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We show that energy should be dissipated or extracted in the current sheet (CS) of a split magnetosphere
deviating from the Michel split monopole, with the CS heating up or cooling down; but the electromagnetic
energy remains unchanged everywhere. Based on the decentered monopole solution generated by
symmetry in flat spacetime, we construct two generalized split monopole configurations, in which the
field lines intersect with the CS at arbitrary angles. One configuration resembles the outer geometry of the
so-called “new pulsar magnetosphere model”, for which up to 47% of the spin down energy is transferred
to the Joule heating process in the CS. In the other configuration, we observe that negative energy is
dissipated in the CS, which is usually observed in magnetospheres on rotating black holes. This means that
energy is extracted simultaneously from the central star and the CS to power the output Poynting flux at
infinity. We interpret the extraction of energy from the CS as that thermal energy of charged particles in the
CS is transferred to the ordered kinetic energy of these particles drifting in the force-free (FF)
electromagnetic fields. Hence, the CS is like an “air conditioner” in the sky, which can heat up or cool
down, depending on the configurations .
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I. INTRODUCTION

To avoid the appearance of a magnetic monopole, the
splitting technique by introducing an equatorial current
sheet (CS) is usually adopted in constructing a monopole
magnetosphere on a compact object. In the popular pulsar
magnetosphere model at present, the near-star region is of a
dipole structure [1,2]. The magnetic field lines around the
poles can extend beyond the light cylinder (LC) to infinity.
They asymptotically approach a split monopole in the outer
region, whose analytical solution is the one found by
Michel [3]. This split monopole results from a splitting
and then gluing of two centered monopoles with opposite
magnetic charge. The discontinuity of the fields across the
equator gives rise to a singular CS. In the Michel split
monopole, the surface of the CS is parallel to the magnetic
field lines neighbor to the equator. So the Lorentz force
vanishes and no dissipation occurs in the CS. This structure
is part of the standard pulsar magnetosphere model first
realized numerically by [4].
But this splitting method is not unique to obtain a split

monopole. It is possible that the magnetic field lines are not
necessarily parallel to the infinitely thin CS [5–7]. This
modification may cause nontrivial effects. As shown in the

numerical solutions [5,6], the nonparallel splitting leads to
a CS where the spin down energy is dissipated. It is unclear
wether this dissipation process consumes the electromag-
netic energy in the CS. If it does (like the magnetic
reconnection case), the magnetosphere should evolve
in time.
In some other numerical simulations on rotating black

holes, an alternative role of the CS is explored. In [8–11], it
is found that the energy dissipated in the CS developed
within the ergosphere is gained by the force-free (FF) fields
to power the jet formation. The origin of the negative
dissipation energy remains vague. It looks like that this
phenomenon is specific to a gravitational system.
In this work, we construct two analytical split monopole

models that the magnetic field lines intersect with the
infinitely thin CS at arbitrary angles. Using these exact
configurations, we can clarify the current and energy flows
in the systems in detail, and specify the precise effects of
the CS. The paper is organized as follows. In terms of the
translational freedom mentioned in Sec. II, we give the
general monopole solution whose center can be shifted
along the spin axis in Sec. III. In Sec. IV we present the
generalized split monopole configurations based on the
decentered solution and discuss the effects of the CS by
calculating the exact amount of flows in them. Finally, we
summarize and discuss in the last section.*lhq@ynao.ac.cn
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II. TRANSLATION OF THE MAGNETOSPHERE

We consider the force-free magnetosphere on an axi-
symmetric rotator. The fields satisfy the following FF
condition

ρE⃗þ j⃗ × B⃗ ¼ 0: ð1Þ

This condition implies j⃗ · E⃗ ¼ 0 and E⃗ · B⃗ ¼ 0.
Under this condition, the Maxwell’s equations can be

reduced to a simple system described by three correlated
functions: the flux ψ , the angular velocity ΩðψÞ of field
lines, and the poloidal electric current IðψÞ. In terms of
them, the electromagnetic fields in the unit basis of
spherical coordinates can be expressed as

