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Statistics of nonpolarized points in the CMB polarization maps
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The nonpolarized points (NPP) of the Q and U Stokes parameters of the CMB can be classified
according to the geometry of the polarization field. We describe a procedure to identify these points in the
pixelized sky and present the shape of the polarization angles in the vicinity of NPPs. We design a test of
Gaussianity using the Kullback-Leibler divergence. We show that the total number density of nonpolarized
points of the E and B families is closely related to the presence of lensing and the tensor-to-scalar ratio r.
We further show that in the absence of lensing, the total number of NPPs of all types does not depend on r,
while the lensing effect removes this degeneracy. This analysis is applied to the CMB maps from the 2018
Planck release. We show that there is a general consistency of SMICA and NILC maps compared to a
reference set of Gaussian simulations. The strongest discrepancies are found in the Commander (with

corresponding p value 0.07) and SEVEM (p = 0.01) maps.
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I. INTRODUCTION

Verifying the Gaussianity and statistical isotropy of the
CMB polarization is an important test of the Lambda-CDM
model as well as inflation and other early Universe physics.
In this direction, taking under consideration forthcoming
CMB experiments, statistical characterization of the B
mode of polarization is especially important [1-3]. Much
effort has been made towards accurate determination of
power spectra, and in addition, other estimators and
techniques have been developed to characterize the polari-
zation fluctuations. These include Minkowski functionals,
peak analysis, power asymmetry, parity asymmetry, single-
and multidimensional moments, etc. (see, for review, [4,5]).
Since the anomalies of the CMB up to now do not
have theoretical bases, it seems to be very important to
investigate all possible estimators of non-Gaussianity
and statistical anisotropy in order to split the effects of
systematics and component separation (foregrounds) from
primordial sources.

In this direction, we would like to draw attention to the
statistical peculiarities of the Q and U components of the
Stokes “vector,” related to the nonpolarized points (NPP) in

the intensity map / = /Q? + U? and the corresponding

features of the polarization angle tan(2¥) = Z—QJ In principal,
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the Stokes parameters Q and U comprise a continuous
spin-2 valued function on the sphere. Because of their
continuity, there will be well-defined contours along which
Q =0 and similarly, contours along which U =0 (so-
called contours of percolation [6]). At the points where
these contours intersect, Q and U are simultaneously 0, and
the total sky signal is unpolarized [7]. At the same time,
these NPP manifest themselves as points of absolute
minimum (zeros) of the polarization intensity, which for
Gaussian Q and U has a Rayleigh distribution. Thus, there
is a connection between the statistics of NPP and the
statistics of minima of the non-Gaussian field of polariza-
tion intensity. Note that the existence of these points is a
natural product for a correlated pseudovector field as points
of connection of the domains with a different polarization,
similar to the domains in ferromagnetics. The number
density of these points, their morphology, and their relative
concentration will reveal some peculiarities of the mor-
phology of the polarization due to different systematic
effects, instrumental noise, and residuals of the component
separation technique.

In [7], these nonpolarized points for random Gaussian
isotropic fields were investigated. See also [8]. Several
results from this work can be summarized as follows:

(i) The total number density of NPP is a constant
depending only on the correlation radius of the
signal.

(i1)) NPP can be classified into one of three kinds (knots,
foci, and saddles) depending on the local geometry
of the field.

© 2021 American Physical Society
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(ii1)) The ratios of number densities of these different
kinds of NPP are fixed, independent of the power
spectrum and depend only on the assumption of
Gaussianity.

The third result motivates a simple test of Gaussianity,
based on counting and classifying NPP and calculating the
corresponding ratios of their counts. In any finite sky area,
random sampling error permits some departure of the actual
counts from the theoretical number densities. Therefore, we
compare the variation of the ratios across the sky with that
of Gaussian simulations.

One additional feature is the properties of E and B modes
of polarization, widely used in the search for cosmological
gravitational waves. In [9] it was shown that Q and U can
be decomposed into (Qg, Ug) and (Qp,Up) families,
which generate the corresponding E and B modes:
(Qg,Ug) - E and (Qp, Ug) — B. In this transform, we
remain in the domain of the Stokes parameters, and the
statistics of NPP apply to each.

In Sec. II, we review the theory of NPP in the polarization
field and derive the main analytical results. In Sec. III, we
summarize the procedure for measuring NPP in pixelized
data. The theory of NPP in the E and B modes is discussed in
Sec. IV, with emphasis on the effect and detectability of
lensing by this estimator. In Sec. V, the statistics of the
singular point ratios are explored, and Gaussian simulations
are compared to the Planck 2018 CMB maps [10]. A brief
conclusion is given in Sec. VI.

