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Models with dust reference fields in relational formalism have proved useful in understanding the
construction of gauge invariant perturbation theory to arbitrary orders in the canonical framework. These
reference fields modify the dynamical equations for perturbation equations. However, important questions
remain open on the relation with conventional perturbation theories of inflaton coupled to gravity and of
multifluid systems, and on understanding modifications in terms of physical degrees of freedom. These
gaps are filled in this manuscript for Brown-Kuchař and Gaussian dust models, both of which involve three
scalar physical degrees of freedom. We establish a relationship of these models with conventional
inflationary and multifluid systems of inflation and ordinary dust by introducing a set of gauge invariant
variables on the reduced phase space of the dust reference models. We find the modifications due to dust
clocks to the Bardeen equation in the longitudinal gauge and the Mukhanov-Sasaki equation in the spatially
flat gauge, in terms of physical degrees of freedom. This results in a closed system of equations for all the
degrees of freedom needed to explore the evolution of the scalar perturbations. Our analysis shows for the
first time that even for two-fluid systems, there is a natural choice of the set of gauge invariant variables for
each chosen gauge which not only offers a direct physical interpretation but also results in simplifications to
the dynamical equations.
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I. INTRODUCTION

From the early days in canonical general relativity (GR)
the construction of gauge invariant quantities, so-called
Dirac observables, has played a pivotal role [1–3] and is
instrumental to address the problem of time in canonical
GR [4,5]. The relational formalism [6–13] provides a
framework in which such Dirac observables can be con-
structed once a set of reference fields has been chosen.
These Dirac observables become the elementary variables
in the reduced phase space, and their dynamics is generated
by a so-called physical Hamiltonian that is itself a Dirac
observable and nonvanishing on the constraint surface. The
relational formalism has been successfully used in various
settings to extract dynamics in GR [10,14–23], scalar-
tensor theories [24], classical and quantum spherical
symmetric models [25,26], loop quantum gravity (LQG)
[27–35], and quantum cosmological models (see, for
example, [36–52]). An interesting avenue to understand
the role of reference fields lies in the cosmological

perturbation theory where Brown-Kuchař [53] and
Gaussian dust [54] models have been analyzed, for in-
stance, in [16,22,23]. While these studies indicate that
dynamical equations for cosmological perturbations are
modified due to dust reference fields, such as in [22] where
effects of dust reference fields have been investigated for
the Mukhanov-Sasaki equation in the spatially flat gauge,
there are two important gaps in the studies so far. The first
of these is related to the lack of insights on the modifica-
tions arising from dust reference fields in terms of physical
degrees of freedom with a clear physical interpretation. The
second issue deals with relating these modifications to the
physical predictions and for a comparison with the analysis
in the absence of reference fields, in particular to the
conventional perturbation theory for inflaton coupled to
gravity, and to a multifluid system of inflaton and non-
relativistic matter which has the same degrees of freedom as
the dust reference models. For this, one must understand
the way the elementary Dirac observables in the reduced
phase space of the dust models are related (i) to the gauge
invariant quantities usually chosen in conventional cosmo-
logical perturbation theory such as the Bardeen potential or
the Mukhanov-Sasaki variable, and (ii) to the multifluid
systems where reference fields are not dust clocks.
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In this work we discuss these relations for the longitudinal
and spatially flat gauge and show that one can construct a
map on the reduced phase space of the dust models to a new
set of Dirac observables that is chosen in such a way that the
comparison with the conventional choice of variables is
simple and straightforward. To obtain such a map that relates
different choices of gauge invariant quantities also becomes
necessary and important if one is interested in the numerical
implementation of the evolution equations for the linear
perturbations and its comparison with other approaches.
Note that both Brown-Kuchař and Gaussian dust reference
models have additional degrees of freedom to GR. In
the conventional approach one considers an Friedmann-
Lemaître-Robertson-Walker spacetime as the background
which is sourced by an inflaton field, whereas in the above
dust models we consider a two-fluid system, an inflaton
along with a dust reference field, which determines the
background evolution. As a consequence, the scalar sector of
the linear perturbations contains 3 independent degrees of
freedom in the configuration space, while for the conven-
tional approach for inflaton coupled to gravity there is only
1 degree of freedom encoded in the Bardeen potential or the
Mukhanov-Sasaki variable in the longitudinal gauge or the
spatially flat gauge, respectively. Hence, for the dust models
even if we construct Bardeen potential-like and Mukhanov-
Sasaki–like variables in the reduced phase space, their
equations of motion contain a fingerprint of the 2 additional
physical degrees of freedom in the scalar sector present in
both dust models. Thus, to extract any predictions we need to
consider their system of coupled differential equations.
Therefore, a pertinent question is how these two additional
physical degrees of freedom should be chosen in the reduced
phase space of the dust models and whether there exists a
choice that simplifies the resulting set of coupled differential
equations. In addition, a pertinent question arises to also
compare the dust reference field models with the ones with
the same number of degrees of freedom. This corresponds to
the system of an inflaton with nonrelativistic matter in which
one may choose geometrical degrees of freedom as reference
fields. Another goal of our work is to also relate the dust
reference field models with the latter system in the conven-
tional perturbation theory. Finally, as emphasized first by
Bardeen [55], the choice of gauge invariant variables has a
natural physical interpretation with curvature perturbations
only in their respective gauges which are longitudinal and
spatially flat gauges for Bardeen variables and the
Mukhanov-Sasaki variable, respectively. It turns out that
for reference fields as geometrical degrees of freedom a
connection can be established between the choice of
clocks, gauge-fixing conditions, and the gauge invariant
variables [20].
Let us compare the goals of our work with the existing

literature. Former work [16,22] focused on constructing
Bardeen potential-like and Mukhanov-Sasaki–like varia-
bles and then deriving the corresponding equations of

motion for them in the relational formalism. As shown in
[22], in the dust models the Mukhanov-Sasaki equations
involve contributions from the 2 additional physical
degrees of freedom, but the physical interpretation of these
degrees of freedom was not analyzed in detail. An exercise
on similar lines was earlier carried out for Bardeen
equations [16], but the final equation still involved the
energy momentum tensor of the inflaton. And if one further
expresses this equation into one that in the conventional
approach yields a closed differential equation for the
Bardeen potential, there are also dust contributions that
were not explicitly derived. In particular, in the former
work in [16,22] the main focus was lying on a comparison
of the dust reference models to conventional systems which
only involve gravity and the inflaton. In this context one
usually restricts to compare the gauge invariant dynamics
of those gauge invariant variables which are present in both
systems, and this explains why one only considered the
Mukhanov-Sasaki and Bardeen equations, respectively.
Thus, for both the Mukhanov-Sasaki equation and the
Bardeen equation, the physical interpretation of dust
modifications has been lacking. In this work, in addition
to constructing the Bardeen potential-like and Mukhanov-
Sasaki–like variables, we further choose appropriately the
remaining 2 physical degrees of freedom such that they
have a transparent physical interpretation. In this process it
is also important that the resulting coupled differential
equations do not get too complicated to obtain the
primordial power spectrum as well as for comparison with
the conventional inflationary and multifluid models. Note
that the additional terms in the Mukhanov-Sasaki equation
due to the dust reference fields look rather complicated if
we consider the Mukhanov-Sasaki–like variable as well as
two elementary Dirac observables in reduced phase space
of the dust models [22]. As we will show here, by a
different choice for the two additional gauge invariant
variables these dust contributions have a clear physical
interpretation at the gauge invariant level. The choice of
variables we will present below is more adapted to two-
fluid systems in the background and hence simplifies in this
sense the comparison with conventional linear cosmologi-
cal perturbation theory. Furthermore, a clear physical
interpretation of the choice of the additional two gauge
invariant degrees is crucial in order to also compare the dust
reference models to conventional two-fluid models at the
gauge invariant level. Moreover, we find that the physical
interpretation of these additional gauge invariant degrees of
freedom can be used to further understand the relationship
between different gauges and their respective geometric
clocks in the conventional approach in which usually a
subset of the geometric degrees of freedom are used to
construct gauge invariant versions of the remaining degrees
of freedom.
In this manuscript, we analyze four cases resulting from

two dust models and two choices of gauges. The dust
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models are the Brown-Kuchař and the Gaussian dust
models, and the gauges are the longitudinal and the
spatially flat one. The paper is structured as follows. In
Sec. II we briefly summarize the properties of the reduced
phase in the dust model and present the evolution equations
of the elementary Dirac observables that have already been
derived in [22]. These results are then taken as the starting
point for Sec. III, where after a brief motivation of the
present analysis, the map between the Dirac observables in
the reduced phase space of the dust models and the
conventional choice of variables is constructed. This
map is then used in Sec. III A to construct the Bardeen
potential-like and Mukhanov-Sasaki–like variable for the
dust models. In Secs. III B and III C the coupled system of
evolution equations for the 3 physical scalar degrees of
freedom in the Brown-Kuchař model is derived for the
longitudinal and spatially flat gauges, respectively.
Furthermore, the choice for the two additional variables
next to the Bardeen potential-like and Mukhanov-Sasaki–
like variable is discussed. The corresponding results for the
Gaussian dust model are presented in Sec. III D, where the
discussion is rather brief since many steps in the derivation
of the two models are similar. A summary and conclusion
of our results can be found in Sec. IV. Table I summarizes
the construction carried out in this manuscript and com-
pares with the model of inflaton coupled to gravity as well
as inflaton and nonrelativistic matter as a multifluid system.
In this manuscript, we use the Planck units with

ℏ ¼ c ¼ 1 and keep Newton’s constant G explicit. We
also set κ ¼ 8πG.

