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We discuss the phase structure of the two-flavor quark-meson model including quantum, thermal,
density and critical fluctuations with the functional renormalization group. This study combines two
technical advances in the literature, that are also chiefly important for the quantitative access of the phase
boundary of QCD at large density or baryon-chemical potential. Specifically we allow for the formation
and propagation of shocks as well as a fully self-consistent computation of the order parameter potential for
chiral symmetry breaking.
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I. INTRODUCTION

The theoretical access to the QCD phase structure at
large densities is chiefly important for our understanding of
running and planned heavy-ion experiments; for reviews
see [1–10]. At large densities, functional approaches, both
within QCD and in low-energy effective models (LEFTs),
have made rapid progress within the past two decades—for
results in the present context with the functional renorm-
alization group (FRG) see e.g., [11–19]; for results with
Dyson-Schwinger equations (DSEs) see e.g., [8,9,20–24].
At small densities these studies are accompanied by
respective lattice studies; see e.g., [25–32]. By now the
results from both lattice and functional methods agree at
small densities. In turn, at larger densities the lattice is
hampered by the sign problem, while the approximations to
the full QCD effective action within functional approaches
require systematic qualitative improvements.
Chiefly important are the introduction of a Fierz-

complete basis of four-quark scattering vertices as well
as quantitative access to order parameter potentials for
homogeneous and inhomogeneous condensates. The latter
allows us to discuss the eminently important question of the
location of phase transition lines, that of the symmetry-
breaking pattern and the order of the phase transitions. It
has been shown in the past decade that functional QCD
flows toward QCD-assisted low-energy effective models

for energy scales below 1 GeV; for a detailed discussion see
in particular the recent works [12,17]. With dynamical
hadronization [33–36] the LEFT is the (Polyakov-loop-
enhanced) quark-meson model (QM model), or more
generally the quark-hadron model. For recent FRG works
with the (P)QM model on the phase structure of QCD
relevant for the present work see e.g., [16,37–61]; for a
recent overview see [17]. This emergence of LEFTs from
first principle QCD flows is well understood and quanti-
tatively explored in the vacuum; see [34,62–66]. It entails
that the infrared critical dynamics is dominated by the low-
energy fluctuations of quarks and hadrons. For small
baryon-chemical potentials, μB=T ≲ 4, the relevant had-
ronic degrees of freedom are simply the pseudoscalar pions
and the sigma mode; see [9,12,14,23,24]. In turn, for
baryon-chemical potentials μB ≲ 4=T the situation is less
clear, but we expect sizable diquark contributions; see [14].
In the present work we make significant steps toward

such a quantitative control of the phase structure of high-
density QCD within functional methods. It combines two
systematic advances in the past years: The first one was
the development of self-consistent approximations for the
computation of order parameter potentials, [47]. The
second one was the development of a numerical approach
for solving flow equations that also enables us to discuss
discontinuities in the flows such as shocks that are
potentially relevant for the correct description of first-
and second-order phase transitions [67]. Within this
approach we compute the phase structure of the QM model
at finite temperature and density. An important benchmark
is already provided in the large-Nf limit with an infinite
number of flavors. It is argued that within an ’t Hooft–type
limit we can mimic the two-flavor QM model well (or any
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other flavor) and in particular reproduce well its nonuni-
versal properties such as the location of the phase boundary.
Moreover, in this limit the numerical approach with
discontinuous Galerkin setup in [67] is fully developed
and we have a quantitative access to the shock development
and propagation. The respective results are compare with
the currently most advanced approximation (including
shocks) to the self-consistent approximation including
the order parameter potentials in [47] for the Nf ¼ 2-flavor
quark-meson model. The results include also the regime
μB=T ≳ 4. In this regime the current model has to be
augmented with a diquark channel which is done in a
forthcoming work. Still, the present work is a necessary and
important study also in this regime.

II. QUARK-MESON MODEL

The quark-meson model describes the dynamics of
quarks and mesons at low energy. Within functional
QCD this LEFT emerges naturally from the momentum
scale flow of the theory at momentum or cutoff scales
k≲ 1 GeV [12,34,62–66,68]. In this regime the gluonic
degrees of freedom decouple from the dynamics due to the
gluonic mass gap in QCD—for a detailed discussion see
[12,17,65]; for a discussion of the emergent LEFT see [66].

A. Emergent LEFTs and their range of validity

The key ingredient for this emergence is the scale-
dependent four-quark scattering, whose dynamics at large
momentum scales is driven by a box diagram with a two-
gluon exchange between quark currents. For the discussion
of its low-momentum behavior we restrict ourselves to the
momentum-independent tensor structures, that is, ten
tensor structures in two-flavor QCD and 28 (32) tensor
structures in three-flavor QCD, the relevant cases for the
discussion of the phase structure of QCD. It has been
shown in [64,65] that in the vacuum the scalar-pseudoscalar
channel is dominating the dynamics by far, both above and
below the chiral symmetry-breaking scale of k ≈ 500 MeV:
Switching of all other channels leads to negligible effects
for most physical observables. Moreover, in [14] it has been
shown for Nf ¼ 2-flavor QCD in the chiral limit that
qualitatively this dominance persists up to large densities or
chemical potentials, μB=Tcð0Þ ≈ 6, where TcðμBÞ is the
chiral crossover or phase transition temperature at a given
baryon-chemical potential μB. This highly interesting first
dominance study in QCD is based on qualitative approx-
imations, and a conservative error estimate leads us to
μB=Tcð0Þ ≲ 4–8 for the (total) dominance regime of the
scalar-pseudoscalar channel.
This supports the computations in [12], where the phase

structure of 2- and 2þ 1-flavor QCD was computed within
a one-channel approximation (scalar-pseudoscalar) to the
Fierz-complete tensor structure for μB=TðμBÞ ≲ 6 or
μB=TðμBÞ≲ 4. Then, dynamical hadronization takes into

account multiscattering events of the resonant channels
(multiscatterings of pions and the scalar σ mode) that are
relevant for the critical dynamics in a regime with second-
or first-order transitions. In summary we estimate the
reliability regime of the present approximations in func-
tional QCD (see also respective considerations in DSEs
[9,23,24]) to be

μB=TðμBÞ≲ 4: ð1Þ

The critical end points (CEPs) computed both within the
most recent FRG computations, μB=TðμBÞ ¼ 5.59 from
[12], and DSE, μB=TðμBÞ ¼ 5.54 from [23], for the
physical case of 2þ 1-flavor QCD agree well, which
sustains the respective reliability of these estimates. Still
it is not within the regime of quantitative reliability of the
current approximation.
Consequently, (1) entails that for a quantitatively sound

prediction of the CEP the current approximation to the full
first principle QCD flow has to be improved systematically
in two directions for chemical potentials μB=TðμBÞ≳ 4:
First we need to include at least the dominant tensor
structure at large densities, the color super conductor or
diquark channel. This extension will be considered else-
where. Second the self-consistent computation of the order
parameter potential setup in [7] is required. This is done in
the present work within a recently developed numerical
approach that also allows the inclusion of the formation and
propagation of shocks [67].

B. Quark-meson model with the functional
renormalization group

In this section we briefly recapitulate the FRG approach
to the (Polyakov-enhanced) QM model. The inclusion of
the dynamical mesons as low-energy effective degrees of
freedom has to be seen as an efficient and convenient
bookkeeping device for the respective resonant interaction
channels. In particular, this substitutes the rather tedious
inclusion of the resonant parts of the higher-order scattering
processes of quarks. Still, if used on a quantitative level,
even for large UV-cutoff scales its effective action does not
reduce to a simple local classical action. For more details
and in particular its quantitative properties as an emergent
low-energy theory in QCD we refer to [12,63–65]. Validity
checks, benchmarks and bounds in comparison to QCD
have been provided in [66].
As discussed before, in the present work we restrict

ourselves to a globally rather qualitative approximation to
the effective action. Here, we are predominantly concerned
with the quantitative access to the effective potential of the
chiral order parameter. The systematic inclusion of the
present quantitative setup within functional QCD flows is
straightforward due to the modular nature of the FRG
approach and will be considered elsewhere.
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The scales of the present LEFT are gauged by the pion
decay constant in the chiral limit. We use fπ;χ ¼ 88 MeV
and measure all other scales with these units.
We choose the UV-cutoff scale of the QM model as

Λ ¼ 650 MeV. We consider this to be a good compromise
between integrating out as many momentum fluctuations as
possible and stretching the validity bound of the LEFT. The
momentum fluctuations with momentum scales k ≤ Λ are
included with the FRG. This approach has been used
intensively in the past 25 years for the inclusion of low-
energy dynamics of the QM model. For the setup of the
flow equation for the effective action and the derivation of
the respective flow equations for (field-dependent) cou-
plings we refer to the FRG reviews; see [17,69–72].
Applications relevant for the present work can be found
in [14,47,73], and the derivations and flows for the present
approximation can be found in [47].
The effective action Γk½q; q̄;ϕ� of the Nf-flavor QM

model is used in the following approximation:

Γk½q; q̄;ϕ� ¼
Z
x

�
q̄ðγμ∂μ − γ0μqÞqþ 1

2
ð∂μϕÞ2

þ hkðρÞq̄ðτ0σ þ τπÞqþ VkðρÞ − cσσ

�
; ð2Þ

with τμ being related to the Pauli matrices, τ ¼ 1=2ð1; iγ5σÞ,
and the quark-meson coupling incorporates the SUð2Þ ≅
SOð3Þ symmetry of the pseudoscalar subgroup. The O(4)-
scalar field ϕ and the respective O(4)-invariant ρ are given by