II. THEORY OF NONPOLARIZED POINTS

Inflation predicts Gaussian statistics for the CMB,
including its polarization. These assumptions allow us to
also calculate predictions for the densities of nonpolarized
points in the CMB. Unfortunately, the Planck CMB
products (SMICA, Commander, NILC, and SEVEM) are
contaminated by foreground residuals and instrumental
noise. These factors will affect the statistics of NPP
compared to a pure cosmological signal. At the same time,
these peculiarities of statistics can be used for determi-
nation of their morphology and amplitudes, and they can be
masked out by more complicated filters designed in the
domain of polarization intensity, e.g., [11]. We will discuss
these anomalies in the next sections of the article, and now
we turn to the theory for Gaussian signals, following [7].
Note that this model is exact for statistically isotropic
Gaussian noise added to the CMB.

A. Statistics of Gaussian Q and U
and their derivatives

We start with the basis for our description of the CMB
polarization field from [7] for total Q and U without
separation into E and B families. We assume that Q and U
are random Gaussian variables with possibly nonzero
means and define the Stokes vector,

(@) () o

where ¢ and y; are the means of Q and U. The covariance
matrix of Q and U is

zo = (1% 7). )

Since only second-order correlations exist, the statistics of
the Stokes parameters are described by a Gaussian dis-
tribution. Using Eqs. (1) and (2), we write the joint
probability density for Q and U,

P(0.U) exp |~ (P15}, (P10 )

 2zdet(Zyy):

We now make our first assumptions that Q and U have
the same variance, namely the spectral parameter 6(2). We
also take them to be completely uncorrelated, oy = 0.
The mean of random variables with a Gaussian distribution
does not affect the shape of the PDF, only its location in
the space of random variables, so we take g =0, and
move to the polarization vector P — P+ pu, such that
P—pu— P+ p—p=P. With these assumptions, Eq. (3)

simplifies to
1 17
- S 4
2763 P ( 2 0'%) “)

where 12 = ||P||> = Q% + U?, and o3 is the variance of Q
and U. For the purposes of analyzing NPP, we also want to
describe the statistics of the field derivatives. We define the

P(Q.U) =

Jacobian,
Q9 Q(p
pu— P 5
J ( U0 U(p ) ( )
where
_ 90 _ou Y _ou
Qﬁ_%7 9_66’ Q(/;_a(pi U(p_a(p (6)

In constructing a probability density for the derivatives,
similar assumptions are made as for the field components
themselves. Namely, that they are uncorrelated and have a
variance tied to spectral parameters, 6¢.o, = oy,y, = c1/2.
All other variances are then zero.

B. Classification of nonpolarized points

The trace and determinant of the Jacobian determine the
classification of each singular point into either a focus,
knot, or saddle. The conditions for foci, knots, and saddles
are, respectively, given by
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1 2
det(J) > [ETr(J)] >0 (foci),

BTr(J)] ’ > det(J) > 0 (knots),
det(J) <0 (saddles). (7)

Trajectories of the polarization vector for each kind of NPP
can be plotted around the singular point by solving the
system of equations defined by the Jacobian in Eq. (5)
acting on a polarization state. Examples are depicted
in Fig. 1.

We next turn to discussion of the statistics of these NPP,
based on [7]. The number density of different NPP is given

by [7]

V2

r= 16712

1

k= 16712 (2-v2) N= 8ar’ (8)
These are the densities of foci, knots, and saddles, respec-
tively. The radius of correlation is introduced, defined as
r. = 6o/, where 63 is the variance of Q and U and 67 /2
is the variance of the derivatives, as above. Summing these
densities gives the total density of nonpolarized points,

1
Ntotalsz+Nk+Ns:W' )
c

Of note is that the ratios of these densities are parameter
independent. We write them in terms of the focus density,

N N, V2

/ /

L =Vv2+1 —L-2= 10
N, V2 N, 2 (10)

Following the arguments here, a statistical ensemble of the
pure Gaussian CMB skies should be one in which these
ratios hold, and measuring these ratios in data allows us to
describe the statistics of a CMB. However, for a single
realization of the CMB sky with some finite number of
NPP, the actual detected ratios are random variables. Thus,
our goal is to extend the analysis of [7] in order to
determine the uncertainties of these ratios.

Assuming that the underlying Q and U data are Gaussian
random variables, we can derive the distribution followed
by the ratios. Let 8(2) be the sample variance of Q and U.
It follows a chi-squared distribution. 6% similarly is chi-
squared distributed. The correlation length, r. = 6¢/0, is
therefore the ratio of two chi-squared-distributed variables,
which means it should follow (with suitable normaliza-
tions) an F distribution. We illustrate the distribution of
the correlation length r,. in Fig. 2 for a statistical ensemble
of 10° Gaussian realizations and compare the result with
the probability density function of an F distribution,
given by

_atp

F(x,a,p) :Ax%—1<1 +%x> " (11)

where A is a normalization constant and «a and f are
parameters of the distribution.

