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We present a first calculation of the heavy flavor contribution to the longitudinally polarized deep-
inelastic scattering structure function gQ1 , differential in the transverse momentum or the rapidity of the
observed heavy quark Q or antiquark Q̄. All results are obtained at next-to-leading order accuracy in QCD
within the framework of a newly developed parton-level Monte Carlo generator that also allows one to
study observables associated with the produced heavy quark pair such as its invariant mass distribution or
its correlation in azimuthal angle. First phenomenological studies are carried out for various heavy quark
distributions in a kinematic regime relevant for a future Electron-Ion Collider with a particular emphasis on
the expected size of the corresponding double-spin asymmetries and their sensitivity to the still poorly
constrained helicity gluon distribution. Theoretical uncertainties associated with the choice of the
factorization scale are discussed for selected observables.
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I. INTRODUCTION AND MOTIVATION

Heavy flavors, more precisely their contributions to
deep-inelastic scattering (DIS) processes or their produc-
tion in hadron-hadron collisions, have played a rather
minor role so far in constraining longitudinally polarized
parton distributions (PDFs) [1,2] despite their sensitivity to
the elusive gluon helicity density. The prospect of a future
high luminosity Electron-Ion Collider (EIC) in the U.S. [3],
with its vastly extended kinematic reach compared with
past and present fixed-target experiments [1,4] will likely
change this assessment considerably. For the first time,
experiments will be able to probe the helicity structure of
nucleons with unprecedented precision at momentum
fractions x well below the currently explored range x≳
0.01 and, at the same time, at energy scalesQ above 1 GeV,
i.e., in the domain where perturbative QCD should be
safely applicable and where contributions from heavy
quarks (HQs) are potentially sizable.

Clearly, a proper treatment of HQs in polarized DIS will
become a must in any global QCD analysis of helicity
PDFs [5–7] based on future EIC data [8]. Experiments at
the DESY-HERA collider have shown in the past [9] that
the charm contribution to unpolarized DIS, i.e., to the
structure function F2, can reach about a level of 25% at
small x. Also, at not too large scales Q, as compared to the
HQmassm, one needs to retain the full dependence onm in
all theoretical computations as a massless approximation,
i.e., treating charm quarks as massless partons in the
proton, is not warranted here. This is primarily also the
kinematic region of utmost significance for investigating
polarized DIS at the EIC [3].
The presence of different scales, at least m and Q,

significantly complicates all calculations involving HQs in
DIS already at the level of next-to-leading order (NLO)
accuracy, in particular, the evaluation of the necessary
virtual corrections and phase space integrals. This is even
more so the case if one considers, in addition, the
polarization of the initial-state partons because of the
well-known complications due to the presence of γ5 and
the Levi-Civita tensor in the helicity projection operators in
n ≠ 4 dimensions [10].
An important step towards completing the already

existing suite of NLO HQ production cross sections in
longitudinally polarized hadroproduction [11,12] and pho-
toproduction [13,14] has been made recently in
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Ref. [15,16] where the heavy flavor contributions to the
inclusive helicity DIS structure function g1 have been
computed more than 35 years after the leading order
(LO) expressions were first derived [17]. This paper will
build on these NLO results that were obtained with largely
analytical methods following closely the corresponding,
pioneering calculations in the unpolarized case [18,19].
In the present work we shall develop a new parton-level

Monte Carlo (MC) generator that allows one to also study
systematically more exclusive observables in longitudinally
polarized DIS, i.e., quantities which are differential in the
transverse momentum pT or the rapidity y of the observed
heavy quark (antiquark) [Q ðQ̄Þ] or which are associated
with the produced HQ pair such as its invariant mass
distribution or its correlation in azimuthal angle. All phase
space integrals are computed in four dimensions by means
of standard MC techniques [20]. Collinear and soft diver-
gencies at intermediate stages are made explicit by gener-
alized plus distributions within the framework of
n-dimensional regularization [21] and canceled upon add-
ing the renormalized virtual corrections and appropriate
factorization counterterms. Contrary to our results in [15]
and thanks to the adopted subtraction method [22] there is
no need to actually evaluate integrals in n dimensions.
We benefit greatly from previous applications of the

subtraction method to various HQ calculations at NLO
accuracy [12,14,23–25], which provide essentially all of
the formalism required here. In particular, we follow closely
the methods and notations outlined in Refs. [23,25] and shall
only very briefly review the main technical aspects in this
paper in order to adopt them to the case of helicity-dependent
DIS. We will utilize the results of our previous, largely
analytical calculation [15] to validate our numerical results
and the underlying MC code for fully inclusive and single-
differential HQ processes which are amenable to both
analytical and numerical methods. We note that our code
also provides unpolarized results. They appear in the
numerator of experimentally relevant double-spin asymme-
tries and, hence, are needed in our phenomenological studies.
Whenever possible,we use existing unpolarized results in the
literature [25–28] for further validation of our MC code.
Our MC implementation of polarized HQ electropro-

duction is, in principle, capable of producing any infrared
safe observable, i.e., histograms for exclusive, semi-inclu-
sive, or fully inclusive quantities related to any of the
outgoing particles or combinations thereof. Experimental
cuts can be implemented as well (if needed) provided they
can be expressed in terms of the available partonic
variables. The presented MC program and numerical
results are based on the virtual photon-hadron ðγ�hÞ
center-of-mass system (c.m.s.) frame, i.e., they make no
reference to the lepton in DIS and are given solely in terms
of the relevant differential helicity structure function dg1. In
the next stage, our parton-level MC code can be straight-
forwardly expanded further; for instance, along the lines of

the unpolarized HVQDIS code [29] by interfacing it with
appropriate sets of HQ fragmentation functions to model
the HQ decay into heavy mesons.
As a first phenomenological application of our MC code,

we will explore in this paper some HQ observables of
potential interest for the physics program at a future EIC.
One of the main goals of the EIC [3] is to collect vital new
information about the elusive helicity gluon density Δg
from as many processes as possible and to exploit these
data in future global QCD analyses. Since HQ electro-
production is driven by the LO photon-gluon fusion (PGF)
process, γ�g → QQ̄, it is expected to play a major role in
this exercise. In Ref. [15] we have already studied the fully
inclusive contribution of charm quarks to the DIS structure
function g1 in the kinematic domain x≲ 0.01 and moderate
Q2 relevant for the EIC. Here, we will focus on various
differential HQ distributions and correlations, including the
experimentally relevant double spin asymmetries, and
compute them for the entire suite of helicity PDF uncer-
tainty sets provided by the DSSV Collaboration [6].
It turns out that the single inclusive distribution dg1=dpT

