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Axions and axionlike particles are bosonic quantum fields. They are often assumed to follow classical
field equations due to their high degeneracy in the phase space. In this work, we explore the disparity
between classical and quantum field treatments in the context of density and velocity fields of axions. Once
the initial density and velocity fields are specified, the evolution of the axion fluid is unique in the classical
field treatment. However, in the quantum field treatment, there are many quantum states consistent with the
given initial density and velocity field. We show that evolutions of the density perturbations for these
quantum states are not necessarily identical and, in general, differ from the unique classical evolution. To
illustrate the underlying physics, we consider a system of large number of bosons in a one-dimensional box,
moving under the gravitational potential of a heavy static point mass. We ignore the self-interactions
between the bosons here. Starting with homogeneous number density and zero velocity field, we determine
the density perturbations in the linear regime in both quantum and classical field theories. We find that
classical and quantum evolutions are identical in the linear regime if only one single-particle state is
occupied by all the bosons and the self-interaction is absent. If more than one single-particle states are
occupied, the density perturbations in quantum evolutions differ from the classical prediction after a certain
time which depends upon the parameters of the system.

DOI: 10.1103/PhysRevD.104.023010

I. INTRODUCTION

Axions or axionlike particles are highly motivated
candidates for dark matter (see e.g., [1–6]). Although they
are bosonic quantum fields, in the context of cosmology
and large scale structure formation, they are often approxi-
mated as classical scalar fields due to their high degeneracy
in the phase space [4,5,7–21]. In the nonrelativistic regime,
the classical field approximation leads to a wave descrip-
tion of the axions where the complex wave function
satisfies the Schrödinger-Gross-Pitaevskii (SGP) equation.
The wave description can be mapped into a classical fluid
description of axions where number density and velocity
field of the axions follow the continuity equation and the
Euler equation with an additional “quantum pressure” term
(see e.g., [21,22]).
It has been argued that the classical field approximation

may not provide an accurate description of axions with
contact or gravitational self-interactions, especially in the
context of thermalization of axions [22–27]. There is a

timescale after which the classical results significantly
differ from the results of quantum field treatment. Since
thermalization of axions was the central issue, most of the
previous studies focused on how the occupation numbers
evolve in quantum and classical field theories. In this work,
we investigate whether the density and velocity field of
axions evolve differently in quantum and classical field
treatments.
In the classical field approximation, the evolution of the

axion fluid is uniquely specified by initial values of the
number density nðx⃗; 0Þ and the velocity field v⃗ðx⃗; 0Þ. In
the quantum field treatment, the evolution of the system is
uniquely specified only by the initial state of the system.
We show that the evolution of axion number density in the
quantum field description is not unique for given initial
values of number density nðx⃗; 0Þ and velocity field v⃗ðx⃗; 0Þ.
There exist a large number of quantum states corresponding
to the given values of nðx⃗; 0Þ and v⃗ðx⃗; 0Þ. Evolutions of
number densities for all these quantum states are not
identical and, in general, differ from the unique classical
evolution. We argue that, for certain quantum states, the
classical and quantum evolutions of density may be differ-
ent, even in the absence of self-interactions among axions.
In Sec. II, we provide a formalism to determine the

evolution of number density in the quantum field treatment.
We explain why quantum and classical field treatments of a
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system of axions may yield different results within
the linear regime. In Sec. III, we consider a toy model
of axions in a one-dimensional box. Using both classical
and quantum field theories, we find the growth of density
perturbations under the gravitational potential of a static
point mass. We show that, depending upon the parameters
and the quantum state of the system, the quantum field
treatment may result in a significantly different outcome
as compared to the classical result. Section IV provides a
summary.

II. EVOLUTION OF DENSITY AND VELOCITY

Axions and axionlike particles form a quantum scalar
field with mass m. In the nonrelativistic regime, they are
described by a complex scalar field ψðx⃗; tÞ satisfying the
Schrödinger-Gross-Pitaevskii equation (see e.g., [22]):

i∂tψðx⃗; tÞ ¼
ð−1Þ
2m

∇2ψðx⃗; tÞ þmV̂½ψðx⃗; tÞ�ψðx⃗; tÞ ð2:1Þ

where V̂ is the potential operator. In general, it is a
functional of the field ψðx⃗; tÞ which satisfies the equal-
time commutation relations: ½ψðx⃗; tÞ;ψðy⃗; tÞ� ¼ 0 and
½ψðx⃗; tÞ;ψ†ðy⃗; tÞ� ¼ δð3Þðx⃗ − y⃗Þ. In quantum field theory,
number density nðx⃗; tÞ and the current density j⃗ðx⃗; tÞ are
given by the expectation values of the following operators:

n̂Qðx⃗; tÞ ¼ ψ†ðx⃗; tÞψðx⃗; tÞ;
ˆj⃗Qðx⃗; tÞ ¼

1

2im
ðψ†ðx⃗; tÞ∇⃗ψðx⃗; tÞ − ∇⃗ψ†ðx⃗; tÞψðx⃗; tÞÞ:

ð2:2Þ

The velocity field v⃗Qðx⃗; tÞ is given by hˆj⃗Qðx⃗;tÞi
hn̂Qðx⃗;tÞi. Since we are

working in the Heisenberg picture, the quantum state of the
system does not evolve. For example, if the initial quantum
state is jAi, the number density at time t is given by
hAjn̂Qðx⃗; tÞjAi. Using Eqs. (2.1) and (2.2), we get

∂thn̂Qi þ ∇⃗ · hˆj⃗Qi ¼ 0; ð2:3Þ

∂thˆj⃗Qi þ hψ†ð∇⃗ V̂Þψi ¼h ˆF⃗Qi ð2:4Þ

where

ˆF⃗Q ¼ 1

4m2
½ψ†ð∇⃗∇2ψÞ þ ð∇⃗∇2ψ†Þψ

− ð∇2ψ†Þð∇⃗ψÞ − ð∇⃗ψ†Þð∇2ψÞ�: ð2:5Þ

In general, hψ†ð∇⃗ V̂Þψi ≠ hn̂Qih∇⃗ V̂i and h ˆF⃗Qi cannot be
expressed in terms of hn̂Qi and hˆj⃗Qi. Therefore, the initial
values of hn̂Qi and hˆj⃗Qi cannot determine their evolutions.

