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In this study, we investigate the spatially nonuniform-temperature effects on the QCD chiral phase
transition in the heavy-ion collisions. Since the QCD effective theory and the Ising model belong to the
same universality class, we start our discussion by mimicking the QCD effective potential with an Ising-
like effective potential. In contrast to the dynamical slowing down effects which delays the phase transition
from quark-gluon-plasma to hadron gas, the spatially nonuniform-temperature effects show a possibility to
lift the phase transition temperature. Besides, both the fluctuations and the correlation length are enhanced
in the phase transition region. Furthermore, the critical phenomena is strongly suppressed like as the critical
slowing down effects. The underlying mechanism is the nonzero-momentummode fluctuations of the order
parameter induced by the nonuniform temperature. Our study provides a method to evaluate the
nonuniform-temperature effects, and illustrate its potential influence on analyzing the QCD phase
transition signals at RHIC.
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I. INTRODUCTION

Exploring the QCD phase boundary and the critical point
ðCPÞ is one of the main goals at the Relativistic Heavy Ion
Collider (RHIC) [1–5]. In the collider, a fireball forms
quickly and then cools down. The QCD matter inside
undergoes a phase transition from quark-gluon-plasma
(QGP) to the hadronic phase. These two phases are
separated by a dynamical phase transition surface in the
fireball [6–10]. Outside the surface, the hadrons and
resonances scatter with each other and part of them decay.
The inelastic collision between the hadronic matter finally
ceases at a hypersurface named chemical freeze-out surface
which is nested outside the dynamical phase transition
surface [11]. The main experimental measurement related
to the phase transition signals are event-by-event fluctua-
tions of chemical freeze-out particle multiplicities [5].
Searching the phase boundary and the CP from the
dynamical process at RHIC, we have to face two basic
questions. Does the dynamical phase transition boundary
coincide with the equilibrium phase transition boundary in
the QCD phase diagram? Are the critical behaviors kept to
identify the CP?
Recent studies show that the chemical freeze-out line

fitted from experimental data overlaps with the equilibrium

phase transition boundary depicted by lattice calculation
[12–20]. It strongly hints that the dynamical phase tran-
sition inside the fireball may happen at a temperature above
the equilibrium phase transition temperature so that the
hadrons have enough time to freeze out (see the sketch of
an instantaneous fireball in Fig. 1). This cannot be
predicted by the dynamical delay effects, where the

FIG. 1. A sketch of an instantaneous fireball. The temperature
decreases from inner to outer (red to blue). The black dashed line
is the chemical freeze-out surface. The green brush line refers to
the isothermal surface of the equilibrium phase transition (PT)
temperature in temperature-uniform systems. These two lines
overlap with each other according to the lattice results and
experimental data. The red solid circle represents the dynamical
phase transition surface at higher temperature.*lijia.jiang24@gmail.com
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dynamical phase transition follows and memorizes the
behaviors of equilibrium phase transition [21–25]. On
the other side, the fluctuations and the correlation length
of the QCD order parameter (i.e., the σ field) have been
broadly applied in calculating the fluctuation behaviors of
observables such as net charge, baryon number and particle
ratios [4,5,26,27]. The correlation length has been esti-
mated to be about 3 fm near the CP by including the finite
size effect and the critical slowing down effect [21,28]. Yet
how the spatially nonuniform temperature affects the QCD
phase transition at RHIC such as the phase transition point,
the fluctuations, and the correlation length remains unclear.
In this paper, we investigate the spatially nonuniform-

temperature effects on the QCD phase transition in a
fireball context. Note that both the position and the shape
of the dynamical phase transition surface vary with time
during the fireball evolution. As shown in Fig. 1, we take an
instantaneous slender brick cell in the fireball with phase
boundary located in the middle. In the brick cell, the
temperature is spatially nonuniform. The phase transition
region where the dynamical slowing effect is magnified is
just a narrow part of the brick cell, therefore, we simplify
our discussion by further supposing the relaxation of the σ
field configurations in the whole brick cell approaches to
zero. As a result, the σ field reaches its stationary
distribution instantly. With this Markov assumption, the
instantaneous dynamical phase transition surface turns into
the stationary phase transition surface in a steady temper-
ature-nonuniform system and no dynamical slowing effects
are taken into account.
For the brick cell, we calculate the stationary solution of