as well as the invariant mass spectrum of the produced HQ
pair, dg1=dM, are particularly sensitive to Δg. HQ corre-
lations which are trivial at LO accuracy (for instance, the
back-to-back configuration in azimuthal angle) are also of
phenomenological interest as they test higher order QCD
corrections most clearly. These types of observables are
also particularly sensitive to all-order resummations, i.e.,
the treatment of multiple soft gluon emission in the vicinity
of, say, the back-to-back peak. We should stress that these
corrections are not included in our fixed order MC code
and, hence, results in these regions of phase space should
be taken with a grain of salt; soft gluon resummations in the
context of HQ electroproduction have been reported in
Refs. [30]. For the phenomenologically most interesting
HQ observables we shall also investigate and estimate the
remaining theoretical uncertainties at NLO accuracy due to
variations of the renormalization and factorization scales.
Finally, we wish to remark that for phenomenological

applications at a future EIC at small x, and for Q not much
larger than the HQ mass m, HQ production is most likely
best described by retaining the full mass dependence as has
been done in our largely analytical calculation [15] and for
all numerical results presented here. This also implies that
HQs can be only produced extrinsically, for instance,
through the PGF mechanism and that the notion of a
massless HQ PDF makes no sense.1 However, in the
asymptotic regime, Q ≫ m, one might want to consider
HQ parton densities which requires to set up some
interpolating scheme that matches a theory with nlf light

1For our purposes, we safely ignore here the possibility of a
nonperturbative, “intrinsic charm” component in the proton wave
function [31] which might play a role in the valence region at
large momentum fractions x.
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flavors to a theory with nlf þ 1 massless flavors [32].
Different types of general-mass variable flavor number
schemes (GM-VFNS) have been proposed and adopted in
global fits of unpolarized PDFs [33,34] but no such
prescription has been considered so far for fits of helicity
PDFs. Our results, along with the asymptotic limit Q ≫ m
[35], are necessary ingredients for a polarized GM-VFNS.
The remainder of the paper is organized as follows. In

Sec. II we briefly sketch the relevant technical aspects of
setting up a parton-level Monte Carlo generator for heavy
quark production in longitudinally polarized DIS. The
phenomenological results are collected in Sec. III. Here,
we first validate our MC code against our previous results
based on largely analytical methods. Next, we present
detailed results for the transverse momentum and rapidity-
differential single-inclusive distributions of the longitudi-
nally polarized DIS charm structure function gc1 and the
experimentally relevant double-spin asymmetry Ac

1. Finally,
we turn to correlated HQ observables, most importantly, the
invariant mass distribution of the observed charm quark-
antiquark pair but also comprising their difference in
azimuthal angle, their combined transverse momentum,
and the cone size variable. The main results of the paper are
summarized in Sec. IV.

II. TECHNICAL ASPECTS

In this section, we will briefly review the main technical
aspects pertinent to our goal of setting up a parton-level MC
program for HQ production in polarized DIS. As was
already mentioned, we will heavily make use of existing
methods adopted for various other calculations of HQ
production at NLO accuracy [12,14,23–25,36]. In particu-
lar, Refs. [23,25] provide essentially all of the formalism
required here, albeit for the unpolarized case.
Photon-gluon fusion,

γ�ðqÞgðk1Þ → Qðp1ÞQ̄ðp2Þ ð1Þ

the sole mechanism for HQ electroproduction at LO
accuracy [17], receives both virtual and gluon bremsstrah-
lung OðαsÞ corrections,

γ�ðqÞgðk1Þ → gðk2ÞQðp1ÞQ̄ðp2Þ; ð2Þ

and is supplemented by a genuine NLO light (anti)quark-
induced process

γ�ðqÞqðk1Þ½q̄ðk1Þ� → qðk2Þ½q̄ðk2Þ�Qðp1ÞQ̄ðp2Þ; ð3Þ

where the relevant four-momenta are labeled as q, k1, k2,
p1, and p1. The photon is virtual, q2 ¼ −Q2, and the heavy
quarks are taken to be massive, p2

1;2 ¼ m2, while k21;2 ¼ 0.
The spin-dependent matrix elements for all contributing
2 → 2 and 2 → 3 processes have been computed already in

our previous paper [15], but rather than performing the
needed phase space integrations by largely analytical
means we shall now utilize MC methods. This will enable
us to study any infrared safe observable in spin-dependent
HQ electroproduction up to Oðαα2sÞ even when experi-
mental cuts are imposed. Here, α denotes the electromag-
netic and αs the scale-dependent strong coupling. We shall
stress already at this point that results obtained with our
parton-level MC code for HQ electroproduction will fail
whenever fixed-order results are bound to fail, i.e., when
they become sensitive to the emission of soft gluons; some
examples will be given in Sec. III.
To compute all phase space integrals in four dimensions

by means of standard MC techniques [20] it is necessary to
cancel any intermediate soft or collinear singularities under
the integral sign beforehand. This is achieved by employing
a variant of the subtraction method [22,23,25,37] and
expressing the matrix elements and the two- and three-
particle phase space factors, dPS2 and dPS3, respectively,
in terms of the variables x, y, θ1, and θ2 that make the
kinematic regions of soft and collinear emissions explicit. x
is the reduced invariant mass of the HQ pair, s05 ≡ s5 −
q2 ¼ ðp1 þ p2Þ2 − q2 scaled by the reduced γ�-parton
c.m.s. energy squared s0 ≡ s − q2 ¼ ðqþ k1Þ2 − q2, i.e.,
ρ� ≡ ð4m2 − q2Þ=s0 ≤ x ≤ 1, and −1 ≤ y ≤ 1 is the cosine
of the angle between q⃗ and k⃗2 in the frame where
q⃗þ k⃗1 ¼ 0. Both θ1 and θ2 range between 0 and π and
are used to parametrize the spatial orientation of k1;2 with
respect to the plane span by the other three momenta in the
c.m.s. frame of the HQ pair. They do not matter for the
discussion of singular regions of phase space.
In the matrix element squared for (2) the emission of a