E⃗ ¼ −V⃗ϕ × B⃗ ¼ −
ΩðψÞ
r

ðr∂rψ ; ∂θψ ; 0Þ; ð2Þ

B⃗ ¼ 1

r2 sin θ
ð∂θψ ;−r∂rψ ; rIðψÞÞ; ð3Þ

where Vϕ ¼ r sin θΩ. The charge and current densities are
respectively

ρ ¼ −
1

4π
∇⃗ · ðΩ∇⃗ψÞ; ð4Þ

j⃗ ¼ ρr sin θΩe⃗ϕ þ
1

4π
I0B⃗: ð5Þ

With the above relations and equations, we arrive at the
so-called force-free pulsar magnetosphere equation. By
redefining z ¼ r cos θ and x ¼ r sin θ, we express the
equation in cylindrical coordinates as

ð1 −Ω2x2Þð∂2
xψ þ ∂2

zψÞ −
1

x
ð1þΩ2x2Þ∂xψ þ ð∂zψÞ2�

¼ −IðψÞI0ðψÞ; ð6Þ

where the primes stand for the derivative with respect to ψ .
It is easy to see that the differential equation is invariant

under the shift along the symmetry axis,

z → z0 ¼ z − ϵ: ð7Þ

So any solution ψ shifted along the rotation axis is still a
solution to the pulsar equation (6). Under this translation,
the functional relations ΩðψÞ, IðψÞ, and the global features
are kept the same. In what follows, we consider the
translated version of Michel’s monopole solution.

III. DECENTERED MONOPOLE SOLUTION

The exact monopole solution found by Michel [3] is
quite simple, only relying on the angle θ in spherical
coordinates,

ψðθÞ ¼ −q cos θ ¼ −q
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p : ð8Þ

For an arbitrary ΩðψÞ, the electric current is

IðψÞ ¼ 1

q
ΩðψÞðψ2 − q2Þ; ð9Þ

where q is the charge of the monopole. The solution gives
rise to a magnetosphere with magnetic domination and null
current.
The above solution (8) under the translation (7) becomes

ψðr; θÞ ¼ −q
z − ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðz − ϵÞ2
p ¼ −q

r cos θ − ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2ϵr cos θ þ ϵ2

p :

ð10Þ

The solution is now dependent on both poloidal coordinates
in the spherical coordinates. The functional relations
between IðψÞ, ΩðψÞ, and ψ remain invariant, the same
as shown in Eq. (9). The solution describes a monopole
magnetosphere whose center is shifted away from the
origin (the center of the star) along the rotation axis by
a distance ϵ, which generalizes the coincident Michel’s
solution.
For the solution, the electromagnetic fields are

E⃗ ¼ qr sin θΩ
D3

ðϵ sin θ;−ðr − ϵ cos θÞ; 0Þ; ð11Þ

B⃗ ¼ q
D3

ðr − ϵ cos θ; ϵ sin θ;−r sin θΩDÞ; ð12Þ

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2ϵr cos θ þ ϵ2

p
. Thus, the invariant is

B⃗2 − E⃗2 ¼ q2

D4
> 0; ð13Þ

so it is also magnetically dominated.
The relations Bϕ ¼ Eθ ¼ VϕBr for the original Michel’s

solution are replaced by

Bϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
r þ E2

θ

q
¼ Vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
r þ B2

θ

q
: ð14Þ

But, at large distances r ≫ jϵj, the former is still a good
approximation.
The Poynting flux is

S⃗¼ 1

4π
E⃗× B⃗¼ ðqr sinθΩÞ2

4πD5

�
r− ϵ cosθ; ϵ sinθ;

D
r sinθΩ

�
:

ð15Þ

From this, we can find that the drift velocity v⃗D ¼ 4πS⃗=B2

gets a nonvanishing component at the θ direction. The four-
current is
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Jμ ≡ ðρ; j⃗Þ ¼ −
qΩðr cos θ − ϵÞ

2πD4
ðD; r − ϵ cos θ; ϵ sin θ; 0Þ:

ð16Þ

So it is null with J2 ¼ 0, meaning the particle travels at
speed of light. This is the same as Michel’s centered
solution. But the null surface where the charge density and
current vanish is not located on the equator any more, but
on the plane shifted by a distance ϵ; z ¼ r cos θ ¼ ϵ. It is
noticed that the poloidal components of the magnetic field,
Poynting flux, the drift velocity and the current are all
parallel to each other.