the σ field, deduce and discuss the corresponding fluc-
tuation strength and the correlation length by mapping the
QCD effective potential to the Ising model. Remarkably,
we find the phase transition temperature in such a temper-
ature-nonuniform system is above the equilibrium phase
transition temperature Tc of a temperature-uniform system.
It means if the nonuniform-temperature effects are dom-
inant at RHIC, hadrons may form at temperature higher
than the phase transition temperature determined by lattice
calculations. Further, the fluctuations and the correlation
length in the phase transition region is significantly
increased compared to that in the periphery of the cell,
making a signal of QCD phase transition. However, the CP
cannot be identified from the phase transition scenarios due
to the nonzero-momentum mode fluctuations of the σ field
induced by nonuniform temperature.
The rest of the paper is organized as follows. In Sec. II,

we introduce a tanh-type nonuniform temperature profile to
the brick cell, with finite temperature gradient in the phase
transition region. In Sec. III, the probability distribution
function of the order parameter field in the temperature-
nonuniform system is developed. The Ising-like QCD
effective potential is employed in the probability distribu-
tion function. In Sec. IV, the stablest order parameter profile

with maximum probability is evaluated. In Sec. V and
Sec. VI, the fluctuations around the stablest profile and the
correlation length of the order parameter are calculated and
analyzed, respectively. In Sec. VII, we show results with a
more realistic temperature profile. In Sec. VIII, we sum-
marize our main results and give further discussions and
outlook.

II. TEMPERATURE PROFILE

First, we start the discussion by formalizing the temper-
ature profile in the brick cell as shown in Fig. 1. For
simplicity, we suppose the y-z plane (the cross-section of
the brick cell) is isothermal, and the temperature function
along the x-axis (the longitude direction of the brick cell) is
spatially dependent,

TðxÞ ¼ Tc þ
δT
2
tanh

�
x
w

�
; ð1Þ

where δT is the temperature bias between the two ends of
the cell. The width w refers to the range of the region near
the equilibrium phase transition surface ðx ¼ 0Þ where a
finite temperature gradient ð∼δT=2wÞ presents.
Note that the real temperature profile is determined by

the background matter fields like as quarks and gluons [29].
An example with a more realistic temperature profile is
presented in Sec. VII, the results qualitatively agree with
that from the tanh-type temperature profile. Nevertheless,
the dynamical phase transition at RHIC is complicated, for
example, the baryon chemical potential profile is also
spatial nonuniform. In this study, we adopt the simplified
temperature profile to focus our attention on the nonuni-
form-temperature effects in the phase transition region. In
addition, we assume the baryon chemical potential is
homogeneous in the cell.
In our numerical simulation, the temperature bias for the

temperature profile is set as δT ¼ 40 MeV and the width is
set to be w ¼ 1 fm (or w ¼ 0.5 fm). The corresponding
temperature gradient in the phase transition region is about
20 MeV=fm ð40 MeV=fmÞ, which is comparable to the
gradient in a real fireball. For example, in a fireball of
radius 10 fm with a central temperature 200 MeV, the
mean temperature gradient along the radial direction is
20 MeV=fm.

III. PARTITION FUNCTION

As the local equilibrium assumption is proved to be well-
performed in the relativistic hydrodynamics [29–34], we
carry on this assumption in our calculation. Thus, the
probability distribution function of the σ field in the temper-
ature-nonuniform system is a product of the local probability
distribution function [26] at different position r. In the
continuous limit, the probability distribution function is
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P½σðrÞ� ∝ exp

�
−
Z

dr
ð∇σÞ2=2þ V½σðrÞ�

TðxÞ
�
; ð2Þ

with r ¼ ðx; y; zÞ. The effective potential of the σ field can be
obtained from different QCD-inspired models [17,35–44].
For instance, in the linear sigmamodel coupled to constituent
quarks, the effective potential (the grand canonical potential)
of the σ field is obtained by integrating out quarks [43].
Generally, the QCD effective potential in theCP regime can
beTaylor expanded,V½σ� ¼ P

n znðσ − σ0Þn, where σ0 is the
minimum point of the σ field atCP ðμc; TcÞ. Since the QCD
effective theory and the Ising model belong to the same
universality class, we assume that the effective potential
can be parameterized as V½σ� ¼ hðσ − σ0Þ þ rðσ − σ0Þ2 þ
cðσ − σ0Þ4, where r is the reduced temperature and h is the
magnetic field in the Ising model [45,46]. In the simplest
linear mapping between ðT; μÞ and the Ising variables ðh; rÞ
[45–48], we have h ¼ aΔT and r ¼ bΔμ, where ΔT ¼
T − Tc and Δμ ¼ μ − μc. Consequently, we obtain