ϕ ¼ ðσ; π⃗ÞT; ρ ¼ 1

2
ϕ2 ¼ 1

2
ðπ⃗2 þ σ2Þ: ð3Þ

In (2) we have also
R
x ¼

R 1=T
0 dx0

R
d3x as an abbreviation

for the finite temperature spatial integration.
We emphasize that the Yukawa coupling hkðρÞ is

considered fully field dependent. It multiplies the O(4)-
invariant operator q̄τϕq; hence, it only depends on the
O(4)-invariant ρ. The field dependence of the Yukawa
coupling takes into account higher-order pointlike scatter-
ings of the resonant scalar-pseudoscalar channels with the
quark-antiquark pair. The inclusion of these processes is
necessary for a fully consistent zeroth-order derivative
expansion and has been introduced in [47]. For further
works in Yukawa models with field-dependent Yukawa
coupling see [57,74–77]. This is easily seen by performing
a perturbative one-loop computation within the QM model.
Then, the quark loop with hðρÞ contributes to the full
effective potential. Of course higher terms in the derivative
expansion also contribute to the effective potential, but the
Yukawa term contains no derivatives. Accordingly, its full
field dependence should be accounted for in a consistent
lowest-order derivative expansion.
Finally, the scalar effective potential VkðρÞ takes into

account the remaining part of the higher-order scatterings

of the mesons. The linear term introduces explicit
chiral symmetry breaking (finite current quark masses).
Evidently, it drops out on the right-hand side of the flow
equation and does not run. Consequently, the full flow and
hence the full effective potential Vk do not know anything
about explicit chiral symmetry breaking, and we do not
consider it any further.
The next systematic step beyond the zeroth-order deriva-

tive expansion would be the inclusion of wave-function
renormalizations ZqðϕÞ and ZϕðϕÞ for quarks and mesons.
This can be done either fully field dependent (first-order
derivative expansion) or field independent (usually called
LPA0). The latter approximation has been used in [47]
together with a field-dependent Yukawa coupling. While
technically in reach, we have chosen to drop these terms for
the sake of concentrating on the quantitative discussion of
the full effective potential. Hence, with (2) we assume
implicitly

Zq;kðρÞ ¼ 1 ¼ Zϕ;kðρÞ: ð4Þ
The flow equation for the complete set of couplings,

hkðρÞ; VkðρÞ, and wave-function renormalizations can be
found in [47]. We use the same setup here, including
the choice of regulators, three-dimensional flat or Litim
regulators [78].
For the effective potential we simply evaluate the flow

for Γk½q; q̄;ϕ� for constant scalar fields ϕ and vanishing
quark fields q; q̄ ¼ 0. This leads us to

∂tVkðρÞ ¼
k5

12π

�
−
4NfNc

ϵqk
ð1 − nfðϵqk þ μÞ − nfðϵqk − μÞÞ

þ N2
f − 1

ϵπk
ð1þ 2nBðϵπkÞÞ þ

1

ϵσk
ð1þ 2nBðϵσkÞÞ

�
;

ð5Þ
with ρ-dependent quark- and meson-dispersion relations

ϵϕk ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

ϕ;kðρÞ
q

; ϵqkðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

q;kðρÞ
q

; ð6Þ

and the RG time t ¼ ln k=Λ. The RG time involves a
reference scale in the logarithm, which we have set to be the
initial scale. The masses mq and mϕ are obtained by
evaluating the respective two-point functions at constant
fields. Note that mq and mϕ are the curvature and not the
pole or screening masses of quarks and mesons; for
respective definitions and discussions see [46].
The meson curvature masses are defined with

m2
π;kðρÞ ¼ ∂ρVkðρÞ;

m2
σ;kðρÞ ¼ ∂ρVkðρÞ þ 2ρ∂2

ρVkðρÞ ð7Þ
and hence are curvature coefficients of the effective
potentials. In turn, the quark mass is proportional to the
Yukawa coupling:
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m2
q;kðρÞ ¼ 2hkðρÞ2ρ: ð8Þ

It is left to discuss the flow equation for the field-dependent
Yukawa coupling; for details we again refer to [47]. We can
project the flow for Γk onto the Yukawa coupling hðρÞ by
evaluating the quark two-point function at vanishing quark
and pion fields q; q̄; π ¼ 0 and constant σ. With (2) we
arrive at

Γð2Þ
qq̄;k½σ�ðpÞδp;p0 ¼ δ2Γ½q; q̄;ϕ�

δqðpÞδq̄ðp0Þ
����
q;q̄;π¼0

≃ i=p − γ0μþ hkðρÞσ − cσσ; ð9Þ

where we have dropped the momentum conservation δp;p0

in the last line with δp;p0 ¼ ð2πÞ4δðp − p0Þ in the vacuum.
Equation (9) reflects the fact that the Yukawa term simply

is the ρ-dependent mass quark term mq;kðσÞ ¼ hkðρÞσ=2.
Accordingly, the flow of the Yukawa coupling hkðρÞ can be
derived from that of the scalar part of the quark two-point
function: It is simply σ=2∂thkðρÞ as ∂tcσ ¼ 0 by definition.
Thus we get

∂thkðρÞ ¼ −
1

4NcNf

1

σ
ReTrΓð2Þ

qq̄;k½σ�ðp ¼ 0Þ: ð10Þ

In (10) we have used that ρ ¼ σ2=2 for π ¼ 0. The flow (10)
is depicted in Fig. 1. From (10) and the approximation (2) we
finally get

∂thkðρÞ ¼ 4v3h3kðρÞ½Lð4Þ
ð1;1Þðm2

q;k; m
2
σ;k;T; μÞ

− ðN2
f − 1ÞLð4Þ

ð1;1Þðm2
q;k; m

2
π;k;T; μÞ�

þ 16v3hkðρÞh0kðρÞρ½hkðρÞ þ ρh0kðρÞ�
× Lð4Þ

ð1;1Þðm2
q;k; m

2
σ;k;T; μÞ

− 2v3k2½ð3h0kðρÞ þ 2ρh00kðρÞÞlðB;4Þ1 ðm2
σ;k;TÞ

þ ðN2
f − 1Þh0kðρÞlðB;4Þ1 ðm2

π;k;TÞ� ð11Þ

with

vd−1 ¼
1

2dþ1π
d
2Γðd

2
Þ : ð12Þ

The threshold functions lðB;4Þ1 originate in the bosonic loops

in four dimensions. The Lð4Þ
ð1;1Þ originate in the mixed

fermionic and bosonic contributions, again in four dimen-
sions. Both functions are defined in Appendix H. The first
four lines from (11) are contributions of the first two
diagrams with mixed fermionic and bosonic loops in
Fig. 1, whereas the fifth and the sixth lines correspond to
the bosonic loop with the four-vertex.

C. The large-N limit

Most of the numerical results in the present work are
obtained in the large-N limit of these equations, as it
simplifies the numerical treatment significantly: It elimi-
nates the σ loop in the flow equation and hence the second
derivative terms in the sigma meson mass term. We are left
with only the pion loops as well as the quark loop. The pion
loops constitute the flow of a pureOðNÞ theory in the large-
N limit as considered in [67] with discontinuous Galerkin
methods. Such a nonlinear first-order system is solved
using approximate Riemann solvers. These solvers rely on
the assumption that the solution is dominated by one strong
wave; for more details see Appendix A. This assumption
holds if the flow is dominated by contributions of the
pion and quark loops, which is always ensured in the
large-N limit.
This simplification is also helpful when considering

systems of multiple differential equations. However, it will
also be instructive to make a comparison between both the
finite-Nf case and the large-Nf limit in the case with
constant Yukawa coupling. Moreover, we can simulate the
physics case, Nf ¼ 2 and Nc ¼ 3, with a suitable chosen
large-N limit.
To begin with we keep the ratio of color and flavor fixed

to that of the Nf ¼ 2 quark-meson model in QCD:

Nc

Nf
¼ 3

2
: ð13aÞ

With (13a) we keep the flavor-color balance of QCD intact.
This ensures that the contributions of the quark loop are not
suppressed by 1=Nf. Moreover, the flavor-color ratio is
certainly of crucial importance for e.g., the question of the
existence and size of a quarkyonic phase. Finally, we
consider the following generic rescaling of ρ, VkðρÞ and
hkðρÞ:

ρ →
N2

f − 1

Nπ
ρ;

VkðρÞ →
N2

f − 1

Nπ
VkðρÞ;

hkðρÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nπ

N2
f − 1

s
hkðρÞ: ð13bÞ

FIG. 1. Diagrammatic representation of the flow of the Yukawa
coupling. The circled cross ⊗ depicts the regulator insertion
∂tRkðp⃗2Þ and the gray dots denote full vertices. The double lines
depict the mesons, whereas the single line indicates the quark
content. The arrows depict the quark number flow.
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The factorNπ in (13b) is introduced to simulate the flows of
a quark-meson model with Nπ pions instead of one sigma
meson and three pions. Both cases are relevant for the
physics of two-flavor QCD or the two-flavor QM model.
In the chirally symmetric phase for large temperatures

and cutoff scales, the pions and the sigma are degenerate on
shell at ρ ¼ 0. The second derivative term vanishes
2ρV 00ðρÞjρ¼0 ¼ 0, the on-shell σ propagator agrees with
the pion one, and the (on-shell) flow equation resembles
that with four pions.
In turn, in the broken phase, the σ mode develops a mass

and quickly decouples from the dynamics of the system.
Then, the (on-shell) dynamics of the theory is driven by the
three (massless or light) pions. From previous FRG inves-
tigations of the quark-meson model as well as QCD we
know that the mesonic dynamics in the broken phase is of
subdominant importance for not too large chemical poten-
tial. This suggests that the N ¼ 4 case should mimic the
two-flavor case best. A full discussion of the comparison is
provided in Secs. IV B 1 and IV B 2.
With the limit Nf → ∞ and (13) we derive the flow

equations for large-Nf Yukawa coupling, hlNk ðρÞ, and
effective potential, V lN

k ðρÞ:

∂tV lN
k ðρÞ ¼ k5

12π2

�
Nπ

ϵπk
ð1þ2nBðϵπkÞÞ

−
4×2×3

ϵqk
ð1−nfðϵqk þμÞ−nfðϵqk −μÞÞ

�
ð14Þ

and

∂thlNk ðρÞ ¼ −4Nπv3ðhlNk ðρÞÞ3Lð4Þ
ð1;1Þðm2

q;k; m
2
π;k;T; μÞ

− 2Nπv3k2ðhlNk ðρÞÞ0lðB;4Þ1 ðm2
π;k;TÞ: ð15Þ

This concludes our derivation of the set of flow equations
solved in the present work: The system of flows at finite N
is given by (5) and (11), and those in the large-N limit are
given in (14) and (15). Numerical results for both systems
will be presented in Sec. IV, and the discontinuous Galerkin
setup, with which the numerical results are achieved, is
discussed in the next section.