II. LINEAR COSMOLOGICAL PERTURBATION
THEORY IN THE BROWN-KUCHAŘ AND THE

GAUSSIAN DUST MODELS

As the starting point for this section we consider
Hamilton’s equations of motion for the Dirac observables
constructed in [22], where the Gaussian and the Brown-
Kuchař dust models were considered. In both of the models
the reduced phase space contains 14 degrees of freedom
encoded in the elementary Dirac observables. Of these 6 of
them are geometric scalar degrees of freedom, 2 are vector
degrees of freedom, and 4 are tensor degrees of freedom,
while the remaining 2 are matter degrees of freedom. In the
following we will restrict our discussion to the geometric
scalar as well as the matter degrees of freedom. Following
the notation of [22] the corresponding Dirac observables of
the scalar linear perturbations in the geometric sector are
given by1

Oψ ¼ δijOδqij

6A
; Opψ

¼ δijOδpij

6P
;

OE ¼ 3

4A
Δ−2∂hi∂jiOδqij ; OpE

¼ 3

4P
Δ−2∂hi∂jiOδpij :

ð2:1Þ

Here Oδqij and Oδpij denote the Dirac observable
associated with the linear perturbations of the Arnowitt-
Deser-Misner metric and their momenta, A and P are the
Dirac observables of the square of the background scale
factor and its momentum, Δ denotes the Euclidean
Laplacian, and ∂hi∂ji ≔ ∂ði∂jÞ − 1

3
δijAΔ. Further, the Dirac

observables for the matter contribution of the scalar
field and its momenta are denoted by Oδφ and Oδπφ ,
respectively.
As presented in [22] above Dirac observables can be

constructed once some reference matter such as the dust has
been chosen. Since the dust reference fields come with four
additional degrees of freedom coupled to gravity, the final
number of physical degrees of freedom and hence inde-
pendent gauge invariant quantities is increased by four
compared to the system without dust that is usually
considered in linearized cosmological perturbation theory.
Once a specific kind of reference matter is chosen, a so-
called physical Hamiltonian that generates the dynamics on
the reduced phase space can be obtained. In general, the
physical Hamiltonian turns out to be different for
different choices of reference matter. In [22] the physical
Hamiltonians for the Gaussian and Brown-Kuchař dust
models were considered, and the resulting Hamiltonian
equations for the linear perturbations of the elementary
Dirac observables in the reduced phase space were derived.
In the case of the Brown-Kuchař dust model they are
given by

_Oψ ¼ 2H
�
Opψ

−
1

2
Oψ

�
þHOϕ þ

ΔOB

3
; ð2:2Þ

_OE ¼ −4HðOE þOpE
Þ þOB; ð2:3Þ

_Oδφ ¼ λφπ̄φN

A3=2

�
Oϕ þ

Oδπφ

π̄φ
− 3Oψ

�
; ð2:4Þ

_Opψ
¼ N2

6AH
Δ
�
Oϕ þOψ −

1

3
ΔOE

�

þ
�
κN2p
4H

−
H
2

��
Opψ

−
1

2
Oψ

�
−
κN2

8H
δT

−
�
1

4
H þ κN2p

8H

�
Oϕ þ

ΔOB

6
; ð2:5Þ

1Note that in [22] the elementary Dirac observables were not
denoted such as by OE;Oψ ;Oδφ but just by their corresponding
(capital) letter, that is, E ≔ OE;ψ ≔ Oψ ; δΦ ≔ Oδφ.
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_OpE
¼ −

N2

4AH

�
Oϕ þOψ −

1

3
ΔOE

�

þ
�
5

2
H þ κN2

4H
p

�
ðOE þOpE

Þ −OB; ð2:6Þ

_Oδπφ ¼
NA3=2

λφ

�
−
3V;φ̄

2
Oψ −

V;φ̄

2
Oϕ

þ 1

A
ΔOδφ −

V;φ̄ φ̄

2
Oδφ

�
þ π̄φΔOB; ð2:7Þ

where the background quantities, such as the scalar field φ̄
and its momentum π̄φ, are labeled by an overbar, H ¼
_A=2A is the Hubble rate,Oϕ is the linear perturbation of the
lapse function which vanishes identically in the Brown-
Kuchař and Gaussian dust model, OB denotes s the scalar
contribution to the perturbed shift vector. The latter
vanishes in the Gaussian dust model, and for the Brown-
Kuchař model we have OB ¼ δEdust

k =ðκAC̄Þ, where δEdust
k

denotes the perturbed momentum density of the dust.
Besides, p ¼ λφπ̄

2
φ=2A3 − V=2λφ is the pressure of the

scalar field and V is twice the usual value of the potential of
the scalar field; C̄ denotes the geometric and scalar field
contributions to the Hamiltonian background constraint.
Further, we have C̄ ¼ −Ēdust with Ēdust denoting the
background energy of the dust. A similar relation holds
for the linear perturbations where δC ¼ −δEdust and
δĈ ¼ −δEdust

k , with δĈ denoting the scalar part of the
spatial diffeomorphism constraint. The linear perturbation
of T ≔ OqijOTij

, where Tij denotes the spatial components
of the energy momentum tensor of the scalar field, has the
form

δT ¼ −3λφ
π̄2φ
A3

Oψ þ λφπ̄φ
A3

Oδπφ −
V;φ̄

2λφ
Oδφ: ð2:8Þ

For the Gaussian dust model the first order Hamilton’s
equations are very similar and can be obtained directly from
above equations by dropping all the terms involving OB
since OB vanishes for the Gaussian dust model.
Given Hamilton’s equations in (2.2)–(2.7) for the elemen-
tary variables in the reduced phase space, it is straightfor-
ward to derive the equations of motion for three
independent configuration variables OE, Oψ , and Oδφ,
which read

ÖE þ N2

3A
ΔOE þ ð2H − χÞ _OE ¼ N2

A
Oψ − χOB; ð2:9Þ

Öδφ þ
�
N2

2
V;φ̄ φ̄ −

N2

A
Δ
�
Oδφ þ

�
3H −

_N
N

�
_Oδφ

¼ −3 _̄φ _Oψ þ _̄φΔOB; ð2:10Þ

Öψ þ ð2H − χÞ _Oψ −
N2

3A
ΔOψ þ N2

9A
Δ2OE

þ κ _̄φ

4λ
_Oδφ ¼ κN2V;φ̄

8λ
Oδφ −

χ

3
ΔOB; ð2:11Þ

where χ is defined via

χ ¼
_H
H

þH
2
þ κN2p

4H
: ð2:12Þ

Again, the corresponding equations of motion for the
Gaussian dust model can be obtained from the set of
equations in (2.9)–(2.11) by dropping all terms that
involve OB.
The equations of motion in (2.9)–(2.11) describe the