soft gluon corresponds to a 1=ð1 − xÞ singularity as x → 1
and, likewise, a collinear 1=ð1þ yÞ pole is encountered for
y → −1. The latter also appears in the diagrams contrib-
uting to the process (3) that are proportional to the electric
charge of the HQ squared, e2Q.
The gist of the subtraction method adopted here [23,25]

is to tame the singularities by multiplying the squared
matrix elements in (2) and (3) by an appropriate Lorentz-
invariant factor that vanishes in the soft and/or collinear
limit, yielding finite functions that can be integrated
numerically over x, y, θ1, and θ2. The phase space
dPS3, divided by the same factor, can be expressed in
terms of generalized plus distributions within the frame-
work of n ¼ ð4þ ϵÞ-dimensional regularization, and all
poles can be canceled either upon adding the virtual
contributions or by applying a factorization counterterm
before integration. We will briefly outline the most impor-
tant steps in what follows. For more details, we refer the
reader to Refs. [25,38].
Adopting our notation from Ref. [15] for denoting the

appropriate projections onto the different HQ contributions
(i.e., structure functions) in unpolarized ðG;LÞ and
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longitudinally polarized (P) DIS by a subscript
k ¼ fG;L; Pg, we can define the modified 2 → 3 matrix
element squared for PGF (2) schematically as

M0ð1Þ
k;g ≡Mð1Þ

k;g

�
s02

2s

�
2

ð1 − xÞ2ð1 − yÞð1þ yÞ; ð4Þ

where the singularities in the limits y → −1 and x → 1 are
now regulated.
To obtain the partonic cross section dσð1Þk;g for the PGF

process, the matrix element squared in (4) needs to be
integrated over the appropriately rescaled phase space
factor

dPS3;g ≡ dPS3

�
2s
s02

�
2 1

ð1 − xÞ2ð1 − yÞð1þ yÞ

¼ Tϵ

8π2
1

Γð1þ ϵ=2Þ
�
s02

s

�−1þϵ=2
�

s5
16π

�
ϵ=2

× β1þϵ
5 ð1 − xÞ−1þϵð1 − y2Þ−1þϵ=2

× sin1þϵðθ1Þsinϵðθ2Þdθ1dθ2dydx; ð5Þ

where

β5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

s5

s
; ð6Þ

Tϵ ¼
1

16π2

�
1þ ϵ

2
½γE − lnð4πÞ�

�
þOðϵ2Þ: ð7Þ

Combined with the usual flux and color-related prefactors
and

Ek¼G;LðϵÞ ¼
1

1þ ϵ=2
; Ek¼PðϵÞ ¼ 1; ð8Þ

this yields

dσð1Þk;g ¼
1

2s0
EkðϵÞ
16

M0ð1Þ
k;g dPS3;g ð9Þ

which can be split up into three contributions [25]

dσð1Þk;g ¼ dσð1Þ;sk;g þ dσð1Þ;c−k;g þ dσð1Þ;fk;g ; ð10Þ

corresponding to the soft (s), collinear (c-), and finite

(f) parts of dσð1Þk;g , respectively. This separation is based on

expanding the expressions ð1 − xÞ−1þϵ and ð1 − y2Þ−1þϵ=2

in Eq. (5) in terms of generalized plus distributions [23–
25], for instance,

ð1 − xÞ−1þϵ ¼
�

1

1 − x

�
ρ̃

þ ϵ

�
lnð1 − xÞ
1 − x

�
ρ̃

þ δð1 − xÞ

×

�
1

ϵ
þ 2 lnðβ̃Þ þ 2ϵln2ðβ̃Þ

�
þOðϵ2Þ; ð11Þ

where β̃ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ̃

p
. As usual, all ρ̃ and ω distributions are

understood as an integral over a sufficiently smooth
function fðxÞ such that, e.g.,

Z
1

ρ̃
dxfðxÞ

�
1

1 − x

�
ρ̃

¼
Z

1

ρ̃
dx

fðxÞ − fð1Þ
1 − x

ð12Þ

holds. The two regularization parameters can be taken
anywhere in the range ρ� ≤ ρ̃ < 1 and 0 < ω ≤ 2. The
specific choice only affects the rate of convergence and
stability of the numerical MC integrations. For all our
purposes we can adopt the same values as in the corre-
sponding unpolarized HVQDIS code [25,28,29].

dσð1Þ;sk;g and dσð1Þ;c−k;g exhibit soft and collinear singular-
ities, respectively, that have been made manifest in n
dimensions by introducing the ρ̃ and ω prescriptions. To

proceed, one notices that the 1=ϵ pole in dσð1Þ;c−k;g in the limit
y → −1 assumes the form dictated by the factorization
theorem and, hence, can be absorbed into the definition of
the PDFs. To this end, one adds an appropriate “counter

cross section” to dσð1Þ;c−k;g which is a convolution of the n-

dimensional LO gluon-gluon splitting function Pð0Þ;ρ̃
k;gg ðxÞ

and the Born cross section dσð0Þk;g evaluated at a shifted

kinematics xk1. The kernel P
ð0Þ;ρ̃
k;gg ðxÞ needs to be expressed

in terms of the generalized ρ̃ distribution and reads in the
polarized case k ¼ P [39]

Pð0Þ;ρ̃
P;gg ðxÞ ¼ 2CA

��
1

1 − x

�
ρ̃

− 2xþ 1þ ϵðx − 1Þ
�

þ δð1 − xÞ
�
βlf0
2

þ 4CA lnðβ̃Þ − ϵ
CA

6

�
; ð13Þ

where βlf0 ¼ 11
6
CA − 1

3
nlf with CA ¼ 3 and nlf denoting the

number of active light quark flavors. The splitting function

Pð0Þ;ρ̃
k;gg ðxÞ can be decomposed into a soft (S) part,

∝ δð1 − xÞ, and a hard (H) part as well as into four-
dimensional and OðϵÞ pieces as follows:

Pð0Þ;ρ̃
k;gg ðxÞ ¼ PH;ρ̃;4

k;gg ðxÞ þ ϵPH;ρ̃;ϵ
k;gg ðxÞ

þ δð1 − xÞ½PS;ρ̃;4
k;gg ðxÞ þ ϵPS;ρ̃;ϵ

k;gg ðxÞ� þOðϵ2Þ:
ð14Þ

Combining everything, the finite, factorized collinear
cross section dσ̂ð1Þ;c−k;g in the case k ¼ P reads
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dσ̂ð1Þ;c−P;g ¼ α2sαe2Q
2π

xs0
CACFBP;QEDðxk1ÞdPSx2

×

�
ð1 − xÞPH;ρ̃;4

P;gg ðxÞ
�

1

ð1 − xÞρ̃

�
ln

�
s0

μ2F

�

þ ln

�
s0

s

�
þ ln

�
ω

2

��

þ 2

�
lnð1 − xÞ
1 − x

�
ρ̃

�
þ 2PH;ρ̃;ϵ

P;gg ðxÞ
�
; ð15Þ

where dPSx2 ≡ dPS2js→s5dx denotes the relevant two-par-
ticle phase space factor for collinear kinematics with

dPS2ðsÞ ¼
β sin θ1

16πΓð1þ ϵ=2Þ
�
sβ2sin2ðθ1Þ

16π

�
ϵ=2

dθ1; ð16Þ

β ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
, ρ ¼ 4m2=s, and BP;QED is related to the Born

matrix element squared for the PGF process, see, e.g.,
Eq. (13) in Ref. [15]. Equation (15) carries a dependence on
the arbitrary factorization scale μF where the collinear
subtraction is performed. We note, that for finiteQ2 there is
no collinear divergence associated with the limit y → 1 that
requires extra attention in the case of photoproduction.
Next, all remaining 1=ϵ2 and 1=ϵ singularities cancel

upon combining the soft contribution dσð1Þ;sk;g with the

virtual (loop) corrections dσð1Þ;vk;g , renormalized at a scale
μR, see Refs. [15,19,38], and the soft-collinear piece from
the factorization counterterm ∝ δð1 − xÞ in (14). For k ¼ P
the finite soft plus virtual cross section reads

dσ̂ð1Þ;sþv
P;g ¼ α2sαe2Q

4

s0
CACFBP;QED

�
4CAln2ðβ̃Þ þ lnðβ̃Þ

×

�
2CA

�
ln

�
−t1
m2

�
þ ln

�
−u1
m2

�
− ln

�
μ2F
m2

��

− 2CF þ s − 2m2

sβ
lnðχÞðCA − 2CFÞ

�
þ βlf0

4

×

�
ln

�
μ2R
m2

�
− ln

�
μ2F
m2

��
þ fPðs; θ1Þ

�
dPS2:

ð17Þ

The result has no dependence on x and y, nor on θ2. The
function fP contains all remaining finite contributions,
mainly expressed in terms of various logarithms and
dilogarithms, but independent of ρ̃, the scales μF and
μR, and βlf0 .
Finally, the cross section dσð1Þ;fk;g in Eq. (10) collects all

contributions that are finite in the limits x → 1 and y → −1.
It can be expressed in terms of the generalized distributions
as follows:

dσð1Þ;fP;g ¼
�
1

4π

�
4 1

16s0
sβ5
s02

�
1

1 − x

�
ρ̃

�
1

1þ y

�
ω

1

1 − y

×M0ð1Þ
P;g dxdy sinðθ1Þdθ1dθ2; ð18Þ

where we have limited ourselves to k ¼ P as before.
In summary, the PGF process up to NLO accuracy can be

expressed as

dσ̂k;g ¼ dσ̂ð0Þk;g þ dσ̂ð1Þ;c−k;g þ dσ̂ð1Þ;sþv
k;g þ dσð1Þ;fk;g ; ð19Þ

where now all terms are finite and, hence, all phase space
integrations can be performed with MC methods in four
dimensions. We note that each of the three NLO contri-
butions in (19) individually depends on ρ̃ and ω but not
their sum. To generate the predictions for HQ structure
functions in DIS at the hadronic level, which will be shown
and discussed in the next section, one needs to convolute
the partonic result in (19) with the appropriate PDF, i.e., in
case of k ¼ P with a set of helicity-dependent PDFs.
Finally, the genuine NLO contribution from initial-state

light quarks (3) is conceptually much simpler to obtain than
for the PGF process. To this end, one notices that (3)
exhibits only a collinear singularity for y → −1 and, hence,
one starts by defining the modified matrix element and
appropriately rescaled phase space factor as

M0ð1Þ
k;q ≡Mð1Þ

k;q
s02

2s
ð1 − xÞð1þ yÞ; ð20Þ

and

dPS3;q ≡ dPS3
2s
s02

1

ð1 − xÞð1þ yÞ ; ð21Þ

respectively. As before, the divergent factor ð1þ yÞ−1þϵ

that emerges in dPS3;q can be regularized by introducing a
generalized plus distribution.
The collinear singularity in dσð1Þ;c−k;q is lifted by adding a

counterterm containing the LO quark-gluon splitting func-

tion Pð0Þ;ρ̃
k;qg ðxÞ and the dσð0Þk;gðxk1Þ. As a result, the finite light

quark induced process at NLO accuracy can be written as

dσ̂k;q ¼ dσ̂ð1Þ;c−k;q þ dσð1Þ;fk;q ; ð22Þ

where (for k ¼ P)

dσ̂ð1Þ;c−P;q ¼ α2sαe2Q
8π

xs0
BP;QEDðxk1ÞdPSx2CF

�
ð2 − xÞ

×
�
ln
�
s0

μ2F

�
þ ln

�
s0

s

�
þ ln

�
ω

2

�
þ 2 lnð1 − xÞ

�

þ 2ðx − 1Þ
�

ð23Þ
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and

dσð1Þ;fP;q ¼ −
�
1

4π

�
4 β5
12s0

�
1

1þ y

�
ω

M0ð1Þ
P;q

× dxdy sinðθ1Þdθ1dθ2: ð24Þ

To obtain the contribution of (3) to the hadronic HQ
structure functions one needs to perform the convolution
of dσ̂k;q with appropriate combinations of light quark
PDFs.

