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We investigate the contribution of cosmic string loops to the cosmic microwave background (CMB)
anisotropies. This is done by extending the unconnected segment model (USM) to include the contribution
of the cosmic string loops created throughout the cosmological evolution of a cosmic string network to the
stress-energy tensor. We then implement this extended USM in the publicly available CMBACT code and
obtain the linear cold dark matter power spectrum and the CMB angular power spectra generated by cosmic
string loops. We find that the shape of the angular power spectra generated by loops is, in general, similar to
that of long strings. However, there is generally an enhancement of the anisotropies on small angular scales.
Vector modes produced by loops dominate over those produced by long strings for large multipole
moments l. The contribution of loops to the CMB anisotropies generated by cosmic string networks may
reach a level of 10% for large loops but decreases as the size of loops decreases. This contribution may then
be significant and, thus, this extension provides a more accurate prediction of the CMB anisotropies
generated by cosmic string networks.
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I. INTRODUCTION

The cosmic microwave background (CMB) has provided
us with an accurate observational probe of several cosmo-
logical paradigms. The improved precision of measure-
ments of the CMB anisotropies has led to stringent
constraints of cosmological parameters, which translate
into constraints on various early-Universe scenarios. One
such scenario is the production of topological defects
networks in symmetry-breaking phase transitions in the
early Universe (see [1–3] for a review). Although CMB
observations are consistent with the inflationary paradigm
[4], in which the perturbations are seeded in the very early
Universe, they still allow for a subdominant defect con-
tribution. Current data limits the fractional contribution of
linelike defects known as cosmic string to 1%–2% of the
temperature anisotropies, which translates into a bound on
cosmic string tension of Gμ≲ 10−7 [5–9]. Despite this,
cosmic strings may still contribute significantly to the B-
mode polarization of the CMB, and thus, this signals may
provide us with a relevant window to probe string-forming
scenarios.
The derivation of accurate constraints on cosmic-string-

forming scenarios requires a detailed prediction of the
CMB anisotropies generated by a cosmic string network.
Cosmic strings and other topological defects, however,
source perturbations actively, and thus, the computation of

their CMB signatures requires an understanding of how
these perturbations are generated throughout cosmological
history. This may be achieved by using numerical simu-
lations [6,7,10] of cosmic string networks, through analytic
estimation [11,12] or by resorting to the publicly available
CMBACT code [13]. This numerical tool, developed to
compute the anisotropies generated by active sources, uses
the unconnected segment model [14] to describe the stress-
energy tensor of a cosmic string network. This framework,
developed to describe standard cosmic string networks, is
very versatile and was successfully extended to describe the
CMB signatures of cosmic superstrings [9], superconduct-
ing strings [15], and 2þ 1-dimensional topological defects
known as domain walls [16]. The USM was further
extended in [17] to reduce computational time, which
allowed for its use in Markov chain Monte Carlo analysis
of the string parameter space.
The original USM only considers the contribution of

long strings and does not include the loops that are
copiously produced as a result of strings interactions.
The loops’ contribution to the CMB anisotropies is
expected to be subdominant. However, a significant frac-
tion of the string energy density is, at any time, in the form
of loops. As a matter of fact, it was shown in [12,18] that
loops indeed provide a significant contribution to the
spectrum of perturbations generated by the cosmic string
network, which may translate into a significant contribution
to CMB anisotropies. Note that this contribution was not
quantified as of yet (see however Refs. [11,12]). Here, we
extend the USM model to include the contribution of
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cosmic string loops and implement this extended frame-
work in the CMBACT code. This is done with the objective
of quantifying cosmic string loops’ contribution to the
CMB anisotropies and of improving the accuracy of the
computations of the CMB signatures of cosmic string
networks.
This paper is organized as follows. In Sec. II, we

compute the stress-energy tensor of a circular cosmic string
loop. In Sec. III, we develop the framework necessary to
compute the CMB anisotropies generated by cosmic string
loops. We start by reviewing the main aspects of the
cosmological evolution of a cosmic string network and
loop production in Sec. III A. We then extend the USM to
also account for the contribution of the cosmic string loops
that are produced throughout the evolution of a cosmic
string network in Sec. III B. We characterize the CMB
signatures generated by cosmic string loops in Sec. IVA,
study their impact on the anisotropies generated by cosmic
string networks in Sec. IV B, and investigate the impact of a
reduced intercommutation probability in Sec. IV C. We
then conclude in Sec. V.

II. STRESS-ENERGY TENSOR
FOR CIRCULAR LOOPS

In most situations of interest in cosmology, a cosmic
string may be treated as an infinitely thin object that sweeps
1þ 1-dimensional world sheet in spacetime. This world
sheet may be represented by the four vector,

Xμ ¼ Xμðσ0; σ1Þ; ð1Þ

where σ0 and σ1 are variables that parametrize the string
world sheet. In this case, cosmic string dynamics are
described by the Nambu-Goto action,

S ¼ −μ0
Z ffiffiffiffiffiffi

−γ
p

d2σ; ð2Þ

where μ0 is the cosmic string tension—which, for Nambu-
Goto strings, coincides with the mass per unit length—and
is related to the energy-scale of the string forming phase
transition. Here, γ is the determinant of the world sheet
metric γab ¼ gμνX

μ
;aXν

;b (with a, b ¼ 0, 1), and gμν is the
background metric.
In a Friedmann-Lemaitre-Robertson-Walker (FLRW)

background—with the line element,

ds2 ¼ aðτÞ2ðdτ2 − dx2Þ; ð3Þ

where aðτÞ is the cosmological scale factor and dτ ¼ dt=a
is the conformal time and t is the physical time—it is
convenient to chose the temporal-transverse gauge,

σ0 ¼ τ; and _X ·X0 ¼ 0; ð4Þ

where Xμ ¼ ðτ;XÞ and a dot or a prime denotes a derivative
with respect to σ0 or σ1, respectively. In this case, the stress-
energy tensor [obtained by varying the action in Eq. (2)
with respect to gμν] may be expressed as