coupled differential equations of the independent Dirac
observables and hence provide a gauge invariant evolution.
These Dirac observables were constructed by choosing the
dust fields as reference fields and each individual quantity
is manifestly gauge invariant, which is not only up to linear
order but also invariant under finite gauge transformations.
As a consequence, also any combination of these variables
as well as their temporal derivatives are manifestly gauge
invariant quantities, which is something we will take
advantage of in the following. If we compare the setup
with what is usually done in the conventional linear
perturbation theory, then even if one starts with a two
fluid system in the background, one uses part of the
geometric degrees of freedom as reference fields in
prominent gauges such as the longitudinal or the spatially
flat gauge. In this case one will also obtain 6 independent
degrees of freedom in the reduced phase space of the scalar
sector, but these are encoded in different gauge invariant
variables. For the longitudinal gauge these are the Bardeen
potential and its momentum and two independent gauge
invariant variables and their momenta related to the dust
fields. In the case of the spatially flat gauge one chooses the
Mukhanov-Sasaki variable as well as two gauge invariant
variables and their momenta related to the dust fields.
Therefore, in order to compare our framework to the
conventional choice of variables in the linear cosmological
perturbation theory we adopt the strategy of considering
specific combinations of Dirac observables OE;Oψ ;Oδφ

and their momenta that are generalizations of the Bardeen
potential and the Mukhanov-Sasaki variable at the level of
Dirac observables in the presence of dust reference fields.
Recall that in the conventional case one only couples the
inflaton to gravity and no further dust fields, and then one
obtains a closed second order differential equation for the
Bardeen potential and the Mukhanov-Sasaki variable,
respectively. If we now add the additional dust fields in
the conventional setup, their gauge invariant extensions will
also contribute to these differential equations and these
contributions we will denote as dust contributions in the
following. For instance, in [22] the Mukhanov-Sasaki
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equation for the Brown-Kuchař and the Gaussian dust
models was derived, and it has the following form:

Q̈þ 3

2

_A
A

_Q −
�
Δ
A
þ 3

2

_A
A

_Z
Z
þ Z̈
Z

�
Q ¼ FBK=G

dust ; ð2:13Þ

with the Mukhanov-Sasaki–like variable in terms of the
elementary Dirac observables given by

Q ¼ Oδφ þ Z

�
Oψ −

Δ
3
OE

�
; ð2:14Þ

where Z ¼ 2λφ
Π̄Φ
AP and FBK=G

dust is the additional term
accounting for the contributions from the dust reference
fields in either the Brown-Kuchař or Gaussian dust models.
Its explicit form reads [22]2

FBK=G
dust ¼

�
−
3κλφΠ̄Φ

2A3
þ κ2λ2φΠ̄3

Φ

2A5P2
þ κ2λφΠ̄ΦĒdust

2A7=2P2
þ κV;Φ

2AP

�
δEdust

k þ κλφΠ̄Φ

2A5=2P
δEdust

þ Ēdust

�
−
κλφΠ̄Φ

2A5=2P
ΔOE −

3κQ

4A3=2 þOδφ

�
3κ

2A3=2 −
κ2λφΠ̄2

Φ

2A7=2P2
−
κ

ffiffiffiffi
A

p
V;Φ

2λφPΠ̄Φ
−
κ2Ēdust

2A2P2

��
; ð2:15Þ

where Q is understood as a function of the elementary
Dirac observablesOE;Oψ ;Oδφ. Although we know that by
construction FBK=G

dust is manifestly gauge invariant, its
structure as a function of OE;Oψ ;Oδφ looks rather com-
plicated. Furthermore, from the form obtained in [22] it is
not obvious that the dust contributions encoded in FBK=G

dust
can be interpreted as gauge invariant quantities for the dust
degrees of freedom, which would be pivotal for a com-
parison to the conventional choice of variables. In the next
section we will show that this is indeed possible. We
discuss a general strategy how for a given choice of gauge
specific combinations of the elementary Dirac observables
in the reduced phase space can be chosen as a set of
variables that mimics the conventional choice of gauge
invariant variables in cosmological perturbation theory.
This then provides a map between the reduced phase space
of the dust models and the one conventionally chosen for
linear perturbations around a two fluid background cos-
mology. Furthermore, such a kind of map also allows one to
compare their corresponding gauge invariant equations of
motion for the two choices of sets of gauge invariant
variables.

III. THE BARDEEN AND MUKHANOV-SASAKI
EQUATIONS IN THE BROWN-KUCHAŘ AND THE

GAUSSIAN DUST MODELS

For both models, namely the Brown-Kuchař and
Gaussian dust models, as well as for both gauges the
longitudinal one and the spatially flat one, we will follow
the following strategy. In former works [16,22] these
models and gauges were analyzed using a set of Dirac
observables associated with metric and matter degrees of
freedom. In order to compare the results to the conven-
tional case where the dust is absent, one needs to identify a
convenient set of three gauge invariant quantities in the
scalar sector and their dynamics. In the former works such
an identification has only been presented for one out of the

three independent gauge invariant variables. Whereas for
models that include an inflaton coupled to gravity, for
each gauge only one independent gauge invariant variable
exists. For the longitudinal gauge this corresponds to the
Bardeen potential, where as for the spatially flat gauge this
gauge-invariant quantity is the Mukhanov-Sasaki varia-
ble. As expected the choice of gauge invariant variables is
tightly connected to the chosen gauge. Moreover, in our
case we investigate for each gauge two different dust
models. Therefore, we expect for each chosen gauge to
obtain a different set of three independent gauge invariant
variables, and since we consider two different dust models
in general, we expect for one chosen gauge different
equations of motion for the gauge invariant variables
depending on the chosen dust model. Because of this we
will analyze the aforementioned four possible cases in this
article. Further, we will show that for each gauge and each
model, the choice of the set of gauge invariant variables is
strongly connected with the choice of geometrical clocks
in the conventional case [21] where these geometrical
clocks are gauged to vanish allowing one to embed the
conventional case into these dust models, where these
geometrical clocks no longer vanish, at the gauge invari-
ant level.
In order to find a map that relates the set of independent

physical degrees of freedom in the reduced phase space
obtained by taking dust as reference fields and the
conventional choice of variables we consider again the
full phase space of all scalar degrees of freedom. This
means in addition to OE;Oψ ;Oδφ and their conjugate
momenta we consider the Dirac observables Oϕ and OB
associated with the perturbed lapse function and scalar

2Here the notations from [22] are used as we cite the results
from there. In particular, the definitions of δEdust

k and δEdust in [22]
differ by a constant κ from the definitions used in this manuscript
in (3.14) and (3.15).
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contribution to the perturbed shift vector as well as their
conjugate momenta. Note that these are no independent
degrees of freedom since on the reduced phase space these
are functions of the independent Dirac observables.
However, reconsidering them at this stage allows us
to construct the desired map in a more systematic

fashion. Next, we consider the way gauge invariant
observables are constructed in linear cosmological
perturbation theory and carry this over to our set of
variables consisting of OE;Oψ ;Oδφ;Oϕ, and OB and their
momenta yielding

OGI
ϕ ¼ Oϕ −

1

N
b;τ; OGI

pϕ
¼ Opϕ

;

OGI
B ¼ OB þ N

A
b − b̂;τ; OGI

pB
¼ OpB

;

OGI
E ¼ OE − b̂; OGI

pE
¼ OpE

þ Nb
4AH

þ b̂;

OGI
ψ ¼ Oψ −

H
N
b −

1

3
Δb̂; OGI

pψ
¼ Opψ

þ
�
H
4N

þ κN
8H

p

�
b −

1

6
Δ
�

N
AH

bþ b̂

�
;

OGI
δφ ¼ Oδφ −

λφπ̄φ
A3=2 b; OGI

δπφ
¼ Oδπφ − π̄φΔb̂þ A3=2V;φ̄

2λφ
b: ð3:1Þ

Above the superscript “GI” indicates that the new
variables after the transformations are also gauge invariant
quantities since b and b̂, which are chosen to be the gauge
invariant analogs of the gauge descriptors in the conven-
tional theory, are functions of the elementary canonical
variables in the reduced phase space. With an appropriate
choice of b and b̂, one can find the observable analogs of
the relevant quantities in some particular gauges in the
conventional theory as we discuss in the next subsection.
Note that for the two dust models considered in this
work though Oϕ vanishes, however, OGI

ϕ is in general
nonvanishing. The nonvanishing of the latter will play an
important role in our later discussion.