III. DISCONTINUOUS GALERKIN
METHODS IN THE FRG

Most of the flow equations introduced in the previous
Sec. II can only be solved numerically. In the present work
we use discontinuous Galerkin methods (DG methods),
which have been introduced to the FRG in [67] by the
example of the large-N limit in an OðNÞ model. In contrast
to the set of flow equations discussed in the present work
for the QM model, the flow equation for the effective
potential in the large-N limit of theOðNÞmodel is given by
a hyperbolic equation of first order that can be written in a

conservative form. This type of equation is well studied and
understood. Many different numerical schemes were devel-
oped to obtain a stable solution in a weak sense; see
e.g., [79].
In the present case, the flow equations (14) and (15) in

the large-N limit are not conservative anymore. Indeed, for
a constant Yukawa coupling the QM model can be under-
stood as a driven OðNÞ model, where the driving force is
provided by the quark loop. If this approximation to the
effective action is upgraded to one with a cutoff-dependent
quark two-point function, there is backcoupling effective
from the meson loop into the quark loop, and the driving
force is not (fully) independent anymore.
In any case the system of differential equations ceases to

be conservative. For the nonconservative hyperbolic prob-
lem, like the large-Nf equation with running Yukawa
coupling, the concept of a weak solution was introduced
relatively recently in [80,81] and applied in a context of
finite volume and discontinuous Galerkin schemes [82–89]
for multiple physical systems. Hyperbolic equations in
nonconservative form occur rather frequently in modeling
physical systems; as an example, viscous relativistic hydro-
dynamic equations are of this type [90–97], and recently
also a formulation of general relativity has been solved in
this formulation [98] highlighting more advanced stability
properties. Moreover, in the case of finite Nf it also
contains a diffusion term that originates in the σ loop.
Thus, on the technical level, the present work represents a
nontrivial extension of [67]. The different extensions
are discussed in Secs. III A (nonconservative systems)
and III B (diffusion terms). With respect to these extensions
the present work should be considered as a first step to the
full implementation of DG methods for nonconservative
systems; more details and further extensions will be
considered elsewhere. For a more detailed introduction
to DG methods see also [99].
In the context of the FRG, further work concerning the

inclusion of higher-order derivatives and nonconservative
formulations has been achieved in [100], which will be
published soon.
Pseudospectral methods are an integral part of DG

methods. They are applicable to FRG equations in the
absence of shocks and have been used successfully in e.g.,
[101–105].

A. Nonconservative flux equations

In this section the extension of DG methods for the FRG
to nonconservative flow equations is set up. To this end we
consider a system of differential equations of the form

∂tui þ ∂ρfiðu; ρ; tÞ þ aijðu; ρ; tÞ∂ρuj ¼ siðu; ρ; tÞ; ð16Þ

where u ¼ ðu1; u2ÞT and i; j ∈ f1; 2g. The si are source
terms and fi conservative fluxes. In (16) we also allow for
nonconservative terms ai. In the full quark-meson model
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the flux is additionally separated into a convective and a
diffusive contribution depending also on ∂ρui. We note that
the splitting into conservative and nonconservative terms is
not unique in these equations. More details on the numeri-
cal treatment can be found in Appendix A, whereas an
evaluation of the convergence properties of the scheme is
performed in Appendix B. In the following, (5), (14) and
(15) are reformulated to fit (16).

1. Flow of the effective potential

Equations (5) and (14) are rearranged to ensure that they
have the conservative form required by (16) such that DG
methods are applicable in a purely conservative formu-
lation. Similarly to [67] we observe a nonlinear dependence
of the potential VkðρÞ on its derivative with respect to the
field expectation value ∂ρVkðρÞ and in the case of (5) also
on its second derivative. The dependency on the first
derivative can be eliminated by introducing it as a new
variable, which coincides with the pion mass squared:

ukðρÞ ¼ ∂ρVkðρÞ ¼ m2
π;k: ð17Þ

Since (14) is not dependent on itself we can simply take a ρ
derivative, which turns ukðρÞ into a conserved quantity
which is fit for DG schemes. This procedure is also applied
to the QM model. In this case we need an additional
expression for the second derivative of the potential in the
sigma mass in (8). We obtain this expression by taking
another ρ derivative of the polynomial basis functions ϕn
introduced in Appendix A:

∂2
ρVðt; ρÞ ¼ ∂ρuðt; ρÞ ¼

XNþ1

n¼1

ûnðtÞ∂ρðϕnðρÞÞ: ð18Þ

2. Flow of the field-dependent Yukawa coupling

The flow of the Yukawa coupling at finiteN is given by a
highly nonlinear equation of second order. Since it can not
be made to fit the form given in (16), it is not solved within
the introduced framework. However, the expression sim-
plifies significantly in the large-N limit and (15) can be
written to suit the formalism. Equation (15) is rewritten in
terms of the quark mass squaredm2

qðρÞ, as we are primarily
interested in physical observables. Thus, a new variable is
introduced:

wkðρÞ ¼ 2hkðρÞ2ρ ¼ m2
q;k: ð19Þ

We refer to Appendix D for the explicit calculation.
Introducing this new variable proves to be very helpful
for the computation. Appendix E explains how the ambi-
guity in splitting the conservative and nonconservative
contributions to the flux are used to accommodate

boundary conditions. For completeness the final form of
the equations is stated:

∂tuk ¼ ∂ρfuðuk; wkÞ;
∂twk ¼ ∂ρðaðukÞwkÞ − ðwk∂uaðukÞÞ∂ρuk þ sðuk; wkÞ:

ð20Þ

This version of the equation has the advantage that the
nonconservative product is rather small in comparison to
the conservative part.

B. Finite-N equations

For finite N, the equation is parabolic. Apart from the
convection term (Goldstones), there is also a diffusion term
that arises from the σ loop. The equations for finite N are
highly nonlinear and of second order; therefore, we refrain
from considering the field dependency of the Yukawa
coupling. Schematically the flow equation of the potential
is written as

∂tuk ¼ ∂ρfuðuk; wk; ∂ρukÞ: ð21Þ

The weak formulation and the stability of this type of
equation have not been fully understood until now. The
presence of the diffusion modifies the numerical flux
significantly. However, in the convection-dominated
regime, and in the absence of a discontinuity, it is possible
to neglect this diffusion numerical flux and formulate
the discontinuous Galerkin method for this equation as
follows:

Z
Dk
ðð∂tui;h þ ai;h∂ρui;h þ si;hÞqn þ fi;h∂xqnÞdx

¼ −
Z
∂Dk

qnðf�i n̂þ Dðuþi;h; u−i;h; n̂ÞÞdx; ð22Þ

where ai;h, si;h and fi;h are computed form the field ui and
their local approximation of the derivative; no other
numerical fluxes are introduced into the numerical scheme.
The absence of numerical fluxes for the extra derivative
present in the equation corresponds to the assumption of
continuity of this field, and the DG scheme somehow
reduces to a pseudospectral method. This approximation is
acceptable, whenever the flow is rather smooth and no
shock or rarefaction wave are generated during the simu-
lation. In turn, this scheme will fail in the vicinity of a first-
order phase transition. There we expect shock formation
and propagation in the flow equation. In conclusion, for the
rest of the phase diagram the present approximation can be
considered as a sufficiently accurate solution of the flow
equation due to the local high-order accuracy of the DG
scheme.
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IV. RESULTS

In this section we present and discuss our results for the
phase structure of the QM model in the different approx-
imations. We chose our initial conditions such that the quark
mass and the pion decay constant reproduce physical values
in the vacuum; this is discussed in detail in Sec. IVA. Note,
however, that it is not the main objective of the present work
to produce quantitatively reliable results; the vacuum bench-
marking simply facilitates the understanding of our results.
In the present work we rather focus on the qualitative
behavior of the matter sector of QCD at large densities;
quantitatively reliable results require full QCD flows and
will be considered elsewhere. Such a setup entails that, while
we compute and present a phase structure at large densities,
our present low-energy effective theory gradually loses
predictability for larger μB=T. Such an estimate in functional
QCD leads to a predictability bound of μB=T ≲ 4, if the
currently existing state of the art computations are combined
[12,23,24] and estimates for missing channels and effects
are considered as well [12,14,106]. In the present class of
low-energy effective theories (QM, Nambu Jona Lasino
type, PQM, PNJL), a respective estimate leads to μB=T ≲ 2.
We first present results within an approximation where

only the effective potential depends on the cutoff scale, the
local potential approximation (LPA), for both the finite-Nf

and the large-Nf limit in Sec. IV B. They serve as a
benchmark for the more advanced approximations dis-
cussed in Sec. IV C. Additionally, the results in Sec. IV B
also serve as a benchmark for results in the literature within
the QM and Polyakov loop-enhanced QM models, in
particular at large density, where DG methods or similar
numerical approaches are mandatory for reliable results.
In Sec. IV C we present results for the coupled system of

effective potential VkðρÞ and Yukawa coupling hkðρÞ in the
large-Nf limit. This investigation allows us to solidify the
results in [47] concerning the flattening of the quark
mass mqðϕÞ.
Lastly, the technical advances made here readily carry

over to first principle QCD within the FRG; as discussed in
the introduction, they are one of two missing ingredients for
reliable predictions of the QCD phase structure
for μB=T ≳ 4.

A. Initial conditions

We initiate the flow at a cutoff scale k ¼ Λ ≈ 0.650 GeV
with the classical action of the QM model. Then, the
parameter in the initial effective action ΓΛ is the ϕ4

coupling in the classical potential:

uΛðρÞ ¼
λΛ
2
ρ; wΛðρÞ ¼ 2h2Λρ; ð23Þ

as well as the Yukawa coupling hΛ. For the sake of
simplicity we use a initial meson quark mass m2

ϕ ¼ 0.