IV. GENERALIZED SPLIT MONOPOLES

Since the magnetic monopole has not yet been con-
firmed, the splitting technique is usually adopted in con-
structing a monopole magnetosphere. For the Michel
solution, the split monopole configuration on the two
half-planes is expressed as

ψðθÞ ¼
(
qð1 − cos θÞ; θ ∈ ½0; π=2Þ
qð1þ cos θÞ: θ ∈ ðπ=2; π�: ð17Þ

The splitting results in a discontinuity on the equatorial
plane, giving rise to an infinitely thin CS there. In this case,
the magnetic field lines are parallel to the surface of the CS.
With the decentered solution (10), we make a similar

splitting. We denote the solution on the upper half-plane by
ψ∨ and the one on the lower hemisphere by ψ∨. On the

upper hemisphere θ ∈ ½0; π=2Þ, we choose ϵ ¼ �d (d > 0)
and express the solution as

ψ ð�Þ∨ ¼ q

�
1 −

r cos θ � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2dr cos θ þ d2

p
�
: ð18Þ

On the lower one θ ∈ ðπ=2; π�, the solution is

ψ ð�Þ
∧ ¼ q

�
1þ r cos θ � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � 2dr cos θ þ d2
p

�
: ð19Þ

There are two trivial cases: ψ ¼ ðψ ðþÞ∨ ;ψ ðþÞ∧ Þ and

ψ ¼ ðψ ð−Þ∨ ;ψ ð−Þ∧ Þ, which just describe decentered versions
of the Michel split monopole magnetosphere, shifted as a
whole respectively downward and upward by a distance d.
We are more interested in the two nontrivial configurations
that will be discussed as follows.

A. ψ = ðψð− Þ∨ ; ψð + Þ∧ Þ
This configuration is shown in the left panel of Fig. 1.

The profile of the configuration resembles the outer
geometry in the “new pulsar magnetosphere model”
obtained numerically in [6]. The valid region of the
configuration is restricted to be r > d, where the integral
of the magnetic field over any closed surface leads to zero
magnetic charge.
The expanded form of the split solution can be obtained

in terms of the general expanded form in the Appendix. It
is clearly seen that the full expanded solution of this spit
monopole in the outer range d=r < 1 is a summation of a
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FIG. 1. Magnetic field lines for the configurations defined in Sec. IVA (left) and IV B (right) with q ¼ 1, r0 ¼ 2 and d ¼ 1. The bold
lines on the equators represent the infinitely thin CS. The dashed lines on the left panel represent the null surfaces (with ρ ¼ 0), across
which the charge density ρ changes sign. In a realistic pulsar magnetosphere model, these split monopole configurations are relevant
only to the geometry outside the LC.
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closed and an open field line component; the odd
order terms of r are continuous across the equatorial
plane, contributing to a closed field line component, while
the even order terms are discontinuous, contributing an

open field line component. The discontinuity in the latter
gives rise to a current sheet on the equatorial plane.
For d=r < 1, the solution expanded to the order

Oðd2=r2Þ is

ψ ≃

(
q½1 − cos θ þ dsin2θr−1 þ ð3d2=2Þ cos θsin2θr−2�; θ ∈ ½0; π=2Þ
q½1þ cos θ þ dsin2θr−1 − ð3d2=2Þ cos θsin2θr−2� θ ∈ ðπ=2; π�: ð20Þ

At infinity r → ∞, the solution is asymptotically the
Michel split monopole solution. In the near region with
small d=r (but not too small), the dipole part becomes more
important. Besides, there are two null surfaces in this split
monopole solution. This is coincident to the case of the
corotating dipole inside the LC in the standard pulsar
magnetosphere model, where two straight null surfaces
extend from the star surface to the LC. Hence, the new split
solution here can better describe a smooth transition from a
dipole to a monopole. By adjusting the parameter d, the two
null lines in the corotating dipole and in the new split
monopole can be matched. In particular, the expanded
solution (20) is exactly the solution outside the light torus
of the exact dipole magnetosphere [12].
Let us now examine the dynamical consequence in this

configuration. From the solution, the force-free fields
approaching the equator θ → π=2 from either side are
given by

