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Time-delay interferometry (TDI) is a post-processing technique used to reduce laser noise in heterodyne
interferometric measurements with unequal armlengths, a situation characteristic of space gravitational
detectors such as the Laser Interferometer Space Antenna (LISA). This technique consists in properly time-
shifting and linearly combining the interferometric measurements in order to reduce the laser noise by
several orders of magnitude and to detect gravitational waves. In this communication, we show that the
Doppler shift due to the time evolution of the armlengths leads to an unacceptably large residual noise when
using interferometric measurements expressed in units of frequency and standard expressions of the TDI
variables. We also present a technique to mitigate this effect by including a scaling of the interferometric
measurements in addition to the usual time-shifting operation when constructing the TDI variables. We
demonstrate analytically and using numerical simulations that this technique allows one to recover standard
laser noise suppression which is necessary to measure gravitational waves.
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I. INTRODUCTION

The first observation of gravitational waves (GWs) by
the LIGO and Virgo collaborations [1] marked the begin-
ning of GW astronomy. It was quickly followed by many
more detections [2]. However, inherent sources of noise in
ground-based detectors limit the observed frequency band
to above 10 Hz, excluding many interesting sources, among
which supermassive black hole binaries, extreme mass-
ratio inspirals, or hypothetical cosmic strings. Several
projects of space-borne detectors are put forward in the
hope to detect GWs in the mHz band.
One such project is the ESA-led LISA mission [3]. LISA

aims to fly three spacecraft in a 2.5-million-kilometer
triangular formation, each of which exchanges laser beams
with the others. The phases are monitored using sub-pm
precision heterodyne interferometry, such that phase shifts
induced by passing GWs can be detected.
Laser frequency fluctuations will be the dominant source

of noise, many order of magnitude above the expected level
of GWs signals [3]. TDI is an offline technique proposed to
reduce, among others, laser noise to acceptable levels [4–7].
It is based on the idea that the same noise affects different
measurements at different times; by time-shifting and
recombining these measurements, it is possible to recon-
struct laser noise-free virtual interferometric signals in the
case of a static constellation. We call these laser noise-free
combinations the first-generation TDI variables [8,9]. The

algorithm has been extended to account for a breathing
constellation to first order, giving rise to the so-called
second-generation TDI variables [10]. Several laboratory
optical bench experiments and numerical studies have
confirmed that second-generation combinations can sup-
press laser noise down to sufficient level to detect and exploit
GWs [11–17].
In LISA, the physical units used to represent, process,

and deliver data remain to be chosen. Several studies are
ongoing to determine the pros and cons of using either
phase, frequency, or even chirpiness.1 These include studies
of the phasemeter design,2 telemetry bandwidth, and
potential impacts on offline noise reduction techniques,
such as TDI.
Most TDI studies indifferently assume that the measure-

ments are expressed in terms of interferometric beatnote
phases or frequencies [7]. However, these studies disregard
the Doppler shifts that arise when using units of frequency
[7,15–17]: the relative motion of the spacecraft induces
time-varying frequency shifts in the beatnote frequencies,

1Chirpiness is defined as the derivative of frequency.
2Representing the variables in phase or frequency impacts

most phasemeter internal processing steps, e.g., the bit depth
required not to be limited by numerical quantization noise or
whether or not filters must account for phase-wrapping. A
detailed study of these trade-offs is beyond the scope of this
paper.
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which reduce the performance of standard TDI algorithms.
In fact, as we show below, the standard formulation of TDI
applied to frequency data no longer suppresses laser noise
to the required level. We however demonstrate that these
TDI algorithms can be easily modified to account for
Doppler shifts when using frequency data. Ultimately, we
recover the same laser noise-reduction performance as one
obtains when using units of phase.
The paper is structured as follows: in Sec. II, we derive

the expression of the interferometric measurements in terms
of frequency and show how Doppler shifts couple. Then, in
Sec. III, we evaluate the additional noise due to these
Doppler shifts in the TDI variables and show that it does
not meet the requirements. A procedure to mitigate this
effect is presented in Sec. IV. We show that the Doppler
couplings can be reduced to levels below the requirements,
and confirm the analytical study by numerical simulations
in Sec. V. Finally, we conclude in Sec. VI.

