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We discuss features of the inflaton potential that can lead to a strong enhancement of the power spectrum
of curvature perturbations. We show that a steep steplike feature induces an enhancement of the spectrum
by several orders of magnitude within a certain range of scales. It also produces a distinctive oscillatory
pattern. We study the origin of the oscillations and the additive effect of several steps. We analyze a
simplified potential, with an ad hoc introduction of steps at certain field values, but also discuss the possible
application to supergravity models.
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I. INTRODUCTION

The detection of gravitational waves emitted during
black-hole mergers [1] has led to the realization that black
holes are quite common in the Universe and has generated a
lot of interest in the question of their precise abundance and
possible role as dark matter. It was suggested a long time
ago [2] that primordial black holes (PBHs), produced
during the very early stages of the evolution of the
Universe, may survive until today in significant numbers
in order to be detectable. This possibility has been analyzed
in great detail in recent years. (For reviews with extensive
lists of references, see [3].) The production of PBHs
requires the presence of strong density perturbations. For
this to occur, the primordial power spectrum must be larger
by several orders of magnitude than the value favored
by the cosmic microwave background (CMB). Such an
enhancement is phenomenologically viable only in the
range of length scales for which the recent evolution is
highly nonlinear and the primordial spectrum is uncon-
strained by observations. Typically, this is the case for wave
numbers larger than approximately 1 Mpc−1.
The enhancement of the power spectrum generated by

inflationary dynamics requires the presence of a strong
feature in the inflaton potential, so that the standard slow-
roll conditions are violated [4]. Several proposals have
been put forward for achieving this goal [5–10]. The most
popular method introduces an inflection point in the
inflaton potential [4,8], which results in the slowing down
of the rate of change of the inflaton background. The slow-
roll parameter ε becomes very small in the vicinity of the

inflection point, but the large increase of the parameter η
leads to the violation of the slow-roll conditions. The
calculation of the spectrum through the solution of the
Mukhanov-Sasaki equation [11] shows that the power
spectrum can be enhanced by several orders of magnitude
for the scales exiting the horizon when the background field
takes values in the vicinity of the inflection point. The
necessary enhancement for black hole production depends
on many factors, such as the asymmetry or angular velocity
of the collapsing configuration. It also depends crucially on
the equation of state of the Universe, with matter domi-
nation requiring a significantly milder enhancement [12]. A
drawback of the inflection-point scenario is that generating
a large PBH abundance requires a precise fine tuning of the
inflaton potential. Considering a two- or multi-field inflaton
sector is another framework within which the background
evolution can be modified so as to enhance the spectrum
[9]. The presence of entropy modes, which can back react
strongly on the adiabatic mode of interest, makes the
analysis of such models more complicated.
We are interested in exploring features of the potential,

other than an inflection point, in single-field inflation, which
can lead to a large enhancement of the power spectrum of
perturbations. It has been observed [6] that a fast decrease of
the potential can have such an effect, with relevance for PBH
creation. On the other hand, the emphasis in models with two
inflationary stages, separated by a noninflationary period,
has been put on the oscillatory form of the resulting spectra
[13]. Our aim here is to analyze carefully the conditions
under which such a feature results in an enhancement of the
spectrum by several orders of magnitude within a certain
range of short-distance scales.
The points at which the vacuum energy changes

value abruptly may correspond to values of the inflaton
field associated with the decoupling of modes whose
quantum fluctuations contribute to the vacuum energy.
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The decoupling becomes apparent when the effective
potential is regularized in a mass-sensitive scheme. In
the Wilsonian approach to the renormalization group, the
coarse-grained effective potential Uk obeys an equation
with the schematic form [14,15]

∂UkðφÞ
∂ ln k ¼ k4

16π2
X

i

L

�
m2

i ðk;φÞ
k2

�
: ð1:1Þ

The sum extends over all fields whose masses depend on
the background field φ, with the contributions from bosons
and fermions having opposite signs. The potential Uk is
obtained by integrating this equation, starting with the bare
potential, defined at some initial high scale Λ that can be
identified with the UV cutoff of the theory, and terminating
at a physical IR scale that can be taken to zero. The
potential incorporates quantum corrections from modes
with momenta above the running scale k. The function
LðwÞ, characterized as “threshold function”, decays
quickly for w ≫ 1. As a result, only modes with a running
mass miðk;φÞ ≲ k contribute to the renormalization of the
potential. The decoupling of a given mode does not take
place simultaneously for all values of the background field,
because of the dependence of the mass mi on φ. This
implies that the corresponding contributions to the vacuum
energy may depend on φ as well. Despite the intuitive form
of Eq. (1.1), its solution displays a strong dependence on
the UV cutoff Λ, which makes the precise determination of
the decoupling effects on the vacuum energy difficult.
A different perspective on this issue can be obtained by

considering the role of underlying symmetries. A specific
framework is provided by the models associated with
α-attractors in supergravity [16,17]. A toy model that can
serve as a starting point is described by the Lagrangian [17]

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
∂μχ∂μχ þ 1

12
χ2RðgÞ − 1

2
∂μϕ∂μϕ −

1

12
ϕ2RðgÞ

−
1

36
f2ðϕ=χÞðχ2 − ϕ2Þ2

�
: ð1:2Þ

The model is invariant under the conformal transformation

gμν → e−2σðxÞgμν; ϕ → eσðxÞϕ; χ → eσðxÞχ: ð1:3Þ

An interesting point is that, for constant fðϕ=χÞ, the model
possesses a global SOð1; 1Þ symmetry that leaves χ2 − ϕ2

invariant. The field χ does not have any physical degrees of
freedom and can be eliminated by imposing the gauge-fixing
condition χ2 − ϕ2 ¼ 6. Following Ref. [17], we parametrize
the fields as χ ¼ ffiffiffi

6
p

coshðφ= ffiffiffi
6

p Þ, ϕ ¼ ffiffiffi
6

p
sinhðφ= ffiffiffi

6
p Þ.

The Lagrangian becomes

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
RðgÞ − 1

2
∂μφ∂μφ − f2

�
tanh

φffiffiffi
6

p
��

: ð1:4Þ

It is apparent that a constant function fðxÞ corresponds to a
cosmological constant. However, its value is not specified
by the SOð1; 1Þ symmetry. A possible deformation of the
symmetry is obtained by assuming that fðxÞ takes fixed
values over two continuous ranges of x, with a rapid
transition at a point x0 in between. A stronger deformation,
which has been used extensively in the literature, assumes
that fðxÞ has a polynomial form. A schematic form of fðxÞ,
that displays a steep step and can also lead to power
spectrum consistent with the cosmological constraints, is

fðxÞ ¼ xn þ AΘðx − x0Þ: ð1:5Þ

In practice, the step function can be replaced by a smooth
function. In the more general framework of the α-attractors
[16,17], the Lagrangian takes the form

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
RðgÞ − 1

2
∂μφ∂μφ − f2

�
tanh

φffiffiffiffiffiffi
6α

p
��

; ð1:6Þ

with α a free parameter. In Fig. 1 we depict the square of the
function fðtanh½φ= ffiffiffiffiffiffi