Tμν ¼ μ0ffiffiffiffiffiffi−gp
Z

ðϵ _Xμ _Xν − ϵ−1X0μX0νÞδð4Þd2σ; ð5Þ

where δð4Þ ¼ δð4Þðxη − Xηðσ0; σ1ÞÞ is a Dirac delta function
and ϵ2 ¼ X02=ð1 − _X2Þ.
Let us now consider the case of a circular (planar) cosmic

string loop with conformal radius Rc. For simplicity, we
shall assume that the loop has, instantaneously, no radial
velocity ( _Rc ≈ 0). Although cosmic string loops are quite
generally expected to oscillate under the effect of their
tension, we have verified numerically that this assumption
does not have a significant impact on the final results.1

Moreover, we will also assume that the loop has a trans-
lational velocity, vl, orthogonal to the loop’s plane. In this
case, we have that

X ¼ Xi þ Rcx cos σ þ Rcy sin σ þ vlτz; ð6Þ

where σ ¼ σ1 ∈ ½0; 2π�, and Xi is the initial location of the
center-of-mass of the loop. Here, x, y, and z are three
orthogonal unitary vectors defined as

x ¼

0
B@

sin θ sinϕ

− sin θ cosϕ

cos θ

1
CA; ð7Þ

y ¼

0
B@

cosϕ cosψ − sinψ sinϕ cos θ

sinϕ cosψ þ sinψ cosϕ cos θ

sin θ sinψ

1
CA; ð8Þ

z ¼

0
B@

− cosϕ sinψ − cosψ sinϕ cos θ

− sinϕ sinψ þ cosψ cosϕ cos θ

sin θ cosψ

1
CA; ð9Þ

with 0 ≤ θ < π and 0 ≤ ϕ;ψ < 2π.
The Fourier transform of the stress-energy tensor of the

cosmic string loop is then given by

Θμν ¼ μ

Z
2π

0

eik·Xðϵ _Xμ _Xν − ϵ−1X0μX0νÞdσ: ð10Þ

Assuming, without loss of generality, that k ¼ kkz, with
kz ¼ f0; 0; 1g, we have that

X · k ¼ kXi · kz þ vlτzz þ RkA sinðσ þ BÞ; ð11Þ

1See the Appendix for the stress-energy tensor of a loop with
_Rc ≠ 0.
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where

A2 ¼ x2z þ y2z ; tanB ¼ xz
yz

; ð12Þ

and the subscript “z” denotes the projection along the kz
direction. The real part of “00” component of the stress-
energy tensor (10) may then be written as

Θ00 ¼ MJ0ðXÞ cosφ0; ð13Þ

whereM ¼ 2πμ0Rcγv,φ0 ¼ kXi · kz þ vlkτzz,X ¼ kRcA,
γv ¼ ð1 − v2l Þ−1=2, and Jnð::Þ is a Bessel function of the
first kind.
The spatial components of the stress-energy tensor are

given by

Θij ¼ Θ00 ×
�
v2l z

izj −
γ−2v
2

ðxixjI− þ yiyjIþ þ 2IxðiyjÞÞ
�
;

ð14Þ

where

I� ¼ 1� J2ðXÞ
J0ðXÞ cos 2B; I ¼ J2ðXÞ

J0ðXÞ sin 2B;

and yðixjÞ ¼ 1

2
ðyixj þ xiyjÞ: ð15Þ

The scalar, vector, and tensor components of the stress-
energy tensor (14) are given, respectively, by

ΘS ¼ ð2Θ33 − Θ11 − Θ22Þ=2;
ΘV ¼ Θ13;

ΘT ¼ Θ12; ð16Þ

while the trace Θ ¼ Θii and velocity field ΘD ¼ Θ03 are
fixed by imposing local energy-momentum conserva-
tion [14].

III. MODELING THE COSMIC STRING
NETWORKS WITH LOOPS

A cosmic string network has two primary constituents:
long strings—cosmic strings that stretch beyond the hori-
zon—and subhorizon closed string loops. The creation of
loops happens persistently throughout the evolution of a
cosmic string network due to string collisions. These loops
detach from the long string network and evolve independ-
ently from it. Thus, there is a continual energy loss by the
long string network that plays a crucial role in its dynamics.
In this section, we review the main aspects of cosmic string
network dynamics and loop production and extend the
USM model to account for cosmic string loops.

A. Cosmic string network evolution
and loop production

The evolution of topological defect networks has been
extensively studied using numerical [19–23] and semi-
analytical [24–30] methods. The velocity-dependent one-
scale (VOS) model, in particular, provides a simple and yet
informative description of the large-scale dynamics of
defect networks that grasps the main features of averaged
network evolution. This model—initially introduced for
cosmic strings [24,25] but later generalized to defects of
arbitrary dimensionality [26–30]—provides a quantitative
description of the evolution of a long string network by its
root-mean-squared velocity (rms) v̄ and characteristic
conformal length Lc [24],

dv̄
dτ

¼ ð1 − v̄2Þ
�
kðv̄Þ
Lc

− 2
_a
a
v̄

�
; ð17Þ

dLc

dτ
¼ _a

a
Lcv̄2 þ

c̃
2
v̄; ð18Þ

where c̃ is a parameter that quantifies the loop-chopping
efficiency, and kðv̄Þ is a momentum paremeter. Nambu-
Goto simulations are well described by c̃ ¼ 0.23 and a
momentum parameter of the form [25],

kðv̄Þ ¼ 2
ffiffiffi
2

p

π

1 − 8v̄6

1þ v̄6
ð1 − v̄2Þð1þ 2

ffiffiffi
2

p
v̄3Þ; ð19Þ

see Ref. [31] for the latest calibration of these parameters
from the simulation of Abelian-Higgs cosmic strings.
Since the main objective of the present work is to study

the potential impact of cosmic string loops on the CMB, we
also need to describe the number (and length) of loops
produced throughout cosmic history. This subject has had
considerable attention in the literature (see, e.g., [32–40])
since cosmic string loops are expected to give rise to a
stochastic gravitational wave background that is expected
to be within reach of gravitational wave experiments in the
near future. Here we shall adopt the semianalytical
approach of Ref. [37] since it allows for the characterization
of the number of loops created throughout the realistic
cosmological history (even through the radiation-matter
and matter-dark-energy transitions). In this approach, it is
implicitly assumed that the main energy-loss mechanism in
a cosmic string network is the creation of loops. Thus, all
the energy lost by the network (besides the loss that results
from Hubble expansion) goes into the formation of loops.
The characteristic length of the network Lc may be
regarded as a measure of the energy density of the network,