A. The Bardeen potential and the Mukhanov-Sasaki
variable in the reduced phase space

In order to know the way the gauge invariant analogs of
the gauge descriptors need to be chosen for a specific
choice of gauge, we can apply the results obtained in
[19,20] on geometrical clocks in the relational formalism
and carry them over to our situation here. Following the
results from [19,20] we choose for the longitudinal gauges
b and b̂ to be the following functions on the reduced phase
space:

bL ¼ −
4AH
N

ðOE þOpE
Þ; b̂L ¼ OE: ð3:2Þ

The analogs of the Bardeen potential and its momenta in
the reduced phase space are then obtained as

OL
ψ ≔ Oψ þ 4AH2

N2
ðOE þOpE

Þ − 1

3
ΔOE; ð3:3Þ

OL
pψ

≔ Opψ
−
�
AH2

N2
þ κAp

2

�
ðOE þOpE

Þ

þ 1

2
ΔOE þ 2

3
ΔOpE

; ð3:4Þ

where the superscript “L” is used to denote physical
observables in the reduced phase space in the longitudinal
gauge. In the following, we simply refer to OL

ψ as the
Bardeen potential in the longitudinal gauge. Similarly, one
can find the remaining variables in the longitudinal gauge,
which are

OL
ϕ ¼ −OL

ψ ; OL
pϕ

¼ Opϕ
; OL

E ¼ 0;

OL
pE

¼ 0; OL
B ¼ 0; OL

pB
¼ OpB

; ð3:5Þ

where OpB
and Opϕ

are the primary constraints. The
corresponding new variables for the matter sector are
given by

OL
δφ ≔ Oδφ þ

4λφπ̄φH

NA1=2 ðOE þOpE
Þ;

OL
δπφ

≔ Oδπφ − π̄φΔOE −
2HA5=2V;φ̄

λφN
ðOE þOpE

Þ: ð3:6Þ

Note that of course not all of these just constructed gauge
invariant combinations are independent from each other,
and some even vanish. However, considering all these
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variables and rewriting Hamilton’s equations of motion in
terms of them provide a systematic way to derive a second
order differential equation of the Bardeen potential includ-
ing some modifications due to the gauge invariant con-
tributions from the dust energy and dust momentum
density. This result then automatically leads to a convenient
choice for the remaining two independent degrees of
freedom in addition to the Bardeen potential in the reduced
phase space.
Similarly if we are interested in the spatially flat

gauge, then we aim at constructing the analog of the
Mukhanov-Sasaki variable in the reduced phase space by
choosing

bS ¼ N
H

�
Oψ −

1

3
ΔOE

�
; b̂S ¼ OE; ð3:7Þ

which once plugged into (3.1) yields

Q≔OS
δφ ¼Oδφ−

λφπ̄φN

HA3=2

�
Oψ −

1

3
ΔOE

�
;

PQ ≔OS
δπφ

¼Oδπφ − π̄φΔOEþ
NA3=2V;φ̄

2λφH

�
Oψ −

1

3
ΔOE

�
:

ð3:8Þ

Above Q denotes the Mukhanov-Sasaki–like variable and
PQ its conjugate momentum in the reduced phase space,
where capital P is used to denote the conjugate momentum
of the Dirac observables. The superscript “S” is due to the
fact that the Mukhanov-Sasaki variable has a natural
physical interpretation in the spatially flat gauge in conven-
tional perturbation theory (see, for example, [20]). As in the
case of the longitudinal gauge, one can find the remaining
new variables for the choice of spatially flat gauge. These
are given by

OS
ψ ≔ 0; OS

pψ
≔ Opψ

þ
�
1

4
þ κN2p

8H2
−

N2Δ
6AH2

��
Oψ −

1

3
ΔOE

�
−
1

6
ΔOE;

OS
ϕ ≔ Oϕ −

�
_N

HN
−

_H
H2

��
Oψ −

1

3
ΔOE

�
−

1

H

�
_Oψ −

1

3
Δ _OE

�
; OS

pϕ
≔ Opϕ

;

OS
B ≔

N2

AH

�
Oψ −

1

3
ΔOE

�
þ 4HðOE þOpE

Þ; OS
pB

≔ OpB
;

OS
E ¼ 0; OS

pE
¼ N2

4AH2

�
Oψ −

1

3
ΔOE

�
þOE þOpE

: ð3:9Þ

Similar to the case in the longitudinal gauge, these elements
of the set of variables are not independent, but the set
provides a possibility to systematically identify the inde-
pendent variables that are most convenient to compare our
framework to the conventional one.
In the following, we derive the equations of motion of

the Bardeen potential and the Mukhanov-Sasaki variable
in the reduced phase space of the Brown-Kuchař and the
Gaussian dust models. As mentioned above, there are 3
independent scalar degrees of freedom in the linearized
reduced phase space which are in general coupled to one
another. Hence, neither the Bardeen potential nor the
Mukhanov-Sasaki variable on its own can fully describe
the evolution of the linear perturbations in the dust
models. It is necessary to find two further independent
variables in the reduced phase space that form together
along with the Bardeen potential and the Mukhanov-
Sasaki variable, respectively, a closed system of evolution
equations. Our guiding principle will be that by con-
struction we know that these two additional independent
variables are related to the gauge invariant extensions of
the dust degrees of freedom. Once we have the equations
of motion for the linear scalar perturbations in that form,

we can easily identify the additional two independent
variables. We explicitly show how to choose these two
variables and moreover derive their coupled system of
differential equations they build together with the (gen-
eralized) Bardeen and (generalized) Mukhanov-Sasaki
equation, respectively.

B. The Bardeen equation in the
Brown-Kuchař dust model

In this subsection, we derive the Bardeen equation and the
equations ofmotion of the other two variableswhich, coupled
with the Bardeen potential, form a closed system for the
evolution of the linear scalar perturbations in the Brown-
Kuchař dust model. The starting point is the observation that
the transformations in (3.1) are compatiblewith the equations
of motion (2.2)–(2.7) for the elementary variables in the
reduced phase space. That is to say, the set of new variables
obtained from (3.1) also satisfy Eqs. (2.2)–(2.7) once the old
variables in these equations are promoted to the newones. It is
easy to check that all the additional terms related with the
gauge descriptors are canceled exactly if one solves for theold
variables in terms of the new ones and then substitutes them
back into (2.2)–(2.7). As a result, Hamilton’s equations of
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motion for the Bardeen potential and its momentum are
given by

_OL
ψ ¼ 2HðOL

pψ
−OL

ψ Þ; ð3:10Þ

_OL
pψ

¼
�
−
1

2
H þ κN2

4H
p

��
OL

pψ
−
1

2
OL

ψ

�

−
κN2δTL

8H
þ
�
1

4
H þ κN2

8H
p

�
OL

ψ ; ð3:11Þ

where we have usedOL
ϕ ¼ −OL

ψ andOL
B ¼ 0. Moreover, the

linear perturbation of the trace of the spatial components of
the energy momentum tensor in the longitudinal gauge is
given by

δTL ¼ −3λφ
π̄2φ
A3

OL
ψ þ λφπ̄φ

A3
OL

δπφ
−
V;φ̄

2λφ
OL

δφ: ð3:12Þ

Taking the time derivative of (3.10) and with the help of
(3.11), it is straightforward to obtain the equation of motion
for the Bardeen potential in the reduced phase space which
turns out to be

ÖL
ψ ¼

�
_N
N
− 4H

�
_OL
ψ þ κN2p

2
OL

ψ −
κN2

4
δTL: ð3:13Þ

In order to compare (3.13) with its counterpart in the
conventional perturbation theory, one needs to express
OL

δπφ
and OL

δφ in δTL in terms of the Bardeen potential, its
time derivative, and the contributions corresponding to the
dust. This can be achievedbyperturbing the totalHamiltonian
and diffeomorphism constraints, which yields

−δEdust ¼ δC ¼ 4
ffiffiffiffi
A

p
Δ
�
Oψ −

1

3
ΔOE

�

−
3

ffiffiffiffi
A

p
P2

2
ðOψ þ 4Opψ

Þ

þ κA3=2

�
V;φ̄Oδφ

2λφ
þ λφπφOδπφ

A3
− 3pOψ

�
; ð3:14Þ

− δEdust
k ¼ δĈ ¼ κπφOδφ

− 4AP
�
2

3
ΔðOE þOpE

Þ þOpψ
−
Oψ

2

�
: ð3:15Þ

Although the above formulas are in terms of the elementary
Dirac observables, they can easily be expressed in terms of
our new variables in the longitudinal gauge. The resulting
equations are