6α
p �Þ defined according to Eq. (1.5),

for α ¼ 1, A ¼ 0.05, x0 ¼ tanh½φ0=
ffiffiffiffiffiffi
6α

p � with φ0 ¼ 4, and
n ¼ 1, 2, 3 (from top to bottom).
Our aim is to analyze the power spectra resulting from

inflaton potentials with the step feature displayed in Fig. 1.
We do not consider a specific model, but keep only a
minimal number of terms in the inflaton potential. The first
term corresponds to vacuum energy, for which we make the
crucial assumption that it can have one or more transition
points at which it jumps from one constant value to another.
We also include a linear term, because it is the only term in
a field expansion that is indispensable for our discussion.
We neglect the effect of higher powers of the inflaton field
that would make the analysis model dependent. Adjusting
the free parameters can lead to the appearance of either an

FIG. 1. The square of the function fðtanh½φ= ffiffiffiffiffi
6α

p �Þ defined in
Eqs. (1.5) and (1.6), for α ¼ 1, A ¼ 0.05, x0 ¼ tanh½φ0=

ffiffiffiffiffi
6α

p �
with φ0 ¼ 4, and n ¼ 1, 2, 3 (from top to bottom).
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inflection point or a sharp drop in the potential, thus
allowing the comparison of the effects of the two features.
The unavoidable drawback of this simplified setup is that
the potential is not flexible enough to generate the correct
amplitude and tilt of the spectrum in the CMB range, as
well as a sufficient number of e-foldings. This can be
achieved for a potential that includes higher powers of the
field. As an example, we analyze a potential inspired by the
Starobinsky model [18]. However, we do not engage in
detailed model building here, deferring such an investiga-
tion to future work.
The focus of our study is on the patterns that can appear

in the spectrum of curvature perturbations. The first one is
the enhancement of the spectrum. We examine how this
depends on the steepness, location and number of steps in
the potential. We demonstrate how successive steps at a
close distance can have an additive effect. The second
pattern is the strong oscillations associated with the sharp
change of the potential around the step. We make the
comparison with the smooth pattern induced by an inflec-
tion point, which may be crucial in order to differentiate the
two cases observationally. We emphasize that our approach
is essentially phenomenological. As we discussed above,
we do not provide an explanation of the fundamental origin
of the steplike features that we assume, or their character-
istics such as steepness and size. Our aim is to explore their
effect on the power spectrum of curvature perturbations and
identify the induced patterns.
In the following section we summarize the basic for-

malism related to the Mukhanov-Sasaki equation. For the
numerical analysis it is most convenient to express this
equation using the number of e-foldings as independent
variable. In Sec. III we present the results of a numerical
calculation of the spectrum of curvature perturbations, as
well as an analytical discussion of the appearing features.
The final section includes a summary of our findings.

II. THE MUKHANOV-SASAKI EQUATION

In this section we introduce the relevant quantities and
collect the corresponding dynamical equations for the study
of the curvature perturbations and their spectrum.
The most general scalar metric perturbation around

the Friedmann-Robertson-Walker background takes the
form [19]

ds2 ¼ a2ðτÞfð1þ 2ϕÞdτ2 − 2B;idxidτ

− ðð1 − 2ψÞδij þ 2E;ijÞdxidxjg; ð2:1Þ

with B;i ¼ ∂iB, E;ij ¼ ∂i∂jE. On this background, one can
parametrize the inflaton field as φðτÞ þ δφðτ; xÞ and define
a gauge-invariant perturbation as

v ¼ a

�
δφþ φ0

H
ψ

�
; ð2:2Þ

which satisfies the Mukhanov-Sasaki equation [11]

v00 −∇2v −
z00

z
v ¼ 0; ð2:3Þ

with z ¼ aφ0=H. The primes and the Hubble parameter
correspond to derivatives with respect to conformal time.
The Fourier modes of v satisfy

v00kðτÞ þ
�
k2 −

z00

z

�
vkðτÞ ¼ 0: ð2:4Þ

The standard assumption, which we adopt, is that at early
times the field is in the Bunch-Davies vacuum. The strong
features of the potential have not become relevant yet, so
that the background field is in the slow-roll regime. All the
modes that are phenomenologically interesting today were
deeply subhorizon at such early times. They are described
by the standard expression vk ¼ e−ikτ=

ffiffiffiffiffi
2k

p
, which we use

in order to set the initial conditions for their subsequent
evolution. The spectrum of perturbations becomes more
transparent through the use of the gauge-invariant comov-
ing curvature perturbation R ¼ −v=z, which satisfies

R00
k þ 2

z0

z
R0
k þ k2Rk ¼ 0 ð2:5Þ

in Fourier space.
As we are mainly interested in the amplitude of the

complex variables v and R, we introduce polar coordinates,
such that vkðτÞ ¼ VkðτÞ expð−iθkðτÞÞ, with Vk and θk real.
From Eq. (2.4) we obtain

V 00
k þ

�
k2 −

z00

z
− θ0k

2

�
Vk ¼ 0 ð2:6Þ

θ00k
θ0k

þ 2
V 0
k

Vk
¼ 0: ð2:7Þ

The second equation can be integrated, with the solution
θ0kV

2
k ¼ constant At early times we have Vk ¼ 1=

ffiffiffiffiffi
2k

p
and

θk ¼ kτ. This fixes the constant of integration to 1=2, so
that we can set

θ0k ¼
1

2V2
k

ð2:8Þ

in Eq. (2.6). In this way we obtain

V 00
k þ

�
k2 −

z00

z
−

1

4V4
k

�
Vk ¼ 0; ð2:9Þ

which must be solved with initial conditions Vk → 1=
ffiffiffiffiffi
2k

p
,

V 0
k → 0, for τ → −∞. The curvature perturbation is
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parametrized as RkðτÞ ¼ −RkðτÞ expð−iθkðτÞÞ, with
Rk ¼ Vk=z. Its amplitude satisfies

R00
k þ 2

z0

z
R0

k þ
�
k2 −

1

4z4R4
k

�
Rk ¼ 0: ð2:10Þ

It is convenient for the numerical analysis to use the
number of e-foldings N as the independent variable for the
evolution of the perturbations. The Hamilton-Jacobi slow-
roll parameters are defined through the relations

H2 ¼ VðφÞ
3M2

Pl − 1
2
φ2
;N

ð2:11Þ

εH ¼ −
d lnH
dN

¼ φ2
;N

2M2
Pl

ð2:12Þ

ηH ¼ εH −
1

2

d ln εH
dN

¼ φ2
;N

2M2
Pl

−
φ;NN

φ;N
; ð2:13Þ

where H ¼ e−NH is the Hubble parameter defined through
cosmic time, and subscipts denote derivatives with respect
to N. The parameter z is given by

z ¼ eNφ;N; ð2:14Þ

while the effective equation of state for the background
is w ¼ −1þ 2εH=3.
The evolution of the background field is governed by the

equation

φ;NN þ 3φ;N −
1

2M2
Pl

φ3
;N þ

�
3M2

Pl −
1

2
φ2
;N

�
V;φ

V
¼ 0;

ð2:15Þ

with VðφÞ the inflaton potential. The inflaton fluctuation
obeys the equation

vk;NN þ ð1 − εHÞvk;N þ
�

k2

e2NH2

þ ð1þ εH − ηHÞðηH − 2Þ − ðεH − ηHÞ;N
�
vk ¼ 0;