All our scales are measured in the pion decay constant in
the chiral limit fπ;χ ¼ 88 MeV.Within the present approxi-
mation of the QM model we have fπ ≈ σ0, and hence we
define σ0 ¼ 88 MeV. Then, the two model parameters λΛ
and hΛ are fixed such that they lead to a “physical”
constituent quark mass 1=

ffiffiffi
2

p
hσ0 and a physical mass of

the sigma resonance, mσ . The parameters for the couplings
of the effective theory and their relation to physical
observables are summarized in Table I. The dimensionless
ratios in the models at k ¼ 0 are given by

mσ

σ0
≈ 3.605;

mq

σ0
≈ 3.532 ð24Þ

and follow with the initial parameters in Table I.

B. Results for the effective potential with constant
Yukawa coupling

In this section we compare the numerical results of the
physical case with Nf ¼ 2 and in the large-Nf limit with
three and four degrees of freedom. This is done in LPA,
where we solve the flow equation for the effective potential
(14). We first discuss the asymptotic regimes: vacuum, large
temperatures, and large chemical potential in Sec. IV B 1.
Then we show that the chiral phase transition, or rather its
nonuniversal properties, agrees quantitatively for all models
in Sec. IV B 2. The shock development at large chemical
potential is discussed in Sec. IVB 3. Finally, we compare the
phase structure for all three cases in Sec. IV B 4.

1. Asymptotic regimes

We begin with an evaluation of the asymptotic regimes:
the vacuum with μq; T ¼ 0, large temperatures with
μq ¼ 0, and large chemical potentials with T ¼ 0. For
these cases we show the field dependence of the pion mass
mπ;kðρÞ ¼ ∂ρVkðρÞ; see (17) for different cutoff scales.
This resolves the effective potential, obtained from an
integration over ρ, in terms of a physical observable.
For the numerical solution of (14) we use an interval of

ρ ∈ ½0; 0.02� GeV, which is expanded in K ¼ 80 cells with
polynomials of order Np ¼ 2. The length of the interval is

TABLE I. Low-energy observables and related EFT couplings
at the initial cutoff scale ΛUV ¼ 0.65 GeV. The scales are fixed
with the pion decay constant in the chiral limit fπ;χ ¼ 88 MeV,
that is, mσ=fπ;χ ≈ 3.603 and mq=fπ;χ ≈ 3.532. In the present
approximation we have fπ;χ ¼ σ0, and in the model the dimen-
sionless ratios are simplymσ=σ0 andmq=σ0. In the chiral limit we
also have mπ ¼ 0.

Observable Value [MeV] Parameter at ΛUV ¼ 0.65 GeV

mσ 317.1 λΛ ¼ 71.6
mq 310.8 hϕ;Λ ¼ 3.6
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chosen such that it includes all relevant phenomena: The
flux at the outer boundary is very small. This ensures the
numerical convergence for the entire phase diagram.
The benchmark case is the vacuum, where the present

models are anchored; see Sec. IVA. The field dependence
of the pion mass is shown in Fig. 2. For the initial cutoff
k ¼ Λ, the pion mass is simply a straight line,
mπ;ΛðρÞ ¼ λΛρ, where the slope is the initial mesonic
self-coupling λΛ. With decreasing cutoff scale, the pion
mass develops a flat regime, which is related to the
emergence of nontrivial minima ρ0 ¼ σ0=2 in the potential,
indicating chiral symmetry breaking.
We also conclude, from the comparison of the pionmasses

in the different models, that the cutoff dependence of the
physical two-flavor case is best mimicked by the large-Nf

limitwith fourdegreesoffreedom:Mostof thedynamics takes
place in the symmetric regime or close to it. Technically, this
regime is described with 1þm2

σðρ0Þ=k2 ≈ 1þm2
πðρ0Þ=k2,

owing to the fact that the total mass of the respective modes
is k2 þm2

π=σ .
Finally, we determine the relative values of the pion decay

constants in the chiral limit, fπ;χ ¼ σ0, in the different
models. All scales are measured in the pion decay constant
fπ ¼ 88 in the two-flavor case. The expectation value σ0 or
ρ0 ¼ σ20=2 follows from (7) as the maximal field value with
mπðρ0Þ ¼ 0. However, since we stop the numerics at a small
but finite cutoff value kmin ¼ 50 MeV, we extrapolate the
expectation value σ0ðkminÞ to σ0ð0Þ within a linear fit: We
use data from ten equally spaced RG scales from k ¼
90 MeV to k ¼ 50 MeV and fit

σ0;k ¼ σ0 þ constk: ð25Þ

The self-consistency of this linear fit is checked by the
perfect agreement of the linear fit with the data; see Fig. 3.

The respective values for σ0 are given in Table II. The mass
mσ of the scalar mode is extrapolated to k ¼ 0 from the same
data. Note, however, that once the kink enters the cell in
which σ0 is located, the precise determination of the
derivative is difficult. Therefore, the flattening of the
potential most likely causes an underestimation of mσ .
For large temperatures we safely stay in the symmetric

regime and the mesons simply acquire a thermal Debye
mass. This is seen in Fig. 4(a). In the symmetric regime we
have four mesonic degrees of freedom in the two-flavor
case, consistent with our expectations, that the cutoff
dependence of the pion mass in the model with four
degrees of freedom in the large-Nf limit has the best
agreement with the two-flavor case.
We close with a discussion of the large chemical

potential asymptotics. The respective pion mass (squared)
is depicted in Fig. 4(b). The sudden increase of the pion
mass for k≲ kon with kon ≈ μ in Fig. 4(b) is related to the
Silver-Blaze property [107]; for the discussion in the FRG
approach see [50,108,109]. This property entails that
correlation functions below the density onset are simply
functions of p0 ∓ iμq for quark and antiquark frequencies,
respectively. Accordingly, observables do not depend on
the chemical potential for μq < μq;on, where μq;on is the
onset chemical potential. For μq > μq;on, the medium leads
to deformations of the quark-meson scattering processes,

FIG. 3. Linear extrapolation of the expectation value σ0. The
corresponding fit parameters to (25) can be found in Table II.

TABLE II. Expectation value σ0 for the three models obtained
by a fit of (25) to the zero point at five equally spaced RG scales
k ¼ 90 MeV to k ¼ 50 MeV. The error is computed from the
grid resolution and the error to the fit parameters. The mass mσ is
extrapolated from the same data points as the fit. The error of mσ

is obtained analogously to the one of σ0; it might be under-
estimated due to the kink developing at σ0.

σ0 [MeV] const mσ [MeV]

Nf → ∞, 3 d.o.f. 89.8(17) 0.0755(32) 335(15)
Nf → ∞, 4 d.o.f. 85.7(18) 0.0752(35) 311(10)
Nf ¼ 2 88.0(20) 0.0360(26) 317(12)

FIG. 2. RG-scale evolution of the field-dependent pion mass
m2

πðρÞ in LPA (constant Yukawa coupling) in the vacuum. We
compare results for Nf ¼ 2 and the large-Nf limit with three and
four degrees of freedom; see Sec. II C.
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comprised in mediummeson dispersions. In the presence of
thermal fluctuations this onset is washed out with increas-
ing temperature.
Note also that the onset cutoff scale depends on the field

value, as in the present approximation the onset chemical
potential is given by μ2q;on ¼ 1þm2

q;k.
In summary, the results in the asymptotic regimes show

the expected physics phenomena. Moreover, the compari-
son of the large-Nf models with the two-flavor case
quantifies the similarities between the large-Nf limit
models and the physical two-flavor model.

2. Chiral phase transition at vanishing density

These similarities are furthered by a study of the chiral
phase transition at vanishing density, μq ¼ 0. In particular
we present a detailed comparison of the temperature
dependence of the chiral order parameter σ0 in the

Nf ¼ 2-flavor case with the large-Nf limits with three
and four degrees of freedom. The numerical results for
σ0ðTÞ are displayed in Figs. 5(a) and 5(b).
In these computations we use a grid ρ ¼ ½0; 0.2� GeV

and expand in K ¼ 100 elements with a local approxima-
tion order of Np ¼ 2, and the σ is obtained by a linear
extrapolation as described in Sec. IV B. The data in
proximity of the transition point are compatible with the
scaling law

σðTÞ ¼
�
ccrjT − Tcritjβ; T ≤ Tcrit;

0; T ≥ Tcrit;
ð26Þ

where forNF → ∞we have β ¼ 1=2, the mean-field critical
exponent. In turn, for the present LPA study of the Yukawa
model with the O(4)-universality class we have used the
three-dimensional spatial flat or Litim regulator [78] for both

(a) (b)

FIG. 4. RG-scale evolution of the field-dependent pion mass m2
π in the symmetric phase. In this figure we compare results for the

finite-Nf case and the large-Nf limit with three and four degrees of freedom, respectively. The Yukawa coupling is kept at a constant
value. (a) Pion mass at zero density and high temperature (T ¼ 280 MeV). The flow is washed out by the temperature fluctuations.
(b) Pion mass at zero temperature and high density (T ¼ 500 MeV). The density onset introduces a sharp edge to the flow.