N
/4

)
N

/2

FIG. 1.

=
e

Samples of NPP for Gaussian Q and U in flat (6, ¢) space. The first column features a saddle, the second a knot, and the last a

0

>
o

—m/2

focus. The second row is an image of the polarization angle W linearly interpolated around the singular point, based on the first-order
derivatives of Q and U evaluated at the singular point itself and defining its classification.

023502-3



KASAK, CRESWELL, NASELSKY, and LIU

PHYS. REV. D 104, 023502 (2021)

— F-distribution fit
10 =1 1¢6 simulations
N .
‘0
=]
a
0.5 1
00 - T T 1 T
0 1 2 3 4
Te

FIG. 2. The correlation length r. follows an F distribution.
Shown is the distribution of 7, from 10® Gaussian simulations
compared to an F-distribution fit with parameters a = f# ~ 42.
At high resolution, the F distribution reduces to a Cauchy
distribution.

The analysis of NPP for Gaussian Q and U needs to be
completed by description of the properties of polarization
angle in the vicinity of these points. The behavior of P,
presented in the lower row of Fig. 1, is driven by the
following equation:

det(J)

d
—tan(2¥) = o

d®

(12)

where © is the polar angle in the coordinate system
centered on the nonpolarized point. From this equation,
we can explain part of the behavior observed in Fig. 1: the
sign of the determinant controls whether the polarization
angle increases or decreases clockwise around the NPP.
For saddles, ¥ decreases clockwise; for knots and foci,
YV increases.

III. DETECTING NONPOLARIZED POINTS
IN INTENSITY MAPS

Nonpolarized points were defined as the places where
both Q and U are zero. For the practical analysis of NPP,
we need to implement some filtration for the Planck data in
order to restore approximate continuity of the discrete
pixelized data. We will use a standard Gaussian filter with a
FWHM of 0.5 deg. Since these data are very noisy, to some
extent, the Gaussian filter will remove high multipoles from
the analysis and effectively decrease the power of the noise.
Solving for NPP in the Q, U field configuration would be
complicated, as the extremal points can be minima,
maxima, or saddles. So we instead look to the polarization
intensity, that is bounded from below by 0, where the
singular points should be. Floating point inaccuracies and
the resolution of available data further complicate the
search, the true NPP will not appear as perfect zeroes in
the data. As such, any local minimum in the polarization

intensity with a sufficiently small value could be a
candidate for a singular point. To deal with this, we
introduce the parameter & with the same units as the
polarization intensity. This parameter is chosen according
to the correlation scale of the map. We then select
contiguous subthreshold basins, within which both Q
and U separately change sign, as candidates for NPP.
Local minima pixels within each basin are determined
using a recursive search, and duplicate minima that are
nearly adjacent are filtered out. The remainder are consid-
ered NPP and used for calculating ratios inside the region in
question. Therefore, the conditions for a NPP at a particular
pixel n are

(1) The Stokes parameters satisfy |Q|, |U| <e for an
appropriately chosen value of e.

(2) The polarization intensity is a local minimum,
meaning I(ny) < I(n;) for all pixels nr; adjacent
to ngy.

(3) Both positive and negative values of Q and U are
found in the connected sub-¢ region including ny,.

(4) There are no other candidates also meeting con-
ditions 1-3 with I < I(n,) within an angular dis-
tance o, of ng.

e and a,,, are parameters of the search method. ¢ is chosen
such that the number of detected nonpolarized points
matches the theoretical expectation of 1/r2. This value
is found via a bisection search. a,,,, is a suitable linear
scaling of r., which also acts as the average angular
distance between two NPPs. Once the pixels corresponding
to each NPP are determined, they can be classified by
simply evaluating the Jacobian at each pixel and applying
the rules described above in Sec. II. The code that performs
this detection of singular points is available at [12], and an
illustrative example of NPP detection and classification is
shown in Fig. 3.

It is convenient to count NPP in a target sky that has been
divided into subareas. In any finite sky area, the actual
ratios of counts will deviate from the Gaussian prediction.
By dividing the sky into different areas and calculating the
ratio within each, we can effectively run many “simula-
tions” in one sky and compare the resulting variation to that
of Gaussian simulations. This results in an estimator that is
a more informative than calculating the full-sky ratio alone.

Simulations for these results were created in CAMB
using parameters derived from the Plik likelihood [13].

For data serialized in the HEALPix [14] format, a
HEALPix pixel at some fixed Ny, is the natural choice.
What remains is the choice of N4, . For statistical purposes,
it should be large enough that a distribution of evaluated
ratios from each of the subareas is available for analysis, yet
not too large that clustering algorithms take up a lot of
memory and CPU time.

