) + fZ(9E(2n; — 10¢ + 13)

+ (36 —2)B2 4 243) = 9f (E(n; — 4e +5) +27) + f3((8 — 6¢)E2 + 18(2¢ — 1)E — 81)

+ 81} + ’73(_f,20)5‘( .,205‘ - 9fc + 9)] —E, (65)

where E=k*/H?> <O(e) <1, € =¢/(He), and  we will study the important features of the solution for this

n =1/ (Hn). Since it is difficult to compute the analytic
solution for the above equation due to the time dependence
of f ., which is not necessarily slowly varying with time,

equation numerically in the next section. However, from
the structure of this equation, we expect that the dominant
solution for Eq. (63) should be time dependent unless
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f.. = 1. One can check that for f . = 1, the coefficients A
and B vanish, which corresponds to Einstein gravity. This
also indicates that  is nearly constant on large scales when
f . is sufficiently close to unity.

B. Numerical result

To confirm the rough analytic estimation in the previous
section, we solve the evolution equation for the curvature
perturbation numerically. We start the numerical integration
at the time when the physical wavelength of perturbations is
well inside the Hubble radius. The initial conditions are
chosen according to Eq. (62) by splitting ¢ into real and
imaginary parts. We integrate Eq. (57) for the real ({,,) and
imaginary ({imaginary) parts of ¢ separately, and plot the

absolute value ¢ = in the following

feal + Cizmaginary
figures. According to the discussion in the previous section,
the main features of the { evolution depend on f .. Hence,
we consider the evolution of { for models 8, 10, 11, and 12,
in which f . varies by a few percent, and f . is nearly
constant with f . <1, f.~1, and f . 2 1. From the plots
in Fig. 4, we see that { can rapidly grow on super-Hubble-
radius scales, although f . changes by only a few percent
around one throughout inflation. These results could be the
consequence of unknown sources of entropy and aniso-
tropic perturbations. On the other hand, the growth of
perturbations on large scales may arise due to the pos-
sibility that ¢ is not equivalent to the curvature perturbation
in the comoving gauge in the standard cosmological
perturbation theory.

C. Tensor perturbations

To study the tensor modes of perturbations, we write the
metric tensor in the form of the background metric and
tensor perturbations as

hij=a(8;; +vij),  hY=a?(87=yY), (66)
where yi = 0 and ;" = 0. Since the gauge-fixing term
does not depend on the tensor perturbation, the tensor
perturbation computed from Eqgs. (7) and (5) are equivalent.
Hence, for convenience we insert the metric from Eq. (66)
into Eq. (5) and expand the action up to second order in

perturbations. We obtain the second-order action for the
tensor perturbation as

2 1 coeid f/ i
S(T> = /dtdx3a3 <8_f’ vijr" —gaﬂkl@ Ykl | (67)

where the divergent term is omitted. The tensor perturba-
tion y;; can be expanded in terms of the polarization
tensors as

3 T -
Vij = / éﬂl; szziefj(k)yi(r)eik"‘, (68)

where €; = k'e;; = 0 and efj(k)efj/-(k) = 26,y. According
to the action (67), each of the mode functions y;(z) obeys

(@®/f.)

Tf,cyi/ + kzc%y‘,‘; =0, (69)

J"/i” _|_

where ¢ = f2 is the sound speed squared of the tensor
perturbations. As in the usual calculation, we define [24]

2

vy = zry;. Where z% = %, (70)
so that Eq. (69) becomes
Z//
v3" + ks ——Tv‘} =0. (71)
ir
Applying the standard calculation, we have
052 = 5 (12
e ™ 2crk|,

which implies that the amplitude of tensor perturbations is
constant on large scales up to the lowest order in the slow-
roll parameter, and we can compute the power spectrum for
the tensor perturbations as

K3 B 2 H?
S (7 12+ 1ril?)

pPr =——,
Y ﬂzf?c

(73)

where the tensor perturbations cross the sound horizon at
aH = crk. The spectral index for the tensor perturbations
can be computed as

_dlnP]

) N
"= dink

Hf .’

—2e-2 (74)

where c¢2=f%. Using ¢,/(He)~f./(Hf.) and
Egs. (22), (30), and (38), the tensor spectral index for
the exponential and power-law potentials is given by

2 N
__ * 75
"= T 2p £ )Ny +N. (75)

where N, for the exponential potential is given by Eq. (33)
and N, for the power-law potential is given by Eq. (41).