II. INTERFEROMETRIC MEASUREMENTS

In this paper, we follow the latest recommendations on
conventions and notations established by the LISA
Consortium. Since these conventions are relatively new,
we provide in Appendix a mapping between the various
existing conventions.
We label the spacecraft as presented in Fig. 1. The optical

benches are labeled with two indices ij. The former
matches the index i of the spacecraft hosting the optical
bench, while the second index is that of the spacecraft j
exchanging light with the optical bench. Any subsystem or
measurement uniquely attached to an optical bench share
the same indices.
As an example, the light travel time (TT) measured on

optical bench ij represents the time of flight of a photon
received by spacecraft i and emitted from spacecraft j. Note

the unusual ordering of the indices (receiver, emitter);
while this choice may seem peculiar at first, it will turn out
most useful when writing TDI equations in Sec. III
and later.
We assume that the spacecraft follow perfectly the test

masses they host; therefore, their orbits are described as
geodesics around the Sun. Accounting for the sole influ-
ence of the Sun, the computation of their positions and
velocities reduces to a two-body problem, which can be
solved semianalytically [18,19]. A more realistic approach
uses a set of orbits computed using numerical integration
(which includes the influence of the more massive objects
in the Solar System) optimized for a given set of con-
straints, such as minimizing the motion of the spacecraft
relative to one another [19–21].
From these orbits, one can compute the light TT, denoted

by dij, of a photon received by spacecraft i and emitted
from spacecraft j. Because no sets of orbits ensures a static
constellation, we say that the constellation breathes. A
direct consequence of this is that the light TTs changes with
time, and we write, e.g., dijðtÞ.
Each spacecraft contains, among others, two laser

sources and two optical benches, labeled according to
Fig. 1. Three interferometric signals, namely the interspace-
craft3 iscijðtÞ, test-mass tmijðtÞ, and reference refijðtÞ
beatnotes, are measured on each optical bench ij [3]. In
addition, a pseudorandom code is used to modulate the
laser beams exchanged by the spacecraft [22,23]. The
signal is then correlated with a local version to provide
an estimate of the light TTs, called measured pseudoranges.
Various errors entering the measured pseudoranges and
their impact on data processing and analysis are the focus of
ongoing studies [24]. We shall assume here that the
measured pseudoranges furnish perfect measurements of
the light TTs, and therefore, we shall use indifferently
pseudoranges or light TTs, both denoted dijðtÞ.
Moreover, we will assume here that each spacecraft

contains only one laser, which is used in both optical
benches. This is without loss of generality, since this
situation can be achieved in practice either by locking
the two lasers on board each spacecraft4 or by constructing
the intermediary variables η [7,8].
On board spacecraft i, the phase of the local laser beam

in units of cycles is denoted ΦiðtÞ. It contains the phase
ramp due to the average laser frequency (around 281 THz),
as well as small in-band phase fluctuations, dominated by
the instability of the reference cavity used for stabilization
(around 30 Hz=

ffiffiffiffiffiffi
Hz

p
when expressed as a frequency

noise [3]).
The phase of the beam emitted by spacecraft j and

received on i at time t readsSC 1SC 2
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FIG. 1. Labeling conventions used for spacecraft, light TTs,
lasers, optical benches, and interferometric measurements.

3Formerly known as the science or long-arm interferometer.
4The precise locking configuration is still under study.
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Φi←jðtÞ ¼ Φjðt − dijðtÞ −HijðtÞÞ; ð1Þ

where dijðtÞ is the light TT between j and i without any
GWs. The effect of passing GWs are modeled by an
additional delay HijðtÞ. Because this quantity is very small
with respect to dijðtÞ, we Taylor-expand the phase to write
HijðtÞ as an independent term, and get

Φi←jðtÞ ¼ Φjðt − dijðtÞÞ − νjðt − dijðtÞÞHijðtÞ: ð2Þ

For more the sake of clarity, we drop the time depend-
ence and introduce the delay operator Dij, defined by