In this work, we settled on choosing N4, = 8 and 16
for the mother pixel, preserving the pixelization for the
sky map N4, = 2048. This choice of overpixelization
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FIG. 3.

Finding and classifying NPP in a sample mother pixel with Ny = 16 from Gaussian simulations. In the left panel are

highlighted sufficiently cold areas in the polarization intensity that also contain crossing points in both Q and U. In the right panel are the
NPP that are kept for analysis of ratios. Circles are foci, triangles are knots, and stars are saddles. In the right panel, there are 7 foci,
7 knots, and 12 saddles. The ratios of this subarea are N;/N; =1 and N;/N; =7/12.

determines the “mother pixels” within each of which NPP
are counted and ratios calculated to derive the final
distribution functions. In practice, however, the detection
algorithm is run on the full sky maps, and afterwards the
points are assigned to their mother pixels. This means that
the algorithm is not at risk of edge effects.

Areas of the sky obscured by the strongest foreground
sources can be excluded from the analysis. In this work, we
choose to downgrade Galactic masks to the mother pixel
resolution using an area-preserving method. Beginning
with the Ny = 2048 Planck polarization confidence
masks released with the component separation results
[10], a mother pixel is masked or unmasked based on
whether the number of masked subpixels exceeds a thresh-
old, which is chosen such that the total masked sky area
is the same in the downgraded mask. It should be noted
that this area-preserving method does not necessarily
maintain the original meaning of the mask. It is possible
to adjust the threshold to make the mask more conservative
or less conservative. In general, the method is local and can
be applied to any particular sky area, including regions
suspected to be contaminated by foreground residuals,
which might be interesting objects of analysis. However,
in this work, we adopt the area-preserving method as a
compromise.

The basic results, including the masks in use throughout
the rest of the paper, are illustrated in Fig. 4. Generally, no
obvious patterns in the sky distribution of the ratios is
visible in these plots. Mother pixels within which the ratios
vary significantly from the Gaussian expectation are visible
but apparently randomly distributed on the sky.

IV. E/B-FAMILY DECOMPOSITION AND
THE TOTAL NUMBER DENSITY OF
NONPOLARIZED POINTS

As we have pointed out above, the decomposition of the
Stokes parameters into E and B families provides a direct
link to the corresponding E and B modes of polarization
(see, for details, [9]). Since all these transforms are based
on liner combination of Q and U parameters, both E and B
families will preserve the statistical properties of Q and U.
Thus, Gaussian Q and U will generate Gaussian Qp, Uy
and Qp, Up, and all the criteria for NPP, presented in
Sec. III, will be fully applicable for the E and B families.

We begin with the number density of NPP. In Fig. 5,
we show the number of counts for NPP for E and B
families, taken from random realisations of best fit Planck
2018 ACDM model with tensor-to-scalar ratio r = 0.05
and with lensing of E mode included. We used smoothing
of the simulated maps with Gaussian kernel with
FWHM 0.5 deg.

As it is seen from Fig. 5, the distribution of total number
of singular points for unseparated signal and the corre-
sponding E/B families are approximately Gaussian with a
small separation of the means for unseparated and E family,
and a strong difference between the E and B families. Note
a very interesting effect, that the point of maximum of NPP
for the E family is slightly bigger than for the unseparated
signal. This phenomenon can be understood in terms of the
correlation radius r. from Eq. (9).

For unseparated signal (Q, U), the correlation radius is
given by the ratio r. = oy/0;, where
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FIG. 4. The ratios N;/Ny (upper four panels) and N /N, (lower four panels) computed in subareas of N4, = 8 using the procedure
described in Sec. III, expressed as absolute differences from the theoretical ratios N;/N; = V24 1and N /Ns = v/2/2. The four
Planck CMB products SMICA, NILC, SEVEM, and Commander are shown. The area-preserving masking has been applied as
described in the text; masked mother pixels are shown in gray.
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FIG.5. Range of the number of nonpolarized points in simulations with r = 0.05 and 0.5-deg smoothing (see Sec. IV for details). The

blue lines are for the full unseparated polarization map, and the orange lines are for the E family only. The B family is shown with green
lines in the left-offset panels. The left pair of panels are based on simulations without lensing, and the right pair of panels include lensing.