E⃗∨ →
qrΩ

ðr2 þ d2Þ32 ðd;−r; 0Þ; ð21Þ

E⃗∧ →
qrΩ

ðr2 þ d2Þ32 ðd; r; 0Þ; ð22Þ

B⃗∨ →
q

ðr2 þ d2Þ32
�
r; d;−rΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p �
; ð23Þ

B⃗∧ →
q

ðr2 þ d2Þ32
�
−r; d; rΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p �
: ð24Þ

We denote the continuous fields at the equator as

Er
c ≡ Er∨

�
θ →

π

2

�
¼ Er∧

�
θ →

π

2

�
;

Bθ
c ≡ Bθ∨

�
θ →

π

2

�
¼ Bθ∧

�
θ →

π

2

�
: ð25Þ

They are the field components that are nonvanishing within
the CS. The other field components are discontinuous.
The discontinuity of the perpendicular electric field Eθ

leads to the surface charge density in the CS,

σc ¼
qr2Ω

2πðr2 þ d2Þ32 : ð26Þ

The discontinuities of the parallel magnetic fields Br and
Bϕ give rise to the surface current densities flowing in the
CS respectively along the r and ϕ directions:

iϕc ¼ qr

2πðr2 þ d2Þ32 ; irc ¼
qrΩ

2πðr2 þ d2Þ : ð27Þ

In the FF regions, the total change rate of the charges
through the sphere (excluding the equator) at radius r is

_QFFðrÞ ¼
Z
∨
jr∨dsr þ

Z
∧
jr∧dsr

¼ ½I∨ðψÞ�θ¼π=2
θ¼0 þ ½I∧ðψÞ�θ¼π

θ¼π=2; ð28Þ

where dsr ¼ 2πr2 sin θdθ and the dot denotes the deriva-
tive with respect to time. The change rate through the
section of the CS at r is

_QCSðrÞ ¼ 2πrirc: ð29Þ

Thus, it is justified that the total electric current flowing
through a sphere at any radius r is zero;

_QFFðrÞ þ _QCSðrÞ ¼ 0: ð30Þ

This implies that the central star always remains neutral.
We take the value _QCSðr ¼ r0Þ at some initial radius r0

ð> dÞ as the current directly from the central star and the
one _QCSðr → ∞Þ at infinity as the output current. From the
second equation of Eq. (27), the latter is given by

_QCSðr → ∞Þ ¼ qΩ: ð31Þ

It is the same as the Michel split monopole.
Towards the equator, the perpendicular electric currents

along the FF magnetic fields are

jθ∨
�
θ →

π

2

�
¼ −jθ∧

�
θ →

π

2

�
¼ qΩd2

2πðr2 þ d2Þ2 : ð32Þ
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This means that there is a net electric current flowing into
the CS from both the upper and the lower sides. Including
the injected current at r0 and the output current at r → ∞,
we find

_QCSðr ¼ r0Þ þ
Z

∞

r0

2πr

�
jθ∨
�
θ →

π

2

�
− jθ∧

�
θ →

π

2

��
dr

¼ _QCSðr → ∞Þ: ð33Þ
This equation says that the output CS current comes from
directly the central star and the FF fields.
With the continuous fields, we obtain the nonvanishing

Lorentz force densities in the CS

frc ¼ σcEr
c − iϕcBθ

c ¼
q2rdðr2Ω2 − 1Þ
2πðr2 þ d2Þ3 ; ð34Þ

fϕc ¼ ircBθ
c ¼

q2rdΩ
2πðr2 þ d2Þ52 : ð35Þ

Both tend to zero in the Michel split monopole solution
with d ¼ 0. The directions of the radial component are
opposite on the two sides of the LC located at
r ¼ rLC ¼ 1=Ω: the magnetic force dominates inside the
LC, while the electric force dominates outside the LC. The
force-free fields become electrically dominated outside LC
either. It is usually assumed that the monopole solution
only exists outside the LC.
The Poynting fluxes for the FF fields in the limit