ð2:16Þ

and its amplitude

Vk;NN þ ð1 − εHÞVk;N þ
�

k2

e2NH2

�
1 −

1

4k2V4
k

�

þ ð1þ εH − ηHÞðηH − 2Þ − ðεH − ηHÞ;N
�
Vk ¼ 0:

ð2:17Þ

In the above differential equations we can express the
coefficients as

1 − εH ¼ 1 −
φ2
;N

2M2
Pl

; ð2:18Þ

að1þ εH − ηHÞðηH − 2Þ − ðεH − ηHÞ;N
¼ −2 − 3

φ;NN

φ;N
−
φ;NNN

φ;N
þ φ2

;N

2M2
Pl

þ φ;Nφ;NN

2M2
Pl

: ð2:19Þ

We can also write equivalent equations for the curvature
perturbation, which take the form

Rk;NN þ
�
3þ 2φ;NN

φ;N
−

φ2
;N

2M2
Pl

�
Rk;N þ k2

e2NH2
Rk ¼ 0

ð2:20Þ

and

Rk;NN þ
�
3þ 2φ;NN

φ;N
−

φ2
;N

2M2
Pl

�
Rk;N

þ k2

e2NH2

�
1 −

1

4k2e4Nφ4
;NR

4
k

�
Rk ¼ 0; ð2:21Þ

for the perturbation and its amplitude, respectively.
The spectrum of curvature perturbations is

Δ2
R ¼ k3

2π2
V2
k

e2Nφ2
;N

¼ k3

2π2
R2

k: ð2:22Þ

The normalization of the spectrum can be set in terms of a
pivot scale k� and the number of e-foldings N� at which it
crosses the horizon: k� ¼ eN�H�. By defining dimension-
less variables k̃ ¼ k=k�, ṽk ¼

ffiffiffiffiffi
k�

p
vk, Ṽk ¼

ffiffiffiffiffi
k�

p
Vk,

R̃k ¼
ffiffiffiffiffi
k�

p
Rk, R̃k ¼

ffiffiffiffiffi
k�

p
Rk, as well as δN ¼ N − N�,

we obtain

Δ2
R ¼ As

k̃32Ṽ2
k

e2δN
φ2
;N�
φ2
;N

; ð2:23Þ

where

As ¼
1

4π2
H2�
φ2
;N�

ð2:24Þ

sets the scale for the amplitude.
For a given inflaton potential, one can integrate numeri-

cally Eq. (2.15) in order to derive the inflaton background,
and then integrate one of Eqs. (2.16), (2.17), (2.20), and
(2.21) for the field or curvature perturbation, in order to
deduce the spectrum. The real and imaginary parts of vk
and Rk oscillate very rapidly for subhorizon perturbations,
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as can be deduced from Eqs. (2.16) and (2.20). This makes
the numerical integration of these equations more demand-
ing. On the other hand, the amplitudes Vk and Rk have a
smoother evolution. It is possible for these quantities to
become oscillatory also, as we shall see in the following.
However, the presence of the terms ∼V−4

k in Eq. (2.17) and
∼R−4

k in Eq. (2.21) guarantees that these amplitudes remain
always positive. For the numerical analysis of the following
sections, we solve the evolution equations both for the field
perturbation vk and its amplitude Vk in order to cross check
the results.
A quantity that plays a crucial role in determining

the qualitative behavior of the solutions is the one in the
first parenthesis of Eqs. (2.20) and (2.21), which we
denote by

fðNÞ ¼ 3þ 2φ;NN

φ;N
−

φ2
;N

2M2
Pl

ð2:25Þ

as a function ofN. In the slow-roll regime, this quantity acts
as a generalized friction term. However, for the more
general evolution that we are considering, it may become
negative and lead to a dramatic enhancement of the
perturbations. We also define the function

gðNÞ ¼ 1 −
1

4k2e4Nφ4
;NR

4
k

; ð2:26Þ

appearing in the second parenthesis, evaluated on a given
solution for the perturbation. This function diverges
whenever the amplitude Rk approaches zero, thus pre-
venting it from turning negative. An alternative way to
view this point is to notice that Eq. (2.21) is equivalent to
Eq. (2.20), while the amplitude of Rk cannot turn
negative. The fact that Rk can approach zero at certain
times during the later stages of the evolution, as we shall
see in the following, indicates that during these stages the
real and the imaginary part of Rk are in phase and can
cross zero almost simultaneously.

III. FEATURES OF THE INFLATON POTENTIAL

We would like to explore features of the inflaton
potential that can result in an amplification of the spectrum
of curvature perturbations by several orders of magnitude.
Our underlying motivation is to determine the appropriate
conditions for the creation of primordial black holes. This is
possible in a range of scales in which perturbations become
of order one. Significant deviations from the scale-invariant
spectrum can occur only at small length scales (large wave
numbers), for which the evolution of the spectrum is highly
nonlinear, so that current observations do not constrain its
form severely. Such scales correspond to comoving wave
numbers larger than Oð1Þ in units of Mpc−1.

A. Minimal framework

Instead of considering a specific model, we keep only the
minimal number of elements required for addressing the
problem. We focus on only a limited range of scales, and
the corresponding values of the inflaton background when
these exit the horizon. We approximate the inflaton
potential by the smallest number of relevant terms. The
features of interest are:
(1) an inflection point, at which the first and second

derivatives of the potential vanish,
(2) one or more points at which the potential decreases

sharply.
Both these features can appear in a potential with the simple
parametrization

VðφÞ ¼ V0

�
1þ 1

2

X

i

Aið1þ tanhðciðφ − φiÞÞÞ þ Bφ

�
;

ð3:1Þ

where i is a positive integer counting certain special field
values. The first terms in the parenthesis can be identified
with the vacuum energy that drives inflation. The crucial
assumption that we have made is that the vacuum energy
can have one or more transition points at which it jumps
from one constant value to another. As we discussed in the
introduction, one could speculate that these points corre-
spond to values of the inflaton background associated
with some kind of decoupling of modes whose quantum
fluctuations contribute to the vacuum energy. However,
such a speculation cannot be put easily on formal ground
because of our lack of understanding of the nature of the
cosmological constant. Sharp changes in the vacuum
energy can also occur during transitions from one region
of a multifield potential to another. The analysis of such a
system would require the inclusion of entropy perturba-
tions. The current work is a simplified first step towards
understanding the features that could appear in the spec-
trum of curvature perturbations for a multi-field system.
The linear term in the potential (3.1) is the only term in a
field expansion that is indispensable for our discussion.
In this subsection we neglect the effect of higher powers of
the inflaton field that would make the analysis model
dependent. We assume, without loss of generality, that
B < 0. An inflection point can appear at ϕ1 ¼ 0 if
A1 ¼ −2B=c, Ai ¼ 0 for i > 1. Negative values of Ai
result in a series of steps in the potential.
A drawback of the potential (3.1) is that it is not possible