A2=203=((Qr+Qp)*+(Ur+Up)*) =A% +A3, (13)
ot =71t +713 (14)

and AZ = (Q%) + (U%) and A% = (Q3%) + (U3) are the
corresponding variances for amplitudes of E/B families,
and y%,y% are the variances for the first derivatives: y% =
A(((QF)%) + ((UR)?) and yh =4(((Qp)*) + ((Up)?))-
So, for the whole sky the total number of unseparated
NPP can be represented as follows:

N YETTE _ar (Hé_A_%)
tot 7 A2 2 — ‘'tot 2 2
Ap + Ag re Ak

A2 NE
_N{fn[1—A—§< —N;;)]. (15)
E tot

Thus, for xfg" < 1 the total number of unseparated NPP is

tot

less than for the E family, which one can see reflected in
the Gaussian simulations presented in Fig. 5. Also, from
Eq. (15), we can see that the size of the deviation will grow
according to A%, and therefore, also according to r, the
tensor-to-scalar ratio.

At the end of this section, we would like to discuss the
dependence of the total number of NPP for the B family on
the tensor-to-scalar ratio r, based on analysis of pure
Gaussian simulations. We will exploit the fact that for
the primordial CMB signal without lensing of the E mode,
the total number of NPP N2, depends only on the ratio
%/ A%, where both numerator and denominator are propor-
tional to r. Thus, N2, should not depend on r without
incorporation of the lensing effect.

From a theoretical point of view, we may expect that with
weak lensing of the E mode, the number of NPP will be
practically the same as without lensing for all realistic
values of the tensor-to-scalar ratio r. For the B family,

the dependency N2, on r is nontrivial due to the following
reasons.

Firstly, it should critically depend on the balance
between theoretical (without smoothing by the antenna
beam or any others filters) correlation radius r,, and the
effective scale of smoothing Oy,. If O, > ey, then the y3
parameter is still proportional to r for the CMB B family,
and it is affected by the contribution of the lensed E
component,

7% = y%,cmb(r) + y%.lens’ (16)

where the first term corresponds to the cosmological B
mode with tensor-to-scalar ratio r, and the second one is for
the lensing effect (almost independent of r). The same
representation is valid for the variances,

A%’ = A%’S,cmb(r) + A%’?,lens‘ (17)

Taking into account that y3 . (r) and Aj . (r) both are

proportional to r, we can represent these terms in the
following way:

r r
A%,cmb(") = r_C’ y%,cmb(r> = r_D’ (18)

* *

where r, is some arbitrary normalization parameter, and C
and D correspond to A% . (r)],—, and 73 .0 (7)],—, -

Secondly, the total number of NPP NZ critically
depends on the ratios between the CMB and the lensing
terms in Eqgs. (16)—(17). Namely,

r 2
T D + VB lens

NB(r) =225
tOi(r) rL c + A%5’,le:ns

, (19)

whence
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2
VB lens
B SBlens 20
Ntol(r>r:>0 A%,lens B,lens ( )

in the small-r limit, and

Ng)t(r) - BZNB,cmb (21)
r—oo C

when 7 is large. Thus, the entire range of variation of

NB.(r) is reduced to a transition between two constants.

The details of this transition can be traced as follows. Let us

assume that the CMB tail of Eq. (19) dominates over the

lensed part: /D > yp 1, and - C > Ag .. In this case,

B lens*
the total number of NPP is given by the following
asymptotic:

Ngt(r) ~1—= Alz'S.lens <E> (1 _ N&lens) (22)

NB,cmb

Here Npiens/Npemp << 1 and the total number of NPP is
slightly smaller than for pure CMB.

From a practical point of view, of greatest interest is the
asymptotics N jens/Npemp > 1, when the structure of the
polarized B signal is completely determined by the lensing
effect of E mode. In the absence of delensing, this effect
will dominate at r <« 0.01, which is a target for the
forthcoming CMB experiments. Although delensing will
change the nature of this asymptotic, note that delensing is
currently possible in the power spectrum domain but not in
the map domain where the NPP analysis naturally works. In
the future, NPP analysis might be useful to test the quality
of delensing methods.

For Npgjens/Np.emp > 1, we get

Ntl()))t(r) ~ 1 _ <L) C <1 _ NB,cmb> (23)
NB,lens Vi A2 NB,lens

B.lens

Confirmation of the asymptotics in Eq. (23) can be seen in
Fig. 6, where we give results of numerical simulations for
total numbers of NPP for the unseparated signal, E and B
families with and without lensing. To generate an ensemble
of Gaussian realizations, we used the following parameters
from Planck 2018 date release in standard notation [15]:
Hy=67.5 km/sMpc, Q,h*=0.022, Q.h*>=0.122,
A,=210"%, 7 = 0.06, and n, = 0.965.