DijxðtÞ ¼ xðt − dijðtÞÞ; ð3Þ

for any signal xðtÞ. We shall also use the compact notation
for chained delay operators, formally defined by

Di1i2…in ¼ Di1i2Di2i3…Din−1in ; ð4Þ

such that we have, e.g., in the case of two delay operators,

DijkxðtÞ ¼ DijDjkxðtÞ ¼ Dijxðt − djkðtÞÞ
¼ xðt − dijðtÞ − djkðt − dijðtÞÞÞ: ð5Þ

Using these conventions, Eq. (2) becomes

Φi←j ¼ DijΦj − ðDijνjÞHij: ð6Þ

The frequency of the local laser beam on optical bench ij
is simply the derivative of the total phase νi ¼ _Φi.
Similarly, the frequency of the distant beam is obtained
by Taylor-expanding the derivative of Eq. (1),

νi←jðtÞ ¼ _Φi←jðtÞ ¼ ½1 − _dijðtÞ − _HijðtÞ�
× ½νjðt − dijðtÞÞ − _νjðt − dijðtÞÞHijðtÞ�: ð7Þ

In the following, we neglect all terms in _νjHij. Indeed,
the rate of change of νj is driven by laser noise.5 Using the
expected level of laser noise and integrating it over the
LISA frequency band, _νj ≈ 102 Hz s−1. Therefore,
_νjHij ≈ 10−18 Hz ≪ νj _Hij ≈ 10−7 Hz. Dropping the time
dependence and using our delay operator,

νi←j ¼ ð1 − _dijÞDijνj − ðDijνjÞ _Hij: ð8Þ

The factor _dijðtÞDijνj is often referred to as the Doppler
shift, and is proportional to the time derivative of the light
TT. Figure 2 show the time variations of such quantities for
realistic orbits [20,21], of the order of 10−8 (or 3 ms−1).
The inter-spacecraft interferometer mixes the local and

distant beams. The beatnote phase Φisc
ij can easily be

expressed as the difference of the beam phases,

Φisc
ij ¼ Φi←j −Φi ¼ DijΦj −Φi − ðDijνjÞHij: ð9Þ

In units of frequency, we have

νiscij ¼ ð1 − _dijÞDijνj − νi − ðDijνjÞ _Hij; ð10Þ

where the term _dijDijνj is the Doppler shift.
In Eq. (10), the main in-band contribution is laser noise,

which does not cancel out6 and remains orders of magnitude

FIG. 2. Light travel time derivatives for realistic orbits.

5We expect that laser frequencies also vary due to the
frequency plan, by MHz over the timescale of months. This
yields terms of the same order of magnitude, so that our reasoning
holds.

6Even if lasers are locked such that there is only one laser
noise, it is not sufficiently suppressed due to the large delays.
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above the gravitational-wave signal ðDijνjÞ _Hij ≈ 10−7 Hz.
In order to detect and extract gravitational information from
the measurements, laser noise must be reduced by at least 8
orders of magnitude.

III. RESIDUAL NOISE DUE TO DOPPLER
SHIFTS IN TDI

TDI is a technique proposed to reduce instrumental
noises, including laser noise, to acceptable levels. The
starting point for the main TDI algorithm is usually to
compute the so-called intermediary variables ξ and η,
which are used to remove spacecraft jitter noise and reduce
the number of lasers to three. While we already consider
only one laser per spacecraft, we will further neglect
spacecraft jitter noise, such that we can directly write ηij ¼
Φisc

ij in phase, or ηij ¼ νiscij in frequency.
The next step is to reduce laser noise. Several laser noise-

reducing combinations have been proposed. E.g., the
second-generation Michelson variable X2 reads [7]

X2 ¼ ð1 −D121 −D12131 þ D1312121Þðη13 þ D13η31Þ
− ð1 −D131 −D13121 þ D1213131Þðη12 þ D12η21Þ:

ð11Þ
The two other Michelson variables Y2, Z2 are obtained by
circular permutation of the indices 1 → 2 → 3 → 1.
In the following, we shall ignore any technical reasons

for imperfect laser noise reduction, such as flexing-filtering
coupling [17], interpolation errors or ranging errors, and
only consider the maximum theoretical laser noise reduc-
tion achievable.
In case of phase, we know that the residual laser noise in

this variable is given by the noncommutation of delay
operators [17],

XΦ
2 ¼ ½½D131;D121�;D12131�Φ1: ð12Þ

Expanding this expression to second order in the average
TT derivatives _d’s and first order in average TT second
derivatives d̈’s, and assuming that these quantities are
symmetric in i, j, the difference of the delays applied to
the phase Φ1 in the two terms from Eq. (12) reads

Δd ¼ 8d̄ð _̄d212 − _̄d
2
31Þ − 16d̄2ð ¯d̈12 − ¯d̈31Þ; ð13Þ

where the first term matches the results of [17]. In terms of
power spectral density (PSD), we have

SXΦ
2
ðωÞ ¼ ω2Δd2SΦðωÞ; ð14Þ

where SΦðωÞ is dominated by the PSD of the laser noise
expressed in cycles.
Now, let us assess the impact of Doppler shifts if one

uses naively the traditional second generation TDI

algorithm using measurements in units of frequency. For
this, we can insert Eq. (10) in Eq. (11). The only structural
difference between Eq. (10) and Eq. (9) is the additional
Doppler term _dijDijνj. Because TDI is a linear operation,
we can immediately give the residual laser noise in terms of
frequency when applying the same algorithm,

Xν
2 ¼ ½½D131;D121�;D12131�ν1 þ δXν

2; ð15Þ

where δXν
2 is a function of the Doppler shifts,

δXν
2 ¼ ð1 −D131 −D13121 þ D1213131Þ

× ð _d12D12ν2 þ _d21D121ν1Þ
− ð1 −D121 −D12131 þ D1312121Þ
× ð _d13D13ν3 þ _d31D131ν1Þ: ð16Þ

A rough estimation of this Doppler coupling can be
computed from δXν

2 ≈ _̄dν. Plugging orders of magnitudes
for the TTs derivatives and laser noise yields a Doppler
coupling at 10−6 Hz, above the expected level for our GW
signals (10−7 Hz). It is also above the level of the tradi-
tional residuals of TDI, given by the first term of Eq. (15)
and shown in Fig. 3. As a consequence, the PSD of the
residual noise for the Xν

2 TDI variable is dominated by the
Doppler coupling,

SXν
2
ðωÞ ≈ SδXν

2
ðωÞ: ð17Þ

Assuming that all laser frequencies are uncorrelated, a
more precise computation yields the PSD of this extra
residual noise,

FIG. 3. Amplitude spectral density of the second generation
TDI combination when using measurements expressed in units of
frequency. The blue curve shows the amplitude of Doppler-
related terms, cf. Eq. (18), the orange curve shows the amplitude
of the delay commutators, cf. Eq. (19), while the red curve
presents the usual LISA 1 pm-noise allocation, cf. Eq. (20). The
light travel times used in this simulation are presented in Fig. 2.
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SδXν
2
ðωÞ ≈ 16Sν sin½2�ðωd̄Þ sin½2�ð2ωd̄Þ

× ð _̄d212 þ _̄d
2
31 þ ð _̄d12 − _̄d31Þ2Þ: ð18Þ

This is to be compared with the residual laser noise in
terms of frequency when one disregards Doppler effects. It
is given by replacing SΦ with Sν in Eq. (14),

S½Xν
2
�ðωÞ ¼ ω2Δd2SνðωÞ: ð19Þ

In Fig. 3, we show those analytical curves alongside the
usual LISA Performance Model’s 1 pm-noise allocation
curve, given by

SXalloc
2

ðωÞ ¼ 64ω2 sin½2�ðωd̄Þ sin½2�ð2ωd̄Þ

×

�
1 pmHz−1=2

λ

�
2
�
1þ

�
2 × 10−3 Hz

ω=2π

�
4
�
:

ð20Þ

The extra residual laser noise due to Doppler terms is above
or at the same level as the GW signal, and far above the
usual laser noise residual when one disregards the Doppler
effect. Therefore, a procedure to mitigate this effect is
required if one wishes to use frequency measurements.