V½σ� ¼ aðT − TcÞðσ − σ0Þ þ bðμ − μcÞðσ − σ0Þ2
þ cðσ − σ0Þ4; ð3Þ

where a > 0, b < 0 and c > 0 are free parameterswhich can
be constrained by the QCD effective theories, lattice calcu-
lations or experimental data etc. Note that in a general linear
mapping, the linear transformation between ðh; rÞ and
ðΔT;ΔμÞ contains two mixing angles [46]. We omit these
angles in this article for simplicity. Within the simplest
mapping, the phase transition temperature is μ independent.
For Δμ≡ μ − μc > 0 and Δμ < 0, the effective potential
describes the first-order phase transition and crossover
respectively as the change of temperature.
Throughout the article, we set a ¼ 0.5 fm−2,

b ¼ −0.25 fm−1, and c ¼ 3.6. These values are chosen
by constraining the correlation length and the expectation
values of the σ field in the reasonable ranges as is explained
below. The phase transition temperature is set to
Tc ¼ 160 MeV, which is close to the lattice simulation
result [17,18,25]. In this parameter setting, for Δμ ¼ 0,
ΔT ¼ �20 MeV, the minimum point of the σ field (i.e., the
expectation value in the mean-field approximation) is σ ¼
σ0 ∓ ðaΔT=4cÞ1=3 ¼ σ0 ∓ 30 MeV and the correlation
length of the σ field is about 1 fm (which is a natural
value of correlation length away from the CP [21,49]). For
ΔT ¼ 0, Δμ ¼ 200 MeV, the expectation value is σ ¼
σ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−bΔμ=2c

p ¼ σ0 � 37 MeV and the correlation
length of the σ field is 1 fm. Different choices of the value
of ða; bÞ are equivalent through rescaling the magnitude of
ΔT and Δμ. The empirical value of σ0 at CP is around
45 MeV [43,44]. Since the value of σ0 will not influence
our discussion on fluctuations and correlation length, we
simply set σ0 ¼ 0 in the following. Then, in thermal

equilibrium, σ < 0 and σ > 0 correspond to the QGP
phase and the hadron phase, respectively.

IV. THE STABLEST ORDER
PARAMETER PROFILE

In this section, we figure out the stablest order parameter
profile which maximizes the probability. Since the temper-
ature is spatially nonuniform, the local order parameter
which maximizes the probability distribution function is
never again determined by minimizing the effective poten-
tial ∂V½σ�=∂σ ¼ 0, but satisfies the extreme value con-
dition, δP½σ�=δσ ¼ 0. Explicitly, we have

δP½σ� ¼ −P½σ�
Z

dr

�∇σ · ∇δσ
TðxÞ þ ∂V

∂σ
δσ

TðxÞ
�

¼ −P½σ�
Z

drδσ

�
−∇ ·

∇σ

TðxÞ þ
1

TðxÞ
∂V
∂σ

�
: ð4Þ

The formula in the bracket vanishes in the extreme value
condition δP½σ�=δσ ¼ 0. Therefore, we have

∇2σ ¼ 1

T
∇T ·∇σ þ ∂V

∂σ : ð5Þ

As we have supposed that the temperature distribution in the
y-z plane is isothermal, the σðrÞ that maximizes the weight
functionmust be flat in this plane. Thus σðrÞ depends only on
x, and Eq. (5) reduces to a one-dimensional problem. The
boundary condition is given by the local order parameters at
the ends, i.e., σðx ¼ −L=2Þ ¼ σL and σðx ¼ L=2Þ ¼ σR,
where σL and σR are the global minimum point of the
potential V½σ� at x ¼∓ L=2 and L is the cell’s length. Note
that when L is sufficient large, i.e.,L ≫ w, the magnitude of
L will not influence the following results.
The solution σcðxÞ to Eq. (5) is presented in Fig. 2, with