III. PHENOMENOLOGICAL STUDIES

We now turn to a detailed phenomenologically study of
various heavy flavor observables in longitudinally polar-
ized DIS that are of potential interest for the physics
program at a future EIC [3]. As in our previous study on the
inclusive DIS structure function g1 in Ref. [15], the main
focus will be on the sensitivity of the corresponding
double-spin asymmetries to the helicity gluon density
Δg in the kinematic range 10−3 ≲ x≲ 5 × 10−2 that will
be experimentally explored for the first time at the EIC.
To this end, we adopt for all our numerical calculations

the helicity PDFs of the DSSV group along with their
uncertainty estimates [5,6]. In particular, we will highlight
the results obtained by utilizing the two most extreme sets
that provide the largest excursions from the DSSV best fit
gluon PDF in the relevant small x region. Throughout the
remainder of the paper, these two sets are labeled as “max
Δg” and “min Δg”, respectively. The DSSV best fit gluon
PDF [5,6] is shown in Fig. 1 along with the corresponding
uncertainty estimate at 90% confidence level (C.L.) and the
two extreme sets. As can be seen, in the small x-region of
interest, the sets “maxΔg” and “minΔg” form the envelope

of the uncertainty band. This remains true for all relevant
scales μF used in our study. It should be remarked that for
those members of the DSSVuncertainty band that exhibit a
node at small x, the position of the node moves to smaller
values of the momentum fraction with increasing scale μF.
Since the DSSV sets are only available at NLO accuracy,

we also have to use them in all our calculations at LO
accuracy and, hence, for the corresponding “K-factors”. To
compute all the unpolarized DIS structure functions and
HQ distributions that appear in the denominator of the
experimentally relevant double-spin asymmetries to be
defined below, we adopt the NLO 90% C.L. PDF set of
the MSTW group [40]. This set also serves as the reference
set in the DSSV global analysis in ensuring compliance
with the positivity limit for helicity PDFs. We also use the
values of the strong coupling αsðμRÞ at NLO accuracy as
determined in the MSTW fit [40]. The choice of the
factorization and renormalization scales, μF and μR,
respectively, depends on the HQ observable under consid-
eration and, hence, will be indicated in each case below. For
all fully inclusive HQ distributions we choose [15]
μ2F ¼ μ2R ¼ 4m2 þQ2. We are only going to consider
(anti-)charm quark electroproduction throughout this paper.
It should be also mentioned that all kinematic quantities

such as transverse momenta, rapidities, and angles of the
observed heavy quark and/or antiquark refer to the virtual
photon-proton (γ�p) c.m.s. frame, where the positive z-axis

∆

∆
∆

fit

FIG. 1. The helicity gluon distribution xΔg from the DSSV
global analysis [5,6] as a function of x for a typical scale μF
relevant for charm quark production in DIS at the EIC
(m ¼ 1.5 GeV, Q2 ¼ 10 GeV2). The solid, dashed, and dot-
dashed line represents the best fit, the “max Δg”, and “min Δg”
set, respectively. The shaded area is the DSSV uncertainty
estimate for xΔg at 90% C.L.

FIG. 2. Differences of the fully inclusive unpolarized (upper
panel) and polarized (lower panel) charm structure functions
obtained with the MC phase space integration, Fc;MC

1 and gc;MC
1 ,

and the largely analytical code of Ref. [15], Fc;inc
1 and gc;inc1 . In

both cases, the numerical difference is normalized to the
respective analytical result. The comparison is presented as a
function of x and for two different values of Q2.
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coincides with the momentum direction of the hadron. The
latter choice differs from the one taken in Ref. [26], where
the γ� travels in the z-direction. More details and explicit
formulas related to kinematical considerations comprising
the choice of momenta, relevant Jacobians and expressions
for the various integration limits can be found in
Refs. [26,28,38].
As a first important step, we validate our newly devel-

oped parton-level MC code against the results already
known from our previous calculations based on largely
analytical methods [15]. Such a comparison is possible for
any single-inclusive HQ observable in DIS that can be
expressed in terms of the transverse momentum pT or
transverse mass mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

p
and the rapidity y of the

observed heavy (anti)quark; see, e.g., the Appendixes in
Refs. [26,38] for details concerning the appropriate
Jacobians for the required changes of integration variables.
As an example, we consider in Fig. 2 the fully inclusive
charm contributions Fc

1 and gc1 to the corresponding

unpolarized and polarized DIS structure functions F1

and g1, respectively, which have been studied extensively
in [15]. The upper and lower panels of Fig. 2 show the
relative differences of the numerical results for Fc

1 and gc1
obtained with the largely analytical code of Ref. [15],
labeled as “inc”, and the MC method described in this
paper. Results are presented as a function of x for two
different values of Q2. We shall note that the necessary
multidimensional MC integrations are performed with an
enhanced adaptive Vegas routine, see Ref. [20]. To obtain
numerically stable results, it suffices to use 500k points and
five iterations at LO accuracy and 4M points and 20
iterations for all computations involving NLO corrections.
As can be seen, the numerical differences for Fc

1 are at
the subpercent level throughout and for most of the
kinematic range shown in Fig. 2 even close to one per mille.
Differences for gc1 are somewhat larger, but usually better
than 1–2%, except in the vicinity of nodes where gc1 is
numerically very small and changes sign. The comparisons

FIG. 3. The pT-differential distribution 2xdgc1=dpT (left-hand side) and double-spin asymmetry Ac
1;pT

(right-hand side) as a function of
pT for fixed x ¼ 0.001 and Q2 ¼ 10 GeV2. The LO and NLO results are given in the upper and middle panels, respectively, and the
bottom panels show the corresponding K-factors. The solid lines refer to the DSSV best fit Δg and the dashed and dot-dashed lines are
obtained with the “min Δg” and “max Δg” sets, respectively, spanning the uncertainty range (shaded bands). All results have been
obtained with the choice μ2 ¼ μ2F ¼ μ2R ¼ Q2 þ 4ðm2 þ p2

TÞ.
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in Fig. 2 reflect the typical numerical accuracy that can be
achieved with the chosen number of points and iterations in
the Vegas integration. In general, for any single-inclusive
HQ observable, see Ref. [38] for more examples, the
integrations leading to the unpolarized result are, as
expected, noticeably more stable than the corresponding
ones for the polarized distributions. The latter may exhibit
nodes and, in addition, suffers from significantly larger
numerical cancellations between the different contributions
to the full NLO result. We wish to stress here, that we have
validated our MC code also against all the single-inclusive
HQ distributions shown below, with similar numerical
differences to the largely analytical code as documented
in Fig. 2.
After this prelude, we shall investigate the pT- and y-

differential single-inclusive distributions of the longitudi-
nally polarized DIS charm structure function gc1 in Figs. 3
and 4, respectively. In both cases we choose a fixed
momentum fraction x ¼ 0.001 and set Q2 ¼ 10 GeV2,
which are both well within the interesting kinematic range
to be explored for the first time at a future EIC. As was
mentioned already, the results in this paper have been
obtained for a detected heavy anticharm quark. We note