V. NONPOLARIZED POINTS IN THE 2018
PLANCK MAPS

A. Contamination of the 2018 Planck maps

Both the theory and computational methods for counting
nonpolarized points can now be applied to the latest Planck
release. We also get a baseline for these methods by
comparison with many Gaussian realizations from a
best-fit power spectrum with r = 0.05. With the method

No lensing Lensing
90000 - - 90000
89500 - - 89500
89000 - - 89000
88500 - | | | iy 88500
0.0 0.1 0.0 0.1
27000 T = UUnseparated
m— E-family
= B-family - 70000
26800
F 68000
26600 - 00000
T T T T
0.05 0.10 0.0 0.1

r r

FIG. 6. The results of numerical simulation for total numbers of
NPP for unseparated signal (gray), E (blue), and B families (red)
with and without lensing. The left column corresponds to the
unlensed case and the right column is for lensed. The width of the
contours corresponds to 68% confidence level. The solid lines
correspond to the mean over realizations.

of NPP, we can measure how well each Planck map
matches the Gaussian expectation. The Kullback-Leibler
entropy [16] was also used as an indicator for how well the
Planck maps matched the Gaussian realizations.

An important feature of Planck’s polarization data is a
relatively small signal-to-noise ratio (SNR) for the E mode
(SNR ~ 1) and absence of detection for the primordial B
mode. In addition, when analyzing the Planck data, one
cannot ignore the effects of systematics, which can interfere
with the instrumental noise and the foreground residuals.
For illustration of the morphology of these noncosmolog-
ical components of the derived Planck 2018 CMB products
in Fig. 7, we show the intensity of the difference between
SMICA and Commander maps, defined as

Al = \/(QSMICA — Ocomm)* + (Usmica — Ucomm)*  (24)

Both these maps were taken with maximal resolution
Ngge =2048. In the map of difference SMICA-
Commander, the cosmological signal is removed, and this
map clearly illustrates the interference between the instru-
mental noise and scan strategy patterns. Note that reduction
of angular resolution down to N4, = 128 decreases the
amplitude of the noise but preserves the morphology of
contaminants.
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FIG. 7. The maps of differences between SMICA and Commander, i.e., \/(Qsmica — Qcomm) + (Usmica = Ucomm)?» for Nyjge =

2048 (left panel) and Ny = 128 (right panel).

Thus, in reality, applying NPP analysis to the Planck
CMB products, we are not directly testing Gaussianity of
the primordial CMB alone but also potential contamination
of the component separation procedure. As a simple model,
we can write the measured polarization field as

Qpl = OQcmb + Or + Onoise = Qemb + On-
Upl = Ucmb + UR + Unoise = Ucmb + UN s (25>

where Q.nps Uemp 18 the primordial signal, Qg, Uy are
the residuals of systematics and foregrounds, and
Oroises Unoise are noise. The NPP we measure are those
where Qpl =0, Upl = 0, ie., Qcmb = —QN, Ucmb = _UN'
Any nonzero residuals or noise will therefore perturb the
location of the NPP compared to the primordial signal.
Also, note that if the residuals are correlated with the CMB
component or with the noise component, this can influence
the location and density of NPP in the Planck maps. As we
have pointed out in Sec. I, the effect of existence of NPP is
not local (see Fig. 1). In the vicinity of each CMB NPP, the
morphology of the signal can be represented as follows:

Op = Qx + Oy + Oy (%),
Uple;x—i— U’yy+UN(x,y), (26)

where x and y correspond to the € and ¢ coordinates around
NPP, centered at x = 0, y = 0, and Q, 0}, U’ U;, are the
corresponding derivatives at that point.

At the point x =0, y = 0, the CMB component van-
ishes, while Qy(0,0) # 0, Uy(0,0) # 0. Thus, at CMB
NPP the structure of the polarization for Planck noisy maps
will be destroyed by the noise. However, linear behavior of
the CMB signal still will be preserved in the area around
NPP, when the terms linear in x, y will dominate over the
noise component. Qualitatively, the corresponding scale
can be estimated as follows. The linear terms for O, Uy, in
Eq. (26) are of the order of

ANO’lﬂﬁﬂol, (27)
r,

c

where 7 stands for the x or y coordinates. The noise term in
Eq. (26) is about o, where o is rms of noise. Thus A > B
leads to the following constraint on #:

N> rCZ—ZN r.(SNR)™". (28)

Thus, if signal-to-noise ratio SNR > 1, the structure of the
signal around CMB NPP is very well detectable for

r.(SNR)™! <y < nr., (29)

where n is 1 to 3, and marginally, it can be seen even for
SNR ~ 1 to 2.