w ¼ 1 fm and different Δμ. A main information from these

FIG. 2. The order parameter profile σcðxÞ in the brick cell, with
the red, green and blue lines represent results in the crossover
ðΔμ < 0Þ, CP ðΔμ ¼ 0Þ and the first-order phase transition
ðΔμ > 0Þ scenarios, respectively. The phase transition point (which
is corresponding to σcðxÞ ¼ 0) locates at some position xPT > 0.
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order parameter profiles is that σcðxÞ changes its sign at
x > 0, no matter the sign and magnitude of Δμ. It is easy to
check that, without the temperature gradient term
ð1=TÞ∇T ·∇σ, the solution σcðxÞ is an odd function of
x and vanishes at x ¼ 0. As the ð1=TÞ∇T · ∇σ term is
always negative (∂xσ < 0 and ∂xT > 0), it will always
contribute similar corrections to the solution σcðxÞ, and the
sign change of σcðxÞ will universally happens at x > 0.
This result can be comprehended directly from the prob-
ability distribution function Eq. (2). In the brick cell, the
hot part with high temperature is more easily fluctuated
than the cold part. Therefore, σcðxÞ will tend to the order
parameter value of the cold part, and σcð0Þ becomes
positive.
Like as the equilibrium phase transition of the Ising

model, we identify the point of sign change of σc as the
phase transition point at different Δμ. The phase transition
point always locates at some position xPT > 0 (see Fig. 2)
and the corresponding phase transition temperature TðxPTÞ
is generally higher than the equilibrium phase transition
temperature Tc ¼ Tðx ¼ 0Þ. Note that the phase transition
temperature at the phase transition position xPT can be
evaluated from the function of temperature profile (1). In
Fig. 3, we show the phase transition temperature for the two
widths w ¼ 1 fm and w ¼ 0.5 fm. The phase transition
temperature is lifted about 3 MeV and 8 MeV from Tc,
respectively. A steeper temperature gradient leads to a
higher phase transition temperature.
Note that the lifted values of temperature is not universal

and depend on the temperature profile. At RHIC, the spatial
temperature profile usually is not a tanh-type, thus in
Sec. VII, we consider a more realistic temperature profile
fitted from the hydrodynamics’ output. The phase transition
temperature is also lifted, which qualitatively agrees
with the result from the tanh-type temperature profile.
We conclude that the nonuniform-temperature effects will
change the phase transition temperature, and provide a

possibility that the QCD phase transition happens at
temperature higher than the lattice Tc. In the following,
we keep our discussion on the tanh-type profile and reveal
how the temperature profile influences the fluctuations and
correlation length.

V. THERMAL FLUCTUATIONS

In this section, we study the fluctuation behaviors of the
σ field and show how it is influenced by the temperature
profile. We express the σ field as the combination of the
variational extremum solution and a small fluctuation,
σðrÞ ¼ σcðxÞ þ δσðrÞ. Then, the probability distribution
function P½σ�, up to the fourth order of the fluctuation,
becomes

P½σ�∝exp

�
−
Z

dr
½∇ðσcþδσðrÞÞ�2=2þV½σcðxÞþδσðrÞ�

TðxÞ
�

¼exp

�
−
Z

dr
½∇ðσcÞ�2=2þV½σcðxÞ�

TðxÞ
�

×exp

�
−
Z

dr

�∇σc ·∇δσðrÞ
TðxÞ þδV

δσ

				
σ¼σc

δσ

TðxÞ
��

×exp

�
−
Z

dr

�ð∇δσÞ2
2TðxÞ þ

δ2V
2ðδσÞ2

				
σ¼σc

ðδσÞ2
TðxÞ

��

×exp

�
−
Z

dr
δ3V

3!ðδσÞ3
				
σ¼σc

ðδσÞ3
TðxÞ

�

×exp

�
−
Z

dr
δ4V

4!ðδσÞ4
				
σ¼σc

ðδσÞ4
TðxÞ

�
: ð6Þ

The first term is a finite number which depends on the
profile σc, the second term equals to 1 because δP=δσ
vanishes for σ ¼ σc [see Eqs. (4) and (5)], and the last three
terms are contributions from the fluctuations. For the Ising-
like potential (3), we have

P½σ�∝exp

�
−
Z

dr
ð∇δσÞ2=2þm2δσ2=2þ4cσcδσ3þcδσ4

TðxÞ
�
;