ρ ¼ μ0
a2L2

c
; ð20Þ

where ρ is the average energy density of the network. Thus,
using Eq. (18), one finds that the energy density lost by the
network is given by
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dρ
dt

����
loops

¼ c̃
v̄

aLc
ρ: ð21Þ

In this approach, it is also generally assumed that cosmic
string loops are created with a length that is a fixed fraction
of the characteristic length of the network at the time of
creation,

lbc ¼ αLcðtbÞ; ð22Þ

where 0 < α < 1 is a constant loop-size parameter and lbc is
the comoving length of the cosmic string loop at its time of
birth tb. The loop-size parameter α may be calibrated using
numerical simulations. Note, however, that numerical
simulations are not conclusive as to the length of the loops
produced in a cosmic string network’s evolution. Nambu-
Goto simulations consistently indicate that about 10% of
the energy lost by the long string network goes into the
formation of large loops with α ∼ 0.34 [38,41,42].2

Meanwhile, Abelian-Higgs simulations suggest much
smaller density of loops due to an additional mechanism
of energy loss: the emission of scalar and gauge radiation
[22,45]. Here, we shall treat α as a free parameter of the
model in order to study different scenarios. The number
density of loops created per unit time is then given by [37]

dnl
dt

¼ 1

albc

dρ
dt

����
loops

¼ c̃
α

v̄
a4L4

c
: ð23Þ

Although, in reality, one does not expect all loops to be
created with exactly the same length, the effect of having a
distribution of lengths at the moment of creation may, to
some extent, be included in this model through a renorm-
alization of Eq. (23) by a factor F [35,38,40].
After creation, cosmic string loops are expected to emit

gravitational radiation at a roughly constant rate,

dEl

dt

����
gr
¼ −ΓGμ20; ð24Þ

where Γ ∼ 50 [46,47],

El ¼ μ0a
Z

ϵdσ ¼ μ0l ð25Þ

is the energy of the loop, and l ¼ alc is the length of the
cosmic string loop. Loops then shrink as a result of this
emission until they eventually evaporate. In fact, using
Eqs. (22)–(25), we find that the comoving radius of the
cosmic string loop evolves as

RcðτÞ ¼
αLcðτiÞaðτiÞ − ΓGμ0ðtðτÞ − tðτiÞÞ

2πaðτÞ ; ð26Þ

where τi is the conformal time of birth of the loops and τf is
the time of loop decay [for which RcðτfÞ ¼ 0].

B. An unconnected segment model with loops

This section extends the USM [13,14]—which describes
the stress-energy tensor of a cosmic string network—to
also account for cosmic string loops. In the USM, the long
string network is modeled as a collection of uncorrelated,
straight finite segments created simultaneously at an early
time. The positions of the segments are drawn from a
uniform distribution in space, and the direction of their
velocities—which is assumed to be orthogonal to the string
itself—is chosen from a uniform distribution on a two
sphere. The VOS model is then used to set the comoving
length of the segments Lc and the magnitude of their
velocity v̄. Since our model also includes the contribution
of long strings (besides that of loops), we preserve the main
features of this model.
To account for the energy loss caused by loops pro-

duction, a fraction of the segments decays at each time
instant τi,

NðτiÞ ¼ V½nðτi−1Þ − nðτiÞ�; ð27Þ

where NðτiÞ is the number of long string segments that
decay between τi−1 and τi, V is the simulation volume, and
nðτÞ is the number density of long strings,

nðτÞ ¼ CðτÞ
LcðτÞ3

: ð28Þ

Agreement between the number density of strings in this
model and that predicted by the VOS model is ensured by
requiring that the normalization function CðτÞ is given by
V=LcðτÞ3 at any given conformal time τ.
In order to include loops in this model, we assume that

the segments that decay at a given time are “converted” into
cosmic string loops and, thus, the number of loops created
at a given time is given by

NlðτiÞ ¼
μ0NðτiÞLcðτiÞ

μ0lbcðτiÞ
¼ NðτiÞ

α
; ð29Þ

where we have used Eq. (22). This ensures that there is a
balance between the energy lost by the cosmic string
network and the total energy of the loops created, so that
the number of loops created is in agreement with Eq. (23).
In this extension of the USM, the long string segments

decay at each (discrete) time instant τi and a population of
NlðτiÞ circular loops is created with an initial comoving
radius RcðτiÞ given by Eq. (26) and a stress-energy tensor
given by Eqs. (13)–(14). These loops then shrink (by

2There is, however, a severe disagreement in the number of
small loops predicted by simulation-inferred models developed
by different groups [43] (see, however, [42,44]).

I. YU. RYBAK and L. SOUSA PHYS. REV. D 104, 023507 (2021)

023507-4



emitting gravitational waves) according to Eq. (26) until
they eventually disappear at a time τf [in which
RcðτfÞ ¼ 0]. The appearance/disappearance of the cosmic
string loops is achieved in the same manner as the decay of
string segments in the original USMmodel. In fact, the total
stress-energy tensor of the loop network is written as

Θ̃μν
L ðk; τÞ ¼

XNT

n

Θμν
n ðk; τÞToffðτ; τnfÞTonðτ; τni Þ; ð30Þ

where Θμν
n ðk; τÞ is the stress-energy tensor of the nth loop,

NT is the total number of loops, and τni and τnf are,
respectively, the conformal times of creation and evapora-
tion of the nth loop. Here, we have also introduced the
functions,

Toffðτ; τfÞ ¼

8>><
>>:

1 τ < λ−τf
1
2
þ 1

4
ðx3off − 3xoffÞ λ−τf ≤ τ < τf;

0 τf ≤ τ

ð31Þ

where

xoff ¼ 2
lnðλ−τf=τÞ
lnðλ−Þ

− 1; ð32Þ

and

Tonðτ; τiÞ ¼

8>><
>>:

0 τ < τi
1
2
þ 1

4
ð3xon − x3onÞ τi ≤ τ < λþτi;

1 λþτi ≤ τ

ð33Þ

where

xon ¼ 2
lnðτi=τÞ
lnð1=λþÞ

− 1: ð34Þ

The Toff function is responsible for “turning off” the
contribution to the stress-energy tensor of loops that have
already evaporated at the time τf, and it is identical to the
Toff function used in the original USM to model the decay
of long string segments. We have also included the Ton

function to “turn on” the contributions of all the loops
created at the time τi.