that there is in fact a very small asymmetry between
observing the heavy quark or the heavy antiquark distri-
butions at NLO accuracy [15,19], which is, however,
unlikely to be of any phenomenological relevance at the
EIC in case of polarized DIS. For all unpolarized pT- and y-
differential distributions that appear in the denominator of
the relevant double-spin asymmetries, see Eq. (25) below,
we have obtained excellent numerically agreement with the
results given in [26] to which we refer the interested reader
for a discussion of the most important findings in the
unpolarized case. Of course, for all our purposes we have
updated the relevant results in Ref. [26] using the MSTW
set of PDFs and conventions for the strong coupling, but we
refrain from reproducing them here.
Figure 3 shows 2xdgc1=dpT (left-hand side) and the

corresponding double-spin asymmetry

Ac
1;pT

≡ dgc1=dpT

dFc
1=dpT

; ð25Þ

(right-hand side). The upper and middle row refer to the
calculations at LO and NLO accuracy, respectively, and
the bottom panels illustrate theK-factor, i.e., the ratio of the

FIG. 4. As in Fig. 3 but now for the rapidity distribution 2xdgc1=dy (left-hand side) and double-spin asymmetry Ac
1;y (right-hand side).
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NLO and LO results, as a function of pT . We have
restricted pT to range where measurements appear to be
conceivable at the EIC for the given values of x andQ2, and
rapidity is integrated over the entire phase space available.
In any case, small values of pT correspond to probing Δg at
the smallest momentum fractions kinematically allowed,
which is one of the main goals of the EIC spin program.
More precisely, for the typical kinematics, x and Q2,
selected in Fig. 3, the values of momentum fraction in
Δg that are predominantly probed in the convolutional
integral with the hard coefficient functions is approximately
in the range between 0.015 and 0.05, i.e., about a decade
larger than the chosen value of x; see the Appendix of
Ref. [38] for a collection of all relevant equations entering
in this estimate. In addition, the limitation to moderate
values of pT has the extra benefit that one does not have to
worry about any potentially large logarithms of the type
lnðpT=mÞ and their eventual resummation to all orders in
perturbation theory at this stage. This might be an interest-
ing subject to pursue in the future, following the work
already available in the unpolarized case [41].
In contrast to the fully inclusive calculation shown in

Fig. 2, and following Ref. [26], we now choose for all
single-inclusive calculations the scale μ2 ¼ μ2F ¼ μ2R ¼
Q2 þ 4ðm2 þ p2

TÞ to account for the presence of the addi-
tional hard momentum pT . If one were to choose a pT-
independent scale, such as μ2 ¼ Q2 þ 4m2, in the calcu-
lation, one would observe even larger QCD corrections, in
particular, towards higher values of pT , destabilizing the
perturbative expansion; a similar observation was made in
the unpolarized case (see Ref. [19]). However, such a rather
inadequate choice of scale likely overestimates the impact
of higher order corrections and remaining theoretical
ambiguities. Below, we shall discuss in more detail the
impact and relevance of scale variations for dgc1=dpT.
From the panels in Fig. 3 one can infer that all gluon

distributions Δg that lie within the uncertainty estimate
provided by DSSV (shaded bands) produce a node in the
pT-distribution both at LO and NLO accuracy somewhere
in the range pT ∈ ð1.5; 2.0Þ GeV, naturally accompanied
by large QCD corrections in their vicinity. The feature of
the common node has no simple kinematic explanation but
is deeply rooted in the convolutional integral of the PDFs
with the oscillating coefficient functions and their func-
tional properties (see Ref. [15]). In the given range of pT ,
where the γ�g-subprocess dominates, the two extreme sets
min and max Δg highlighted in Fig. 1 also provide the
envelope of the pT–differential structure function. In
general, a large positive Δg leads to the smallest QCD
corrections as can be seen best from the bottom panels.
However, as was already noted in case of the fully inclusive
charm structure function gc1 in Ref. [15], the NLO correc-
tions are substantial throughout and should be included in
any future global QCD analysis including HQ electro-
production data. Since the NLO corrections strongly

depend on Δg and pT one must not resort to any
approximations, such as a constant K-factor in future fits.
The experimentally relevant Ac

1;pT
is larger than in the

fully inclusive case (see Ref. [15]) and can amount to a few
percent. Even an initial measurement with a absolute
accuracy of about 0.5% at the EIC would prove to be very
valuable in determining the x-shape of Δg more precisely.
This would be true, in particular, if such a measurement
could be carried out for at least two different bins of pT ,
ideally to the left and to the right of the node inAc

1;pT
to verify

if the sign change predicted by all members of the DSSV
uncertainty band for Δg is indeed realized or not.
Analogously, Fig. 4 presents another single-inclusive

distribution of potential interest for the physics program at
the EIC; 2xdgc1=dy (left-hand side). As before, the right-
hand side of the plot gives the corresponding double-spin
asymmetry Ac

1;y, defined analogously to Eq. (25), and the

FIG. 5. Dependence of 2xdg1=dpT at x ¼ 0.001 calculated
with the DSSV best fit (solid lines) on simultaneous variations
(shaded bands) of μ2 ¼ μ2F ¼ μ2R in the range μ

2 ∈ f10μ20; μ20=10g
where μ20 ¼ Q2 þ 4ðm2 þ p2

TÞ and Q2 ¼ 10 GeV2. The top and
middle panel refers to results at LO and NLO accuracy,
respectively. The bottom panel shows the scale dependence of
the K-factor.
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DIS kinematics is again fixed to x ¼ 0.001 and
Q2 ¼ 10 GeV2. The transverse momentum of the observed
charm antiquark is integrated over the entire phase, and the
rapidity y is defined in the γ�p c.m.s. frame with negative y
pointing in the direction in which the γ� travels. We restrict
ourselves to the region of −4≲ y≲ −2.5 where Δg is
probed at the smallest momentum fractions for any given
pT . As for the pT-distribution, different Δg from the DSSV
uncertainty estimate lead to different predictions for
2xdgc1=dy which all peak at around y ≃ −4 though.
Here, the double-spin asymmetry Ac

1;y can again reach
values at the percent-level and should be measurable at the
EIC. At higher values of y, the differences in Ac