to make a connection with the range of the spectrum that is
relevant for the CMB. The slope B of the potential required
for agreement with the measured spectral index is too steep
for obtaining a large number of e-foldings. As a result,
contact with the observations is not possible and we treat
the pivot scale k�, the amplitude As and the spectral index
ns, introduced in the previous section, as free parameters.
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In particular, we assume that k� is located deep in the
nonlinear part of the spectrum and the spectral index is
sufficiently close to one for a large number of e-foldings to
be produced. We present our results for the spectrum in
units of As, which is equivalent to setting As ¼ 1. It is also
obvious from Eq. (2.15) that the absolute scale V0 of the
potential does not play any role for our considerations. In
practice, we set V0 ¼ 1 for the numerical analysis. Finally,
the inflaton field and the constants ci, B can be given in
units of MPl, which is equivalent to setting MPl ¼ 1
in Eq. (2.15).
Before computing the spectrum, it is instructive to

understand which type of background evolution leads to
its enhancement. The perusal of Eq. (2.21) leads to the
conclusion that the sign of the function fðNÞ defined in
Eq. (2.25) is crucial. For fðNÞ > 0 the second term of
Eq. (2.21) acts as a friction term, suppressing the growth of
the curvature perturbation. The opposite happens for
fðNÞ < 0. It is known that the presence of an inflection
point in the potential enhances the spectrum. For this

reason, we examine first the form of fðNÞ for such a case.
Then we analyze the conditions under which a similar
enhancement of the spectrum can occur for a potential with
a steplike structure. It must be emphasized that the two
cases are distinct. The rolling of the inflaton through an
inflection point does not stop inflation, even though the
standard slow-roll conditions are not satisfied because of
the large value of ηH. On the other hand, the transition
through a sharp drop in the potential leads to a fast increase
of the time derivative of the inflaton, and in many cases to a
brief interruption of inflation. This is apparent from the
effect of a large value of εH on the effective equation-of-
state parameter w ¼ 2εH=3 − 1.
In Fig. 2 we present various elements of the calculation

of the power spectrum for different potentials. We have
used the same scale for all related plots in order to make the
comparison easy. The first plot in each row depicts the
inflaton potential. The potential at the top has an inflection
point at φ ¼ 0, even though this is not clearly visible. The
potentials in the next three rows display a step at φ ¼ 0,

FIG. 2. The inflaton potential VðφÞ of Eq. (3.1), the evolution of the inflaton φ, the function fðNÞ defined in Eq. (2.25), and the power
spectrum of curvature perturbations with wave number k, for various choices of the parameters of the potential: First row:
A1 ¼ 0.000605, c1 ¼ 100, B ¼ −0.03. Second row: A1 ¼ −0.3, c1 ¼ 20, B ¼ −0.03. Third row: A1 ¼ −0.3, c1 ¼ 100, B ¼ −0.03.
Fourth row: A1 ¼ −0.3, c1 ¼ 300, B ¼ −0.03. The scales of k and V are arbitrary.
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whose steepness is increased from top to bottom by
choosing larger values of the parameter c1. The form of
the potential is reflected in the field evolution. In the second
plot of the first row, the field stays almost constant near zero
for several e-foldings. In the following rows it evolves very
quickly, within two to three e-foldings, from one plateau of
the potential to the next. The third plot in each row depicts
the “effective friction” fðNÞ. In all cases this function
becomes negative during part of the evolution, thus leading
to a strong enhancement of the fluctuations. For an
inflection point it starts with the standard value three, then
becomes negative, returns to positive values larger than
three, and eventually becomes equal to three again. For a
step in the potential, there is a strong increase to very large
positive values before the function becomes negative. This
increase is confined within a period of e-foldings that
shrinks with increasing steepness (and c1). On the other
hand, the form of fðNÞ in the interval where it is negative is
largely independent of c1, because it is determined by the
approach of the field to slow roll on the second plateau.
It seems reasonable to expect that, for steeper steps, the
suppression of the perturbation during the strong increase
of fðNÞ is a subleading effect relative to the subsequent
enhancement. This expectation is confirmed by the spec-
trum depicted in the last plot of each row. In the first row we
observe the strong and broad enhancement of the spectrum
associated with an inflection point. After an initial dip, the

spectrum grows rather steeply towards a maximum, beyond
which it decays smoothly towards its almost scale-invariant
form. This behavior is consistent with the general analysis
of Ref. [20]. The spectra of the next three rows display a
strong oscillatory behavior, which will be discussed in the
following. The largest enhancement is achieved for a band
of wave numbers during the first oscillation. It is clear that
the magnitude of this enhancement increases with c1.
The maxima of the spectra in Fig. 2 are larger by up to

three orders of magnitude relative to the standard value for
the scale-invariant case. The enhancement is restricted by
the fact that the maximal “velocity” achieved by the rolling
field is limited by the size of the step. It is possible,
however, that the potential includes several steplike fea-
tures. We examine their effect in Fig. 3, where we compare
potentials with one, two or three steps. The total drop in the
potential is the same in all three cases. It is apparent from
the last column that the presence of several features in the
potential can lead to the increase of the spectrum by several
orders of magnitude. The reason can be traced to the
“effective friction” fðNÞ, displayed in the third column.
The presence of several steps increases the total number of
e-foldings over which this function takes negative values.
This is reflected in the larger enhancement of the
perturbations.
The field values at which the features of the potential

appear play a crucial role for the form of the resulting

FIG. 3. The inflaton potential VðφÞ of Eq. (3.1), the evolution of the inflaton φ, the function fðNÞ defined in Eq. (2.25), and the power
spectrum of curvature perturbations with wave number k, for various choices of the parameters of the potential: First row: A1 ¼ −0.3,
c1 ¼ 100, B ¼ −0.03. Second row: A1 ¼ −0.15, A2 ¼ −0.15, φ2 ¼ 0.3, c1 ¼ c2 ¼ 100, B ¼ −0.03. Third row: A1 ¼ −0.1,
A2 ¼ −0.1, A3 ¼ −0.1, φ2 ¼ 0.3, φ3 ¼ 0.6, c1 ¼ c2 ¼ c3 ¼ 100, B ¼ −0.03. The scales of k and V are arbitrary.
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spectrum. This feature is demonstrated in Fig. 4 in which
we consider potentials with three steps, at field values
with increasing distance from each other. It is apparent
from the first row that when the steps are very close to each
other the function fðNÞ stays negative for a small number
of e-foldings and the enhancement is comparable to the
one-step case. Increasing the distance leads to spectrum
enhancement, as fðNÞ stays negative longer. However, the
enhancement persists up to a certain distance between the
features of the potential, beyond which each step acts
independently on the spectrum. This behavior is apparent in
the second and third rows of Fig. 4.
A prominent feature of the spectra resulting from sharp

drops in the inflaton potential is the appearance of strong
oscillations, whose origin we would like to understand.
One can speculate that the oscillatory pattern arises when
modes within a wave number range exit the horizon, but
then re-enter during the period when inflation stops and the
comoving horizon grows. Upon re-entry they start oscillat-
ing again, until they exit for a second time during a
subsequent period of inflation [19,21]. However, the onset
or freezing of the oscillatory behavior is not instantaneous,
while the crossing of the horizon is essentially a continuous
process with a certain width. An exact analytical treatment
is difficult, and the evolution of each mode can be
computed only numerically. In Fig. 5 we present the
evolution of the curvature perturbation R̃k̃ðNÞ (blue line)

for a given Fourier mode k̃ ¼ 2.66 × 105 for an inflaton
background arising from a potential with three steps.
The red and green lines depict the functions fðNÞ and
gðNÞ defined by Eqs. (2.25) and (2.26), respectively. The
enhancement of the curvature perturbation during the
periods of inflation with negative fðNÞ is apparent.
Similarly, the freezing of the perturbation during the