ð7Þ

where the mass term

m2ðxÞ ¼ 2bΔμþ 12cσ2c ð8Þ

is spatially dependent. In this article, we mainly focus on
the variance of the fluctuations, so we omit the cubic and
quartic terms which are of higher order of δσ and can be
neglected in the perturbation theory [26]. The cubic and
quartic terms will be taken into account for the higher-order
cumulants of the fluctuations [26,49,50].
Conventionally, we start the discussion from the mass

term of the δσ field. Note that in a uniform system with
temperature T, the correlation length is related to the mass

FIG. 3. A comparison of the phase transition temperature in the
temperature-nonuniform (red and blue dotted lines) and temper-
ature-uniform systems (black lines). The red dotted line is with
w ¼ 1.0 fm, and the blue dotted line is with w ¼ 0.5 fm.
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of the σ field: ξ̄ ¼ 1=m̄, where m̄2 ¼ ∂2V=∂σ2jσ¼σ̄ ≥ 0 and
the expectation value σ̄ is determined by the condition
∂V=∂σjσ¼σ̄ ¼ 0. Similarly, for the nonuniform case, we
define a local correlation length: ξlocalðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
m2ðxÞ

p
.

We present the results of m2ðxÞ in the brick cell in
Fig. 4(a). In the periphery, we have m2 ≈ 1 fm−2 and thus
ξlocal ≈ 1 fm, which coincides with ξ̄ at temperature
T ¼ Tð�L=2Þ. This is due to the fact that the temperature
becomes flat when the position is far from the center
ðjxj=w ≫ 1Þ. In the central part, m2ðxÞ presents exotic
behaviors for different phase transition scenarios. In the
crossover regime ðΔμ < 0Þ, m2ðxÞ > 0 everywhere. For
the critical value ðΔμ ¼ 0Þ, m2ðxÞ vanishes at σc ¼ 0, and
the local correlation length ξlocal diverges. However, in the
first-order phase transition regime ðΔμ > 0Þ, m2ðxÞ is
negative in the phase transition region, which is in contrast
to the positive m̄2 in a temperature-uniform system.
Therefore, the current definition of the local correlation
length is not appropriate in the phase transition region with
a finite temperature gradient. As we will show below, the
variance of the local fluctuation δσðxÞ is always positive,
and is better-suited for the description of the temperature-
nonuniform system.
In the following, we calculate the variance of the

fluctuation. We presume the size along the y and z direction
is much smaller than the unknown correlation length.
Therefore, we can adopt the zero-momentum mode

approximation for y and z directions and thus δσðrÞ
depends only on x. The cross-section of the brick cell is
denoted as S. Discretizing the x-axis with spacing length
Δx, the probability distribution function becomes

P½σ� ∝ exp

�
−
S
2

X
i;j

δσiMijδσj

�
; ð9Þ

where the nonzero elements of the matrix M are

Mii ¼
1

Δx

�
1

Ti−1=2
þ 1

Tiþ1=2

�
þm2

iΔx
Ti

; ð10Þ

Mi;iþ1 ¼ Miþ1;i ¼ −
1

Tiþ1=2Δx
: ð11Þ

Here, “i” refers to the position x ¼ iΔx. The matrixM must
be positive-definite so that the solution σc is guaranteed to
maximize the probability distribution function. We would
like to emphasize the necessity and importance of the
kinetic energy in P½σ� [see Eq. (7)], which is nonzero and
solves the negative m2ðxÞ problem in the first-order phase
transition scenario. This is because in the brick cell, m2ðxÞ
constructs a potential well as shown in Fig. 4(a), and the
kinetic term has to be finite due to the uncertainty principle.
From the same reason, at Δμ ¼ 0, the fluctuations on the
CP is not divergent due to a positive ground energy of M.
The nonzero kinetic energy represents the contribution
from the nonzero-momentum mode fluctuations of the σ
field, which plays a crucial role in the temperature-
nonuniform system.
The variance of the local fluctuations is

h½δσi�2i ¼
½M−1�ii

S
: ð12Þ

In Fig. 4(b), we plot the results of the variance for different
w and Δμ. Note that the maximum point of the variance
locates a little right of the minimum point of m2ðxÞ,
because the fluctuations in the right of the cell is lifted
due to a higher temperature compared to the left [see
Eq. (7)]. Interestingly, the fluctuations on the phase
transition point monotonically increase from the crossover
ðΔμ < 0Þ to the first-order phase transition ðΔμ > 0Þ.
There are no exotic behaviors to characterize the CP
ðΔμ ¼ 0Þ. In addition, the fluctuations near the phase
transition point are enhanced as the increase of the width
w for all the three scenarios. This can be understood in the
extreme case that when w → ∞, the temperature is flat
locally and the fluctuations near the CP become divergent.