3 These functions then ensure that
Θ̃μν

Loopsðk; τÞ only has a contribution from the relevant loop
populations: those that were created at a time τi < τ and
have not evaporated completely yet at time τ. The constants

λ� determine how fast loops appear or disappear: in fact,
Ton (Toff ) grows (decreases) continuously from 0 (1) to
1 (0) between τi (λ−τf) and λþτi (τf). Here, we
take λ� ¼ 1� 0.2.4

An essential feature of the USM for long strings is that,
to ensure computational efficiency, all cosmic string seg-
ments that decay at a given time are consolidated into a
single string segment. In fact, since the segments are
distributed randomly in real space, their random positions
correspond to a random phase in Fourier space. Thus, the
amplitude of the sum of their contribution to the stress-
energy tensor is essentially a two-dimensional random
walk. As a result, the total stress-energy tensor in
Fourier space is simply the stress-energy tensor of a single
segment weighted by a factor of

ffiffiffiffi
N

p
[14]. Naturally, for

numerical efficiency, we shall preserve this feature and
consolidate each loop population—i.e., the loops that are
created (and decay) at the same time—into a single cosmic
string loop. However, cosmic string loops cannot realisti-
cally be expected to follow a random distribution in space.
As a matter of fact, as discussed in Ref. [18], the positions
of loops are highly correlated with the positions of long
strings: loops are created along the strings, and they tend to
move in the same direction as the string from which they
are chopped. Assuming that loops are randomly distributed
in space and move in random directions is, therefore, not
realistic and may have a significant impact on the results.
However, in any case, we can consolidate a loop population
into a single loop if we do so in two steps. At any given
time τi, NðτiÞ segments decay into loops, and thus, we
have, on average, α−1 loops created per decaying string
segment. Given the strong correlation between the posi-
tions of strings and loops, we may then expect that these
α−1 loops are created at random positions along the
decaying string, and thus, the sum of their contributions
to the stress-energy tensor in Fourier space corresponds to a
sum of terms with random phases. Similarly to long strings,
these may then be consolidated into a single loop located at
the position of the center-of-mass of the decaying string at
the time of creation τi, with a weight 1=

ffiffiffi
α

p
. After this first

consolidation step, we haveNðτiÞ loops that were created at
the same time τi and located at the (random) positions of
the centers-of-mass of the decaying segments. We may then
consolidate these loops into a unique loop with a weight offfiffiffiffiffiffiffiffiffi
N=α

p
,

Θ̃μν
L ðk; τÞ ¼

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NlðτjiÞ

q
Θμν

j ðk; τÞToffðτ; τjfÞTonðτ; τjiÞ;

ð35Þ

where the index j runs over the consolidated loops.
3The USM, in its original implementation [14], actually

included, for computational efficiency, a slightly different Ton

function to only “turn on” segments once they may contribute
significantly to the CMB anisotropies. This was, however,
abandoned in later extensions of the model.

4We have verified numerically that the values of λ� do not have
a significant impact on the final results.
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The correlation between loops and long strings is taken
into account by positioning the consolidated loop—that
represents the population of loops created at τi—at the
position of the consolidated decaying string segment at
the time of decay and by imposing that the direction of the
velocity of the loop coincides with that of the decaying
string. We should then have

φ0 ¼ kX0 · kz þ kτizzv̄þ vlkðτ − τiÞzz; ð36Þ

where X0 is the (randomly assigned) initial position of the
decaying consolidated segment, X0 · kz þ kτizzv̄ is its
position at the time of decay. Since the center-of-mass
velocity of the loop is expected to scale as γvvl ∝ a−1 due
to the expansion of the background, the velocity of the loop
is given by

vlðτÞ ¼
vlðτiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2l ðτiÞ þ ð1 − v2l ðτiÞÞðaðτÞaðτiÞÞ
2

q ð37Þ

at any instant of time τ > τi.

IV. COSMIC MICROWAVE BACKGROUND
ANISOTROPIES

Although the CMB has a nearly perfect black body
spectrum with an approximately uniform temperature, there
are tiny temperature fluctuations across the sky [4]. The
CMB is generally characterized in terms of the angular
power spectrum, Cl, of the temperature fluctuations,

Cl ¼ 1

2lþ 1

Xl
m¼−1

ha�lmalmi; ð38Þ

where angled brackets represent an ensemble average.
Here, alm are the coefficients of the decomposition of
the temperature fluctuations,△ðn̂Þ ¼ △T=T, into spherical
harmonics,

△ðn̂Þ ¼
X
lm

almYlmðn̂Þ; ð39Þ

where n̂ is the direction of the line of sight and Ylm are
spherical harmonic functions. The angular power spectrum,
then, allows us to separate the contributions to different
angular scales of the CMB anisotropies.
Here, we are also going to compute the cold dark matter

(CDM) linear power spectrum,

PðkÞ ¼ jδ2ðkÞj; ð40Þ

where δðkÞ is the Fourier transform of the density contrast,

δðxÞ ¼ ρmðxÞ − hρmi
hρmi

; ð41Þ

where ρmðxÞ is the matter density at a given position x and
hρmi is its average value.
In this section, we compute the CMB and linear CDM

power spectra generated by cosmic string networks with
loops. To do this, we extend the publicly available
CMBACT code to also account for cosmic string loops,
by implementing the modifications described in the pre-
vious sections. Our results are obtained by averaging over
500 realizations of a Brownian cosmic string network with
the following cosmological parameters: Ω0

bh
2 ¼ 0.0224,

Ω0
mh2 ¼ 0.1424 for baryon and matter density parameters,

and H0 ¼ 100h kms−1 Mpc−1, with h ¼ 0.674 for the
Hubble parameter at the present time [48]. The tension
of cosmic strings is fixed to Gμ0 ¼ 10−7, and we assume
that all loops are created with the same length (and thus,
F ¼ 1) unless stated otherwise. The unmodified CMBACT
is used to obtain the power spectra generated by long
strings only.