Evolutions of hn̂Qi and hˆj⃗Qi are uniquely determined only
if the initial quantum state of the system is known, as we
show in Sec. II B.
In the commonly used classical field treatment, ψðx⃗; tÞ in

Eq. (2.1) is replaced by a complex wave function Ψðx⃗; tÞ
which satisfies the SGP equation:

i∂tΨðx⃗; tÞ ¼
ð−1Þ
2m

∇2Ψðx⃗; tÞ þmV½Ψðx⃗; tÞ�Ψðx⃗; tÞ: ð2:6Þ

Writing Ψðx⃗; tÞ ¼ jΨðx⃗; tÞjeiβðx⃗;tÞ, one can map the axions
into a fluid with number density nclðx⃗; tÞ ¼ jΨðx⃗; tÞj2 and

velocity field v⃗clðx⃗; tÞ ¼ 1
m ∇⃗βðx⃗; tÞ. The classical SGP

equation implies that nclðx⃗; tÞ and v⃗clðx⃗; tÞ satisfy the
continuity equation and the Euler equation with an addi-
tional “quantum pressure” term (see e.g., Ref. [22]):

∂tncl þ ∇⃗ · ðnclv⃗clÞ ¼ 0;

∂tv⃗cl þ ðv⃗cl · ∇⃗Þv⃗cl ¼ −∇⃗V − ∇⃗q ð2:7Þ

where

q ¼ ð−1Þ
2m2

∇2 ffiffiffiffiffiffi
ncl

p
ffiffiffiffiffiffi
ncl

p : ð2:8Þ

Since the equations are first order in time, the number
density nclðx⃗; tÞ and the velocity field v⃗clðx⃗; tÞ are uniquely
determined by the initial values, nclðx⃗; 0Þ and v⃗clðx⃗; 0Þ.
In the quantum theory, for given nðx⃗; 0Þ and j⃗ðx⃗; 0Þ, there

exist a set of initial quantum states, S≡ fjinig such that
each state in S satisfies

hinjn̂Qðx⃗; 0Þjini ¼ nðx⃗; 0Þ;
hinjˆj⃗Qðx⃗; 0Þjini ¼ j⃗ðx⃗; 0Þ: ð2:9Þ

We explore whether the evolutions of number densities
corresponding to all the initial quantum states in S are
identical. In Sec. II A, we explain how the number density
is related to the quantum state of the system of bosons. In
Secs. II B and II C, we describe how to find the evolution of
the density in quantum and classical field theories, respec-
tively, by treating the potential as a perturbation.

A. Number density in quantum field treatment

The most fundamental difference between classical
and quantum field treatments is that Ψðx⃗; tÞ in the classical
field theory is a complex wave function, whereas ψðx⃗; tÞ
in the quantum field theory is an operator which acts on
the state of the system of axions. The number density is
given by jΨðx⃗; tÞj2 in the classical field theory. In quantum
field theory, it is given by the expectation value of
n̂ðx⃗; tÞ ¼ ψ†ðx⃗; tÞψðx⃗; tÞ.
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The quantum field ψðx⃗; tÞ is expanded in terms of a set of

orthonormal and complete functions uk⃗ðx⃗; tÞ:

ψðx⃗; tÞ ¼
X
k⃗

ak⃗ðtÞuk⃗ðx⃗; tÞ ð2:10Þ

where the annihilation operators ak⃗ðtÞ satisfy ½ak⃗ðtÞ;
a†
k⃗0
ðtÞ� ¼ δk⃗

0

k⃗
, and uk⃗ðx⃗; tÞ’s satisfy:
X
k⃗

uk⃗ðx⃗; tÞuk⃗ðy⃗; tÞ� ¼ δð3Þðx⃗ − y⃗Þ
Z

d3xuk⃗ðx⃗; tÞ�uk⃗0 ðx⃗; tÞ ¼ δk⃗
0

k⃗
: ð2:11Þ

uk⃗ðx⃗; tÞ can be any set of complete orthonormal functions
e.g., the momentum eigenstates, the eigenstates of an

Hamiltonian. In the rest of the paper, we assume uk⃗’s to
be time independent.
The quantum state of a system of N identical bosons can

be written as

jini ¼
X
fjg

cfjgjfN1; N2;…NMgji ð2:12Þ

where the summation is over all possible combinations of
placing N identical particles in M single-particle states:

fuk⃗1ðx⃗Þ;uk⃗2ðx⃗Þ;…;uk⃗Mðx⃗Þg and ðN1þN2þ���þNMÞ¼N.
Let us consider one such combination, jN1; N2;…; NMi,
where N1 particles are in the single-particle state uk⃗1ðx⃗Þ, N2

particles in uk⃗2ðx⃗Þ and so on. If this is the quantum state at
time t ¼ t0, then

jN1;…; NMi ¼
�YM

i¼1

1ffiffiffiffiffiffiffi
Ni!