(a) (b)

FIG. 5. Temperature dependence of the mesonic field expectation value σ0. The figure shows a second-order phase transition at fixed
chemical potential μ ¼ 0 GeV. We compare the case for finite Nf and the large-N limit with three and four degrees of freedom with a
constant Yukawa coupling. Fitting (26) to the data gives values for the critical temperatures and exponents of the transition, with the
parameters given in Table III. Deviations to the fit values are due to the low resolution in the extrapolation of the zero point on the
numerical grid. (a) Absolute values of thefield expectation value σ. Units are given in GeV. (b) Axes rescaled by the respective
expectation values and critical temperatures.
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quarks and mesons. See also Appendix H, (H1) and (H2).
This leads us to β ≈ 0.40; see [110] with [111,112] and in
particular the recent work in the QM model [19]. Note that
more advanced approximations of the FRG provide β ≈ 0.39
consistent with conformal bootstrap and Monte Carlo
results. For a recent compilation see [113]; for the QM
model see [19] that also includes an investigation of the
Z2-universality class.
The respective scaling regimes are already very small in

the Oð4Þ model and even shrink in the presence of the
(driving) fermion loop; see the discussion in [19]. While
possible, we do not aim at a precision estimate of critical
exponents here, as we focus on the location of the phase
boundaries. Accordingly, we have simply checked the
consistency of the scaling law (26) with β ≈ 0.4
(Nf ¼ 2) and β ¼ 1=2 (Nf → ∞) for small reduced tem-
peratures 1 − T=Tc → 0−. This also allows us to determine
the respective scaling regimes. Consistent with the obser-
vation above that they should be even smaller as the already
small scaling regime in OðNÞ models we find scaling for

0 < 1 − T=Tc ≲ 10−2: ð27Þ
Moreover, a scaling fit with (26) in the regime (27) allows
us to determine Tc as well as the prefactor ccr.
We see from Table III that the two-flavor critical

temperature agrees well with the large-Nf limit with four
degrees of freedom. This is expected from the theoretical
analysis and our results on the asymptotics in Sec. IV B 1.
This good agreement extends to the full temperature
dependence, as can be seen from Fig. 5(a). In turn, the
order parameter from the large-Nf limit with three degrees
of freedom seemingly shows a slightly different behavior.
However, the two large-Nf models are obtained by a

simple rescaling of the fields and hence are identical to each
other. They can be mapped onto each other by the relative
rescaling. Put differently, the temperature dependence of
the order parameters should agree if plotted in dimension-
less units, σðTÞ=σð0Þ and T=Tc. This comparison is shown
in Fig. 5(b): As expected, the temperature dependences of
the order parameter of the large-Nf models agree. More
importantly, also the two-flavor case agrees quantitatively,
though with small deviations. Trivially, the nontrivial

critical scaling of the two-flavor case does not agree with
the trivial mean-field scaling for Nf → ∞, but the scaling
regimes are very small; see (27).
In summary, the thermal properties of the models in the

large-Nf limit and the physics case Nf ¼ 2 agree very
impressively.

3. Shock development and first-order phase
transition at high densities

In this section we discuss the shock development and
propagation at intermediate densities and very low temper-
atures. This is also used to discuss the first-order regime.
In these computations we use a grid ρ ¼ ½0; 0.2� GeV

and expand in K ¼ 200 elements with a local approxima-
tion order of Np ¼ 2. This finer grid is required for the
shock resolution at low temperatures and chemical poten-
tials close to the onset chemical potential. Indeed, the full
resolution of some of the features in this regime (e.g., the
precise location of the transition line in the absence of
shocks) requires an even higher resolution. While techni-
cally possible, we have refrained from doing so, as the
related aspects have been not in the main focus of the
present work.
We first note that the running of the pion mass stops

quickly below the onset RG time ton ¼ ln Λ
μ: The RG flow is

proportional to the Fermi distribution. Hence it stops at kon
at T ¼ 0; for finite T the Fermi distribution is softer, but for
small temperatures there is still a strong exponential
suppression for k ≤ kon. This suppression leads to two
competing effects at finite densities.

(i) At high densities the suppression of the quark
contribution creates positive meson masses
m2

π;kðρÞ and determines the value of m2
πðρ0Þ in the

symmetric phase [compare to Fig. 4(b)]. The quark
contribution dominates initially, but due to the
constant Yukawa coupling it is quickly suppressed
with k5, decreasing the effect of the suppression at
lower densities.

(ii) For field values with positive meson masses m2
π;kðρÞ

the meson loop in the flow is suppressed with k5. In
turn, for negative meson masses the meson loop is
suppressed with k4. Note also that the flow increases
with decreasing values of m2

π;k, which is closely
linked to the restoration of convexity. The mesonic
flow contribution is reminiscent of the spreading of
waves in hydrodynamics, where its value corre-
sponds to the wave velocity: If we consider the
solution m2

πðρÞ as a wave packet, it flows with the
RG time in the direction of smaller field values with
a ρ-dependent propagation velocity. The velocity of
the solution and its effect on convexity is inspected
more closely in Appendix C.

The interplay of both effects leads to the creation of shocks
and a first-order phase transition at low temperatures. The
increased propagation speed of negative modes is blocked

TABLE III. Parameters obtained from a χ2 fit of (26) to the
mean-field expectation values in Fig. 5(a) which are underlined
by the transition scaling. The error in the data is expected to be
higher, since the numerical precision is limited by the grid
resolution. An exact reconstruction of the zero crossing is not
possible.

Model ccr Tcrit

Nf → ∞: 3 d.o.f. 0.2985(24) 0.18929(11)
Nf → ∞: 4 d.o.f. 0.3010(33) 0.16139(10)
Finite Nf 0.2126(61) 0.16618(19)
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by the slowed propagation of positive modes. The shock
travels toward smaller field values during the RG-time
evolution but eventually freezes when the shock amplitude
is too high. An illustration of this process can be found in
Appendix F.
Naturally, the occurrence of shock development depends

on the choice of initial conditions, specifically those that
trigger stronger dynamics of the system; for a respective
discussion in theOð1Þmodel see [67]. With physical initial
conditions we find shock development in the large-Nf limit
with three d.o.f., whereas the dynamics for four d.o.f. are
not strong enough to generate a shock at finite temperature
T > 10 MeV. This is an important observation: We have
used the same initial conditions for all models, fixed within
the two-flavor case. As discussed before, the two models in
the large-Nf limit only differ by a rescaling of the fields and
parameters. Accordingly, they can be interpreted as the
same model with different initial conditions, as we do not
apply any rescaling to the initial condition. However, these
changes are marginal, as can be seen from the small
variation of the pion decay constants and σ masses in
the vacuum; see Table II. In conclusion the physical case is
very close to the situation where shocks may form during
the RG-time evolution. Whether or not this also occurs in
QCD requires further investigation.

(i) The embedding of the present model as part of the
matter sector will lead to additional driving forces in
the flow. This may be mimicked with a T, μ-
dependent change of the initial conditions here.
Naturally these changes can go either way; they
may support the shock development or soften it.

(ii) The additional diffusion terms in the finite-Nf case
(see Sec. III B) may structurally soften the RG-time
evolution and remove any shock development. It is
also unclear whether shocks develop in the presence
of diffusion terms allow, as the diffusive flux
counteracts the formation of a discontinuity.

The resolution of these aspects is crucial for an access to the
QCD phase boundary at large chemical potential and low
temperatures. This goes far beyond the scope of the present
work and is subject of ongoing work.
In the large-Nf limit with three d.o.f., we can use the

shock development at low temperatures for an accurate
determination of the phase transition line. The shock
position ξfinal at k ¼ 0 is extrapolated by fit, utilizing the
exponential decay of the flows:

ξðtÞ ¼ ξfinal þ conste−t:

We use the shock position at six equally spaced time steps
between RG times t ¼ 3 and t ¼ 3.5. We expect the same
power law behavior as in [67] for the final shock position as
a function of chemical potential:

ξfinal ¼
�
βjμ − μcritjζ; μ ≥ μcrit;

0; μ ≤ μcrit:
ð28Þ

As an explicit example we concentrate on T ¼ 10 MeV. The
coefficients of the χ2 fit are provided in Table IV. Next to
the first-order phase transition at small temperatures
the position of the shock as a function of the control
parameter, the chemical potential, is well approximated
by the function in Eq. (28). This scaling form is the same
used to describe the order parameter next to a second-order
phase transition. In this sense the shock position behaves like
an order parameter of a second-order phase transition when
the system experiences a first-order phase transition. From
the scaling form of the shock position [Eq. (28)] we obtain
an accurate estimate for the critical chemical potential of
μcrit ¼ 0.30460� 0.00033 GeV. The phase transition and
shock positions are depicted in Fig. 6. Shock formation
occurs only in a relatively small area of the ðT; μÞ plane,
being confined to intermediate densities 290 MeV <
360 MeV and small temperatures up to T ¼ 20 MeV.
In the absence of a shock a very fine grid has to be used

to pin down the phase transition line for low temperatures.
In the present work we have simply narrowed down the

FIG. 6. Density dependence of the mesonic field expectation
value σ0 at T ≈ 0 for the large-Nf model with three d.o.f. in LPA
(constant Yukawa coupling). The figure shows a first-order phase
transition of the field expectation value at zero temperature. The
solution now contains a local outer minimum and shock develop-
ment between the outer local and inner global minimum. The
extrapolated shock position at k ¼ 0 GeV is plotted at different
densities. We find that the shock position, in the vicinity of the
first-order transition, obeys the scaling law in Eq. (28). The
parameters of a scaling fit [see (28)] are given in Table IV.

TABLE IV. Parameters obtained from a χ2 fit of (28) to the
shock positions in Fig. 6.

Prefactor Crit. exponent Crit. density
Parameter β ζ μcrit

χ2 fit 0.391(45) 0.524(31) 0.30460(33)

SHOCKS AND QUARK-MESON SCATTERINGS AT LARGE … PHYS. REV. D 104, 016028 (2021)

016028-11



location of the phase transition line for small temperatures
T ≲ 30 MeV to a small interval μcrit ∈ ½270; 290� MeV.

4. Phase structure in LPA

The preparations and results discussed in the last sections
allow us to compute the phase structure of the QM model,
both for Nf ¼ 2 and in the large-Nf limit.
In these computations we use a grid ρ ¼ ½0; 0.03� GeV

and expand in K ¼ 70 elements with a local approximation
order of Np ¼ 2. This setup ensure convergence of the
numerics for all temperatures up to T ¼ 0.3 GeV and
chemical potentials around μ ¼ 0.35 GeV.