A. The contribution of cosmic string loops

Before going into the CMB anisotropies generated by the
full cosmic string network, with both long strings and
loops, we start by presenting the contribution that comes
solely from cosmic string loops. To do so, we modify the
CMBACT code in such a way as to include only the
contribution of cosmic string loops to the stress-energy
tensor (35).
Let us start by looking into the linear CDM power

spectrum. To have a clear picture of the contribution of
cosmic string loops, we have studied the evolution of the
linear CDM power spectrum generated by loops. In
particular, in Fig. 1, we plot the linear CDM power
spectrum generated by cosmic string loops up until differ-
ent epochs in cosmic history (namely, until a scale factor of

FIG. 1. Linear CDM power spectrum generated by cosmic
string loops. We include the CDM power spectra generated by
cosmic string loops up to a ¼ 10−4 (blue line), a ¼ 10−3 (red
line), a ¼ 10−2 (green line), a ¼ 10−1 (olive line), and a ¼ 1
(cyan line). We have averaged over 500 realizations of cosmic
string loop networks, and took Gμ0 ¼ 10−7 and α ¼ 10−1.
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a ¼ 10−4, a ¼ 10−3, a ¼ 10−2, a ¼ 10−1, and a ¼ 1,
corresponding to the present time). Therein, we may see
that, as time progresses, cosmic string loops contribute
dominantly at increasingly larger scales (smaller values of
k). As a matter of fact, since the correlation length of the
cosmic string network increases throughout the evolution,
the radius of the loops produced also increases. However,
the number of loops created throughout the evolution
decreases with time because the network becomes pro-
gressively less dense. As a result, the dominant contribution
to the CDM power spectrum comes from loops created in
the radiation era or around the radiation-matter transition.
In Fig. 2, we plot the linear power spectrum generated by

randomly distributed cosmic string loops for different
values of the loop translational velocity. Therein, one
may see that for static loops, the power spectrum is flat
for sufficiently large k (or small scales) as predicted in [18].
This is mainly a result of the fact that static loops act, on
sufficiently large scales, effectively as pointlike sources of
perturbations. On the other hand, if the loops are moving,
they generate filamentlike perturbations, which causes a
transfer of power towards larger scales (smaller k).
Although this effect is more accentuated for larger value
of vl, our results show that the amplitude and shape of the
linear power spectrum does not depend strongly on the
magnitude of the velocity of loops. However, this figure
also shows that, for nonvanishing vl, the spectrum starts to
develop a decreasing slope at small scales, exhibiting signs
of the transition to the k−1 regime predicted in Ref. [18] for
even larger values of k.
As Fig. 3, where we plot the linear CDM power spectrum

of loops alongside that of long strings, shows, except for
the slower decrease at small scales, the spectrum generated
by cosmic string loops is very similar both in amplitude and
in shape to that generated by long strings. Both have
peaked power spectra due to the enhancement of

perturbations caused by the fact that there is a large number
of sources with approximately the same length at roughly
the same distance; however, in the case of loops, the peak is
located at larger k because the length of the loops is a
fraction of the correlation length of long strings. Moreover,
since loops decay after formation, there is some dispersion
in the length of the sources of perturbation, and, as a result,
the peak of the spectrum is broader and less pronounced.
The differences in the CDM linear power spectrum of

long strings and loops naturally translate into differences in
the CMB anisotropies. In Fig. 5, the TT, EE, TE, and BB
components of the CMB angular power spectra generated
by cosmic string loops are plotted up to different cosmo-
logical scale factors. The shape of angular spectra for
cosmic loops is also very similar to that generated by long
string networks (cf. Fig. 7), but its maximum amplitude is
about 1 order of magnitude smaller, and the peaks of the
spectra also appear at a smaller angular scale (or larger
multipole l). The most noticeable difference, however,
appears in the vector components. As a matter of fact, the
vector contribution to the temperature anisotropies does not
decrease with the increase of multipole moment l (decreas-
ing angular scales) as it happens for long strings. We
anticipate that small circular loops are responsible for this
effect: due to their shape, they actively generate rotational
movements of matter, giving rise to the divergenceless
(vortical) velocity field. In particular, for l > 1500, the
vector contribution to the TT angular power spectrum
generated by loops is approximately constant, as shown

in Fig. 4, while for long strings CTT
lðlþ1Þ

2π ∼ l−1.5 [49].
Figure 5 also shows that cosmic string loops generate

temperature anisotropies at progressively larger scales
between the epoch of the last scattering and the present
time since the length of loops (at the moment of creation)

FIG. 2. Linear CDM power spectrum generated by cosmic
string loops with different velocities. We chose Gμ0 ¼ 10−7 and
α ¼ 10−1 and averaged over 500 realizations of cosmic string
and/or loop network realizations.

FIG. 3. Linear CDM power spectrum generated by a cosmic
string network with loops. The solid (blue) line represents the
power spectrum generated by cosmic strings and cosmic string
loops, while the dash-dotted (black) and dashed (red) lines
represent the contributions of long strings and cosmic string loops.
We chose Gμ0 ¼ 10−7 and α ¼ 10−1 and averaged over 500
realizations of cosmic string and/or loop network realizations.
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increases with time. However, since the number of created
loops decreases roughly as t−4, the dominant contribution
(corresponding to the peak of the spectrum) is generated
earlier in cosmological history. The polarization anisotro-
pies—as is the case for long strings and domain walls—are
created mainly in two epochs: the dominant peak at small
angular scales is generated around the last scattering

(a ∼ 10−3), while the large-scale subdominant peak is
created around the epoch of reionization (a ∼ 10−1).
The CMB power spectra generated by cosmic string

loops with different translational velocities (v2l ¼ 0,
v2l ¼ 0.5, v2l ¼ 0.999) are plotted in Fig. 6. The results
show that, although the general shape of the spectrum does
not depend significantly on the velocity of loops (see
Fig. 2), the amplitude of the anisotropies does. The
temperature anisotropies, in particular, are highly depen-
dent on the speed of loops and generally increase with
increasing vl. Vector and tensor modes, due to their nature,
are more affected, while scalar modes do not have such
significant change, as shown in Fig. 6. Note however that,
in general, we do not expect loops to be static or non-
relativistic. In fact, they are expected to move with
relativistic speeds and smaller loops to have higher veloc-
ities in general. Here and through the remainder of this
paper, we shall take v2l ¼ 0.5 unless stated otherwise. Since
the contribution of loops is expected to be subdominant
when compared to that of long strings, this assumption
is not expected to have a significant impact on the
final results.