In Fig. 8, we show some 2.5° x 2.5° patch of the Planck
2018 Commander polarization map, decomposed into E
and B families and smoothed by a Gaussian filter with
FWHM of 0.5 deg. The maps of intensities for the E and B
families indicate the position of the NPP as points of
minima, while the line segments show the polarization
angles. The two bottom maps illustrate the morphology of
the maps of polarization angles of the E and B families in
detail. From the maps of intensity (the top row), one can
find that all zones colored by deep blue correspond to the
NPP. The bottom row maps show the anomalies of the
polarization angle in the vicinity of these points in full
agreement with theoretical expectations (for comparison,
see Fig. 1). Taking into account that 2.5° x 2.5° maps
in Fig. 8 correspond to the fraction of the sky
foy = 1.5% 10~*, from Fig. 5, one can find that the number
of NPP in Fig. 8 is in agreement with theoretical expect-
ations as well.
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FIG. 8.
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Top row: E and B families of the Commander polarization maps for Q and U. The background of the maps corresponds to the

intensity for each family (in p#K). Orientation of the Stokes vector is indicated by black lines. The Commander map has angular
resolution N4 = 2048 with Gaussian smoothing by 0.5°. The bottom row shows the polarization angle for the same maps,
correspondingly. The nonpolarized points are clearly visible in this representation.

B. Ratio distributions for the Planck maps

In this section, we will address the problem of ratios for
knots, foci, and saddles [see Eq. (10)] for the Planck 2018
SMICA, Commander, NILC, and SEVEM maps. An
important feature of this test is that it depends only on
statistical properties of the signal (CMB plus noise), and if
noise is the dominating part of the signal, it will reveal
important information about itself. For evaluation of
statistical significance of the ratio test, it is possible to
use any simulations: for example, Planck FFP 10 or pure
Gaussian.

For the ratio test, all Planck maps and Gaussian
simulations of the sky were smoothed by Gaussian filter
with FWHM 0.5 deg. and divided into subareas (mother
pixels) of HEALPix pixels at Ng4. 8 and 16. In each
subarea outside the common mask, all NPP were counted,
and ratios were evaluated. These were used to construct
density histograms (see Fig. 9) with the aim of comparing
them to Gaussian simulations. An important choice in
creating histograms is a choice of the number of bins.

The simple Sturges [17] estimator of log,(n) + 1 was
used to provide a suitable number of bins for analyzing the
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FIG. 9. Ratio distributions for skies decomposed into separate sets of E/B families. From left to right each column corresponds to full
harmonics, the E mode, and the B mode. The top row corresponds to the f/k ratio, and the bottom to the f/s ratio. Each color
corresponds to one of the Planck maps. Blue is SMICA, yellow is NILC, green is SEVEM, and red is Commander.

data, where n is the number of data points available. The
Doane estimator [18] was also tried to compensate for
possible skewing in the data, but it gave the same results as
Sturges, so the latter was used. Each subarea contributes
one data point for analysis, and given the values of Ny, we
were working at, we had at most either 768 ratio values for
Ngge = 8 or 3072 ratio values for N4, = 16. Based on this,
the Sturges estimator provides 9 to 11 as the range for
suitable numbers of bins. Bin edges were chosen accord-
ingly to encompass every realization of the sky under
analysis. A cutoff value for the ratio value was used to
ignore statistical outliers, subareas with an unlikely small
number of NPP.

Constructing these ratio distributions show that they are
close to the theoretical expectations for a Gaussian random
process. Precise properties of each distribution are given in
Table I.

C. Comparison with Gaussian distributions

As an empirical test for the Planck maps, the Kullback-
Leibler entropy between each of the Planck maps and a
background Gaussian was calculated. The KL entropy is a
measure of the divergence between a sample probability
distribution P and a background distribution Q. For
discrete distributions, it is defined as

0ut(PI0) = Ypii (&), (30)

Hence, the closer each P; is to each Q;, the smaller the
value of Ok, (P|Q) will be and the better the match
between the two distributions. As another way to compare
the Planck distribution functions to the distribution func-
tions from the Gaussian simulations, a Kolmogorov-
Smirnov test was performed. The Kolmogorov-Smirnov
estimator between two samples is defined as the maximum

TABLE I Statistical information for all Planck maps and a ratio
distribution from many Gaussian simulations. All data are
calculated from the density histograms in Fig. 9, at the same
fidelity of nine bins. Given are the expectation value (ex) and
standard deviation (stdev). The theoretical ratio values to as many
significant digits are 2.4142 and 0.7071 for the f/k and f/s
ratios, respectively.