−δEdust
L ¼−3P2

ffiffiffiffi
A

p

2
ðOL

ψ þ4OL
pψ
Þþ4

ffiffiffiffi
A

p
ΔOL

ψ þ3κĒdustOL
ψ

þκA3=2

�
V;φ̄

2λφ
OL

δφþ
λφπ̄φ
A3

OL
δπφ

−3pOL
ψ

�
≕δCL;

ð3:16Þ

−δEdust
k;L ¼ κπφOL

δφ − 4AP
�
OL

pψ
−
OL

ψ

2

�
≕ δĈk;L: ð3:17Þ

Here we have introduced δEL and δEdust
k;L , which are the

analogsof the gauge invariant perturbations of the dust energy
and momentum density in the longitudinal gauge in a two
fluid system. As can be seen in our case on the reduced dust
space, these can be expressed completely in terms of the
geometric and inflaton degrees of freedom. Their explicit
form reads

δEdust
L ¼ −δCL ¼ −δCþ κC̄ð3OL

ψ þ Δb̂LÞ; ð3:18Þ

δEdust
k;L ¼ −δĈk;L ¼ −δĈþ κC̄bL; ð3:19Þ

and C̄ is the contribution of geometry and the inflaton to total
Hamiltonian constraint of the background given by

C̄ ¼ −
3P2

ffiffiffiffi
A

p

2κ
þ λφπ̄

2
φ

2A3=2 þ
VA3=2

2λφ
: ð3:20Þ

Let us compare this to the situation of a system involving
gravity and the inflaton only where one uses the conventional
linearized geometrical clocks. In this case δCL and δĈk;L both
vanish because then C̄ and δC are the total background and
linearized Hamiltonian constraint. Moreover bL is the gauge
fixing condition of the longitudinal gauge.
Now it is straightforward to solve forOL

δφ andO
L
δπφ

from
(3.16) and (3.17) to obtain

OL
δφ ¼ 2AP

κπ̄φ

�
OL

ψ þ
_OL
ψ

H

�
þ δĈk;L

κπ̄φ
; ð3:21Þ

λφπ̄φ
A3

OL
δπφ

¼ δCL

κA3=2 þ
3P2

2κA

�
5OL

ψ þ 2

H
_OL
ψ

�
−

4

κA
ΔOL

ψ

þ 3

�
pþ C̄

A3=2

�
OL

ψ −
V;φ̄

2λφ
OL

δφ; ð3:22Þ

where we have used OL
pψ

¼ OL
ψ þ _OL

ψ=ð2HÞ. Plugging
(3.21) and (3.22) into (3.13), the Bardeen equation finally
takes its form as
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ÖL
ψ −

�
_N
N
− 7H −

N2V;φ̄

_̄φ

�
_OL
ψ −

N2

A
ΔOL

ψ

−
�
κN2p
2

− 3H2 −
N2V;φ̄

_̄φ
H
�
OL

ψ

¼ N2

4A3=2 δE
dust
L −

N3V;φ̄

4A3=2 _̄φ
δEdust

k;L

¼ −
N2

4A3=2 δCL þ N3V;φ̄

4A3=2 _̄φ
δĈk;L ≡ FB

dust; ð3:23Þ

where FB
dust stands for the dust contributions in the Bardeen

equation. We emphasize that here FB
dust is understood as an

additional contribution to the Bardeen equation if one
compares to the system of an inflaton minimally coupled
to gravity. As compared with this counterpart system, the
above Bardeen equation in the Brown-Kuchař dust model
has two additional terms on the right-hand side which are
proportional to the perturbations of the dust energy density
and dust momentum density, respectively. Note that if one
adds dust to the inflaton-gravity system in the conventional
framework, then one obtains the same form of the above
modified Bardeen equation albeit with variables that are
gauge invariant only till the linear order. In contrast, the
FB
dust term computed above using dust reference fields is a

manifestly gauge invariant quantity. In the absence of dust,
δCL and δĈk;L vanish and so does FB

dust; one rediscovers the
usual Bardeen equation in this limit.
Note that in our case the Bardeen equation itself does

not describe the evolution of a closed system since the
gauge invariant perturbations of the dust energy density
and the dust momentum density also depend on other
independent gauge invariant variables. Considering the
form of FB

dust, a convenient choice for the two further
physical degrees of freedom would be the analog of the
gauge invariant extensions of the dust’s energy and
momentum densities, that is, δEdust

L and δEdust
k;L . Given

their explicit forms in (3.18) and (3.19) together with the
fact that δC and δĈ are constants of motion in the Brown-
Kuchař model, we can also choose bL and b̂L as the two
gauge invariant variables in addition to the Bardeen
potential. In the conventional approach bL and b̂L would
not be gauge invariant, but for the dust reference models
they are built from elementary manifestly gauge invariant
Dirac observables, and thus any function of them is again
gauge invariant. For the reason that b̂L ¼ OE, we work
directly withOE and choose in the case of the longitudinal
gauge a set of gauge invariant quantities consisting of
(OL

ψ , bL, OE). With this choice we need to express FB
dust in

terms of these gauge invariant variables and moreover also
derive the evolution equations for these to obtain the
system of differential equations that describe the evolution
of the linear perturbations in the Brown-Kuchař model. In
particular, substituting (3.18) and (3.19) into the expres-
sion of FB

dust, we obtain

FB
dust ¼ −

N2

4A3=2 δCþ κC̄N2

4A3=2 ð3OL
ψ þ ΔOEÞ

þ N3V;φ̄

4A3=2 _̄φ
ðδĈþ κC̄bLÞ: ð3:24Þ

The Hamilton’s equation of OE can be read
from (2.3), which, after introducing a new variable3

PbS ¼ 8APH
N ðOE þOPE

Þ, which is the conjugate momen-
tum to bS, yields

_OE ¼ −
NPbS

2AP
−

δĈ
κAC̄

: ð3:25Þ

Moreover, the Hamilton’s equation of PbS can be derived
from (2.3) and (2.6), which takes the form

_PbS ¼
4H2

ffiffiffiffi
A

p

N
bS þ

�
_H
H

−
_N
N

�
PbS: ð3:26Þ

Now combining (3.25) and (3.26), we can obtain the
equation of motion for OE, namely,

ÖE þ
�
3H −

_N
N

�
_OE ¼ NHbL

A
þN2

A
OL

ψ −
�
H −

_N
N

�
δĈ
κAC̄

:

ð3:27Þ

Finally, the differential equation that governs the dynam-
ics of the gauge descriptor bL can be derived in a
straightforward way from its definition (3.2) and the
equations of motion (2.3) and (2.5). A simple calculation
yields

_bL −
�
_H
H

−
_N
N
þ 3

2
H þ κN2p

4H

�
bL ¼ NOL

ψ : ð3:28Þ

We now compare the results obtained here to the conven-
tional approach where no dust is coupled to gravity. As
shown in [20], in the latter case bL and b̂L are not gauge
invariant but can be understood as the geometrical
clocks for the Hamiltonian and spatial diffeomorphism
constraints, respectively. Hence, these are gauge fixing
constraints that are both gauged to zero. Since no dust is
present, δC and δĈ both vanish and this implies FB

dust
vanishes as well. Hence, we rediscover the conventional
Bardeen equation in this case. If we consider the differential
equations in (3.27) and (3.28), then the limit to the conven-
tional case should be taken with care. While in the dust
modelsOϕ ¼ 0; however, in the conventional case this is not
true in the longitudinal gauge. For the conventional case in
(3.27), OE ¼ _OE ¼ ÖE ¼ bL ¼ _bL ¼ δĈ ¼ 0, and thus it

3Similar to the notation for the conjugate momentum of the
Mukhanov-Sasaki variable in (3.8), we use capital P to denote the
momentum of the Dirac observable bS.
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seems that in this case (3.27) forces theBardeen potentialOL
ψ

to vanish. However, it is important to note that in the
conventional case there is an additional OL

ϕ term in that
differential equation and then (3.27)would just yield that the
twoBardeen potentials are not independent but just differ by
a sign in our conventions in agreement with the results in
[20]. The same is true for the differential equation for bL in
(3.28), and thus in the conventional case this equation yields
no further information.
Finally, we would like to point out that in the conven-

tional two-fluid system consisting of an inflaton field and
the dust fields ðT; SiÞ, there are also 6 scalar physical
degrees of freedom at the linear order of the perturbations.
In particular, in addition to the Bardeen potential ψ ðgi;LÞ and
its momentum pðgi;LÞ

ψ , one can also construct the other four
scalar physical degrees of freedom from the gauge invariant
perturbations of the dust fields and their respective
momenta. Specifically, in the longitudinal gauge, these
gauge invariant perturbations look like

ψ ðgi;LÞ ¼ ψ þ 4AH2

N2
ðEþ pEÞ −

1

3
ΔE; pðgi;LÞ

ψ

¼ pψ −
�
AH2

N2
þ κAp

2

�
ðEþ pEÞ þ

1

2
ΔEþ 2

3
ΔpE;

ð3:29Þ

δTðgi;LÞ ¼ δT þ 4AH
κN

ðEþpEÞ; δPðgi;LÞ
T ¼ δP−

P̄
κ
ΔE;

ð3:30Þ

δŜðgi;LÞ ¼ δŜ; δPðgi;LÞ
Ŝ

¼ δPŜ −
P̄i

κ
∂iE; ð3:31Þ

where ðP;PiÞ are the conjugate momenta of ðT; SiÞ and P̄
and P̄i denote the background quantities of each variable. As
comparedwith the physical degrees of freedom in the reduced
phase space of the relational formalism with the dust
reference clocks, the gauge invariant quantities in the conven-
tional two fluid systems are gauge invariant only at the linear
order of the perturbations.