VI. CORRELATION LENGTH

Now we calculate the correlation length near the phase
transition point from the normalized nonlocal correlation,

FIG. 4. Panel (a) presents the local mass square of the
fluctuating σ field, and panel (b) presents the variance for
different w and Δμ. In both panels, the red, green, and blue
lines represents results in the crossover ðΔμ < 0Þ, CP ðΔμ ¼ 0Þ
and the first-order phase transition ðΔμ > 0Þ scenarios, respec-
tively. Solid lines are results with w ¼ 1 fm, and dotted lines are
results with w ¼ 0.5 fm.
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GðxÞ ¼ hδσðxp þ x=2Þδσðxp − x=2Þi
hδσðxpÞδσðxpÞi

; ð13Þ

where xp ¼ i0Δx denotes the spatial location of the maxi-
mumpoint of thevariance.Numerically,wehaveGð2jΔxÞ ¼
½M−1�i0−j;i0þj=½M−1�i0;i0 . We plot the result in Fig. 5. The
normalized nonlocal correlation does not exactly decay
exponentially, so we determine the correlation length ξ by
requiring GðξÞ ¼ expð−1Þ. The ξ again smoothly increases
from the crossover regime ðΔμ < 0Þ to the first-order phase
transition regime ðΔμ > 0Þ, and decreases as the increase of
the temperature gradient. With the current parameter set, our
estimation of the correlation length ξ is about 1.65 fm–1.9 fm
in the central part of the brick cell, which is significantly
larger than ξ ≈ 1 fm in the periphery.1 It’s important to point
out that for the critical value Δμ ¼ 0, the correlation length
does not diverge and is strongly suppressed by the nonuni-
form-temperature effects. The suppression is comparable to
that from the critical slowing down effects [21]. The
magnitude of the correlation lengthwill be further suppressed
when the critical slowing down effects are included.

VII. AN EXAMPLE WITH A MORE REALISTIC
TEMPERATURE PROFILE

In this section, we present the results with a more
realistic temperature profile. The temperature profile is

extracted from the hydrodynamic simulation on the fireball
evolution at RHIC (after smoothening) [33]. We again set
the temperature in the slender brick cell. The temperature
profile is shown in Fig. 6, where the temperature at x ¼ 0 is
the phase transition temperature Tðx ¼ 0Þ ¼ Tc, the posi-
tion x ¼ 5 fm corresponds to the center of the fireball, and
the position x ¼ −5 fm represents the left boundary of the
fireball. We keep all the other parameters unchanged, and
further assume that the effective potential (3) is valid in the
whole temperature region. For the current temperature
profile, the corresponding extreme solution σcðxÞ is shown
in Fig. 7. In this plot, we can find that the phase transition
happens at xPT > 0, where T ≈ 168 MeV is about 8 MeV
larger than Tc. This qualitatively agrees with the result from
the tanh-type temperature profile.
In Fig. 8, we show the results of local mass square and

the variance of the fluctuations. The local correlation
lengths at x ¼ �5 fm are ξlocal ¼ 1=m ≈ 0.73 fm and
0.5 fm, respectively. The local correlation lengths also
becomes ill-defined in the first-order phase transition

FIG. 6. The temperature profile in the real space. Here, for
x ¼ 0, T ¼ Tc. The position x ¼ 5 fm locates in the center of the
fireball and the position x ¼ −5 fm is the left boundary of the
fireball.

FIG. 7. The order parameter profile σcðxÞ, with the red, green,
and blue lines represent results in the crossover ðΔμ < 0Þ, CP
ðΔμ ¼ 0Þ and the first-order phase transition ðΔμ > 0Þ scenarios,
respectively.

FIG. 5. The normalized nonlocal correlation GðxÞ near the
phase transition point in a logarithmic scale. The legends are the
same as that in Fig. 4. The inset is an enlargement of the cross
region marked in the plot.