V. CONCLUSIONS

We have studied models of inflation in the MMG theory.
We have concentrated on f(H) gravity in the form
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f(C) = =A(=C/A)"*P, where p and A are constant, while
C is given by Eq. (8). It can be checked that this theory
reduces to Einstein gravity when p = 0. It is difficult for
this theory to drive inflation without introducing an inflaton
field. We have examined inflationary models in which the
potential of the inflaton takes the exponential and power-
law forms. We have found that the slow-roll parameter € is
inversely proportional to the number of e-foldings, similar
to the case of Einstein gravity. The expression for € in the
case of the power-law potential takes the same form as in
Einstein gravity when p = 0. Nevertheless, there is no
Einstein limit for the case of the exponential potential.
According to the evolution equation for the perturbations, it
can be seen that the evolution equation of perturbations
depends on f .. For the case of the exponential potential,
f . is inversely proportional to €, so that f . can vary by a
few orders of magnitude throughout inflation. However, for
the case of the power-law potential, f . becomes nearly
constant when p is close to zero. From the numerical
integration, we have found that the curvature perturbation
on large scales can grow extremely large if f . can
significantly vary with time. The curvature perturbation
becomes constant on large scales when f . ~ 1. It could be
possible that the curvature perturbation on large scales is
not conserved in this model because the curvature pertur-
bation used here is not equivalent to the curvature pertur-
bation in the comoving gauge in standard cosmological
perturbation theory. On the other hand, the nonconservation
of the curvature perturbation on large scales could be the

ny = a + (lzk%_] + (l3k‘[‘_] + (14](?_[ + (lsk?_[ + (16](8 s

consequence of entropy and anisotropic perturbations. In
general, it is difficult to define a curvature perturbation that
is conserved on large scales similar to the curvature
perturbation in the comoving gauge in the Einstein theory,
because it is not clear whether the entropy and anisotropic
perturbations disappear in this f(H) theory. These ques-
tions are left for future investigation. For the tensor
perturbation, the sound speed of the tensor mode can
significantly deviate from unity and vary with time
it p#0.

ACKNOWLEDGMENTS

J.S. was supported by Development and Promotion of
Science and Technology Talents Project (DPST) scholar-
ship from The Institute for the Promotion of Teaching
Science and Technology (IPST) for his MSc study.

APPENDIX: EXPRESSIONS FOR THE
COEFFICIENTS a AND g

In this Appendix, we present the explicit forms of
the coefficients a and f in Eq. (57). First, we decompose
them as

ny

K, =— Al
=g (A1)

where the expressions for n;, n,, d;, and d, are given by

dy = 4(3n +2f ki) (=8(=3 + €) [k + 9 (=9 + f (9 + k3y))

+4nf Ky (18 —6€ = 9f o + f%(9 + ki) + 6n*kfy (9 — 3¢ — 18f  + ki + fL(18 + k7)),
Ny = by + byk3; + b3kl + byk® + bskd, + bekl) + bik)?,
dy = 6(3n +2f ckiy)* (=8(=3 + €) f 2kl + I’ (=9 + £ (9 + k7))

+4nf k3 (18 —6€ —9f . + f2(9 + k%)) + 6n°k%(9 — 3e — 18f . + k% + f2(18 + k%))).

Here, a; are

ap = _96f?c(_2 - 3fc + 3f20)H7

ay = _43277]“?6(_3 + 2f,c - 2f2c + f30>H + 16f,3€<6’71 + (26 - nf,c’)(_z - 3fc + 3f20))H’
az = 16ef%(2e) = 2y +2e = nf JH — 64877 f (2 = 5f c +4f% = 4f%e + f)H

+720f%2m (2 + f%) + 262 = 5f . +2f%) —

’7(_1 +f,c - 2fzc +f,30))H’

ay = 324 (=4 + 15f . — 18f% + 6f% + 3f)H + 24nf (f (6ere + 1 —enf (3 +2f%)
+ 62(2 + 4fzc)) +m (_zef.c(z +f,20) + '7(_1 +f4c)))H - 36772(’7(2 - 3f,c +f.20 - 6f%c + 9f4c)
_6f,c(€(6_ 11f0+6f26+2f3c_2f4c) +771(1 +fc +f26_f3c +ff‘c)))H ’
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as = 36n°f .(6€1¢ — 2¢* = 3enf . + 8> %+ f% = 2enf +m(nf (=1 + f%)
—2e(1 +2f%)))H = 54 (€(=20 + 66f . — 60f% = 2417 +24f%) + f(n(4 =3f .+ 6f%)
=611 (2= f o= 2f% +2f2))H,
ag = 54 (2e1e +mnf (=1 + fL) + (=2 +4f%) +ef o(n=2mf . = 20f2))H, (A2)

and b; are 9

blz
b2:

b3:

5764 H? 4 518474 (=2 + f o + f2)HA,

192f%(=2e +nf JH? +25920f3 (=18 + 18f . — fZ = 4f% + 5f)H?