C. The Mukhanov-Sasaki equation in the
Brown-Kuchař dust model

In the Brown-Kuchař dust model, the Mukhanov-Sasaki
equation can be derived in a similar way as discussed in the
above subsection. In the following, we briefly outline the
main results and leave the detailed derivations to Appendix.
The starting point is Hamilton’s equations of motion for Q
and its momentum PQ which can be obtained from (2.4)
and (2.7) under the spatially flat gauge (3.7),

_Q ¼ λφπ̄φN

A3=2

�
OS

ϕ þ
PQ

π̄φ

�
; ð3:32Þ

_PQ ¼ π̄φΔOS
B þ NA3=2

λφ

�
−
V;φ̄

2
OS

ϕ þ
ΔQ
A

−
V;φ̄ φ̄

2
Q
�
:

ð3:33Þ

Taking the time derivative of (3.32) and then using (3.33),
one can obtain a second order differential equation for Q,
which includes terms proportional to OS

ϕ, _OS
ϕ, and OS

B as
the source terms. Next, we need to relate these source terms
with the gauge invariant perturbations of the dust energy
density and momentum density in the spatially flat gauge,
which as discussed in Appendix are given, respectively, by
Eqs. (A3) and (A11). It turns out that in terms of these
gauge invariant perturbations of the dust energy and
momentum densities, the Mukhanov-Sasaki equation can
be cast into the form

Q̈ −
�
_N
N
− 3H

�
_Q −

N2

A
ΔQ

þ
�
N2

2
V;φ̄ φ̄ þ

κπ̄φN3V;φ̄

2HA3=2 þ κ2N4π̄2φV

32H2A3

þ 9λφκN2π̄2φ
8A3

−
3λ2φκ

2N4π̄4φ
32H2A6

�
Q ¼ FMS

dust; ð3:34Þ

with the contributions due to the dust given explicitly by

FMS
dust ¼ −

�
9λφπ̄φ
2A3=2 −

3λ2φκN2π̄3φ
8H2A9=2 þ κN2πφV

8H2A3=2 þ
NV;φ̄

H

�
κN2C̄bS

4A3=2 þ λφκC̄π̄φN2

4HA3
_bS

−
�
3λ2φκN2π̄3φ
8H2A9=2 −

9λφπ̄φ
2A3=2 −

κN2π̄φV

8H2A3=2 −
NV;φ̄

H

�
N2δĈ

4A3=2 þ
λφπ̄φN3

4HA3
δC −

λφκC̄π̄φN3

4HA3
ΔOE; ð3:35Þ

where we have used an intermediate step from Appendix
given in Eq. (A10).
As a result, we find the Mukhanov-Sasaki variable Q

and two gauge descriptors bS and b̂Sð¼ OEÞ form a
closed system which is governed by Mukhanov-Sasaki

equation (3.34) and the equations for OE (A13) and bS

(A14). It should be noted that for the spatially flat case the
differential equations for bS andOE are also consistent with
the conventional case, in which bS ¼ OE ¼ 0 and their
temporal derivatives vanish as well. In addition, δĈ
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vanishes. Analogous to the longitudinal case, in the
conventional case these differential equations would
involve OS

ϕ which gets via these equations related to Q.
Using the spatial diffeomorphism constraint in the
conventional case relates OS

ϕ then further to Opψ
and

OpE
which agrees exactly with the results obtained in

[20]. As before the differential equations for bS and OE
merge into an identical equation in the limit of the
conventional case.
Similar to the case of the longitudinal gauge, in the

spatially flat gauge, the conventional two-fluid system
consisting of an inflaton field and the dust fields ðT; SiÞ
also contains 6 physical degrees of freedom in the scalar
sector of the linear perturbations, which are the Mukhanov-
Sasaki variable νðgi;SÞ, the gauge invariant perturbations of
the dust fields, and their respective momenta. At the linear
order in the perturbations, these variables take the form

νðgi;SÞ ¼ δφ −
λφπ̄φN

HA3=2

�
ψ −

1

3
ΔE

�
;

pðgi;SÞ
ν ¼ δπφ − π̄φΔEþ NA3=2V;φ̄

2λφH

�
ψ −

1

3
ΔE

�
; ð3:36Þ

δTðgi;SÞ ¼ δT −
N
κH

�
ψ −

1

3
ΔE

�
; δPðgi;SÞ

T ¼ δP−
P̄
κ
ΔE;

ð3:37Þ

δŜðgi;SÞ ¼ δŜ; δPðgi;SÞ
Ŝ

¼ δPŜ −
P̄i

κ
∂iE: ð3:38Þ

Again, it should be emphasized that the above variables are
only gauge invariant at the linear order of the perturbations.

D. The Bardeen and Mukhanov-Sasaki equations in the
Gaussian dust model

In the Gaussian dust model, one can derive the Bardeen
and the Mukhanov-Sasaki equations by following the same
procedures as in the last two subsections. The starting point
is the equations of motion for the elementary variables
which take the similar forms as (2.2)–(2.7), but with a
difference that in the Gaussian dust model, the scalar
contribution to the linear perturbations of the shift vector
OB vanishes. Then, one can define the same Bardeen
potential and the Mukhanov-Sasaki variable as in (3.3) and
(3.8), respectively. Following the same strategy as dis-
cussed in Sec. III B, one can obtain the same Hamilton’s
equations for the Bardeen potential and its conjugate
momentum as in (3.10) and (3.11), which lead to the same
expression of the Bardeen equation as given in (3.23), in
particular, the dust contributions take exactly the same form
as in (3.24). In addition, Hamilton’s equation of PbS takes
the same form as in (3.26) while the equation for OE in the
Gaussian dust model changes to

_OE ¼ −
NPbS

2AP
: ð3:39Þ

This equation when combined with (3.26) yields

ÖE þ
�
3H −

_N
N

�
_OE ¼ NHbS

A
ð3:40Þ

or, equivalently,

ÖE þ
�
3H −

_N
N

�
_OE ¼ NHbL

A
þ N2

A
OL

ψ : ð3:41Þ

Finally, in order to form a closed system, one also needs the
equation of motion for bL in the Gaussian dust model,
which takes the same form as (3.28) in the Brown-Kuchař
dust model.
Similarly, the derivation of the Mukhanov-Sasaki equa-

tion follows the same strategy in Sec. III C, which finally
leads to the same expressions of the equations as presented
in (3.34) and (3.35). Moreover, the equation of motion for
bS also takes the same form as in the Brown-Kuchař dust
model, which is given by (A14). As a result, in the
Gaussian dust model, the Bardeen potential OL