FIG. 4. The inflaton potential VðφÞ of Eq. (3.1), the evolution of the inflaton φ, the function fðNÞ defined in Eq. (2.25), and the power
spectrum of curvature perturbations with wave number k, for various choices of the parameters of the potential: First row: φ2 ¼ 0.2,
φ3 ¼ 0.4. Second row: φ2 ¼ 0.3, φ3 ¼ 0.6. Third row: φ2 ¼ 0.4, φ3 ¼ 0.8. In all cases: A1 ¼ −0.1, A2 ¼ −0.1, A3 ¼ −0.1,
c1 ¼ c2 ¼ c3 ¼ 100, B ¼ −0.03. The scales of k and V are arbitrary.

FIG. 5. The curvature perturbation as a function of the number
of e-foldings N, and the functions fðNÞ, gðNÞ, for the potential
(3.1) with A1 ¼ −0.1, A2 ¼ −0.1, A3 ¼ −0.1, φ2 ¼ 0.3,
φ3 ¼ 0.6, c ¼ 100, B ¼ −0.03. Blue line: 1

30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Rðk; NÞ
p

for
k ¼ 2.66 × 105. Red line: The function 1

10
fðNÞ defined in

(2.25). Green line: The function gðNÞ defined in (2.26).

KEFALA, KODAXIS, STAMOU, and TETRADIS PHYS. REV. D 104, 023506 (2021)

023506-8



periods with positive fðNÞ is also apparent, resulting in
R̃k̃ðNÞ becoming asymptotically constant.
A striking feature is the series of oscillations for the

amplitude of perturbations, which approaches zero at
several values of N. At these points the function gðNÞ
becomes very negative, thus preventing the amplitude from
crossing zero. The origin of the oscillations can be under-
stood if one considers Eq. (2.20) for constant fðNÞ ¼ κ. Its
solution involves a linear combination of the Bessel
functions J�κ=2 and has the form

RkðNÞ ¼ Ae−
1
2
κN

�
Jκ=2

�
e−N

k
H

�
þ cJ−κ=2

�
e−N

k
H

��
:

ð3:2Þ

The initial subhorizon evolution of the perturbation during
the slow-roll regime corresponds to the solution with
κ ¼ 3 and c ¼ i. This particular choice of c eliminates
the oscillatory behavior in the amplitude of RkðNÞ.
However, the nontrivial background evolution that we
are considering corresponds to a varying κ, as well as a
varying relative coefficient of the Bessel functions. As a
result the zeros of the Bessel functions become apparent in
the amplitude RkðNÞ, which becomes very small for
e−Nk=H approaching one of these zeros. The asymptotic
value of Rk for large N depends on the time of the
transition of the background solution to positive values
of fðNÞ. The freezing of Rk can occur at any stage of the
oscillatory cycle, depending on the value of k. Eventually,
this is reflected in the strong oscillatory behavior of the
spectrum as a function of k.
In Fig. 6 we look in detail at the role of the slow-roll

parameters in the enhancement of the spectrum. We
contrast the case of an inflection point in the potential
(left plot) with that of a steplike feature (right plot). In the
first case, the solution remains inflationary during the

whole evolution. The Hamilton-Jacobi parameter ϵH has a
constant value, apart from the part of the evolution near
the inflection point, during which it approaches zero. The
parameter ηH starts fromavalue close to zero during the slow-
roll regime, first turns positive and subsequently negative,
eventually returning close to zero during the second slow-roll
regime. The “effective-friction” term is strongly influenced
by ηH and becomes negative during the time that ηH is
significantly larger than zero. In the case of a steplike feature,
the parameter ϵH grows large during the interval that this
feature is transversed. For sharp steps or when the second
plateau is sufficiently low, the solution ceases to be infla-
tionary for a short time, as can be verified by computing the
equation of state parameterw ¼ −1þ 2ϵH=3. The parameter
ηH first turns negative, but then positive as the inflaton
“decelerates” while settling on a slow-roll regime on the
second plateau. The “effective friction” is again mainly
influenced by ηH and becomes negative when ηH takes large
positivevalues. The effect is sufficiently strong for the friction
term to be negative even when ϵH is of order one.

B. A specific model

The analysis of the previous subsection relied on a
simplified potential which did not allow us to make contact
with the physical scales of the power spectrum. In order to
obtain a more complete picture we study in this subsection
a potential inspired by the Starobinsky model [18], to which
we introduce steplike features. The potential is given by the
expression

VðφÞ¼V0ð1−eBφÞ2
�
1þ1

2

X

i

Aið1þ tanhðciðφ−φiÞÞÞ
�
:

ð3:3Þ

As we do not engage in model building in this work,
the above potential has not been derived from a more

FIG. 6. The Hamilton-Jacobi slow-roll parameters ϵH and ηH , defined in Eqs. (2.12) and (2.13) respectively, and the “effective-
friction” term fðNÞ defined in Eq. (2.25), as a function of the number of e-foldings, for two choices of the parameters of the potential:
Left plot: A1 ¼ 0.000605, c1 ¼ 100, B ¼ −0.03. Right plot: A1 ¼ −0.3, c1 ¼ 100, B ¼ −0.03. The two sets of parameters correspond
to the first and third row of Fig. 2.
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fundamental framework, such as supergravity. It is a
phenomenological construction that has enough flexibility
to allow for a sufficient number of e-foldings, as well as a
power-spectrum scale and a spectral index compatible with
the CMB observations.
In Fig. 7 we present the various elements in the

calculation of the power spectrum of curvature perturba-
tions for this model. The first plot depicts the potential with
the characteristic steplike feature. The values of the
parameters are: A1¼A2¼A3¼0.05, c1¼c2¼c3¼200,
φ1 ¼ 5, φ2 ¼ 4.8, φ3 ¼ 4.6, B ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
. Dimensionful

parameters are given in units of MPl. The evolution of the
inflaton φ as a function of the number of e-foldings N is
shown in the second plot. We count the number of
e-foldings from the moment that the scale with wave
number k� ¼ 0.05 Mpc−1, which we use as a pivot scale,
exits the horizon. The above parameters result in a power
spectrum in the CMB range with a spectral index
ns ≃ 0.969 and a tensor to scalar ratio r ≃ 0.0027. The
third plot depicts the “effective-friction” function fðNÞ
defined in Eq. (2.25). It deviates from the standard value
three during the period in which the inflaton field takes

values in the vicinity of the steplike feature of the potential.
When fðNÞ is negative, it acts as negative friction, leading
to the enhancement of the curvature modes that cross the
horizon during this period. The enhancement for certain
wave number bands can be significant. For this particular
choice of parameters the spectrum is enhanced by roughly
four orders of magnitude. The enhancement can be made
larger with an appropriate choice of the potential, or with
the inclusion of additional steplike features. The curvature
power spectrum is depicted in the last plot. It has been
normalized to the standard value ≃2.1 × 10−9 for k� ¼
0.05 Mpc−1 through an appropriate choice of the scale V0

of the potential.
The strong features in the spectrum appear deep in the

nonlinear region, where the phenomenological constraints
are not strict because of the lack of analytical understanding
of the evolution of the perturbations. The approximate
wave number value kf for which these features appear can
be estimated by noting that kf ¼ expðNfÞHf must hold at
horizon crossing. For the pivot scale this relation is
k� ¼ expðN�ÞH�, and we have set N� ¼ 0. If the
Hubble parameter does not change substantially between