+8641%(n(1 = f o+ f3 +2f%) =2f ey = mf o + (=6 +3f . +2f%)))H?,

16f%(=2¢ +nf )M + 777607 (=9 + 18f o = 11f% = 5f% +TfL)H?

1441 (P (L + A% = fl +4f e + 15%) —def(er(=1 4+ fo)f c +€(6=3f . = 2f%)
(=24 fo+ %) +2nf (e(=3 4 fo =3f% =3f%) +2m(=1+ fL))H?

+ 432017 (n(=5 = 4f . = 3f% + 10f% + 8% — 6/ +6f%) + 6f (2¢(9 = 8f . + [~

+2f% =2f%) +m(=3+5f = 2f% = [+ fL))H?,

349921 (=1 + f )2 f (=1 +3f o + 22 )H> + 648> f (n(=5 + f .o = 14f% + 17f% = 5f%
—18f% + 18/%) +18f (1 (=1 4 f ) (=1 + fo + f%) +26(3 = 5f c +3f% +2f% = 2f))H*
+720f (P (=1 +12f% = 63 + 3114 — 6/ 4+ 6f%) + 2nf (2e(1 4+ 3f . + 2f% — 183 + 313,
=3f%) 3 (=3 =2f% + fL A4S = e+ %)) = 12ef(m (=6 +5f c + [ = [ + L)
+2Qei(=1+ f)f e +eO=Tfc+ fh=F))H =24f%(16€ f7 (=1 + fZ)

=i f (U4 )+ 2nf% +2mf (=1 + f2)) =42 f 2 f (=1 4 f2) +n(1 + f% +41%L)
+2en(n(1 + f2)7(1+2f%) +2f o(e1 — e1f% + 2m (=1 + 1)) H?,

= 8748 f (9 = 13f . + 2% + 2f3VH> + 9721 f (611 (=1 + 7f . — 6% = 3f3 +3f4)

—12e(=34+12f . = 11f2 =63 4+ 6f%) +n(2 — 11f .+ 16f% — 163 — 18f% + 18f>.))H>
+36nf% (=4’ + 486 f o — 8en’f o + 4 nf % + S [ — 4867 . — 24en’ £ 4 40’ £

+ 5P [l = 8e o + 8eren(=1 + f2) + 2 (=1 + f%) (126 f o + P f (1 +2£%)

= 2en(3+5f7%))H> + 108 f (126 f (=3 + 4f o = 2f% = fre + fl) + 1P f (=2 =3f

+23f% = 15f% +9f%) + 6ny (=1 + f ) (=6¢f (2 = fo + fo) +n(1 + f o + 5% +2f% +3f%))
+e(=7261 (=1 + f ) f% +n(10 4+ 6f . +44f% — 11413 + 664 + 36> — 36/5.)) ) H?,

= 4374’74fc(2'71(2 - 2fc _f,zc +f3c) + nfc(z - 3f,c - 2f26‘ + 2f30) - 26(7 - Sfc - 4f2€ + 4f?c))H2

+ 54 f (—4e*n + A8 f = 126> nf% + P 1 — 48 £, — 16en” 7, + 40enf% + 50 f1. — Ben [,
+deren(=1+ %) +dn (=1 + fL)(6f « + 07 fre = e(n +5nf2)))H> = 9720 f (= (=2 + f L) f
—4e (=3 +9f . =8f% =3fL +3fe) +m(=1+ fo)nf (=2 + fo=3f%) +2e(2=5f . +3f%))
+2ef (e (=1 + f o) +n(=3+7f =T7f% =3 +3f%L))H?

8L f o(=2¢ +nf )*(nf ¢ +2m (=1 + fL) = 4e(=1+ fL))H? = 729" f .(=20€> + dere(=1 + f )

+ 246 f .+ 8enf . + 8Xf% — 12enf% + [ — 823 —denf> + denfl + 2 (=1 + f)(nf c —nf
+2e(=2+ f)))H>.
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In the above expressions, ky = k/H, and we use Eqs. (14), (15), and (17) to write f .. as

f,CC_

1
12X

€— f.crl
AL,

(A3)
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