For the resolution of shock formation a finer grid is
required. We observe a formation of shocks around the
first-order phase transition in the large-N case at densities
around μ ¼ 0.3 GeV. In this area we expand in K ¼ 250
cells to reduce oscillations and ensure numerical conver-
gence. The flow is evaluated up to t ¼ 4, which corre-
sponds to a momentum scale of k ¼ 0.001 GeV. The field
expectation value σ is chosen as order parameter and
evaluated as demonstrated previously for the approximate
vacuum.
The result for the large-N limit is depicted in Fig. 7. The

crossover region is discernible by the color gradient that
smoothly transitions between both phases, whereas in the
first-order regime a jump is clearly visible. Figure 7(b) also
illustrates how shock development shifts the critical chemi-
cal potential to higher values.
The phase diagram for the finite-Nf case is given in

Fig. 8—the computation did not converge at high densities;
this is further discussed in Appendix B 1. As discussed
before, it will be interesting to see how this regime changes,
if the present model is embedded as part of the matter sector
of QCD in full QCD flows. This is subject of
ongoing work.

C. Quark-meson scatterings in the large-N limit

The discussion of the results in LPA with a constant
Yukawa coupling has revealed a very intricate structure at
about onset chemical potentials and low temperatures. In
particular the occurrence of shocks is very sensitive to the
details of the dynamics. Moreover, we expect quark-meson
scattering also being important in the vicinity of a potential
critical end point in QCD.
We now present our results for the QM model with a

field-dependent Yukawa coupling in the large-Nf limit with

(a) (b)

FIG. 7. Phase diagram of the large-N model in the ðT; μÞ plane with constant Yukawa coupling, where the mean-field expectation
value σ is chosen as order parameter. The mesh indicates the discrete data points. (a) Large Nf with 3 DoF, with slight shock
development at high densities. (b) Large Nf with 4 DoF and no shock development at high densities.

FIG. 8. Phase diagram at Nf ¼ 2 with constant Yukawa
coupling. The gray box indicates the points that did not converge.
A thorough discussion of the convergence issues is provided in
Appendix B 1.
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four d.o.f., based on the combined numerical solution of the
flows (14) and (15), as formulated in (20).

1. Dynamics in the vacuum

For the discussion of the dynamics in the vacuum, (20) is
solved on a grid with varying cell sizes. A local approxi-
mation order of Np ¼ 3 is used with K ¼ 100 cells in
ρ ∈ ½0; 0.02�. Figure 9 depicts the solutions of the pion and
quark masses in approximate vacuum, the pion mass
in comparison to the case with constant Yukawa coupling.
We can see that in approximate vacuum the pion mass
remains unchanged for both models. An exponential fit is
performed on the position of the zero point of ∂ρVkðρÞ
using five equidistant RG scales from k ¼ 65 MeV to
k ¼ 25 MeV, and we obtain

σ0;π ¼ 87.4ð17Þ MeV: ð29Þ

This is consistent with the results in the previous sections
with a constant Yukawa coupling (LPA). Consequently, this
confirms previous findings in [47], that LPA or rather
higher orders in the derivative expansion are a good
approximation for vacuum QCD.
Figure 9(b) depicts the field-dependent quark mass

m2
q;kðρÞ for different RG times. As argued in [47], the

quark mass flattens for meson fields ρ ≤ ρ0. The compu-
tation in the present work puts these conceptual and
preliminary numerical findings on a sound numerical
footing. In summary, at vanishing cutoff scale k ¼ 0, this
leaves us with a field-dependent quark mass m2

qðρÞ with

m2
qðρÞ ≥ m2

qðρ0Þ: ð30Þ

Note that while conceptually the field value ρ0;q, below
which the mass function flattens, has to agree with ρ0, the
solution of the equation of motion, numerically this is not

fully guaranteed. Hence, this provides a further consistency
check of the present scheme. For performing the respective
reliability check, we have determined the position of the
kink by subtracting −ρ from the solution and taking the
minimum. An exponential fit gives

σ0;q ¼ 86.0ð17Þ MeV; ð31Þ

which coincides within its error σ0 in (29). The error is
computed from the grid resolution and the error to the fit
parameters.
The quark mass in the flattened area in Fig. 9(b) is

computed as follows: One computes the average value of
the quark mass up to the kink for the previously mentioned
five RG scales and performs an exponential fit. This leads
to the physical quark mass

mqðρ0Þ ¼ 309.635ð85Þ MeV: ð32Þ

The linear ρ dependence of m2
qðρÞ in Fig. 9(b) for ρ > ρ0

entails that the Yukawa coupling is constant with
∂ρhðρÞ ≈ 0, already observed in [47] for finite Nf. The
constant approximation for these field values works so well
that we can use the input Yukawa coupling hΛ to confirm σ0
with the consistency relation σ0 ¼ mqðσ0Þ=hΛ. This leads
us to σ0;q0 ¼ 86.01ð24Þ MeV, where we take the error from
the fit and the mean deviation in the flattened region.
In summary the present numerical analysis confirms

quantitatively the conceptual and preliminary numerical
analysis in [47]: In the broken phase the flattening out of
the field-dependent quark mass m2

qðρÞ is triggered by the
flattening of the effective potential. In turn, in the sym-
metric phase the field-dependent quark mass does not
flatten out and the quark mass vanishes on the solution
of the equation of motion, ρ0 ¼ 0. Respective plots of the
field-dependent quark massm2

qðρÞ and the pion massm2
πðρÞ

for high temperature and density values are discussed in

(a) (b)

FIG. 9. RG-scale evolution of the field-dependent quark and pion masses in approximate vacuum in the large-Nf limit with four d.o.f.
(a) Comparision of the RG-running of the pion mass with constant and field dependent Yukawa coupling. (b) Field-dependence of the
quark mass. A flat regime emerges for k → 0, related to that in the effective potenial.
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Appendix G. Importantly, apart from the flattening of the
quark mass, they do not deviate significantly from the
results in LPA. In particular this applies to their values of
the equations of motion. Note, however, that this is bound
to change for finite Nf.

2. Phase structure

As in LPA with a constant Yukawa coupling, we finally
present our results on the phase diagram of the QM model
in the large-Nf limit including quark-meson scatterings via
a field-dependent quark mass or Yukawa coupling.
The computation uses the same resolution as above:

Np ¼ 2 and K ¼ 80 cells in ρ ∈ ½0; 0.02� up to the RG time
t ¼ 4, that is, k ¼ 0.001 GeV. The result is shown in
Fig. 10. The computations did not complete the time
integration for μ ≥ 0.3 GeV; respective upgrades are
currently being investigated.
As already discussed in the last section, Sec. IV C 1,

in the phase with chiral symmetry breaking the field-
dependent quark mass m2

q is necessarily flattened for
ρ ≤ ρ0. In turn, the quark mass function does not flatten
in the symmetric phase, and the quark mass is found to be
zero in the symmetric phase. Plots of the field-dependent
quark mass m2

q and pion mass m2
π for high values of

temperature and density can be found in Appendix G and
do not significantly deviate from the results with a constant
Yukawa coupling.
We close this section with a comparison of the phase

structure in Fig. 10 with that in LPA [Fig. 7(b)] in the same
setting: large-Nf limit with four d.o.f. While the phase
boundaries do not change significantly, the crossover gets
softened, if quark-meson scatterings are taken into account.
This is clearly visible in Fig. 11, where we depict the chiral

order parameter as a function of temperature for different
densities with μq ¼ 0, 100, 150 MeV. This entails that the
quark-meson scatterings considered here give sizable con-
tributions to important observables measured in heavy-ion
collisions. First of all, fluctuation observables will be
sensitive to such a widening of the crossover. These effects
may be even more prominent at large chemical potential
where the freeze-out line most probably deviates from the
chiral crossover line. Moreover, it can also be deduced from
Fig. 11 that the quark-meson scatterings may have a sizable
delaying effect on a possible critical end point. We
conclude that these scatterings have to be taken into
account for a quantitative prediction for the location of
the CEP.

V. CONCLUSIONS

We have presented a study of the QM model with an
emphasis on a quantitative access to order parameter
potentials at finite chemical potentials. This allows us to
discuss the eminently important question of the location of
phase transition lines, that of the symmetry-breaking
pattern and the order of the phase transitions.
The present study combines two systematic advances in

the past years: The first one was the development of self-
consistent approximations for the computation of order
parameter potentials [47]. The second one was the develop-
ment of a numerical approach for solving flow equations
that also enables us to discuss discontinuities in the flows
such as shocks that are potentially relevant for the correct
description of first- and second-order phase transitions [67].
Within this approach we have computed the phase

structure of the QMmodel at finite temperature and density.
An important benchmark is already provided in the large-
Nf limit with an infinite number of flavors. We have argued
that within an ’t Hooft–type limit we can mimic the two-
flavor QMmodel well (or any other flavor) and in particular

FIG. 10. Phase diagram for the quark-meson model in the
large-N limit with four d.o.f. with field-dependent Yukawa
coupling. The gray box indicates the points that did not converge.
The mesh indicates the discrete data points.

FIG. 11. Chiral order parameter σ0ðTÞ in the large-Nf limit
with four d.o.f. as a function of temperature and quark chemical
potential. We compare the LPA results with quark-meson
scatterings encoded in mqðσÞ for different densities. The data
are interpolated from the phase diagrams in Figs. 7 and 10.
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reproduce well its nonuniversal properties such as the
location of the phase boundary.
Moreover, in this limit the numerical approach within the

discontinuous Galerkin setup in [67] is fully developed and
we have a quantitative access to the shock development and
propagation, even in the presence of nonconservative
forces.
The present approach works very well except for a small

regime at low temperature and onset densities. This is a
merely technical problem and related upgrades of the
present schemes are in development. Moreover, already
for smaller ratios μq=T close to the crossover line we have
to also improve the current approximation of the matter
sector of QCD. This follows already from [12,14]. The
results there indicate the potential relevance of nontrivial
meson dispersions as well as the diquark channel at larger
chemical potentials, μq=T ≳ 4=3. Moreover, in the vicinity
of a potential critical end point we also have to take into
account the density channel, that mixed with the critical σ
mode. This is work in progress and we hope to report on it
in the near future.
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APPENDIX A: IMPLEMENTATION OF DG
METHODS IN DUNE

This section gives an introduction to the numerical and
computational framework used to solve Eq. (16). We made
use of the Distributed and Unified Numerics Environment
(DUNE) library [115–120], which is a modular toolbox for
solving partial differential equations with grid-based meth-
ods. The library is an open source initiative to create a
common interface for many different numerical methods
and supports high-performance computing.