p ða†
k⃗i
ðt0ÞÞNi

�
j0i ð2:13Þ

where j0i represents the vacuum state. It is straightforward
to show that

ak⃗ðt0ÞjN1;…; NMi ¼ δk⃗1
k⃗

ffiffiffiffiffiffi
N1

p
jN1 − 1;…; NMi

þ � � � þ δk⃗M
k⃗

ffiffiffiffiffiffiffi
NM

p
jN1;…; NM − 1i

ð2:14Þ

and, the operation of ψðx⃗; t0Þ yields

ψðx⃗; t0ÞjN1;…; NMi
¼

ffiffiffiffiffiffi
N1

p
uk⃗1ðx⃗ÞjN1 − 1;…; NMi

þ � � � þ
ffiffiffiffiffiffiffi
NM

p
uk⃗Mðx⃗ÞjN1;…; NM − 1i: ð2:15Þ

Therefore, the number density corresponding to the state
jN1;…; NMi at time t0 is

nQðx⃗; t0Þ ¼ hN1;…; NMjψ†ðx⃗; t0Þψðx⃗; t0ÞjN1;…; NMi
¼ N1juk⃗1ðx⃗Þj2 þ � � � þ NMjuk⃗Mðx⃗Þj2: ð2:16Þ

We emphasize two following points: the above expression
is the number density corresponding to an eigenstate of

occupation number operator and uk⃗ðx⃗Þ’s can be any set of
complete orthonormal functions satisfying Eqs. (2.11).
Now we discuss how homogeneous and inhomogeneous
number densities are represented in the framework of
quantum field theory. We also point out an inconsistency
between quantum field theory and the commonly used
classical field treatment when more than one single-particle
states are occupied.

1. Homogeneous number density

If we choose uk⃗’s to be the momentum eigenstates:

uk⃗ðx⃗Þ ¼ 1ffiffiffi
V

p e−ik⃗·x⃗, the number density corresponding to the

state jAi ¼ jN1;…; NMi turns out to be

hN1;…; NMjψ†ðx⃗; t0Þψðx⃗; t0ÞjN1;…; NMi ¼
N
V

ð2:17Þ

following Eq. (2.16). A homogeneous fluid consisting of
Ni particles in momentum eigenstates k⃗i (i ¼ 1; 2;…;M)
may appear to be counterintuitive. However, from the
viewpoint of quantum mechanics, each particle is in one
of the momentum eigenstates and, as a result, has maxi-
mum uncertainty in the position which leads to the
homogeneity.
One can also arrive at this conclusion by considering a

many-particle wave function of the bosons. We are explain-
ing in terms of the simplest scenario with two bosons where

one is in momentum eigenstate uk⃗1ðx⃗Þ ¼ 1ffiffiffi
V

p e−ik⃗1·x⃗ and

the other at uk⃗2ðx⃗Þ ¼ 1ffiffiffi
V

p e−ik⃗2·x⃗. The symmetrized wave

function is

Ψðx⃗1; x⃗2Þ ¼
1ffiffiffiffi
2!

p ðuk⃗1ðx⃗1Þuk⃗2ðx⃗2Þ þ uk⃗1ðx⃗2Þuk⃗2ðx⃗1ÞÞ

ð2:18Þ

The number density at x⃗ is given by

nðx⃗Þ ¼
X2
j¼1

Z
d3x1d3x2δð3Þðx⃗ − x⃗jÞjΨðx⃗1; x⃗2Þj2 ¼

2

V

ð2:19Þ

when k⃗1 ≠ k⃗2. Generalization of this into larger number of
bosons is possible but tedious due to the symmetrization. In
fact, this is where a quantum field framework is
advantageous.
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2. Inhomogeneous number density

To explain how the quantum state of an inhomogeneous
fluid may be written in terms of momentum eigenstates, let
us consider the following quantum state:

jBi ¼ c1jN1; N2i þ c2jN1 − 1; N2 þ 1i ð2:20Þ

where c1 and c2 are complex coefficients satisfying jc1j2 þ
jc2j2 ¼ 1 and ðN1 þ N2Þ ¼ N. Number of particles in

states other than uk⃗1ðx⃗Þ and uk⃗2ðx⃗Þ are zero. The result
of ψðx⃗; t0Þ acting on jBi is

ψðx⃗; t0ÞjBi ¼
1ffiffiffiffi
V

p ½c1e−ik⃗1·x⃗
ffiffiffiffiffiffi
N1

p
jN1 − 1; N2i

þ c1e−ik⃗2·x⃗
ffiffiffiffiffiffi
N2

p
jN1; N2 − 1i

þ c2e−ik⃗1·x⃗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 − 1

p
jN1 − 2; N2 þ 1i

þ c2e−ik⃗2·x⃗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 1

p
jN1 − 1; N2i�: ð2:21Þ

The first and the last terms of Eq. (2.21) interfere and result
in a mode of density perturbation with wave vector
k⃗21 ¼ ðk⃗2 − k⃗1Þ:

nQðx⃗; t0Þ
¼ hBjψ†ðx⃗; t0Þψðx⃗; t0ÞjBi

¼ N
V

�
1þ 2jc1jjc2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1

N
ðN2 þ 1Þ

N

r
cosðk⃗21 · x⃗þ δ21Þ

�

ð2:22Þ

where δ21 ¼ δ2 − δ1 and cl ¼ jclje−iδl (l ¼ 1, 2). In gen-
eral, density perturbation in mode k⃗ is caused by the
exchange of a boson between a pair of momentum-

eigenstates uk⃗i and uk⃗j , provided ðk⃗j − k⃗iÞ ¼ k⃗ or ð−k⃗Þ.