FIG. 7. The inflaton potential VðφÞ defined in (3.3), the evolution of the inflaton φ as a function of the number of e-foldings N, the
function fðNÞ defined in Eq. (2.25), and the power spectrum of curvature perturbations with wave number k, for A1 ¼ A2 ¼ A3 ¼ 0.05,
c1 ¼ c2 ¼ c3 ¼ 200, φ1 ¼ 5, φ2 ¼ 4.8, φ3 ¼ 4.6, B ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
. Dimensionful parameters in units ofMPl. The scale of the potential V0

has been adjusted in order to reproduce the amplitude of curvature perturbations in the CMB range.
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N� and Nf, we have kf=k� ∼ expðNfÞ. From the second
plot of Fig. 7 we obtain Nf ∼ 23, which gives
kf ∼ 109 Mpc−1, in agreement with the last plot.

IV. CONCLUSIONS

We explored the possible enhancement of the power
spectrum of curvature perturbations in single-field inflation
when particular features appear in the inflaton potential.
Our motivation stems from the possibility that a strong
enhancement of the spectrum within a range of wave
numbers may have resulted in the copious production of
primordial black holes. One characteristic feature that is
known to induce the enhancement of the spectrum is an
inflection point of the potential at some value of the inflaton
field [8]. We analyzed here the opposite case, i.e., a sharp
decrease of the potential, which may result even in the
interruption of inflation in certain cases, in contrast to what
happens around an inflection point. Therefore, it comes as a
surprise that the fast “rolling” of the inflaton field through
such a feature can have as a consequence the enhancement
of the fluctuations. Building on previous work [6], we
explored the conditions under which the enhancement can
be very large, by several orders of magnitude relative to its
magnitude within the almost scale-invariant range. It must
be noted that it is always possible to enhance the spectrum
by engineering the transition to a second very flat plateau of
the potential. The time derivative of the inflaton under
slow-roll conditions on the plateau would be very small,
resulting in an enhanced power spectrum. In our analysis
we exclude this rather trivial possibility by keeping the
slope roughly constant, apart from at the transition point or
points, and focus on the effect of the transition itself.
We analyzed in detail the simplified potential of

Eq. (3.1). We found that sharp transitions lead to the
strong growth of the curvature perturbation. The reason can
be traced to the “effective-friction” term of Eq. (2.20),
which is given by the function fðNÞ defined in Eq. (2.25).
Even though this function is positive during the first part of
the transition, thus suppressing the perturbation, it can
become negative during the second part, when the inflaton
approaches slow roll on the second plateau, and can lead to
a dramatic enhancement. The main effect comes from the
slow-roll parameter ηH taking large positive values, even
when the parameter ϵH is large. The effect is increased by
the steepness of the potential, but is also limited by the size
of the potential drop that bounds the maximal inflaton
“velocity”. However, successive nearby steps give an
additive effect, leading to a spectrum enhancement by
several orders of magnitude. We discussed up to three steps,
but increasing this number can increase the enhancement
arbitrarily.
The second prominent feature of the spectrum is its

strong oscillatory form as a function of wave number. We
analyzed the origin of this feature during the discussion of

Fig. 5 in the previous section. The appearance of wave
number bands in which the spectrum takes very large
values can lead to the creation of primordial black holes of
characteristic sizes when the corresponding fluctuations
enter the horizon. The suppression of the spectrum in other
bands indicates the absence of black holes of other sizes.
The combined effect may lead to a detectable pattern.
Another very exciting prospect is the possibility of

detecting the oscillatory pattern in the spectrum of gravi-
tational waves generated through the scalar perturbations at
second order [22]. This scenario is independent of the
creation of primordial black holes and becomes possible
even for a milder enhancement of the spectrum. The
detection of stochastic gravitational waves is a portal to
the primordial spectrum of scalar perturbations at small
scales and can be used in order to look for strong features in
the inflationary dynamics. The oscillatory patterns appear-
ing in the scenario we discussed provide a prime example
of a possibly detectable feature. Because of a double
integration over momenta in the expression for the spec-
trum of gravitational waves, the oscillatory pattern is
expected to be superimposed on a smooth underlying
curve with one or two peaks [23]. However, a clear
distinction is possible between smooth spectra resulting
from an inflection point in the inflaton potential and the
oscillatory spectra in our scenario. Such oscillatory features
have been considered recently for the spectra resulting from
two-field inflationary models [24].
A realistic inflaton potential must generate a sufficient

number of e-foldings and result in a spectrum consistent
with the CMB constraints. Even though our aim here was
not to engage in detailed model building, we discussed the
potential of Eq. (3.3), which is inspired by the Starobinsky
model [18]. The potential is constructed in a rather artificial
manner and can serve only as a toy model. However, it is
very useful in order to establish that the type of spectrum
enhancement that we are suggesting can appear in realistic
setups. One particular property of the potentials that we are
considering is their dependence on the hyperbolic tangent
of the field. As we discussed in the introduction, this occurs
in models associated with α-attractors in supergravity
[16,17], in which the function tanhðφ= ffiffiffi

α
p Þ becomes part

of the potential in the Einstein frame. The study of the
spectra of density perturbations and induced gravitational
waves in specific models will be the subject of future work.

ACKNOWLEDGMENTS

We would like to thank I. Dalianis and V. Spanos for
useful discussions. The work of G. Kodaxis, I. Stamou and
N. Tetradis was supported by the Hellenic Foundation for
Research and Innovation (H. F. R. I.) under the First Call
for H. F. R. I. Research Projects to support Faculty mem-
bers and Researchers and the procurement of high-cost
research equipment grant (Project No. 824).

FEATURES OF THE INFLATON POTENTIAL AND THE POWER … PHYS. REV. D 104, 023506 (2021)

023506-11



[1] B. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. Lett. 116, 061102 (2016); B. P. Abbott et al.
(LIGO Scientific and Virgo Collaborations), Phys. Rev.
Lett. 116, 241103 (2016); B. P. Abbott et al. (LIGO
Scientific and Virgo Collaborations), Phys. Rev. Lett.
118, 221101 (2017); B. P. Abbott et al. (LIGO Scientific
and Virgo Collaborations), Astrophys. J. 851, L35 (2017);
B. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. Lett. 119, 141101 (2017).

[2] Ya. B. Zeldovich and I. D. Novikov, Sov. Astron. 10, 602
(1967); S. Hawking, Mon. Not. R. Astron. Soc. 152, 75
(1971); B. J. Carr and S. W. Hawking, Mon. Not. R. Astron.
Soc. 168, 399 (1974); B. J. Carr, Astrophys. J. 201, 1
(1975).