θ → π=2 are

S⃗∨ →
ðqrΩÞ2

4πðr2 þ d2Þ52
�
r; d;

1

rΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p �
; ð36Þ

S⃗∧ →
ðqrΩÞ2

4πðr2 þ d2Þ52
�
r;−d;

1

rΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p �
: ð37Þ

The discontinuous perpendicular component indicates that
there is a net Poynting flux flowing into the CS from both
sides of the FF regions. Thus, the CS gains energy.

The FF regions should be dissipation free and the
electromagnetic energy should always be conserved.
This can be expressed as

_EFF∨ ¼ _EFF∧ ¼ 0; ð38Þ

where the change rates of the electromagnetic energy are
given by

_EFF∨ ¼
I
∨
S⃗∨ · ds⃗; _EFF∧ ¼

I
∧
S⃗∧ · ds⃗: ð39Þ

The integrals go through all the boundaries of the FF
regions.
We first consider the upper hemisphere. The change rate

of the FF electromagnetic energy due to the Poynting influx
crossing the hemisphere at the initial radius r0 is

_EFF∨ ðr ¼ r0Þ ¼ 2πr20

Z π
2

0

sin θSr∨dθ

¼ q2Ω2

6

�
2þ dð3r20 þ 2d2Þ

ðr20 þ d2Þ32
�
: ð40Þ

This influx can be viewed as the one directly extracted from
the central star (via the inner magnetosphere). The change
rate measured at r → ∞:

_EFF∨ ðr → ∞Þ ¼ −
q2Ω2

3
: ð41Þ

The negative sign means that the energy flows out the FF
region to infinity. This result is also the same as the Michel
solution. On the boundary along the equator, the energy
also flows out the FF region

_EFF∨
�
θ →

π

2

�
¼ −

Z
∞

r0

2πrSθ∨
�
θ →

π

2

�
dr

¼ −
dq2Ω2ð3r20 þ 2d2Þ

6ðr20 þ d2Þ32 : ð42Þ

The calculations on the lower hemisphere lead to
identical results; _EFF∧ ¼ _EFF∨ for each of the components.
We denote the summation; _EFF ¼ _EFF∨ þ _EFF∧ ¼ 2_EFF∨ .
Then we have

_EFFðr ¼ r0Þ þ _EFF
�
θ →

π

2

�
þ _EFFðr → ∞Þ ¼ 0: ð43Þ

Thus, the conservation law (38) is verified. This indicates
that the energy extracted from the star sources the Poynting
fluxes flowing into the CS and to infinity. For the Michel
split monopole, the second term vanishes and so the
Poynting flux is constant through any sphere.

FIG. 2. The field structure and the energy flows near the CS
outside the LC of the configuration in Sec. IVA. The electric field
lines (not displayed) are perpendicular to the poloidal magnetic
field lines BP. A net Poynting flux flows into the CS from the
upper and lower sides to provide the energy dissipated in the CS.
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We now turn to the energy conservation law in the CS.
As given in Eq. (25), the fields that exist inside the CS are
the continuous fields; Er

c and Bθ
c. They give a toroidal

Poynting flux inside the CS, which is conserved itself. The
electric current flowing in and out of the CS is also
conserved in terms of Eq. (33). So the only change of
the energy in the CS comes from the Poynting influx
− _EFFðθ → π=2Þ and the dissipated energy. The latter arises
from the Joule heating process due to the nonvanishing
⃗ic · E⃗c. It leads to an increase of the CS energy at a total rate