1;y quickly
diminish and within the DSSVuncertainty estimate a small
negative Ac

1;y is expected. Given the anticipated unprec-
edented, high luminosity of the EIC, it might be even worth
studying double-differential distributions in both pT and y
for some suitable binning in the future to further optimize
the sensitivity of HQ DIS observables to Δg. We note that

the somewhat erratic behavior at NLO observed for y < −4
is due to end of phase space effects, i.e., in this region only
the emission of soft gluons is kinematically possible.
Corresponding large logarithmic terms would need to be
resummed to all orders in perturbation theory to stabilize
the result. A similar observation was made in the unpo-
larized case, see Ref. [19].
The combined set of the next two plots, Figs. 5 and 6,

gives a flavor of the remaining scale dependence of the
single-inclusive distribution dgc1=dpT discussed in Fig. 3,
which we deem to be the phenomenologically most
important one. More specifically, Fig. 5 illustrates the
dependence of 2xdgc1=dpT obtained with the DSSV best
fit (solid lines) at LO (top panel) and NLO (middle panel)
accuracy under simultaneous variations (shaded bands) of
μ2 ¼ μ2F ¼ μ2R in the range μ2 ∈ f10μ20; μ20=10g where
μ20 ¼ Q2 þ 4ðm2 þ p2

TÞ. As can be seen, the variations
for the best fit Δg are sizable but still significantly smaller
than the spread in dgc1=dpT introduced by choosing the min

FIG. 6. Scale variation of dgc1=dpTðμ2Þ in the range μ2 ¼ a · μ20 where a ∈ ½0.1; 10� and μ20 ¼ Q2 þ 4ðm2 þ pTÞ2. The results are
obtained at LO and NLO accuracy, upper and lower row, respectively, for x ¼ 0.001, Q2 ¼ 10 GeV2 and two fixed values of pT :
0.5 GeV (left-hand side) and 5 GeV (right-hand side). The shaded bands represent the entire suite of DSSV helicity PDF uncertainty
sets; highlighted are the best fit (solid line), min Δg (dashed line), and max Δg (dot-dashed line) sets.
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or max Δg uncertainty sets, cf. Fig. 3. Also the variations in
the K-factor, given in the bottom panel of Fig. 5, are rather
moderate, perhaps except for the vicinity of the node in the
dgc1=dpT distribution. At small pT , near the peak of the
distribution, the scale variations are significantly smaller
then the NLO corrections, as one would hope for. At higher
pT the width of the band is, however, rather similar in LO
and NLO accuracy.
Figure 6 compares the scale variations of dgc1=dpT for

the entire suite of DSSV helicity PDF uncertainty sets for
two fixed values of pT . Again, the scale dependence is
explored in the range μ2 ¼ a · μ20 where a ∈ ½0.1; 10� at LO
(top) and NLO (bottom) accuracy. The shaded bands
represent the range of the DSSV uncertainty estimate with
the best fit (solid line), min Δg (dashed line), and max Δg
(dot-dashed line) sets particularly highlighted. The panels
on the left-hand side are for pT ¼ 0.5 GeV and those on the
right-hand side correspond to setting pT ¼ 5 GeV, i.e., we
have picked two representative pT-values to the left and to
the right of the node in dgc1=dpT , cf. Fig. 3. Most
importantly, the extreme min and max Δg sets still provide
the envelope of the DSSV predictions for dgc1=dpT in the

entire range of μ. For any choice of scale, there is a clear,
roughly constant sensitivity to Δg as discussed above.
In the remainder of this section we turn to observables

which involve the detection of both the heavy quark and the
heavy antiquark and, hence, require the use of our MC code
in their numerical evaluation. Again, we restrict ourselves to
charm flavored (anti)quarks. Presumably themost promising
quantity is the invariant mass distribution 2xdgc1=dM of the
HQ pair which is shown in Fig. 7 (left-hand side) along with
the corresponding double-spin asymmetry Ac

1;M defined in
analogy to Eq. (25). As our default choice of scale we now
choose [28] μ2 ¼ 4m2 þQ2 þ p2

T;QQ̄, where pT;QQ̄ denotes
the combined transverse momentum of the produced heavy
quark and antiquark pair. In addition to the results for the
longitudinally polarized structure function shown in Fig. 7,
we have again successfully reproduced the results for the
corresponding unpolarized quantities given in Ref. [28] to
which we also refer the reader for a discussion of their
relevant properties.
As before, we select x ¼ 0.001 and Q2 ¼ 10 GeV2 to

define the DIS kinematics accessible at the EIC. The top
and middle panels of Fig. 7 show the numerical results

FIG. 7. As in Fig. 3 but now for the invariant mass distribution 2xdgc1=dM of the produced charm-anticharm pair (left-hand side) and
the corresponding double-spin asymmetry Ac

1;M.
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obtained at LO and NLO accuracy, respectively. The
histograms (denoted by different symbols) refer to our
usual selection of DSSV sets (best fit, min Δg, and max
Δg), and the shaded bands correspond to the entire suite of
DSSV uncertainty estimates. The lower panels give the
respective K-factors for 2xdgc1=dM and Ac

1;M. In general,
we observe a rather similar behavior as for the single-
inclusive pT-distributions shown in Fig. 3. All results
exhibit a node at around M ≃ 7 GeV, which is accompa-
nied by large QCD corrections in its vicinity. The asym-
metries peak at aroundM ≃ 4 GeV. Again, initially a set of
two measurements at the EIC, one to the left and one to the
right of the predicted node, would reveal important new
insights into the x-shape of Δg. As before, all future
measurements are required to resolve at least percent-level
double-spin asymmetries to be of phenomenological
relevance.
Other correlated observables of potential interest are

collected in Fig. 8. The top panel shows gc1 differential in
the transverse momentum pT;QQ̄ of the HQ pair, the middle
panel the correlation in its azimuthal angle 2xdgc1=dΔφ,
i.e., Δφ is the azimuthal angle between the transverse
momenta of the heavy quark and antiquark. The quantity
2xdgc1=dΔR, where ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔφÞ2 þ ðΔηÞ2
p

denotes the
HQ cone size variable, is illustrated in the bottom panel.
Here, Δη refers to the difference in pseudorapidity
of the charm-anticharm pair, where η ¼ 1