B. CMB anistropies generated by cosmic string
networks with loops

In this section, we will characterize the CMB anisotro-
pies generated by a cosmic string network, including both

FIG. 5. CMB anisotropies generated by cosmic string loops. From left to right, we plot the TT,TE, EE, and BB power spectra, as a
function of the multipole moment l. The top, middle, and bottom rows represent the scalar, vector, and tensor components, respectively.
In each of the plots, we include the angular power spectra generated by cosmic string loops until a ¼ 10−4 (blue line), a ¼ 10−3 (red
line), a ¼ 10−2 (green line), a ¼ 10−1 (olive line), and a ¼ 1 (cyan line). We have averaged over 500 realizations of cosmic string loop
networks and took Gμ0 ¼ 10−7, α ¼ 10−1.

FIG. 4. Temperature angular power spectrum generated by
cosmic string loops and its scalar, vector, tensor components. For
l > 1500 the total contribution is well approximated by

CTT
lðlþ1Þ

2π ∼ l−0.05; i.e., it is almost constant due to the vector
contribution.
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loops and long strings. To do so, we implemented the
extension of the USM described in Sec. III B in the
CMBACT code. In particular, we write the total stress-
energy tensor of the network as a sum of the contributions
of loops and long strings,

Θμν
Networkðk; τÞ ¼ Θμν

S ðk; τÞ þ Θ̃μν
L ðk; τÞ; ð42Þ

where Θμν
S ðk; τÞ is the stress-energy tensor of long strings

as described in the original USM [13,14] (which includes
the contribution of all consolidated string segments), and
Θ̃μν

L ðk; τÞ is given by Eq. (30). As discussed in the previous
section, numerical simulations show a strong correlation
between the positions and velocities of long strings and
cosmic string loops [18]. This vital ingredient is taken into
account in this computation by imposing that the loops are
created where a consolidated long string has decayed.
Moreover, the loop velocity vl is orientated along the same
direction as the long string velocity v̄, as it is encoded
in Eq. (36).
The CDM linear power spectrum generated by cosmic

string networks with loops is plotted in Fig. 3, alongside
that of cosmic strings and that of (randomly distributed)
loops. Therein, one may see that, as a result of the
correlations, the effect of including loops is to enhance
the spectrum of perturbations generated by strings.
The shape of the power spectrum is not significantly

affected—except on small scales wherein the decrease is
somewhat slighter than k−2 due to the inclusion of loops—
but its maximum amplitude increases by a factor of 2–3.
The CMB anisotropies generated by a cosmic string

network with loops (in both the temperature and polariza-
tion channels) are plotted in Fig. 7. In these plots, we may
see that loops with α ¼ 10−1 roughly contribute to about
10% of the anisotropies and lead to a visible increase for
large multipole moments l. This enhancement is particu-
larly significant in the vector modes—since, as discussed
before, loops generate (due to their shape) vortical motions
of matter—and, in the case of the TT vector anisotropies,
there is a significant increase for l≳ 1000. Current Planck
constraints on Nambu-Goto strings [50]—which limit their
fractional contribution to temperature anisotropies to about
1%–2%—were derived using the original USM model and
thus, do not include the effect of loops. Our results then
indicate that the inclusion of loops may result in more
stringent constraints on cosmic string tension. Note also
that, although the shape of the power spectra generated by
cosmic string networks with loops is very similar to that of
long strings, the contribution of loops to the vector-mode
temperature anisotropies is dominant for large multipole
moments l. As a result, the temperature anisotropies
decrease more slowly with increasing l if loops are
included. This is in agreement with the results of
Ref. [10]—derived using numerical simulations that

FIG. 6. CMB anisotropies generated by cosmic string loops with different velocities. From left to right, we plot the TT, TE, EE, and
BB power spectra, as a function of the multipole moment l. The top, middle, and bottom rows represent the scalar, vector, and tensor
components, respectively. Each of the plots represents different values of translation velocities v2l ¼ 0 (dash-dotted red line), v2l ¼ 0.5
(dashed blue line), v2l ¼ 0.999 (solid green line), while Gμ ¼ 10−7, α ¼ 10−1 and the results are obtained by averaging over 500
realizations.
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include loops—in which the TT anisotropies scale as l−0.89

for large angular scales (whereas, for the USM model, the
TTangular power spectrum behaves asymptotically as l−1.5

[49]). Our results indicate that this discrepancy may indeed
be related to the contribution of cosmic string loops.
The impact of the inclusion of loops on the anisotropies

is highly dependent on the size of loops. Figures 8 and 9—
where we plot the TT, TE, EE, and BB anisotropies and the
linear CDM power spectrum generated by cosmic string
networks with loops of different sizes (normalized to that of
long strings)—clearly show this effect. There we also
include the spectra generated by Nambu-Goto cosmic
string networks with loops calibrated by the latest simu-
lations in Ref. [38]. This is done by setting α ≈ 0.34,
vl ¼ 0.42, and by correcting the number of loops produced
by a factor of F ¼ 0.1 (to account for the fact that only
about 10% of the energy lost by network goes into the
formation of loops). Our results indicate that, for this
scenario, the impact of cosmic string loops on small scales
is still significant. Loops then should be considered in the
derivation of observational constraints on the tension of
Nambu-Goto strings.
Our results show that the contribution of loops remains

relevant as the length of the loop decreases. Note however
that the correlation between the positions and velocities of
long strings and loops play a determinant role here: for
randomly distributed loops (as the ones considered in the

previous section), the CMB anisotropies die off quickly
with decreasing α (roughly Cl ∝ α). However, since loops
are distributed along the strings, these loops, even if small,
enhance the perturbations that have been generated by the
long strings. In fact, as the size of loops decreases, there are
two competing effects: the number of loops increases (as
Nl ∝ α−1); but these loops are smaller and survive for a
shorter period of time. The net result is that, as these figures
show, a decrease of the loops’ length leads to a decrease of
the impact of loops on both the spectrum of perturbations
and CMB anisotropies. The excess in the vector modes in
the temperature anisotropies quickly decreases with
decreasing α and, as a result, the constraints on scenarios
with smaller loops are necessarily less stringent.
Interestingly, however, there is an excess in tensor modes
even for small α, especially in the polarization channels:
tensor modes actually increase as α decreases for
10≲ l ≲ 103. We have verified numerically that this trend
continues if we decrease α further, even beyond the
gravitational backreaction scale (ΓGμ0), but the decrease
in temperature anisotropies and the increase in polarization
anisotropies are significantly slower. In fact, there seems to
be a residual excess (similar in magnitude to that observed
for α ¼ 10−4) in both the temperature and polarization
channels as a result of the inclusion of loops, even if they
are quite small. The B-mode polarization channel may then
offer us an alternative window to probe the size of cosmic
string loops.