_ECS ¼
Z

∞

r0

2πrircEr
cdr: ð44Þ

It is clear that this dissipated energy is completely com-
pensated by the Poynting influx from both sides of the FF
fields: ircEr

c ¼ 2Sθ∨ðθ → π=2Þ or

− _EFF
�
θ →

π

2

�
¼ _ECS: ð45Þ

Hence, the energy is conserved and there is also no
electromagnetic energy lost in the CS.
The Eq. (45) should be a consequence of the following

process; as the charged particles flow into the CS along the
magnetic field lines, the perpendicular component of the
drift velocity will be eventually damped to zero. The kinetic
energy is transferred to the thermal internal energy in the
CS (as shown in Fig. 2.).
Compared with the Michel split monopole, the spin

down power is enhanced in this configuration. The ratio of
dissipated energy to the total extracted energy is

_ECS

_EFFðr ¼ r0Þ
¼

�
1þ 2ðr20 þ d2Þ32

dð3r20 þ 2d2Þ
�−1

: ð46Þ

Since r0 > d, the maximum energy that can be dissipated in
the CS is 47% of the total spin down energy, which is close
to the numerical result of [6]. For larger r0=d > 1, a smaller
portion of energy is dissipated.

B. ψ = ðψð+ Þ∨ ; ψð − Þ∧ Þ
The magnetic field distribution of this configuration is

shown in the right panel of Fig. 1. It looks similar to the
split magnetosphere in the presence of a thin accretion disk
that contains magnetic fields itself (e.g., [8–10,13,14]). But
here the CS is not an accretion disk since no gravity is
involved.
The quantities for this configuration are given by the

previous case just with the replacement d → −d. In the CS,
only the continuous fields Er

c and Bθ
c exist. The

discontinuous fields lead to surface charge density σc
and current densities iϕc , and irc, which are the same as
the previous case. The currents close with the same forms

as given in Eqs. (30) and (33). But the Lorentz force take
the opposite directions,

frc ¼ −
q2rdðr2Ω2 − 1Þ
2πðr2 þ d2Þ3 ; fϕc ¼ −

q2rdΩ
2πðr2 þ d2Þ52 : ð47Þ

The Poynting fluxes perpendicular to the CS are

Sθ∨
�
θ →

π

2

�
¼ −Sθ∧

�
θ →

π

2

�
→ −

dðqrΩÞ2
4πðr2 þ d2Þ52 : ð48Þ

This indicates that net Poynting fluxes flow off the CS into
the FF magnetosphere on both sides. So the FF magneto-
sphere gains energy from the CS. Integrating the Poynting
flux along the equator, we can find that the energy gained
by the FF fields is exactly that lost in the CS,

_EFF
�
θ →

π

2

�
¼ − _ECS ¼ dq2Ω2ð3r20 þ 2d2Þ

3ðr20 þ d2Þ32 : ð49Þ

So the energy is conserved in the CS and the electromag-
netic energy density remains unchanged.
Similarly, we can show that the electromagnetic energy

is conserved in the FF regions. With the above Eq. (49), the
conservation law can be expressed as

_EFFðr ¼ r0Þ − _ECS ¼ _EFFðr → ∞Þ; ð50Þ

where _EFFðr → ∞Þ is the same as the previous case (also
equal to the one in the Michel split monopole). This
equation means that the output energy flux at infinity is
simultaneously extracted from the central star and the CS.
For a given output power, the spin down energy extracted
from the star can only be 11.6% of that by the Michel split
monopole since r0=d > 1.
Notice that here _ECS is negative since ⃗ic · E⃗c ¼ ircEr

c < 0.
This mysterious negative energy has been encountered in
the numerical simulations on rotating black holes [8,10,11].
It may be due to the observational effect in the gravitational
system. But here no gravity is involved in our system,
which may bring us new understanding on it. We think that

FIG. 3. The field structure and the energy flows near the CS
outside the LC of the configuration in Sec. IV B. A net Poynting
flux flows off the CS to the FF regions on both sides as the CS
loses energy.
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the negative energy here arises from the observational
effect in the corotation frame, which is an acceleration
frame and is similar to a gravitational system in terms of the
Einstein equivalent principle between gravity and
acceleration.
Following the above analysis, we can interpret this

negative energy process as an inverse process of the one
discussed in the previous configuration (see Fig. 3.): the
charges flow away from the CS to the FF regions along the
magnetic field lines on both sides to form the electric
currents that constitute the split monopole configuration.
Then the internal energy of thermal motion of the particles
in the CS is transferred to the ordered drift motion when
the particles enter into the FF regions. So the CS should
cool down with the negative energy dissipated to provide
the extracted energy.