1. Weak formulation and discrete problem

The system of equations is solved on a computational
domain Ωh, which is composed of K disjoint elements,
called cells Dk such that

Ω ≃ Ωh ¼ ∪K
k¼1

Dk:

For the purpose of the calculations in this work we used the
DUNE grid YaspGrid, which is contained in the module
dune-grid and allows for n-dimensional cubic grids and

parallelized computation. In this paper a one-dimensional
grid is used. It represents the computational domainΩh, with
the grid cells being disjoint intervalsDk of possibly differing
lengths, as discussed in Sec. III. In a more general formu-
lation the domain Ωh would be given as an n-dimensional
rectangular grid and the elementsDk would be implemented
as cubic grid cells.
The solution in each cell Dk is approximated by

uðt; xÞ ≃ uhðt; xÞ ¼ ⨁
K

k¼1

ukhðt; xÞ;

where ukhðt; xÞ is the local solution in each cell and the
index h denotes the approximation. The local solution
in turn is then approximated by a polynomial of degree
N ¼ Np − 1 such that in each element Dk

ukhðt; xÞ ¼
XNp

n¼1

ûknðtÞqnðxÞ: ðA1Þ

The local approximation ukhðt; xÞ is given by a modal
expansion, where fqng is a local polynomial basis with
time-dependent expansion coefficients ûknðtÞ. Thus the
global solution consists of K local polynomial solutions
of order N. The local approximation was implemented using
the dune-pdelab module, specifically using the class
QkDGLocalFiniteElementMap. In the one-dimensional case
basis functions qn are given by the Legendre polynomials up
to order Np. For the purpose of higher-dimensional compu-
tations the basis functions are taken from the polynomial
space Qk of the Legendre polynomials.
In our calculations we use a locally defined weak

formulation of the convergence requirement:

Z
Dk
ðð∂tui;h þ ai;h∂ρui;h þ si;hÞqn þ fi;h∂xqnÞdx

¼ −
Z
∂Dk

qnðf�i n̂þ Dðuþi;h; u−i;h; n̂ÞÞdx: ðA2Þ

The right-hand side of the equation contains the standard
numerical flux f� as well as an additional nonconservative
flux term D. n̂ is the outward-pointing normal vector. We
chose to use the local Lax-Friedrichs flux for f�, which
averages the flux on both sides of boundary and adds an
additional diffusion term smoothing out jumps across the
boundary:

f�ðuþh ; u−h Þ ¼
1

2
ðfhðuþh Þ þ fhðu−h ÞÞ þ

C
2
½½uh��; ðA3Þ

where the indicesþ and − denote the outward (neighboring)
and interior element, respectively, at the boundary. The
brackets denote a jump across the boundary:
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½½u�� ¼ ðn̂−u− þ n̂þuþÞ:

fmax is the local maximal wave speed, which corresponds to
the speed of the fastest propagating mode across the
boundary. In one dimension this corresponds to

fmax ≥ max
Dfi;iþ1g

j∂ufðuÞj: ðA4Þ

The local Lax-Friedrichs flux is the most natural extension
from the analytic solution of linear conservation laws to the
nonlinear case. It relies on the so-called Roe condition,
which reflects the assumption that the system is dominated
by one strong wave.

2. Nonconservative product

The additional nonconservative flux across a boundary is
given by D. The theory of nonconservative fluxes was
developed in [80,81] and is applied in the context of finite
volume and discontinuous Galerkin schemes [82–89,98].
To compute this quantity we need to consider the general
form of a flux across an interface. For this purpose we
consider a path ϕiðsÞ along the solution ui, with start and
end point uLi and uRi , respectively, and the parameter
s ∈ ½0; 1�. The formal definition of the flux along this path
for a nonconservative flux contribution ai∂ρuj [see (16)] is
then given by

fi;nc ¼
Z

1

0

aiðϕiðsÞ;ϕjðsÞ; sÞ∂sϕjðsÞds: ðA5Þ

We remark that in the nonconservative case the flux is
dependent on the chosen path.
By choosing the right and left sides of a boundary uR ¼

uþ and uL ¼ u− we are able to compute the flux from one
cell to another. Similar to the numerical flux, D has to
satisfy the jump property for consistency:

Dðuþ; u−; n̂Þ þ Dðuþ; u−;−n̂Þ ¼
Z

1

0

aðϕðsÞÞn̂ ∂ϕ
∂s ds;

which implies Dðu; u; n̂Þ ¼ 0 when there is no jump.
This condition can be obtained by integrating the

equation around a discontinuity. It generalizes the so-called
Rankine-Hugoniot condition for nonconservative systems
of equations. The numerical fluxes are

Dðuþ; u−; n̂Þ ¼ 1

2

Z
1

0

aðϕðsÞÞn̂ ∂ϕ
∂s ds ðA6Þ

þ 1

2

Z
1

0

jaðϕðsÞÞn̂j ∂ϕ∂s ds: ðA7Þ

jaðϕðsÞÞn̂j is intended as the absolute value of the
matrix namely jaj ¼ U−1diagðjλ1j;…; jλN jÞU, with λi the

eigenvalue of the matrix. It is possible to prove that this
choice of flux reduces to the Lax-Friedrichs flux in the
conservative case. If the dominant convection part of the
equation is given by the conservative flux, this extra term
can be neglected. The nonconservative flux under this
assumption can therefore be computed from

Dðuþ; u−; n̂Þ ¼ 1

2

Z
1

0

aðϕðsÞÞn̂ ∂ϕ
∂s ds: ðA8Þ

The last remaining degree of freedom are the boundary
conditions for the outer boundary of Ωh. In our case they
are given by the in- or out-flowing flux, which is imple-
mented by setting uþi;h ¼ u−i;h at the outer boundaries,
effectively adding an imaginary additional cell. It follows
that the nonconservative flux is not fit for flux-boundary
conditions, since the nonconservative flux vanishes at the
outer boundaries due to the jump property. Therefore the
equations need to be reformulated such that the boundary
conditions can be met using the conservative flux. This is
done in Appendix E.

3. Time stepping

The solution is computed by an explicit third-order time-
stepping scheme from the dune-pdelab module, where we
additionally implemented Courant-Friedrichs-Lewy (CFL)
conditions. The time step Δt is thus limited by the
propagation speed of the flow:

Δt ≤
Δx

ð2N þ 1Þ
1

fmax
; ðA9Þ

where Δx is the size of the grid cell and N the polynomial
degree used in the computation, such that the denominator
indicates the total amount of grid points within the
respective cell. fmax is the maximal propagation speed of
the information and was defined in (A4).
Additionally we use a minmod slope limiter before each

computation step to suppress oscillations around kinks and
jumps in the solution.

APPENDIX B: CONVERGENCE PROPERTIES

Results from the large-N computations with constant
Yukawa coupling (Sec. IV B) of different approximation
orders Np are compared to benchmark the accuracy of the
computations. Since there is no analytic solution available
to compute the numerical error generated by the DG
scheme, we use the result of a computation with Np ¼ 5

and K ¼ 700 elements uref as a reference. The results are
compared at an energy scale of k ¼ 140 MeV. The discrete
time stepping was adjusted such that the time step com-
puted by the CFL condition is lowered to ensure k ¼
140 MeV is reached exactly. The discrete solution is
used to generate an interpolating function u, from which
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the L2 norm jju − uref jjL2;Ωh
is computed. This is done

at temperature T ¼ 10 MeV for μ ¼ 0 MeV and μ ¼
400 MeV. The results are depicted in Figs. 12(a) and
12(b), respectively. In vacuum we recover good conver-
gence properties observed in [67] and we perform a fit of
the first ten data points to the parametrization:

log10 jju − uref jjL2;Ωh
ðB1Þ

¼ ða1 þ a2NpÞ − ðb1 þ b2NpÞ log10ðKÞ: ðB2Þ

The convergence behaves like a power law when increasing
the number of elements K and shows exponential con-
vergence when increasing the local approximation order
Np up to about K ¼ 102.1 ≈ 125. The fit parameters are
given in Table Vand the fit to the data points is included in
Fig. 12(a). For higher K the error decreases even faster
which is due to the numerical error of uref which e.g., also
contains some of the resolution issues around the kink in
the potential. When compared to [67] the relative error
between u and the reference solution uref is significantly
bigger. This is in part caused by the fact that the functions
were interpolated and not reconstructed using the original
basis polynomials, since the DUNE output only contains
the values at cell boundaries with a precision of eight digits.
Adding a finite chemical potential increases the effect

of the source term in Eq. (D1). At low temperatures the

Silver-Blaze property introduces a sharp onset of chemical
potential that shows better convergence for lower and odd
Np. However, since the exact solution is not known it is
difficult to judge which local approximation is the best
choice as a reference. Figure 12(b) illustrates the conver-
gence properties in the area in which the source term
dominates the equation over the flow.

1. Convergence in systems with diffusion

In this section we will comment on the convergence of
the equations in the finite-Nf case.

(i) We retain convergence properties similar to the
previous section in regions of the phase diagram
where the sigma mode is not critical. This is
supported by the observation that the finite-Nf

and the large-Nf simulations behave very similarly

[see e.g., Figs. 2 and 4(a)]. The Courant number is a

factor C chosen to ensure the inequality in (A9). In

hydrodynamics C ¼ 0.01 is a common choice for

diffusive systems, which is appropriate if the flow is

not diffusion dominated.
(ii) In the diffusion-dominated scenario, the solutions

are not convergent. Additionally the time stepping
becomes effectively 0. This is due to shock develop-
ment in the solution, which creates a steep negative
slope, i.e., a very high (divergent) diffusion flux
contribution.