Map name ex (f/k) stdev (f/k) ex (f/s) stdev (f/s)
Gaussian 2.0349 0.3240 0.6763 0.0071
SMICA 2.0149 0.3357 0.6716 0.0076
NILC 2.0143 0.3756 0.6719 0.0084
SEVEM 1.9934 0.3377 0.6702 0.0067
CMDR 2.0073 0.3190 0.6712 0.0087
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FIG. 10. The vertical dotted lines are KL-entropy values of the Planck ratio distributions against an average background from Gaussian
simulations. The black line is the distribution of the KL-entropy values of 1035 unique pairings of many Gaussian realizations. These
allow us to calculate p values for finding entropies of the Planck maps at least that large.

distance between their cumulative distribution functions
[19]. This quantity follows the Kolmogorov distribution
depending on the size of the samples, from which each KS
score can be converted to a p value can be calculated. The
bigger the KS score, the greater inferred difference between
the two underlying distribution functions.

The KL entropy is a logarithmic estimator based on
exponential probability densities that have positive values
in the whole domain. Due to this, discrete bins that end up
having no data points for some realizations of the sky
contribute infinities to the entropy sum. To deal with this,
we keep track of the set of bins where a zero has occurred
and exclude those when calculating the KL entropy. Other
methods like minimally smoothing the distributions and

TABLE II. Data from all Planck maps. p values give the
probability of finding a KL entropy or KS statistic at least that
large.

f/k KL flk f/s KL f/s
KL entropy p value entropy p value
SMICA 0.0017 0.9884 0.0058 0.5044
NILC 0.0072 0.6135 0.0117 0.1560
CMDR 0.0083 0.5130 0.0145 0.0713
SEVEM 0.0102 0.3324 0.0065 0.4661
KS f/k KS f/k f/s KS f/s
score p value score p value
SMICA 0.0400 0.2076 0.0459 0.1017
NILC 0.0380 0.3248 0.0466 0.1317
CMDR 0.0424 0.1859 0.0506 0.0686
SEVEM 0.0662 0.0095 0.0518 0.0747

doping each bin with an extra data point were considered,
but they all performed the same. As such, dropping the zero
bins was the preferred method. This issue does not apply to
the KS estimator, which, being based on the cumulative
distribution function, is unaffected by null bins.

The background Gaussian is created by averaging the
distributions from 46 unique Gaussian simulations. To give
meaning to the entropies calculated in that way, a back-
ground distribution for them was also realized. The 46
Gaussian distributions allow us to match up 1035 unique
pairs and calculate the KL entropy of each pairing. A density
distribution of the background entropy values provides the
opportunity of finding a p value for each measured entropy
in the Planck maps. These results are visualized in Fig. 10
and Table II. Table II also shows the results of the KS test.

VI. CONCLUSIONS

The nonpolarized points in the CMB polarization field
can be classified according to the local geometry of the
field, which is converged in the points of local minima of
the intensity and anomalies of the polarization angle.
Gaussianity predicts that the different types of NPP should
occur in certain fixed ratios. By measuring the variation of
these ratios in different subareas of the sky, one can
construct a sensitive test of non-Gaussianity and statistical
anisotropy, complementary to [4,20].

We separate the Q and U Stokes parameters into the E
and B families and applied the NPP theory to these
families. Our analysis revealed the regularities of their
statistics depending on the amplitude of the tensor-to-scalar
ratio r and lensing effect. We have shown that in the

023502-12



STATISTICS OF NONPOLARIZED POINTS IN THE CMB ...

PHYS. REV. D 104, 023502 (2021)

absence of lensing, the total number of NPPs of all types
does not depend on the tensor-to-scalar ratio, while the
lensing effect removes this degeneracy. Thus, the analysis
of NPP is a powerful tool for investigating the manifes-
tation of the effect of lensing for the next generation of
CMB experiments devoted to detect or constrain cosmo-
logical models with » < 1072, The same test can be used for
detection of E/B leakage corrections and study of the
performance of delensing methods.

We have applied theory of NPP to the Planck 2018 CMB
polarization maps and showed, that there is general con-
sistency of SMICA and NILC compared to a reference set
of Gaussian simulations according to the KL entropy.
The strongest discrepancies are found in Commander
(p = 0.07) and NILC (p = 0.15). Although these discrep-
ancies are not highly significant, they may point to the
presence of foreground, and component separation resid-
uals in these two maps compared to SMICA and SEVEM.

The KS nonparametric test for equality of distributions
can also be used. Overall, the KS test also reveals a general

consistency with the KL entropy, except for SEVEM, whose
f/k ratios are peculiar at the p < 0.01 level. Similarly, the
KS test suggests disagreement of the SEVEM f/s ratios at a
modest significance of around p = 0.07, compared to no
result (p = 0.47) from the KL entropy. In general, we expect
the KS estimator to be more sensitive to local deviations, or
deviations in the tails of the distribution functions, compared
to the KL entropy. Departures of this kind might therefore
exist in the SEVEM ratios. With the upcoming era of high-
precision, ground-based and space-based CMB polarization
observations, methods exploiting NPP statistics will be
useful for characterizing and testing the statistical properties
of derived maps.
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