3. An inconsistency between quantum field treatment
and the commonly used classical theory

In the commonly used classical field treatment, the wave

function is expressed as Ψðx⃗; tÞ ¼ 1ffiffiffi
V

p
P

k⃗ Ak⃗ðtÞe−ik⃗·x⃗. Then
the occupation number in the eigenstate of momentum k⃗ is
defined as Nk⃗ðtÞ ¼ A�

k⃗
ðtÞAk⃗ðtÞ. In this spirit, one would

express the classical wave function corresponding to the
quantum state jN1ðk⃗1Þ; N2ðk⃗2Þi as

Ψðx⃗Þ ¼ 1ffiffiffiffi
V

p ½
ffiffiffiffiffiffi
N1

p
e−ik⃗1·x⃗ þ

ffiffiffiffiffiffi
N2

p
e−ik⃗2·x⃗�: ð2:23Þ

The corresponding number density in the classical field
theory is nclðx⃗Þ ¼ jΨðx⃗Þj2 which is inhomogeneous.
However, the number density in the quantum field theory

corresponding to the quantum state jN1ðk⃗1Þ; N2ðk⃗2Þi is
homogeneous as shown in Sec. II A 1.
The reason behind this apparent inconsistency is that

Nk⃗ðtÞ ¼ A�
k⃗
ðtÞAk⃗ðtÞ does not represent the number of par-

ticles in state k⃗. This should come as no surprise because
the SGP equation describes the evolution of the single-
particle state Ψðx⃗Þ which is occupied by a large number
of bosons and Ak⃗ðtÞ’s are merely the Fourier mode of
this single-particle state. Consequently, the classical field
description cannot describe the process of thermalization
through which the bosons condensate into the ground
state [23,24,26].

B. Evolution of density perturbation
in quantum field theory

We assume the potential consists of an external gravi-
tational potential V̂extðx⃗Þ due to a static distribution of
baryons with mass density ρBðx⃗Þ:

V̂extðx⃗; tÞ ¼ ð−GÞ
Z
V
d3x0

ρBðx⃗0Þ
jx⃗ − x⃗0j ð2:24Þ

and the potential due to the gravitational self-interactions
V̂self ½ψðx⃗; tÞ� between the axions:

V̂self ½ψðx⃗; tÞ� ¼ ð−GmÞ
Z
V
d3x0

ψ†ðx⃗0; tÞψðx⃗0; tÞ
jx⃗ − x⃗0j : ð2:25Þ

We take uk⃗ðx⃗Þ’s to be the momentum eigenstates: uk⃗ðx⃗Þ ¼
1ffiffiffi
V

p e−ik⃗·x⃗ and write ak⃗ðtÞ ¼ e−iωðk⃗Þtbk⃗ðtÞ where ωðk⃗Þ ¼ k⃗·k⃗
2m.

Then using Eq. (2.1), we get the equation of motion for
bk⃗ðtÞ

i∂tbk⃗ ¼
X
k⃗0
eitΩ

k⃗
k⃗0Pðk⃗ − k⃗0Þbk⃗0

þ
X

k⃗0;k⃗1;k⃗2

e
itΩk⃗k⃗1

k⃗0 k⃗2Qðk⃗ − k⃗0; k⃗1 − k⃗2Þb†k⃗1bk⃗0bk⃗2 ð2:26Þ

where Ωk⃗
k⃗0
¼ ωðk⃗Þ − ωðk⃗0Þ and Ωk⃗k⃗1

k⃗0k⃗2
¼ ωðk⃗Þ þ ωðk⃗1Þ −

ωðk⃗0Þ − ωðk⃗2Þ and

Pðq⃗Þ ¼ ð−GmÞ
V

Z
V
d3xd3x0

eiq⃗·x⃗ρBðx⃗0Þ
jx⃗ − x⃗0j ;

Qðq⃗1; q⃗2Þ ¼
ð−Gm2Þ

V2

Z
V
d3xd3x0

eiq⃗1·x⃗þiq⃗2·x⃗0

jx⃗ − x⃗0j : ð2:27Þ

For a given quantum state jini, the number density is
calculated by taking the expectation value of the corre-
sponding operator
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nQðx⃗; tÞ ¼ hinjn̂Qðx⃗; tÞjini

¼ 1

V

X
k⃗;k⃗0

eiðk⃗−k⃗
0Þ·x⃗þitΩk⃗

k⃗0 hinjb†
k⃗
ðtÞbk⃗0 ðtÞjini: ð2:28Þ

Since the initial state jini is associated to b†
k⃗
ðt0Þ’s,

one has to solve Eq. (2.26) to find bk⃗ðtÞ in terms
of bk⃗ðt0Þ.
In perturbative expansion, bk⃗ðtÞ can be written as

bk⃗ðtÞ ¼ b0
k⃗
ðtÞ þ b1

k⃗
ðtÞ þ b2

k⃗
ðtÞ þ � � � ð2:29Þ

where bn
k⃗
ðtÞ contains terms with nth power ofG. Both Pðq⃗Þ

and Qðq⃗Þ are first order terms. Therefore, in the zeroth
order of Eq. (2.26)

i∂tb0k⃗ðtÞ ¼ 0 ⇒ b0
k⃗
ðtÞ ¼ b0

k⃗
ð0Þ ¼ bk⃗ð0Þ ð2:30Þ

where we have taken the initial time to be t0 ¼ 0. In the last
equality, we have used the fact that the perturbative terms
are zero at the initial time i.e., b1