ψ , the
Mukhanov-Sasaki variable Q, and the gauge invariant
analog of the gauge descriptors bL and bS obey the same
equations of motion as their counterparts in the Brown-
Kuchař dust model. The only difference between the two
dust models lies in the equations of motion ofOE, which is
(3.27) in the Brown-Kuchař dust model and (3.40) in the
Gaussian dust model. Finally, let us briefly comment on the
property of the dust model that as discussed in [17] in
contrast to the Brown-Kuchař model the perturbed dust
energy density δEdust is not a constant of motion. Since
using the gauge invariant analogs of the gauge descriptors
as the further two independent gauge invariant variables
instead of the gauge invariant analogs of the perturbed
energy and momentum density of the dust was justified
with δEdust

k and δEdust being constants of motion, the
question arises whether we need to modify this choice
for the Gaussian dust model. As shown in [22] we have
dδEdust=dτ ¼ ΔδEdust

k =A. Since for the Gaussian dust model
δEdust

k is also a constant of motion, we can obtain the time
evolution of δEdust if we know δEdust

k and the background
evolution. Thus, we can choose the same sets of gauge
invariant variables for the Gaussian and Brown-Kuchař
models.
To summarize all the results in the manuscript, we list the

main findings in Table I. Here we summarize the main
results of gauge invariant variables chosen for the dust
model in our work, as compared with the conventional
perturbation approach where only a single inflaton field
coupled to gravity is considered. This table also presents
further insights on these observations by comparing our
work to conventional cosmological perturbation theory
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based on multifluid systems in the background cosmology;
see, for instance, [56–60]. But it is to be emphasized that
for a consistent comparison one crucially needs to take into
account the independent physical degrees of freedom of the
various models. In case one follows the conventional
approach for the dust models considered here, a
possible choice of gauge invariant variables can be the
corresponding gauge invariant versions of the elementary
dust clock degrees of freedom ðT; SiÞ in the scalar sector
that are shown in the last column of the table. For a more
detailed comparison to multifluid systems one needs
to consider the specific perfect fluid models under
consideration.

IV. CONCLUSIONS

The relational formalism and the reduced phase space
approach is a promising avenue to address various con-
ceptual and technical difficulties encountered in canonical
treatments, especially when applied to a quantum gravita-
tional setting. Cosmological perturbation theory provides
an interesting route to test physical implications of the
relational formalism. Since in the conventional approach to
cosmological perturbation theory one considers a scalar
field coupled to gravity without any reference fields, the
scalar sector of the linear perturbations contains just
1 degree of freedom. For a given gauge, this degree of
freedom has a natural interpretation for a specific choice of
the gauge invariant variable [20]. For example, if the
chosen gauge is the longitudinal gauge, then the physical
degree of freedom is naturally captured by the Bardeen
potential, and for the spatially flat gauge this degree of
freedom is encoded in the Mukhanov-Sasaki variable. The
number of these physical degrees of freedom increases to 3
in the presence of dust reference fields, and the fingerprints
of the reference fields influence the dynamical equations
for the gauge invariant variables through modifications
specific to the choice of reference fields. While one can
construct generalizations of the Bardeen potential and the
Mukhanov-Sasaki variable in the presence of dust fields,
the additional degrees of freedom create subtleties in
comparing these variables to the conventional ones, and

therefore important gaps existed in investigations of the
physical implications of these corrections terms. In pre-
vious work the Bardeen-like and Mukhanov-Sasaki–like
variables were constructed [16,22] and their corresponding
dynamical equations were derived which contained extra
terms from dust contributions in the relational formalism
[16,22]. Then one focused on comparing the dynamics of
the Bardeen-like and Mukhanov-Sasaki–like variables to
the conventional case where only an inflaton coupled to
gravity is present. These extra terms or modifications to the
conventional scenario need to have a physical interpretation
but this task turned out to be difficult if one does not take
the entire set of physical degrees of freedom into account.
In [22] the set of three gauge invariant variables was taken
to be the Mukhanov-Sasaki variable together with two
elementary Dirac observables in the reduced phase space of
the dust models. It turned out that understanding these
modifications as functions of this set of gauge invariant
variables is quite nontrivial, and meanwhile their coupled
system of differential equations is also complicated to
analyze. Both aspects made a direct comparison to the
conventional equations of the former results a difficult task.
As a consequence, first, a clear physical interpretation of
modifications arising from dust degrees of freedom was not
available, and second, a direct comparison with conven-
tional systems which include an inflaton coupled to gravity
or an inflaton with nonrelativistic matter (dust) coupled to
gravity which has the same number of degrees of freedom
were not available. Accomplishing both of these tasks is
important to understand the differences of the relational
approach with the conventional approach and to gain
insights on the physical meaning of modifications resulting
from dust reference fields. The goal of this manuscript was
to explore these issues for the Bardeen potential and
Mukhanov-Sasaki variable obtained in the relational for-
malism using dust reference fields in the Brown-Kuchăr
and Gaussian dust models and compare with the conven-
tional setting devoid of these reference fields. In particular,
our focus was on understanding the additional degrees of
freedom tied to the introduction of reference fields through
a judicious choice of gauge invariant variables.

TABLE I. We compare the gauge invariant degrees of freedom at the scalar sector of the linear perturbations in three different models.
Both the gauge invariant observables and the equation numbers where they are defined are listed for the spatially flat and the longitudinal
gauges.

The manifestly gauge invariant
perturbation theory with the
dust reference clocks

The standard perturbation theory
with a single inflaton field

The perturbation theory with a single inflaton
and dust with the relational formalism truncated

at the linear order with geometric clocks

Spatially flat
gauge

Longitudinal
gauge

Spatially flat
gauge

Longitudinal
gauge

Spatially flat
gauge

Longitudinal
gauge

ðQ; PQÞ (3.8) ðOL
ψ ;OL

pψ
Þ (3.6)

ðνðgi;SÞ; pðgi;SÞ
ν Þ ðψ ðgi;LÞ; pðgi;LÞ

ψ Þ
ðνðgi;SÞ; pðgi;SÞ

ν Þ (3.36) ðψ ðgi;LÞ; pðgi;LÞ
ψ Þ (3.29)

ðb̂S; Pb̂SÞ (3.7) ðb̂L; Pb̂LÞ (3.2) ðδTðgi;SÞ; δPðgi;SÞ
T Þ (3.37) ðδTðgi;LÞ; δPðgi;LÞ

T Þ (3.30)

ðbS; PbSÞ (3.7) ðbL; PbLÞ (3.2) ðδŜðgi;SÞ; δPðgi;SÞ
Ŝ

Þ (3.38) ðδŜðgi;LÞ; δPðgi;LÞ
Ŝ

Þ (3.31)
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To compare cosmological perturbation theory in the
relational framework based on dust reference fields with
the conventional approach, one needed to use suitable
gauge invariant variables for the additional degrees of
freedom which at the same time simplify the dynamical
system of equations to make them conducive for inves-
tigations to compare with other approaches. A pertinent
question was also to establish this kind of relationship with
a multifluid model that has the same number of physical
degrees of freedom. This model includes an inflaton
coupled with nonrelativistic dust matter and gravity. The
result of our present analysis was to obtain these sets of
gauge invariant variables, taking into account the way
gauge invariant variables are constructed in the conven-
tional approach for the longitudinal and spatially flat gauge,
respectively.
To identify these variables for the Brown-Kuchař and

Gaussian dust models, we noted that given a chosen gauge
a natural choice of the additional degrees of freedom are the
gauge invariant extensions of the energy and momentum
density of the dust because the contributions from the dust
take a simple form if expressed in terms of them. Using the
relationship of the gauge invariant extensions of the energy
and momentum density of the dust with the gauge invariant
analog of the gauge descriptors in the specific gauges, we
identified the latter as the gauge invariant variables corre-
sponding to the additional degrees of freedom tied to the
dust contributions. However, there is a major difference to
the conventional approach here. Since we constructed a
map from the independent elementary Dirac observables of
the reduced phase space of the dust models to a new set of
gauge invariant variables, everything is formulated at the
manifestly gauge invariant level. This is also the reason
why we could identify quantities that usually take the role
of gauge descriptors as discussed in [20] in the conven-
tional approach without reference fields as gauge invariant
variables here.
In our analysis we showed that a transparent physical

interpretation of the additional degrees of freedom due to
reference fields arises if one uses a different set of
variables to express the dynamical equations other than
the ones considered earlier. This exercise was carried out
for longitudinal and spatially flat gauges, and it was
shown that in general for each chosen gauge there exists a
natural choice for a set of gauge invariant variables.
Although in principle one could use the same set of
additional gauge invariant variables for different gauges,
the resulting dynamical equations get unnecessarily com-
plicated. This reenforces the observation, noted earlier for
geometrical clocks [20], that even for the case of two-fluid
systems such as the Brown-Kuchař and Gaussian dust
models, specific gauge choices amount to the choice of a
particular set of gauge invariant variables. This result
shows that the choice of clock can have important
implications in quantization of these models and their