1Note that the results quantitatively depend on the parameter
setting. With a different parameter setting, a ¼ 0.22 fm−2,
b ¼ −0.1 fm−1, and c ¼ 1.6, the correlation length is ξ ≈
1.5 fm in the periphery and ξ ≈ 2.55 fm at the phase transition
point. The phase transition temperature is also lifted from Tc, and
the value is about 6 MeV for w ¼ 1 fm and 11 MeV for
w ¼ 0.5 fm. The qualitative results are not changed.
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region, since local mass square becomes negative when
σ2c < −bΔμ=6c. The variance vanishes at x ¼ −5 fm since
T → 0 at the boundary of fireball. In Fig. 9, the normalized
nonlocal correlation near the phase transition point is
plotted. The correlation length at the phase transition point
is about 1.45 fm, which is significant larger that ξlocal at
x ¼ �5 fm. The variance and correlation length with this
temperature profile present similar behaviors as those in the
case of tanh-profile temperature.

VIII. SUMMARY AND DISCUSSION

In this article, we studied the nonuniform-temperature
effects on the stablest order parameter profile, the

fluctuations and the correlation length. Remarkably, we
find that the phase transition temperature is generally
ahead for different temperature gradients in our temperature
profile settings. This hints at a possibility that if the
nonuniform-temperature effects are manifest at RHIC,
the hadrons may form at a temperature higher than the
lattice Tc. In addition, the phase transition region can be
identified by the enhancements of both the fluctuations and
the correlation length, and the enhancements decrease as
the increase of temperature gradient. However, the unique-
ness of the CP behaviors are wiped off. These novel phase
transition behaviors inherit from the nonzero-momentum
mode contribution of the order parameter induced by the
nonuniform temperature distribution in space.
Emphasize again that as the first attempt to discuss the

nonuniform-temperature effects, we keep the model and
parameter settings simple to manifest the main results from
nonuniform-temperature effects. The real temperature profile
as well as the baryon chemical potential profile at RHIC vary
for different events at different time, and they are also
affected by dynamical factors like the fluctuations, jet, and
flow etc. Our use of the simplest Ising mapping for the QCD
potential and the assumption of both uniform chemical
potential profile and tanth-type temperature profile may be
oversimplified for the fireball in RHIC. On the other hand,
the higher order corrections of the order parameters in the
QCDeffective potential is also neglected (for example, the σ5

term related to the h and rmixing as discussed in Ref. [46]).
These approximations may induce uncertainty for our
numerical results.
Even in theMarkovapproximationwithin our assumption,

statistical average over fluctuations in different temperature
profiles is needed. Different parameter setting shows that
both the phase transition temperature shift and thevariance of
the σ field qualitatively agree with each other. Therefore, the
statistical average will not qualitatively change our conclu-
sions within the current model setup.
In the current treatment we simplify our model to the

one-dimension case by assuming the fluctuations in the
cross section are frozen. For the spherical symmetry
case, Eq. (5) can also be simplified to a one-dimensional
differential equation by using the spherical coordinates.
For a more complicated system related to the recent
experimental data of net-proton fluctuations in Auþ Au
collisions [4], a full treatment of the three-dimensional
differential Eq. (5) can be developed numerically.
As for the phenomenological applications, we call atten-

tion to the nonuniform-temperature effects on modeling the
dynamical phase transition during the fireball expansion at
RHIC. The temperature gradients in the fireball is large, so
the nonuniform-temperature effects should be significant
but have been overlooked by now. Indeed, the nonuniform-
temperature effects and the dynamical memory effects
[22,45,51–57] are two extreme cases corresponding to
spatial correlation dominant and temporal correlation dom-
inant, respectively. In our calculations, the enhancements of

FIG. 8. Panel (a) and (b) present the local mass square and the
variance of the fluctuating σ field, respectively. In both panels, the
red, green, and blue lines represents results in the crossover
ðΔμ < 0Þ, CP ðΔμ ¼ 0Þ and the first-order phase transition
ðΔμ > 0Þ scenarios, respectively.

FIG. 9. The normalized nonlocal correlation GðxÞ near the
phase transition point in a logarithmic scale.
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the fluctuations and correlations in the phase transition
region show again the importance of the dynamical effects.
The two effects are highly possible to interrelate with each
other in the realistic fireball expansion. The combination
of the nonuniform-temperature effects and the dynamical
effectswill provide a better description to the phase transition
at RHIC. The inclusion of the nonuniform-temperature
effects on the study of phase transition in the compact stars
is also promising.
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