k⃗
ð0Þ ¼ b2

k⃗
ð0Þ ¼ … ¼ 0

[see Eq. (2.31) for example]. Solving Eq. (2.26) in the first
order, we get

b1
k⃗
ðtÞ ¼

X
k⃗0
ð−itÞsinc

�
1

2
Ωk⃗

k⃗0
t
�
e
it
2
Ωk⃗

k⃗0Pðk⃗ − k⃗0Þbk⃗0 ð0Þ

þ
X

k⃗0;k⃗1;k⃗2

ð−itÞsinc
�
1

2
Ωk⃗k⃗1

k⃗0k⃗2
t

�
e
it
2
Ωk⃗k⃗1

k⃗0 k⃗2Qðk⃗ − k⃗0; k⃗1 − k⃗2Þb†k⃗1ð0Þbk⃗0 ð0Þbk⃗2ð0Þ ð2:31Þ

where sincðxÞ ¼ sin x
x . The zeroth order term of n̂Qðx⃗; tÞ is

n̂0Qðx⃗; tÞ ¼
1

V

X
k⃗;k⃗0

eiðk⃗−k⃗
0Þ·x⃗þitΩk⃗

k⃗0b0†
k⃗
ð0Þb0

k⃗0
ð0Þ ð2:32Þ

where we have used Eq. (2.30). In the first order, the density operator is given by

n̂1Qðx⃗; tÞ ¼
1

V

X
k⃗;k⃗0

eiðk⃗−k⃗
0Þ·x⃗þitΩk⃗

k⃗0 ½b1†
k⃗
ðtÞb0

k⃗0
ðtÞ þ b0†

k⃗
ðtÞb1

k⃗0
ðtÞ�

¼ 1

V

X
k⃗;k⃗0;k⃗00

eiðk⃗−k⃗
0Þ·x⃗þitðΩk⃗

k⃗0þ
1
2
Ωk⃗0

k⃗00 Þð−itÞsinc
�
1

2
tΩk⃗0

k⃗00

�
Pðk⃗0 − k⃗00Þb†

k⃗
ð0Þbk⃗00 ð0Þ

þ 1

V

X
k⃗;k⃗0;k⃗00;k⃗1;k⃗2

�
e
iðk⃗−k⃗0Þ·x⃗þitðΩk⃗

k⃗0þ
1
2
Ωk⃗0 k⃗1

k⃗00 k⃗2
Þð−itÞsinc

�
1

2
tΩk⃗0k⃗1

k⃗00k⃗2

�
· ·Qðk⃗0 − k⃗00; k⃗1 − k⃗2Þb†k⃗ð0Þb

†
k⃗1
ð0Þbk⃗00 ð0Þbk⃗2ð0Þ

�

þ ðHermitian conjugatesÞ ð2:33Þ

where sincðxÞ ¼ sin x
x . The initial number density nðx⃗; 0Þ is

related to the zeroth order by

hinjn̂0Qðx⃗; 0Þjini ¼ nðx⃗; 0Þ ð2:34Þ

where jini is the initial quantum state of the system.
The perturbative terms in the number density are zero at
t ¼ 0 [see Eq. (2.33)]. In the first order, the contributions
from external potential and self-gravitational potential are
decoupled, and depend upon the expectation values of
b†
k⃗
ð0Þbk⃗00 ð0Þ and b†

k⃗
ð0Þb†

k⃗1
ð0Þbk⃗00 ð0Þbk⃗2ð0Þ, respectively. Up

to the linear perturbation, there are no additional terms
arising from the commutation of bk⃗ðtÞ and b†

k⃗
ðtÞ in

quantum field treatment. However, in a nonlinear regime,

such terms will be present and may result in further
deviation from classical results.

C. Evolution of density perturbation
in classical field theory

In the classical field theory, the wave functionΨðx⃗; tÞ can
be written as

Ψðx⃗; tÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

e−ik⃗·x⃗−iωðk⃗ÞtAk⃗ðtÞ ð2:35Þ

where Ak⃗ðtÞ is a complex number. Ak⃗ðtÞ is equivalent to
bk⃗ðtÞ in the quantum theory except for the fact that bk⃗ðtÞ
is an operator. Following similar steps as in Sec. II B,
we calculate the number density. In the zeroth order, the
classical number density is
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n0clðx⃗; tÞ ¼
1

V

X
k⃗;k⃗0

eiðk⃗−k⃗
0Þ·x⃗þitΩk⃗

k⃗0A�
k⃗
ð0ÞAk⃗0 ð0Þ ð2:36Þ

and, in the first order, it is

n1clðx⃗; tÞ ¼
1

V

X
k⃗;k⃗0;k⃗00

eiðk⃗−k⃗
0Þ·x⃗þitðΩk⃗

k⃗0þ
1
2
Ωk⃗0

k⃗00 Þð−itÞsinc
�
1

2
tΩk⃗0

k⃗00

�
Pðk⃗0 − k⃗00ÞA�

k⃗
ð0ÞAk⃗00 ð0Þ

þ 1

V

X
k⃗;k⃗0;k⃗00;k⃗1;k⃗2

�
e
iðk⃗−k⃗0Þ·x⃗þitðΩk⃗

k⃗0þ
1
2
Ωk⃗0 k⃗1

k⃗00 k⃗2
Þð−itÞsinc

�
1

2
tΩk⃗0k⃗1

k⃗00k⃗2

�
·Qðk⃗0 − k⃗00; k⃗1 − k⃗2ÞA�

k⃗
ð0ÞA�

k⃗1
ð0ÞAk⃗00 ð0ÞAk⃗2

ð0Þ
�

þ ðcomplex conjugatesÞ: ð2:37Þ

From Eq. (2.35), Ak⃗ð0Þ can be determined by inverse
Fourier transform of the initial wave function Ψðx⃗; 0Þ.