V. CONCLUSIONS AND DISCUSSIONS

The Michel split monopole model is not unique and the
deviation from it leads to nontrivial consequences. By
varying the centered model in different ways, we illustrate
how the CS plays different roles.
Based on the decentered monopole solution generated by

the translational symmetry in the axisymmetric case, we
construct two generalized split monopole configurations.
One configuration resembles the outer geometry of a new
pulsar magnetosphere model, while the other may be useful
in describing the physical process in a split magnetosphere
with an accretion disk. These generalized configurations
can also be constructed in the oblique rotation case, since
the translational symmetry still exists in the magnetosphere
on an oblique rotator [15].
It is shown that the CS is a site where energy is dissipated

or extracted. This will increase or decrease the spin down
energy extracted from the central star, for a given output of
the Poynting flux. We interpret this process as a result that
the internal energy of thermal motion and the kinetic energy
of drift motion are transferred into each other. The
electromagnetic energy is always not lost everywhere,
i.e., in the CS and the FF regions. When the Poynting
flux flows in, the CS is heated up and possibly leads to
synchrotron and inverse Compton radiations, which are
observable [16]. On the contrary, energy is extracted as the
CS cools down. So the CS can also cause temperature
discontinuities in the systems. The effects of the thermal
nonequilibrium on the magnetohydrodynamics need fur-
ther investigations.
Our results will also apply to any variation of the split

monopole in the standard pulsar magnetosphere model. In a
realistic situation, the split monopole should not be exactly
like the Michel model. The CS may have finite size,
different geometries or even be dynamical with wavy
structures. So all these variations will cause extra energy
dissipation or extraction in the CS in terms of our
results above.
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APPENDIX: EXPANSIONS OF THE
DECENTERED MONOPOLE SOLUTION

In this Appendix, we present the expanded forms of the
decentered monopole solution

ψðr; θÞ ¼ −q
r cos θ − ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − 2ϵr cos θ þ ϵ2
p ¼ −q

ϵ⃗

jϵ⃗j ·
r⃗ − ϵ⃗

jr⃗ − ϵ⃗j ;

ðA1Þ

where ϵ⃗ is a constant vector on the axis. This can be done by
using the generating function for the Legendre polynomials

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2xtþ t2

p ¼
X∞
n¼0

PnðxÞtn: ðA2Þ

Let us first consider the expansions in the region r > jϵj.
Using the following identity

1

nþ 1
sin θP1

nþ1ðxÞ ¼ xPnþ1ðxÞ − PnðxÞ; ðA3Þ

we obtain the expansion form

ψðr; θÞ ¼ ψ0 þ
X∞
n¼1

ψ−nðθÞr−n; ðA4Þ

where

ψ0 ¼ −q cos θ; ψ−n ¼ −
1

n
qϵn sin θP1

nðcos θÞ: ðA5Þ

Using the identity

1

nþ 1
sin θP1

nðxÞ ¼ Pnþ1ðxÞ − xPnðxÞ; ðA6Þ

we have for r < jϵj

ψðr; θÞ ¼ qþ
X∞
n¼2

ψnðθÞrn; ðA7Þ

where

ψn ¼
1

n
qϵ−n sin θP1

n−1ðcos θÞ: ðA8Þ

This branch of expansions is irrelevant in the discus-
sions here.
With the expanded forms, it is easy to find that the

generalized solution (A1) can be obtained from the pulsar
equation by adopting the expansion method in [17]. In
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doing so, it is interesting to notice a cubic order identity for
the Legendre polynomials that is not yet found elsewhere,

sin θ cos θ∂θΓk þ ð1 − k sin2 θÞΓk ¼
Xk
i¼0

Xi

j¼0

Γk−iΓi−jΓj;

ðA9Þ

where

Γi ¼ ϵi½Pi−1ðcos θÞ − cos θPiðcos θÞ� ði ≥ 0Þ; ðA10Þ

with the definition Pl ¼ 0 for negative l.
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