2
ln ½ð1þ cosðθÞÞ=

ð1 − cosðθÞÞ�with θ the angle of the HQ relative to the γ�p-
axis in the c.m.s. frame. The histograms have been obtained
with the MC code for the three sets of DSSV helicity
densities (best fit, min Δg, and max Δg) and the shaded
bands correspond to the range allowed by the DSSV
uncertainty estimates. All results have been obtained at
NLO accuracy for our standard choice of DIS kinematics,
x ¼ 0.001 and Q2 ¼ 10 GeV2, and setting the scale to
μ2 ¼ 4m2 þQ2 þ p2

T;QQ̄. In this case, we refrain from

showing the corresponding double-spin asymmetries as
the distributions in Fig. 8 are presumably initially of more
limited phenomenological interest at the EIC than the ones
presented so far. We note that we have, as usual, success-
fully reproduced all the respective unpolarized DIS results
given in Ref. [25].
All three distributions given in Fig. 8 measure certain

features of the DIS HQ structure functions which are
present for the first time beyond LO accuracy. The
distribution in the transverse momentum of the HQ pair
(top panel) reveals the transverse momentum of the addi-
tional light-parton jet which recoils against the HQ pair.
Since there is no such jet present at LO and in the virtual
corrections at NLO accuracy, the pT;QQ̄-distribution peaks
at small values, and the first bin is dominated by “counter
events” in the MC, see also Ref. [25]. Likewise,
the distribution in the azimuthal angle Δφ between the
produced charm quark and antiquark, measured in the γ�p-

FIG. 8. The helicity DIS charm structure function gc1 differential
in the transverse momentum pT;QQ̄ (top panel), the difference in
azimuthal angle Δφ (middle panel), and HQ cone size variable
ΔR (bottom panel), see text, of the produced charm-anticharm
pair. The histograms are obtained at NLO accuracy for the
DSSV best fit, min Δg, and max Δg sets of PDFs. The shaded
bands indicate the DSSV uncertainty estimates. All calcula-
tions are performed for x ¼ 0.001, Q2 ¼ 10 GeV2, and
μ2 ¼ 4m2 þQ2 þ p2

T;QQ̄.
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c.m.s. frame, peaks at the lowest order back-to-back
configuration, i.e., for Δφ ¼ π. The tails are produced
by additional radiation of partons present for the first time
at NLO accuracy. Similar remarks apply to the cone size
variable ΔR shown in the bottom panel, where again the
LO distribution is a delta function at ΔR ¼ π.
Finally, we wish to comment on possible future additions

to our suite of HQ electroproduction codes. First and
foremost, our MC code can be expanded in several
directions. Following the unpolarized HVQDIS code [29],
the decay of the HQs can be modeled by including
hadronization, i.e., additional convolutions with nonper-
turbative functions such as the charm-to-D-meson frag-
mentation function. If necessary, one could go even one
step further and include also the decay of the heavy meson
into experimentally observed electrons and muons; this was
done, for instance, in the case of HQ polarized hadropro-
duction [12]. Another worthwhile addition would be to
include also the lepton in the initial state in the MC which
would enable one to study all the observables discussed in
this paper directly in the laboratory rather than the γ�p
c.m.s. frame; again, see the HVQDIS code [29] for an
example. Secondly, in close collaboration with experimen-
talists, one can certainly optimize the HQ DIS observables
presented in this paper by scanning for the best ranges in x,
Q2, pT , etc. Presumably this should wait until the EIC is
further along its way, the machine parameters are con-
firmed, and experimental collaborations with final detector
concepts are formed.

IV. SUMMARY AND OUTLOOK

In this paper we have presented a new parton-level
Monte Carlo program at next-to-leading order accuracy in
QCD that allows one to study heavy flavor production in
longitudinally polarized deep-inelastic scattering in terms
of any infrared-safe differential distribution for the structure
function gQ1 . The full heavy flavor mass dependence is
retained throughout all calculations which makes this code
particularly suited for phenomenological studies at the
future Electron-Ion Collider which can explore charm
electroproduction at small-to-medium momentum fractions
and photon virtualities not much larger than the charm
quark mass.
We have validated the Monte Carlo generator against our

results for fully inclusive heavy quark production that
where obtained previously with largely analytical methods.
Within the latter framework it is also possible to compare to
single-inclusive distributions differential in the transverse
momentum or the rapidity of the observed heavy (anti)
quark, albeit with no experimental cuts. In addition, we
have verified known unpolarized results for heavy quark
electroproduction that are available in the literature.
First phenomenological studies were carried out for

various heavy quark distributions in the kinematic regime

most relevant for the future Electron-Ion Collider.
Particular emphasis was devoted to the expected size of
the corresponding double-spin asymmetries and their
sensitivity to the still poorly constrained helicity gluon
distribution. Apart from single-inclusive distributions, we
have also studied observables associated with the produced
heavy quark pair including its invariant mass distribution
and its correlation in azimuthal angle. Theoretical uncer-
tainties associated with the choice of the factorization scale
were studied using the important example of the single-
inclusive transverse momentum distribution. Here, it was
found that the inclusion of next-to-leading order QCD
corrections reduces the scale dependence significantly.
An additional benefit of now having a flexible

Monte Carlo generator for heavy quark polarized electro-
production at hand is the possibility to implement and
systematically explore relevant experimental cuts that
might also help to enhance the sensitivity to the helicity
gluon density further. So far, apart from the fully inclusive
and transverse momentum differential charm contributions
to polarized deep-inelastic scattering, the invariant mass
spectrum appears to be the most promising observables in
this context.
At present, the code does not include any heavy quark

decays but they can be straightforwardly implemented if
needed, following already existing frameworks and tech-
niques in other codes. This can include even the decay of
the heavy mesons into experimentally observed electrons
and muons. The Monte Carlo generator can be also
expanded in several other directions most worthwhile
might be the inclusion of the lepton beam kinematics,
including possible additional experimental cuts, which
would allow one to simulate heavy flavor electroproduction
not only in the virtual photon-hadron but also in the
laboratory frame.
Finally, from a more theoretical perspective, the results

presented in this and in our previous paper are also relevant
for setting up a general-mass variable flavor number scheme
for helicity dependent parton densities which might be more
appropriate whenever heavy flavors are studied in some
asymptotic region where the relevant scale, for instance, the
virtuality of the photon in deep-inelastic scattering, is
considerably larger than the heavy quark mass.
We plan to make the codes that were used in this and

previous works publicly available.
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