[3] B. Carr, F. Kuhnel, and M. Sandstad, Phys. Rev. D 94,
083504 (2016); M. Sasaki, T. Suyama, T. Tanaka, and S.
Yokoyama, Classical Quantum Gravity 35, 063001 (2018);
B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, arXiv:
2002.12778; B. Carr and F. Kuhnel, arXiv:2006.02838;
A. M. Green and B. J. Kavanagh, arXiv:2007.10722.

[4] C. Germani and T. Prokopec, Phys. Dark Universe 18, 6
(2017); H. Motohashi and W. Hu, Phys. Rev. D 96, 063503
(2017).

[5] P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D 50,
7173 (1994).

[6] J. A. Adams, B. Cresswell, and R. Easther, Phys. Rev. D
64, 123514 (2001); S. M. Leach and A. R. Liddle, Phys.
Rev. D 63, 043508 (2001); S. M. Leach, M. Sasaki,
D. Wands, and A. R. Liddle, Phys. Rev. D 64, 023512
(2001).

[7] S. Clesse and J. Garca-Bellido, Phys. Rev. D 92, 023524
(2015); M. Kawasaki, A. Kusenko, Y. Tada, and T. T.
Yanagida, Phys. Rev. D 94, 083523 (2016); K. Inomata,
M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida,
Phys. Rev. D 96, 043504 (2017).

[8] J. Garcia-Bellido and E. Ruiz Morales, Phys. Dark Universe
18, 47 (2017); J. M. Ezquiaga, J. Garcia-Bellido, and E. Ruiz
Morales, Phys. Lett. B 776, 345 (2018); H. Di and Y. Gong,
J. Cosmol. Astropart. Phys. 07 (2018) 007; K. Kannike, L.
Marzola, M. Raidal, and H. Veerme, J. Cosmol. Astropart.
Phys. 09 (2017) 020; G. Ballesteros and M. Taoso, Phys.
Rev. D 97, 023501 (2018); M. P. Hertzberg and M. Yamada,
Phys. Rev. D 97, 083509 (2018); J. Espinosa, D. Racco, and
A. Riotto, Phys. Rev. Lett. 120, 121301 (2018); S. Cheng,W.
Lee, and K. Ng, J. Cosmol. Astropart. Phys. 07 (2018) 001;
O. Özsoy, S. Parameswaran, G. Tasinato, and I. Zavala, J.
Cosmol. Astropart. Phys. 07 (2018) 005; M. Biagetti, G.
Franciolini, A. Kehagias, and A. Riotto, J. Cosmol. Astro-
part. Phys. 07 (2018) 032; G. Franciolini, A. Kehagias, S.
Matarrese, and A. Riotto, J. Cosmol. Astropart. Phys. 03
(2018) 016; T. Gao and Z. Guo, Phys. Rev. D 98, 063526
(2018); M. Cicoli, V. A. Diaz, and F. G. Pedro, J. Cosmol.
Astropart. Phys. 06 (2018) 034; I. Dalianis, A. Kehagias, and
G. Tringas, J. Cosmol. Astropart. Phys. 01 (2019) 037; R.
Mahbub, Phys. Rev. D 101, 023533 (2020); S. S. Mishra and
V. Sahni, J. Cosmol. Astropart. Phys. 04 (2020) 007; G.
Ballesteros, J. Rey, and F. Rompineve, J. Cosmol. Astropart.
Phys. 06 (2020) 014; R. G. Cai, Z. K. Guo, J. Liu, L. Liu, and
X. Y. Yang, J. Cosmol. Astropart. Phys. 06 (2020) 013; Y.
Aldabergenov, A. Addazi, and S. V. Ketov, Eur. Phys. J. C
80, 917 (2020); S. V. Ketov and M. Y. Khlopov, Symmetry
11, 511 (2019).

[9] J.Garcia-Bellido,A. D.Linde, andD.Wands, Phys.Rev.D54,
6040 (1996); K. Inomata,M.Kawasaki, K.Mukaida, andT. T.
Yanagida, Phys. Rev. D 97, 043514 (2018); S. Pi, Y. L. Zhang,
Q. G. Huang, and M. Sasaki, J. Cosmol. Astropart. Phys. 05
(2018) 042; G. A. Palma, S. Sypsas, and C. Zenteno, Phys.
Rev. Lett. 125, 121301 (2020); J. Fumagalli, S. Renaux-Petel,
J.W. Ronayne, and L. T. Witkowski, arXiv:2004.08369; M.
Braglia, D. K. Hazra, F. Finelli, G. F. Smoot, L. Sriramkumar,
and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 08 (2020)
001; Z. Zhou, J. Jiang, Y. F. Cai, M. Sasaki, and S. Pi, Phys.
Rev. D 102, 103527 (2020).

[10] S. Chongchitnan and G. Efstathiou, J. Cosmol. Astropart.
Phys. 01 (2007) 011.

[11] V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988); M.
Sasaki, Prog. Theor. Phys. 76, 1036 (1986).

[12] T. Harada, C. M. Yoo, K. Kohri, and K. I. Nakao, Phys. Rev.
D 96, 083517 (2017); 99, 069904(E) (2019); T. Harada,
C. M. Yoo, K. Kohri, K. I. Nakao, and S. Jhingan,
Astrophys. J. 833, 61 (2016).

[13] A. A. Starobinsky, JETP Lett. 55, 489 (1992); J. A. Adams,
G. G. Ross, and S. Sarkar, Nucl. Phys. B503, 405 (1997);
C. P. Burgess, R. Easther, A. Mazumdar, D. F. Mota, and T.
Multamaki, J. High Energy Phys. 05 (2005) 067; J.
Hamann, L. Covi, A. Melchiorri, and A. Slosar, Phys.
Rev. D 76, 023503 (2007); M. Joy, A. Shafieloo, V. Sahni,
and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 06
(2009) 028; D. K. Hazra, M. Aich, R. K. Jain, L. Sriram-
kumar, and T. Souradeep, J. Cosmol. Astropart. Phys. 10
(2010) 008; Z. G. Liu, J. Zhang, and Y. S. Piao, Phys. Lett. B
697, 407 (2011); A. G. Cadavid, A. E. Romano, and S.
Gariazzo, Eur. Phys. J. C 76, 385 (2016); Eur. Phys. J. C 77,
242 (2017); M. A. Fard and S. Baghram, J. Cosmol.
Astropart. Phys. 01 (2018) 051.

[14] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[15] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363,

223 (2002).
[16] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 07

(2013) 002; S. Ferrara, R. Kallosh, A. Linde, and M. Porrati,
Phys. Rev. D 88, 085038 (2013).

[17] R. Kallosh, A. Linde, and D. Roest, J. High Energy Phys. 08
(2014) 052.

[18] A. A. Starobinsky, Adv. Ser. Astrophys. Cosmol. 3, 130
(1987).

[19] V. F. Mukhanov, H. Feldman, and R. H. Brandenberger,
Phys. Rep. 215, 203 (1992).

[20] O. Özsoy and G. Tasinato, J. Cosmol. Astropart. Phys. 04
(2020) 048.

[21] G. Ballesteros, J. B. Jimenez, and M. Pieroni, J. Cosmol.
Astropart. Phys. 06 (2019) 016.