phenomenology in perturbations. Here one would follow
the conventional procedure and quantize the dynamics of
the gauge invariant degrees of freedom which yields a
system of coupled differential equations already in the
scalar sector in our case. As far as we can judge from our
current analysis none of the dust reference fields mimick-
ing the geometrical clocks seems to be preferred at this
stage. With the techniques introduced in [12,13] and
applied in [20] the gauge invariant variables obtained in
the Lagrangian and Hamiltonian frameworks can be
matched. Because one also quantizes the dynamics of
the gauge invariant variables in one specific gauge when
coming from the Lagrangian formulation, we do not
expect any effects on the general covariance of the
quantization in the framework presented here, which
are also not present in the Lagrangian formulation. The
additional degrees of freedom that we are forced to
quantize compared to the conventional case where only
the inflaton as a matter degree of freedom is taken into
account will also be present in multifluid systems in the
Lagrangian framework. Thus, we should again be able to
compare results obtained in the framework here to models
in that context and once a quantization has been per-
formed also at the quantum level. To conclude, our
manuscript provides an avenue to relate dust reference
clocks to conventional methods for inflationary and
multifluid systems in perturbation theory. Insights gained
from our work are expected to also be helpful in under-
standing the quantization of these systems and associated
predictions for cosmological perturbations, especially in
canonical quantum gravity.
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APPENDIX: DETAILED DERIVATIONS OF THE
MUKHANOV-SASAKI EQUATION IN THE

BROWN-KUCHAŘ DUST MODEL

In this appendix, we derive the Mukhanov-Sasaki
equation in the Brown-Kuchař dust model in detail.
Taking the time derivative of (3.32) and then using
(3.33), it is straightforward to arrive at

Q̈ −
�
_N
N
− 3H

�
_Q −

N2

A
ΔQþ N2

2
V;φ̄ φ̄Q

¼ λφNπ̄φ
A3=2 ΔOS

B − N2V;φ̄OS
ϕ þ

λφπ̄φN

A3=2
_OS
ϕ: ðA1Þ

Now, in order to compare the above Mukhanov-Sasaki
equation with its counterpart in the conventional theory, the
first three terms on the right-hand side should be expressed
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in terms of Q and _Q. Similar to the Bardeen case, one can
make use of the perturbed Hamiltonian and diffeomor-
phism constraints (3.14) and (3.15). First, taking the form
of the gauge invariant analog of the gauge descriptors for
the spatially flat gauge in (3.7) and the perturbed spatial
diffeomorphism constraint in (3.15), it is straightforward to
show that

OS
ϕ ¼ Nκπ̄φQ

4HA3=2 þ
N

4HA3=2 δE
dust
k;S ; ðA2Þ

where δEdust
k;S is the gauge invariant perturbation of the dust

momentum density in the spatially flat gauge, which is
explicitly related with the geometric and inflaton degrees of
freedom via

δEdust
k;S ¼ −δĈk;S ¼ −δĈþ κC̄bS: ðA3Þ

Then, in order to relate the remaining term ΔOS
B with

Q and _Q, one should first note that for the spatially flat
gauge, we have OS

E ¼ 0. Considering the equation of
motion _OS

E ¼ 0, which can be directly read from (2.3),
we get

_OS
E ¼ −4HðOS

E þOS
pE
Þ þOS

B ¼ −4HOS
pE

þOS
B ¼ 0:

ðA4Þ

On the other hand, according to the definitions in (3.1), it is
straightforward to show that OL

ψ ¼ P2OS
pE
, which relates

two different new variables in two different gauges. As a
result, we obtain

ΔOS
B ¼ 4H

P2
ΔOL

ψ : ðA5Þ

Finally, one only needs to make use of (3.16) to relate ΔOL
ψ

with the Mukhanov-Sasaki variable and its derivatives. In
order to do that, one should first note that

V;φ̄

2λφ
OL

δφ þ
λφπ̄φ
A3

OL
δπφ

¼ V;φ̄

2λφ
Qþ λφπ̄φ

A3
PQ: ðA6Þ

Then, Eq. (3.16) is equivalent to

−δEdust
L ¼ δCL ¼ 3P2

ffiffiffiffi
A

p
ðOL

ψ − 2OL
pψ
Þ − 3κλφπ̄

2
φ

A3=2 OL
ψ

þ 4
ffiffiffiffi
A

p
ΔOL

ψ þ κA3=2

�
V;φ̄

2λφ
Qþ λφπ̄φ

A3
PQ

�

¼ 3H
N

ðκπ̄φQ − δĈk;LÞ þ 4
ffiffiffiffi
A

p
ΔOL

ψ

þ κA3=2

�
V;φ

2λφ
Qþ λφπ̄φ

A3
PQ

�
; ðA7Þ

where we have used (3.17) and the identity

OL
δφ ¼ Qþ λφπ̄φN

HA3=2 O
L
ψ : ðA8Þ

From (A7), one can solve for ΔOL
ψ in terms of the

Mukhanov-Sasaki variable Q, its velocity _Q, and also
terms involving δCL and δĈk;L. Hence, this is the last piece
we need to rebuild the Mukhanov-Sasaki equation in the
reduced phase space. Now, combining (A2), (A5), and
(A7), it is straightforward to show that the Mukhanov-
Sasaki equation in the reduced phase space takes the form

Q̈ −
�
_N
N
− 3H

�
_Q −

N2

A
ΔQþ

�
N2

2
V;φ̄ φ̄ þ

κπ̄φN3V;φ̄

2HA3=2

þ κ2N4π̄2φV

32H2A3
þ 9λφκN2π̄2φ

8A3
−
3λ2φκ

2N4π̄4φ
32H2A6

�
Q ¼ FMS

dust;

ðA9Þ

with the dust contribution term

FMS
dust ¼ −

�
3κλ2φπ̄

3
φN4

32H2A6
−
κπ̄φN4V

32H2A3
−
9λφπ̄φN2

8A3

−
N3V;φ̄

4HA3=2

�
δĈk;S −

λφπ̄φN2

4HA3

d
dτ

δĈk;S þ
λφπ̄φN3

4HA3
δCS:

ðA10Þ

Here we have used (A3) and defined likewise the gauge
invariant analog of the perturbed momentum density of the
dust

−δEdust
S ¼ δCS ¼ δC − κC̄ð3OS

ψ þ Δb̂SÞ ¼ δC − κC̄ΔOE:

ðA11Þ

Similar to the case of the longitudinal gauge we express
FMS
dust in terms of the gauge invariant energy and momentum

density of the dust and here in addition its temporal
derivative. Note, however, that for the spatial flat gauge,
these have been obtained using bS and b̂S. Following the
same route as for the Bardeen equation, for a spatially flat
gauge a convenient choice of the two further gauge
invariant variables in addition to the Mukhanov-Sasaki
variable Q is bS and b̂S ¼ OE. Expressed in terms of these
sets of variables FMS

dust takes the following form:
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FMS
dust ¼ −

�
9λφπ̄φ
2A3=2 −

3λ2φκN2π̄3φ
8H2A9=2 þ κN2πφV

8H2A3=2 þ
NV;φ̄

H

�
κN2C̄bS

4A3=2 þ λφκC̄π̄φN2

4HA3
_bS

−
�
3λ2φκN2π̄3φ
8H2A9=2 −

9λφπ̄φ
2A3=2 −

κN2π̄φV

8H2A3=2 −
NV;φ̄

H

�
N2δĈ

4A3=2 þ
λφπ̄φN3

4HA3
δC −

λφκC̄π̄φN3

4HA3
ΔOE: ðA12Þ

To obtain the coupled system of differential equations for
the set ðQ; bS;OEÞ, we need to consider the equations of
motion for OE and bS. Similar to the Bardeen case, the
equation of motion for OE takes the form

ÖE þ
�
3H −

_N
N

�
_OE ¼ NHbS

A
−
�
H −

_N
N

�
δĈ
κAC̄

; ðA13Þ

which is equivalent to (3.27) as bS ¼ NOL
ψ=H þ bL.

Finally, the equation of motion for bS can be derived from

its definition (3.7) and the equations of motion (2.2)
and (2.3) as well as (2.5) and (2.6), which turns out
to be

_bS −
�
_N
N
−

_H
H

−
κλφN2π̄2φ
4HA3

�
bS ¼ N2

4A3=2H
fδĈ − κπ̄φQg:

ðA14Þ
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