FIG. 7. CMB anisotropies generated by cosmic string networks with loops. From left to right, we plot the TT, TE, EE, and BB power
spectra, as a function of the multipole moment l. The top, middle, and bottom rows represent the scalar, vector, and tensor components,
respectively. In each panel, we include the CMB anisotropies generated by a cosmic string network with loops (solid blue line) as well as
the contribution of long strings (dash-dotted black line) and cosmic string loops (dashed red line). The result is obtained by averaging
over 500 realizations of cosmic string networks.
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Note that, although here we only plotted the CMB
anisotropies generated by cosmic string networks with
loops for Gμ0 ¼ 10−7, we have verified that the contribu-
tion of loops to the CMB anisotropies remains relevant as
we lower cosmic string tension. As a matter of fact, the
amplitude of CMB anisotropies generated by loops scales
as Cl ∝ ðGμ0Þ2 (as does that of long strings) and thus the

shapes of the (total) angular power spectra are roughly
maintained. Note also that, in our computations of the
CMB generated by cosmic string networks with loops, we
have assumed that F ¼ 1 (except for the spectra generated
by Nambu-Goto cosmic string networks with loops). If we
relax the assumption that all loops are created with the same
size and assume thus thatF ≠ 1, the amplitude of the CMB
anisotropies would be suppressed by a factor of F 1=2. The
specific value of F , however, would depend on the
particular distribution assumed for the length of produced
loops. If the width of the distribution is not very large, we
do not expect this assumption to affect the results signifi-
cantly, but if there is a large spread, this may have an impact
on the final results.

C. Strings with reduced intercommutation probability

Until now, we have assumed that the intercommutation
probability P is equal to 1 and thus, that whenever cosmic
strings collide they exchange partners and reconnect.
However, several brane-inflationary scenarios [51–53]
predict the production of fundamental strings (or F strings)
and one-dimensional D-branes (or D strings) that may grow
to macroscopic sizes and play the cosmological role of
cosmic strings [54–56]. These cosmic superstrings may,
unlike ordinary strings, have an intercommutation proba-
bility that is significantly reduced due to their quantum
nature [57–59] and/or the existence of extra dimensions

FIG. 8. Ratio between the CMB anisotropies generated by cosmic string networks with loops, CSþl
l , and those generated by long

strings only, CS
l, for different loop sizes. From left to right, we plot the TT, TE, EE, and BB power spectra, as a function of the multipole

moment l. The top, middle, and bottom rows represent the scalar, vector, and tensor components, respectively. Each panel includes the
anisotropies generated by networks with α ¼ 10−1, α ¼ 10−2, α ¼ 10−3, α ¼ 10−4, and for the loop distribution inferred from the
simulations of Blanco-Pillado, Olum and Shlaer (BOS) in Ref. [38].

FIG. 9. Ratio between the linear CDM power spectrum gen-
erated by cosmic string networks with loops, PSþlðkÞ, and that of
long strings, PSðkÞ, for different loop sizes. We include the CDM
power spectra generated by networks with α ¼ 10−1, α ¼ 10−2,
α ¼ 10−3, α ¼ 10−4, and for the BOS distribution.
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[60]. In this section, we investigate whether the contribu-
tion of cosmic string loops to the CMB anisotropies
remains significant for string networks with a reduced
intercommutation probability. Note however that, although
cosmic superstrings serve as the motivation for this study,
there are several important properties of these networks that
will not be taken into consideration. In particular, since F
and D strings do not intercommute, but instead bind
together to create a new (heavier) type of string, their
collision leads to the production of Y-type junctions.
Moreover, subsequent collisions are expected to give rise
to even heavier ðp; qÞ strings—composed of q F strings and
p D strings—and thus, cosmic superstrings are expected to
form entangled multitensional networks (see, e.g.,
Refs. [61–64]). The heavier string types and junctions
may have a significant impact on the network’s dynamics
[60,62] and observational signatures [63,65]. The work in
this section should, then, be regarded as exploratory, but
our results may indicate us whether it is worth performing a
more profund study.
When two strings with reduced intercommutation prob-

ability collide, there is a 1 − P probability that they merely
pass through each other without interaction. This naturally
results in a decrease of the loop-chopping efficiency and,
consequently, of the network’s energy losses. As a matter of
fact, radiation and matter era numerical simulations of
cosmic string networks in Ref. [66] with P < 1 indicate
that

c̃ðPÞ ¼ c̃ð1ÞP1=3; ð43Þ
where c̃ð1Þ ¼ 0.23 is the loop-chopping efficiency of
networks with P ¼ 1.5 These networks are, then, weakly
interacting and consequently, significantly denser, with a
characteristic length of aLc ∼ P1=3 and ρ ∝ P−2=3 [68]. As
a result, the energy density lost due to loop formation is
actually enhanced as P is reduced,

dρ
dt

����
loops

∝ P−2=3: ð44Þ

Note however that, although the number of loops created
(per unit volume) increases as P decreases, the length of the
loops is expected to decrease since the characteristic length
of these networks is smaller. The combination of these two
effects actually results in a decrease of the contribution of
loops to the anisotropies and perturbation spectra. This is
illustrated in Figs. 10 and 11, where the CMB and CDM
power spectra generated by cosmic string networks with
loops for different values of the intercommutation proba-
bility are plotted (normalized to those of long strings). Note
however that, although the amplitude of the contribution
clearly decreases with decreasing P, the contribution of

loops at small angular scales (large l) remains significant
both in the temperature and polarization channels. Our
results indicate that the inclusion of loops in computations
of the CMB anisotropies generated by cosmic superstring
networks may be necessary to obtain more accurate results.
In fact, this contribution may be particularly relevant for the
lightest strings (the F strings), which have a higher
intercommutation probability when compared to heavier
string types.