D. Why may the classical evolution differ
from the quantum evolution?

We assume that both classical and quantum evolutions
start from the same initial values of density and current
density. The initial quantum state jini must satisfy

hinjn̂Qðx⃗; 0Þjini ¼
1

V

X
k⃗;k⃗0

eiðk⃗−k⃗
0Þ·x⃗hinjb†

k⃗
ð0Þbk⃗0 ð0Þjini

¼ nðx⃗; 0Þ;

hinjˆj⃗Qðx⃗; 0Þjini ¼
ð−1Þ
2mV

X
k⃗;k⃗0

ðk⃗þ k⃗0Þhinjb†
k⃗
ð0Þbk⃗0 ð0Þjini

¼ j⃗ðx⃗; 0Þ: ð2:38Þ

Similarly, for the classical field approximation, we must
have

1

V

X
k⃗;k⃗0

eiðk⃗−k⃗
0Þ·x⃗A�

k⃗
ð0ÞAk⃗0 ð0Þ ¼ nðx⃗; 0Þ;

ð−1Þ
2mV

X
k⃗;k⃗0

ðk⃗þ k⃗0ÞA�
k⃗
ð0ÞAk⃗0 ð0Þ ¼ j⃗ðx⃗; 0Þ: ð2:39Þ

Up to the first order, the classical field treatment yields
identical result as the quantum field treatment if

A�
k⃗
ð0ÞAk⃗0 ð0Þ ¼ hinjb†

k⃗
ð0Þbk⃗0 ð0Þjini ð2:40Þ

for any k⃗, k⃗0. In the presence of self-interactions, an
additional condition has to be satisfied for classical and
quantum evolutions to be identical:

A�
k⃗
ð0ÞA�

k⃗1
ð0ÞAk⃗0 ð0ÞAk⃗2

ð0Þ¼ hinjb†
k⃗
ð0Þb†

k⃗1
ð0Þbk⃗0 ð0Þbk⃗2ð0Þjini

ð2:41Þ

for any k⃗, k⃗0, k⃗1 and k⃗2.
We emphasize that Eqs. (2.38)–(2.39) do not necessarily

imply Eq. (2.40). In the next section we describe a toy
model where Eqs. (2.38)–(2.39) hold but Eq. (2.40) does
not hold for a generic quantum state of the system. We
explore the differences between the classical evolution and
quantum evolutions corresponding to various initial quan-
tum states.

III. PARTICLES IN A 1D BOX

In this section, we study the quantum and classical
evolutions of the number density for a simple and well-
defined system. We consider N axions with massm in a 1D
box of length L between x ¼ 0 and x ¼ L. There is a heavy
and static point mass M at x ¼ x0. The axions move under
the gravitational field of the point mass. We ignore the self-
interaction of the axions here. The potential operator is
given by

V̂extðx; tÞ ¼
ð−GMÞ

jx − x0j þ μ
ð3:1Þ

where μ ≪ L is introduced as a regulator to avoid the
singularities. The axion field is given by

ψðx; tÞ ¼ 1ffiffiffiffi
L

p
X
k

akðtÞe−ikx ð3:2Þ

where the momenta k are quantized

k ¼ 2πnk
L

; nk ¼ 0;�1;�2;…: ð3:3Þ

The expression for PðqÞ [see Eqs. (2.27)] is written in terms
of dimensionless functions P̃ðqÞ:
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PðqÞ ¼ 1

L

Z
L

0

dx
ð−GMmÞ
jx − x0j þ μ

eiqx ¼
�
−
GMm
L

�
P̃ðqÞ:

ð3:4Þ

The expression for P̃ðqÞ is given in Appendix.
For the given initial density nðx; 0Þ and velocity field

vðx; 0Þ, one has to find out the initial wave functionΨðx; 0Þ
and Akð0Þ in the classical field theory. Then the density
perturbations can be calculated using Eq. (2.37). In
quantum field theory, the initial quantum state must
correspond to the initial density nðx; 0Þ and current density
jðx; 0Þ ¼ nðx; 0Þvðx; 0Þ. The density perturbation for that
state can be calculated by taking the expectation value of
the operators in Eq. (2.33). Here, we consider the scenario
where the axion fluid is initially homogeneous with zero
current density (hence, zero velocity field) everywhere:

nðx; 0Þ ¼ N
L

and jðx; 0Þ ¼ 0: ð3:5Þ

In Secs. III A and III B, we find evolution of the number
density in quantum and classical field treatments, respec-
tively. In Sec. III C, we compare the results in classical and
quantum field theories for certain numerical values of the
parameters of the system.

A. Quantum field theory

We consider the most generic quantum state [see
Eq. (2.16)] corresponding to homogeneous number density
and zero velocity field:

jini ¼ jN1ðp1Þ; N2ðp2Þ; N3ðp3Þ;…i ð3:6Þ

where there are Ni particles in momentum state k ¼ pi
(i ¼ 1; 2; 3;….) and

X
i

Ni ¼ N and
X
i

Nipi ¼ 0: ð3:7Þ

The last equality ensures hinjĵQðx; 0Þjini ¼ 0. In the zeroth
order, the number density remains constant:

n0Qðx; tÞ ¼ nðx; 0Þ ¼ N
L
: ð3:8Þ

In the first order, the density contrast δðx; tÞ ¼
1

nðx;0Þ ½hn̂1ðx; tÞi − nðx; 0Þ� corresponding to the state jini
becomes

δQðx; tÞ ¼ 2

�
GMmt

L

�X
i

fiF̃ðpi; x; tÞ ð3:9Þ

where fi ¼ Ni
N and F̃ðq; x; tÞ is a dimensionless function

given by

F̃ðq; x; tÞ ¼
X
k

sinc

�
1

2
Ωk

qt

�

×

�
− cos

�
ðk − qÞxþ 1

2
Ωk

qt

�
P̃Iðk − qÞ

þ sin

�
ðk − qÞxþ 1

2
Ωk

qt

�
P̃Rðk − qÞ

�
ð3:10Þ

with sincðxÞ ¼ sin x
x . The expressions for P̃ðqÞ’s are given by

Eqs. (A2)–(A3). As shown by Eq. (3.9), each single-
particle state that is occupied contributes to the density
perturbation.