IV. ADAPTING TIME-DELAY INTERFEROMETRY
FOR DOPPLER SHIFTS

As mentioned in the previous section, accounting for the
Doppler effect in the interspacecraft beatnote frequency
comes down to replacing the delay operator Dij in
Eq. (9) by ð1 − _dijÞDij. We can formalize it by introducing
the Doppler-delay operator,

_Dij ¼ ð1 − _dijÞDij; ð21Þ

such that laser noise entering Eq. (10) takes the same
algebraic form as its phase counterpart Eq. (9),

νiscij ¼ _Dijνj − νi þ ðDijνjÞ _Hij: ð22Þ

We now introduce a new type of second generation TDI
combination by considering the standard expression from
Eq. (11) but using the Doppler-delay operators introduced
in Eq. (21). The new TDI variable writes

_X2 ¼ ð1 − _D121 − _D12131 þ _D1312121Þðη13 þ _D13η31Þ
− ð1 − _D131 − _D13121 þ _D1213131Þðη12 þ _D12η21Þ:

ð23Þ

The algebraic form of this expression is now identical in
phase and frequency, and we immediately recover the
residual noise given in Eq. (14),

_Xν
2 ¼ ½½ _D131; _D121�; _D12131�ν1: ð24Þ

A direct comparison with Eq. (15) demonstrates that the
new TDI variable introduced in Eq. (23) is not impacted by
the Doppler noise δXν

2.
To compute the PSD of the _Xν

2 residual laser noise, we
study the commutator of Doppler-delay operators

y ¼ ½ _Di1j1…
_Dinjn ;

_Dk1l1…
_Dknln �: ð25Þ

As one can observe in Fig. 2, the light TT derivatives evolve
slowly with time, with d̈Δt ∼ 10−14 ≪ _d ∼ 10−8 if Δt ∼
10 s is the timescale of the TTs considered here. Therefore,
we can assume that _d’s are constant when computing y.
Equation (25) can then be factored as

y ¼
�Yn

m¼1

ð1 − _dimjmÞ
��Yn

m¼1

ð1 − _dkmlmÞ
�

× ½Di1j1…Dinjn ;Dk1l1…Dknln �: ð26Þ

The factor that contains the TT derivatives is a constant,
which, to first order, deviates from 1 by 2 _̄dn ≈ 10−7. We
can therefore neglect it when estimating the PSD. For this
reason, the PSD of the laser noise residual for the new TDI
variable introduced in Eq. (23) is then given by

S _Xν
2
ðωÞ ¼ S½Xν

2
�ðωÞ; ð27Þ

whose expression is explicitly given in Eq. (19). A direct
comparison with Eq. (17) shows that the PSD of the new _Xν

2

TDI variable is not impacted by the unacceptably large
contribution from δXν

2.
The method presented in this section which consists in

replacingDij by _Dij in the usual TDI combinations in order
to remove the effect of Doppler shift is very general and can
be applied to any TDI combination.

V. SIMULATION RESULTS

Using LISANode [25] and lisainstrument, a
Python simulator based on LISANode, we simulated
the interferometric measurements as frequency deviations
from the average beatnote frequencies. These frequency
deviations include only laser noise, which is Doppler-
shifted during propagation. We assumed 3 free-running
lasers for this study, and used a high sampling rate, such
that effects of onboard filtering appear off band. We used
the same realistic orbits and light travel times as presented
in Fig. 2, and simulated 107 samples, i.e., a bit less than
12 days.
The TDI processing was performed using PyTDI. In

Fig. 4, we compare 2 different scenarios using the same
input data. The blue curve shows the amplitude spectral
density (ASD) of the residual laser noise when the standard
second-generation Michelson Xν

2 variable is used. We
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superimpose the model for the expected excess of noise
δXν

2 due to Doppler effect given in Eq. (18), and check that
it matches our simulated results. Alternatively, the orange
curve shows the ASD of the residual laser noise when the
Doppler-corrected second-generation Michelson _Xν

2 varia-
ble is used. It is superimposed with the analytical expect-
ation given in Eq. (27) in most of the band, until we reach a
noise floor around 2 × 10−12 Hz=

ffiffiffiffiffiffi
Hz

p
. This noise floor is

in agreement with the numerical accuracy typically
achieved in our simulations.
These simulations confirm the analytical results devel-

oped in the previous section. In particular, it shows that the
residual noise of the new TDI variable introduced in
Eq. (23) is similar to the one obtained with the standard
TDI combinations when the Doppler effect is neglected.
Say in other words, the TDI variable corrects efficiently for
the Doppler contribution which otherwise induces an
unacceptably large noise.