FIG. 10. Ratio between the CMB anisotropies generated by
cosmic string networks with loops, CSþl

l , and those generated by
long strings, CS

l, for different intercommutation probabilities and
α ¼ 10−1. We plot the total TT, TE, EE, and BB angular power
spectra, as a function of the multipole moment l. Each panel
includes the CMB anisotropies for P ¼ 5 × 10−1, P ¼ 10−1,
P ¼ 5 × 10−2, P ¼ 10−2, P ¼ 5 × 10−3.

FIG. 11. Ratio between the linear CDM power spectrum
generated by cosmic string networks with loops, PSþlðkÞ, and
that generated by long strings, PSðkÞ, for different intercommu-
tation probabilities and α ¼ 10−1. We include the spectra gen-
erated by networks with P ¼ 5 × 10−1, P ¼ 10−1, P ¼ 5 × 10−2,
P ¼ 10−2, P ¼ 5 × 10−3.

5Note however that Minkowski space simulations seem to
indicate that c̃ ∝ P1=2 instead [67].
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V. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the impact of loops on the
cosmic microwave anisotropies generated by cosmic string
networks. To do so, we have extended the USM—which
describes the stress-energy tensor of a network of long
strings—to also account for the contribution of loops and
implemented this extended version on the publicly avail-
able CMBACT code.
Our results show that cosmic string loops may signifi-

cantly contribute to the CMB anisotropies on small angular
scales (or large multipole moments) on both the temper-
ature and polarization channels. This may lead to more
stringent CMB constraints on cosmic string tension for
scenarios with larger loop lengths. We further demonstrated
that loops with different sizes generate distinct signatures
on the polarization angular power spectra. As a result, B-
mode polarization may be used to probe different loop-
formation scenarios.
Since loops are expected to decay by emitting gravita-

tional radiation and to give rise to a stochastic gravitational
wave background, loop-forming scenarios may also be
probed independently using gravitational wave experi-
ments. Current pulsar-timing data set an upper limit for
the tension of cosmic strings of aboutGμ0 ≲ 10−11 for large
loops [69,70] and Nambu-Goto strings [71], which is
beyond the reach of CMB experiments. Note however that
pulsar-timing constraints on scenarios with smaller loops
are 3 to 4 orders of magnitude weaker [69,70], and thus, the
CMB anisotropies may be a competitive independent probe
of these scenarios.
Although we have mostly considered standard cosmic

string networks in this paper, this framework may be
extended to study more exotic scenarios. Here, we have
investigated networks with reduced intercommutation
probability as a proxy for cosmic superstring networks.
Our results indicate that loops may provide a significant

contribution in the case of cosmic superstrings too. Note
however that a more detailed study, including the contri-
butions of different types of strings and junctions, would be
necessary before these results can be safely extrapolated to
cosmic superstrings.
This framework may also be helpful to study the CMB

signatures of vortons. Axion strings are superconducting
and give rise to loops that carry a current [72,73]. After
creation, these loops decay radiatively, but their current
prevents them from evaporating completely. They are, in
fact, expected to stabilize after reaching a critical radius and
survive throughout cosmological history [74,75]. These
stable superconducting loops, known as vortons, have been
proposed as possible dark-matter candidates and may lead
to specific CMB signatures [76]. Note, however, that
current is expected to have a significant impact on cosmic
string dynamics [77] and axion string loops are also
expected to lose energy at a slower rate. The computation
of the signatures of vortons on the CMB would then require
an extension of this framework to account for these
properties.
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APPENDIX: STRESS-ENERGY FOR LOOPS WITH _Rc ≠ 0

It is also possible to obtain a more general expression for loops with _Rc ≠ 0. In this case, we have

X ¼ X0 þ Rðγ−1v τÞx cos σ þ Rðγ−1v τÞy sin σ þ vτz: ðA1Þ

Substituting (A1) in the stress-energy tensor (10), we obtain

Θ00 ¼ MγRJ0ðXÞ cosφ0; ðA2Þ

where γR ¼ ð1 − _R2Þ−1=2, and

Θij ¼ Θ00

�
v2zizj þ xixj

2γ2v
ð _R2Iþ − γ−2R I−Þ þ

yiyj

2γ2v
ð _R2I− − γ−2R IþÞ − I

xðiyjÞ

γ2v

�

− 2MγR _R
v
γv

½xðizjÞ sinBþ yðizjÞ cosB�J1ðXÞ sinφ0: ðA3Þ
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The scalar, vector, and tensor contribution from the stress energy tensor (10) can be expressed as

ΘS ¼ Θ00

2

�
v2ð3z3z3 − 1Þ þ γ−2v

2
ðð3x3x3 − 1Þð−1þ 2 _R2 þ YÞ þ ð3y3y3 − 1Þð−1þ 2 _R2 − YÞ − 6Ix3y3Þ

�

− 2MγR _R
v
γv

½xðizjÞ sinBþ yðizjÞ cosB�J1ðXÞ sinφ0;

ΘV ¼ Θ00

�
v2z1z3 þ γ−2v

2
ðx1x3ð−1þ 2 _R2 þ YÞ þ y1y3ð−1þ 2 _R2 − YÞ − Iðx1y3 þ x3y1ÞÞ

�

−MγR _R
v
γv

½ðx1z3 þ x3z1Þ sinBþ ðy1z3 þ y3z1Þ cosB�J1ðXÞ sinφ0;

ΘT ¼ Θ00

�
v2z1z2 þ γ−2v

2
ðx1x2ð−1þ 2 _R2 þ YÞ þ y1y2ð−1þ 2 _R2 − YÞ − Iðx1y2 þ x2y1ÞÞ

�

−MγR _R
v
γv

½ðx1z2 þ x2z1Þ sinBþ ðy1z2 þ y2z1Þ cosB�J1ðXÞ sinφ0: ðA4Þ
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