[22] S. Mollerach, D. Harari, and S. Matarrese, Phys. Rev. D 69,
063002 (2004); K. N. Ananda, C. Clarkson, and D. Wands,
Phys. Rev. D 75, 123518 (2007); H. Assadullahi and
D. Wands, Phys. Rev. D 79, 083511 (2009); D. Baumann,
P. J. Steinhardt, K. Takahashi, and K. Ichiki, Phys. Rev. D
76, 084019 (2007); R. Saito and J. Yokoyama, Phys. Rev.
Lett. 102, 161101 (2009); 107, 069901(E) (2011).

[23] S. Pi and M. Sasaki, J. Cosmol. Astropart. Phys. 09 (2020)
037.

[24] J. Fumagalli, S. Renaux-Petel, and L. T. Witkowski,
arXiv:2012.02761; M. Braglia, X. Chen, and D. K. Hazra,
J. Cosmol. Astropart. Phys. 03 (2021) 005.

KEFALA, KODAXIS, STAMOU, and TETRADIS PHYS. REV. D 104, 023506 (2021)

023506-12

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1086/153853
https://doi.org/10.1086/153853
https://doi.org/10.1103/PhysRevD.94.083504
https://doi.org/10.1103/PhysRevD.94.083504
https://doi.org/10.1088/1361-6382/aaa7b4
https://arXiv.org/abs/2002.12778
https://arXiv.org/abs/2002.12778
https://arXiv.org/abs/2006.02838
https://arXiv.org/abs/2007.10722
https://doi.org/10.1016/j.dark.2017.09.001
https://doi.org/10.1016/j.dark.2017.09.001
https://doi.org/10.1103/PhysRevD.96.063503
https://doi.org/10.1103/PhysRevD.96.063503
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1103/PhysRevD.50.7173
https://doi.org/10.1103/PhysRevD.64.123514
https://doi.org/10.1103/PhysRevD.64.123514
https://doi.org/10.1103/PhysRevD.63.043508
https://doi.org/10.1103/PhysRevD.63.043508
https://doi.org/10.1103/PhysRevD.64.023512
https://doi.org/10.1103/PhysRevD.64.023512
https://doi.org/10.1103/PhysRevD.92.023524
https://doi.org/10.1103/PhysRevD.92.023524
https://doi.org/10.1103/PhysRevD.94.083523
https://doi.org/10.1103/PhysRevD.96.043504
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1016/j.dark.2017.09.007
https://doi.org/10.1016/j.physletb.2017.11.039
https://doi.org/10.1088/1475-7516/2018/07/007
https://doi.org/10.1088/1475-7516/2017/09/020
https://doi.org/10.1088/1475-7516/2017/09/020
https://doi.org/10.1103/PhysRevD.97.023501
https://doi.org/10.1103/PhysRevD.97.023501
https://doi.org/10.1103/PhysRevD.97.083509
https://doi.org/10.1103/PhysRevLett.120.121301
https://doi.org/10.1088/1475-7516/2018/07/001
https://doi.org/10.1088/1475-7516/2018/07/005
https://doi.org/10.1088/1475-7516/2018/07/005
https://doi.org/10.1088/1475-7516/2018/07/032
https://doi.org/10.1088/1475-7516/2018/07/032
https://doi.org/10.1088/1475-7516/2018/03/016
https://doi.org/10.1088/1475-7516/2018/03/016
https://doi.org/10.1103/PhysRevD.98.063526
https://doi.org/10.1103/PhysRevD.98.063526
https://doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1088/1475-7516/2018/06/034
https://doi.org/10.1088/1475-7516/2019/01/037
https://doi.org/10.1103/PhysRevD.101.023533
https://doi.org/10.1088/1475-7516/2020/04/007
https://doi.org/10.1088/1475-7516/2020/06/014
https://doi.org/10.1088/1475-7516/2020/06/014
https://doi.org/10.1088/1475-7516/2020/06/013
https://doi.org/10.1140/epjc/s10052-020-08506-6
https://doi.org/10.1140/epjc/s10052-020-08506-6
https://doi.org/10.3390/sym11040511
https://doi.org/10.3390/sym11040511
https://doi.org/10.1103/PhysRevD.54.6040
https://doi.org/10.1103/PhysRevD.54.6040
https://doi.org/10.1103/PhysRevD.97.043514
https://doi.org/10.1088/1475-7516/2018/05/042
https://doi.org/10.1088/1475-7516/2018/05/042
https://doi.org/10.1103/PhysRevLett.125.121301
https://doi.org/10.1103/PhysRevLett.125.121301
https://arXiv.org/abs/2004.08369
https://doi.org/10.1088/1475-7516/2020/08/001
https://doi.org/10.1088/1475-7516/2020/08/001
https://doi.org/10.1103/PhysRevD.102.103527
https://doi.org/10.1103/PhysRevD.102.103527
https://doi.org/10.1088/1475-7516/2007/01/011
https://doi.org/10.1088/1475-7516/2007/01/011
https://doi.org/10.1143/PTP.76.1036
https://doi.org/10.1103/PhysRevD.96.083517
https://doi.org/10.1103/PhysRevD.96.083517
https://doi.org/10.1103/PhysRevD.99.069904
https://doi.org/10.3847/1538-4357/833/1/61
https://doi.org/10.1016/S0550-3213(97)00431-8
https://doi.org/10.1088/1126-6708/2005/05/067
https://doi.org/10.1103/PhysRevD.76.023503
https://doi.org/10.1103/PhysRevD.76.023503
https://doi.org/10.1088/1475-7516/2009/06/028
https://doi.org/10.1088/1475-7516/2009/06/028
https://doi.org/10.1088/1475-7516/2010/10/008
https://doi.org/10.1088/1475-7516/2010/10/008
https://doi.org/10.1016/j.physletb.2010.12.055
https://doi.org/10.1016/j.physletb.2010.12.055
https://doi.org/10.1140/epjc/s10052-016-4232-4
https://doi.org/10.1140/epjc/s10052-017-4797-6
https://doi.org/10.1140/epjc/s10052-017-4797-6
https://doi.org/10.1088/1475-7516/2018/01/051
https://doi.org/10.1088/1475-7516/2018/01/051
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1103/PhysRevD.88.085038
https://doi.org/10.1007/JHEP08(2014)052
https://doi.org/10.1007/JHEP08(2014)052
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1088/1475-7516/2020/04/048
https://doi.org/10.1088/1475-7516/2020/04/048
https://doi.org/10.1088/1475-7516/2019/06/016
https://doi.org/10.1088/1475-7516/2019/06/016
https://doi.org/10.1103/PhysRevD.69.063002
https://doi.org/10.1103/PhysRevD.69.063002
https://doi.org/10.1103/PhysRevD.75.123518
https://doi.org/10.1103/PhysRevD.79.083511
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/PhysRevD.76.084019
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.102.161101
https://doi.org/10.1103/PhysRevLett.107.069901
https://doi.org/10.1088/1475-7516/2020/09/037
https://doi.org/10.1088/1475-7516/2020/09/037
https://arXiv.org/abs/2012.02761
https://doi.org/10.1088/1475-7516/2021/03/005