VI. CONCLUSION

In this paper, we show that the TDI combinations found
in the literature [7] do not reduce laser noise to required
levels when applied to data in units of frequency and we
provide an analytical formulation of the additional
residual noise. We then propose a technique to adapt
existing TDI combinations to data in units of frequency.
We show through analytical studies, as well as with
numerical simulations that we recover the original
laser-noise reduction performance, compatible with
requirements to detect and exploit GWs signals.
TDI is required to suppress primary noises in the

interferometric measurements to levels below that of
GW signals. Existing formulations are based on the
assumption that these measurements are expressed in
terms of phase, or disregard the impact of Doppler shifts
when data in frequency are used [7]. However, applying
these TDI algorithms to data in units of frequency yields
extra noise residuals due to the Doppler shift induced by
the time variation of the arm lengths. This extra noise
residuals are larger than GW signals. To account for
Doppler shifts we reformulate the TDI combinations by
replacing delay operators by their Doppler equivalent,
which not only shift measurement in time but also scale
them by the corresponding Doppler factor, see Eq. (21).
We show that this general procedure yields new TDI
combinations, whose performance when applied to mea-
surements in frequency match that of the traditional
combinations when working in units of phase.

TABLE I.

Double-index
Primed indices

for optical benches
Primed indices
for light TTs

12 (e.g., νisc12 or d12) 1 (e.g., νisc1 ) 3 (e.g., d3)
23 (e.g., νisc23 or d23) 2 (e.g., νisc2 ) 1 (e.g., d1)
31 (e.g., νisc31 or d31) 3 (e.g., νisc3 ) 2 (e.g., d2)
13 (e.g., νisc13 or d13) 10 (e.g., νisc

10 ) 20 (e.g., d20 )
32 (e.g., νisc32 or d32) 30 (e.g., νisc

30 ) 10 (e.g., d10 )
21 (e.g., νisc21 or d21) 20 (e.g., νisc

20 ) 30 (e.g., d30 )

FIG. 4. Amplitude spectral density of the residual laser noise in Xν
2 obtained using data in units of frequency, with the traditional

algorithms (in blue) and Doppler correction (in orange). The theoretical models from Eqs. (18) and (19) are superimposed as black
dashed lines. These curves need to be compared with the 1 pm-noise allocation (in red).
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This is a major result to study the impact of different
physical units in LISA data processing. We show that laser
noise reduction can reach similar levels using phase or
frequency measurements. Nevertheless, computing the TDI
using frequency measurements require the knowledge of
both the TT and their time derivatives while only the TT are
needed in order to construct TDI variables using phase
measurements. This might impact the development of a
Kalman filter whose goal is to provide an estimate of the TT
[24]. Finally, it is known that the clocks from the various
spacecraft will drift with respect to each other because of
relativistic effects [26] and because of clock noise.
Therefore, the LISA preprocessing will also include a
synchronization of the clocks from the 3 spacecraft [7].
How this synchronization will impact the construction of
TDI variables is currently under exploration and might
differ if one uses phase or frequency units. A detailed study
of the interplay of TDI with clock synchronization is left for
a dedicated study. Finally, let us mention that using
frequency units to perform the data analysis of LISA
may also impact the sources parameters inference since
the TDI response function used in Bayesian algorithm may
have to include the currently neglected Doppler correction.
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APPENDIX: MAPPING BETWEEN
CONVENTIONS

The following table gives the mapping between the
double-index conventions used in the article, and historic
ones using primed indices, used in, e.g., [12,16,17,25]. We
give the correspondence for optical bench and associated
subsystems and quantities, and that for light TTs and their
derivatives.
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