B. Classical field theory

For the initial conditions in Eqs. (3.5), the classical wave
function Ψðx; 0Þ is determined up to a constant phase:

Ψðx; 0Þ ¼
ffiffiffiffi
N
L

r
⇒ Akð0Þ ¼

ffiffiffiffi
N

p
δk;0: ð3:11Þ

The number density in the zeroth order is

n0clðx; tÞ ¼
N
L
: ð3:12Þ

The density contrast in the first order is found to be

δclðx; tÞ ¼ 2
GMmt

L
F̃ðp ¼ 0; x; tÞ: ð3:13Þ

The above equation is equivalent to the quantum field
result, Eq. (3.9), with all the particles in p1 ¼ 0 state
(f1 ¼ 1 and all other fi’s are zero).

C. Quantum vs classical evolution

For an initially homogeneous system of axions with zero
velocity field, the generic quantum evolution of the density
contrast is given by Eq. (3.9) and the corresponding
classical evolution is given by Eq. (3.13).
(1) When Ωk

qt ≪ 1 in Eq. (3.10), sincð1
2
Ωk

qtÞ ≈ 1 and,
F̃ðq; x; tÞ is independent of q. Then Eqs. (3.9) and
(3.13) are almost equal, i.e., the quantum and
classical evolutions closely follow each other. In
this regime, the evolution does not depend upon the
initial quantum state of the system.

(2) When Ωk
qt ≫ 1, sincð1

2
Ωk

qtÞ ∼ δðΩk
qtÞ and, F̃ðq; x; tÞ

depends upon q. Therefore, in this regime, different
initial quantum states corresponding to the same
initial density and velocity field, may result in
different number density and velocity field.

The quantum evolution depends upon the initial quan-
tum state of the system and, in general, differs from the
unique classical evolution after a certain time t ¼ tclassical
defined by
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Ωp
k tclassical ¼ ðn2p − n2kÞ

2π2tclassical
mL2

¼ 0.1ðn2p − n2kÞ ð3:14Þ

where we have used p ¼ 2πnp
L and k ¼ 2πnk

L . The fraction 0.1
is somewhat arbitrary. The required condition is that the
typical value of Ωp

k t is of Oð1Þ. Here, we express the
momentum p in terms of the state np of the particle. So p is
independent of the mass m. Consequently, the energy
difference Ωp

k is inversely proportional to m when we
change the massm keeping the particle state np fixed. If we
were to keep the velocity vnp ¼ 2πnp=ðmLÞ fixed, the
energy difference Ωp

k should have been proportional to the
mass m.

D. Examples with numerical values

For a 1D box of length L, the momenta of the
particles are given by kn ¼ 2πn=L and velocities are
vn ¼ 2πn=ðmLÞ. Our calculations are valid for non-
relativistic bosons; therefore, we must choose the numerical
values such that vn ≪ 1 i.e., mL ≫ 1. For m ¼ 10−20 eV
and length of the box as L ¼ 1 pc, the velocities are of the
order of

1

mL
¼ 6.2 × 10−4

�
10−20 eV

m

��
1 pc
L

�
ð3:15Þ

which are well within the nonrelativistic regime. For a
timescale of 1 Myr, we get

mt ¼ 4.8 × 108
�

m
10−20 eV

��
t

1 Myr

�
: ð3:16Þ

Following Eq. (3.14), the timescale of the validity of
classical field approximation is

tclassical ¼ 2.7 × 10−5 Myr

�
m

10−20 eV

��
L

1 pc

�
2

: ð3:17Þ

The above equation holds for all values of m and L as well
as for any external potential if the system is in the regime of
linear perturbation.
The magnitude of density perturbation is governed by

ðGMmt=LÞ. We define the timescale of validity of the
linear perturbation t ¼ tlinear such that

GMmtlinear
L

¼ 10−5: ð3:18Þ

We choose the static point mass to be M ¼ M⊙ which
yields

tlinear ¼ 0.45 Myr

�
10−20 eV

m

��
M⊙

M

��
L

1 pc

�
: ð3:19Þ

We place the point mass M at x0 ¼ 0.6L and take the
regulator as μ ¼ 10−13L. Figure 1 shows tlinear and tclassical
as a function of m for M ¼ M⊙, L ¼ 1 pc. For
m≲ 10−18 eV, tclassical is less than tlinear, i.e., the quantum
evolution of the number density differs from the classical
evolution within the linear regime.
Here we show how different initial quantum states

corresponding to the same density and velocity field,
may result in different evolutions of the density contrast.
We consider the following initial quantum states written in
the form jf1ðn1Þ; f2ðn2Þ;…i where fi ¼ Ni

N and pi ¼ 2πni
L :

j1i ¼ j1.0ð0Þ; 0; 0;…i;
j2i ¼ j0.9ð0Þ; 0.05ð−2Þ; 0.05ð2Þ; 0; 0;…i;
j3i ¼ j0.5ð0Þ; 0.3ð2Þ; 0.15ð−3Þ; 0.15ð−1Þ; 0; 0;…i:

ð3:20Þ

Since
P

fi ¼ 1 and
P

fini ¼ 0, all of these quan-
tum states correspond to the same initial condition i.e.,
Eqs. (3.5). We emphasize that, in classical field theory,
the initial wave function is uniquely specified by the initial
conditions, Eqs. (3.5). If we write the classical wave func-
tion corresponding to the quantum states j2i and j2i, we get
inhomogeneous density and nonzero velocity field which
results in entirely different evolutions of the number
densities (see the discussion in Sec. II A 3).
Quantum evolution of the number density corresponding

to the state j1i is the same as the classical evolution. In
the left panel of Fig. 2, we show the evolution of density
contrast δ at a specific point x ¼ 0.6L in classical
[Eq. (3.13)] and quantum field theories [Eq. (3.9)], for

FIG. 1. Timescale of the validity of linear perturbation, tlinear
[see Eq. (3.19)], and the timescale of the validity of classical field
approximation, tclassical [see Eq. (3.17)] as functions of m. We
have taken for M ¼ M⊙ and L ¼ 1 pc.
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m ¼ 10−20 eV. As expected from Eq. (3.17), the classical
and quantum evolutions differ from each other at about
t ¼ 2.7 × 10−5 Myr. In the right panel of Fig. 2, we show
the same for m ¼ 10−17 eV, and the evolutions differ from
each other at about t ¼ 2.7 × 10−2 Myr as predicted by
Eq. (3.17). However, at that time, the density evolutions
enter nonlinear regime [tlinear ¼ 4.5 × 10−4 Myr for m ¼
10−17 eV following Eq. (3.19)] where our analytical
expressions are not valid.

IV. SUMMARY

In classical field theories, the axions are represented by a
complex wave function which satisfies the Schrödinger-
Gross-Pitaevskii equation in the nonrelativistic regime. The
number density and velocity field of axions follow the
continuity equation and Euler-like equation with an addi-
tional quantum pressure term. The classical evolution is
uniquely determined once the initial density and velocity
field are specified. We write down the analogs of the
continuity and Euler-like equations in quantum field theory.
We show that, in quantum field treatment, the evolution of
axions is uniquely specified only if the initial quantum state
of the system is known. There exist a large number of
quantum states corresponding to the same density and
velocity field. Evolutions of number density for these
quantum states are not identical and, in general, differ
from the classical evolution.
We consider a toy model with a large number of axions

in a one-dimensional box and moving under the gravita-
tional potential of a static point mass. Initially, the number
density is homogeneous and the velocity field is zero
everywhere. Here we ignore the self-interactions between

the axions. We show that, after a certain time, the quantum
evolution of the number density depends upon the initial
quantum state of the system and differs from the classical
evolution. We give an estimate of the timescale of the
validity of classical field approximation. We also show that,
for certain parameters of the system, the classical and
quantum evolutions of density perturbation may differ from
each other within the linear regime. We note that the
differences between classical and quantum evolutions
depend upon what fraction of quanta is in a certain
single-particle state, but not on the absolute number of
axions.
In a future work, we will discuss whether the difference

between classical and quantum field evolutions of density
perturbation is significant for cosmological axions. For
such studies, it is important to include the expansion of the
Universe as well as the effects of self-interactions between
the axions.
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FIG. 2. Left: variation of the density contrast δ at a specific point x ¼ 0.6L in classical field theory [see Eq. (3.13)] and in quantum
field theory for different initial quantum states [see Eq. (3.9)]. Quantum states j1i, j2i and j3i are defined in Eq. (3.20). Quantum
evolution corresponding to the state j1i is identical to the classical evolution. In this example, we have chosenm ¼ 10−20 eV,M ¼ M⊙
and L ¼ 1 pc. The vertical dashed line indicates the timescale for the validity of classical field approximation, tclassical ¼ 2.7 ×
10−5 Myr [see Eq. (3.17)]. Right: same as the left panel except for m ¼ 10−17 eV. The vertical dashed line corresponds to tclassical ¼
2.7 × 10−2 Myr [see Eq. (3.17)].
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APPENDIX: EXPRESSIONS FOR P̃ðqÞ
P̃ðqÞ is defined in Eqs. (3.4) as

P̃ðqÞ ¼
Z

L

0

dx
1

jx − x0j þ μ
eiqx: ðA1Þ

The expressions for the real and imaginary parts of P̃ðqÞ ¼ P̃RðqÞ þ P̃IðqÞ are

P̃Rðq ≠ 0Þ ¼ cosðqx0Þ½Ciðqx0 þ qμÞ þ CiðqL − qx0 þ qμÞ − 2CiðqμÞ�
− sinðqx0Þ½SiðqL − qx0Þ − Siðqx0Þ�

P̃Rðq ¼ 0Þ ¼ 2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ð1 − x0Þ

p
μ

�
ðA2Þ

and

P̃Iðq ≠ 0Þ ¼ sinðqx0Þ½Ciðqx0 þ qμÞ þ CiðqL − qx0 þ qμÞ − 2CiðqμÞ�
− cosðqx0Þ½SiðqL − qx0Þ − Siðqx0Þ�

P̃Iðq ¼ 0Þ ¼ 0: ðA3Þ

CiðxÞ and SiðxÞ are integrals of cos x
x and sin x

x respectively:

CiðbÞ − CiðaÞ ¼
Z

b

a
dx

cos x
x

;

SiðbÞ − SiðaÞ ¼
Z

b

a
dx

sin x
x

: ðA4Þ
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