The lack of convergence is explained by the fact that
approximate Riemann solvers are only applicable in
convection-dominated systems. The convergence of
diffusion-dominated flows can only be ensured using a
new formulation of the fluxes, such as the local-DG
methods [121].

TABLE V. Parameters obtained from a χ2 fit to the convergence
behavior in Fig. 12(b) using Eq. (B2).

Parameter a1 a2 b1 b2

χ2 fit 2.016(80) −0.067ð25Þ 1.088(45) 0.054(14)

(a) (b)

FIG. 12. Error of the solution with respect to the reference computation uref with K ¼ 700 and Np ¼ 5 at T ¼ 10 MeV and different
values of the chemical potential. The solution was computed up to k ¼ 150 MeV in an interval 0 ≤ ρ ≤ 0.02 for different numbers of
equally sized cells K and local approximation order Np. The symbols show the result of the numerical simulation. (a) Error of the
solution at μ ¼ 0 MeV. The lines show the χ2-fit of Eq. (B2) to all but the last 5 datapoints, with paramters given in Table V. (b) Error of
the solution at μ ¼ 400 MeV.
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2. Convergence with a nonconservative flux

In this section we will comment on the convergence of
the system with nonconservative flux, i.e., the computa-
tions for field-dependent Yukawa coupling.
We can again distinguish two cases.
(i) The area of the phase diagram where the pion mass

m2
π has a single minimum for the entirety of the

flow.—In this case we retain similar convergence
properties as in section Appendix B.

(ii) At high chemical potential ∂ρm2
π begins to take on

high negative values.—This directly feeds back to
the nonconservative flux. In this area the noncon-
servative flux dominates the flow, which is not
contained in the CFL conditions.

APPENDIX C: CONVEXITY RESTORATION
AND TIME STEPPING

In this section we are going to inspect the time stepping
and its related problems more closely. The equations are
solved by a numerical stepwise integration of the RG time
using the CFL conditions introduced in Appendix A 3. The
size of the integration step is dependent on the information
flux between cells, the local wave speed fmax, which is
defined in (A4). The local wave speed is plotted in Fig. 13
for approximate vacuum in the broken symmetry phase
and for high temperatures and chemical potential in the
symmetric phase.

1. Approaching convexity in the
broken symmetry phase

It can be observed from Fig. 13 that the broken symmetry
phase has a steadily increasing maximum wave speed. This
corresponds to steadily decreasing time steps and leads to
long computation times. This behavior is caused by the
time-step inverse proportionality to the flux:

Δt ∝ ðk2 þ uÞn=2;
for some positive integer value of n. The two-point function
Γð2Þ can have negative eigenvalues during the RG flow,
which is what happens to the computed function

u ¼ m2
π ¼ Γð2Þ

ππ , the pion mass, in approximate vacuum.
The flow is self-regulating, ensuring that the expression in
the square root in the proportionality remains positive: The
closer the root gets to becoming negative, the stronger the
flow increases u, causing the modulo juj to always be
slightly smaller than k2. This must hold for k → 0 from
which it follows that u → 0, such that Γð2Þ ¼ 0 at infinite
RG time and convexity is restored. juj teeters on the edge of
becoming bigger than k during the entire integration which
results in a big flux between grid cells and very small
time steps.

2. Convexity in the symmetric phase

The pion mass becomes positive at some point during the
interpolation in the symmetric phase and convexity is
restored before k ¼ 0. Positive values of u also signifi-
cantly decrease the flux between grid cells as can be seen
from Fig. 13 and increase the size of time steps.
At high temperatures the positiveness of u is caused by the

fact that the quark contribution to the flow that initially
decreased u is much smaller due to the dampening by the
Fermi-Dirac distribution. This translates into k2 − u never
being remotely close to j0j and therefore no increased
convexity ensuring flux. Initially the maximum wave speed
at high chemical potentials is similar to the approximate
vacuum. However, the sudden onset of density at lnðΓμÞ drives
u to positive values and the information flux decreases.
It can be seen that the introduction of the field-dependent

Yukawa coupling only slightly increases the wave speed in
the broken symmetry phase and has no effect in the
symmetric phase, which is to be expected from the
observation that m2

q barely changes during the RG-time
evolution at high temperatures or densities made in
Sec. IV C.

3. Problems and challenges with time stepping

A recurrent struggle while solving the nonlinear RG
equations using CFL conditions is time stepping. The RG
flow continuously works to restore convexity, relying
heavily on the fact that k2 > juj for negative u. For some
cases where k2 > juj is very small, a numerical error, for
example an oscillation around a shock, can cause the
radicant to become negative and therefore no longer well
defined. Limiting the time step by using (A4) is spoiled
further at high densities, where the sigma mode becomes
critical. The introduction of a steep slope in the potential
introduces contributions to the flow that are not accounted
for by time stepping.

FIG. 13. Comparison of the maximal information propagation
speed fmax for constant and field-dependent Yukawa couplings at
different places in the phase diagram. Both computations were
performed with K ¼ 100 cells and a local approximation
order Np ¼ 2.
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APPENDIX D: FLOW EQUATIONS OF PION AND
QUARK MASSES

In this section the equations are reformulated to simplify
their numerical treatment. The flow equation of the pion
mass is obtained by taking a ρ derivative of the effective
potential. In case of the large-N model this is given by

∂tulNk ðρÞ ¼ ∂ρ

�
k5

12π2

�
Nπ

ϵπk
½1þ 2nBðϵπkÞ�

−
4 × 2 × 3

ϵqk
½1 − nfðϵqk þ μÞ − nfðϵqk − μÞ�

��
:

ðD1Þ

The flow equation of the Yukawa coupling in (15) is
rewritten in terms of the quark mass squaredm2

qðρÞ. To this
aim, we multiply the original flow equation by 4hðρÞρ,
which gives

∂twk ¼ 4hkρAðukÞ∂ρhk þ 4ρh4kBðwk; ukÞ
¼ 2ρAðukÞ∂ρh2k þ 4ρh4kBðwk; ukÞ
¼ AðukÞ∂ρwk − 2h2kAðukÞ þ 4ρh4kBðwk; ukÞ
¼ AðukÞ∂ρwk þ

wk

ρ
½wkBðwk; ukÞ − AðukÞ�; ðD2Þ

where

Aðm2
π;k;T; μÞ ¼ −2Nπv3k2l

ðB;4Þ
1 ðm2

π;k;TÞ ðD3Þ

corresponds to the contribution of the pion tadpole diagram
and

Bðm2
q;k;m

2
π;k;T;μÞ ¼−4Nπv3L

ð4Þ
ð1;1Þðm2

q;k;m
2
π;k;T;μÞ ðD4Þ

to the mixed contribution in Fig. 1. The explicit form of the
threshold functions is given in Appendix H.

APPENDIX E: CALCULATION OF THE
NONCONSERVATIVE NUMERICAL FLUX

The flow equation for the Yukawa coupling (15) was
reformulated in Appendix D to suit the general form of the
partial differential equations given in (16) and contains a
nonconservative flux term and a source term s:

∂twk ¼ AðukÞ∂ρwk þ sðuk; wkÞ: ðE1Þ

The exact definition and derivation of the appearing
terms are given in Appendix H.
The nonconservative flux is computed using the integral

derived by the jump condition in Appendix A in (A8). We
chose a straight path across an interface:

wðsÞ ¼ w− þ sðwþ − w−Þ;
uðsÞ ¼ u− þ sðuþ − u−Þ:

We note again that this is a path along the solutions u and w
and not a path in the “spatial” coordinate ρ. The straight
path was chosen because it is often the simplest choice for
the evaluation of the integral. In our case the expression
simplifies so much that it can be evaluated analytically, due
to the explicit form of the equations, where the noncon-
servative flux is given by

AðuðsÞÞ ¼ ∂ugðuðsÞÞ ¼
1

uþ − u−
∂sgðuðsÞÞ: ðE2Þ

This gives

Dðuþ; u−; wþ; w−; n̂Þ

¼ 1

2ðuþ − u−Þ
Z

1

0

n̂
∂gðuðsÞÞ

∂s
∂wðsÞ
∂s dsþ C½½w��

¼ n̂
2

gðuþÞ − gðu−Þ
uþ − u−

ðwþ − w−Þ þ C½½w��; ðE3Þ

where we used in the last equality that ∂sw is a constant
expression. Instead, the constant C is simply the absolute
value of the Jacobian matrix:

C ¼
Z

1

0

jAðuðsÞÞn̂jds: ðE4Þ

Often, it can be approximated as the maximal characteristic
speed of the nonconservative product. Note that for con-

stant u across the interface gðuþÞ−gðu−Þ
uþ−u− ¼ AðuÞ, such that we

recover a conservative flux for constant u. There is a large
set of paths across the interface that lead to the same value
in the integral, due to the fact that A can be written as a
derivative of u. This hints at the possibility that there might
be a conservative formulation for the system of equations.
Since this formulation only allows flux boundary con-

ditions for conservative fluxes a partial integration is
performed:

AðukÞ∂ρwk ¼ ∂ρðAðukÞwkÞ − wk∂ρAðukÞ: ðE5Þ

We now have a conservative flux AðukÞwk the proper in-
and outflow boundary conditions for wk and a very small
nonconservative flux contribution D0 accounting for jumps
in uk:

D0 ¼ D − ½Aðuþk Þwþ
k − Aðu−k Þw−

k �: ðE6Þ

This contribution is very small when uk is smooth and only
contains small jumps across interfaces. It obviously van-
ishes at the outer boundary since there we have uþk ¼ u−k .
Thanks to this formulation of the equation the maximal
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wave speed of the nonconservative product is rather small
and can be neglected in practice. In the general case
however the inclusion of this term is important especially
if the nonconservative product is the only convective term
in the equation, since it introduces the necessary numerical
dissipation to make the numerical scheme stable.

APPENDIX F: SHOCK DEVELOPMENT

In this section we illustrate the dynamics of shock
development in the large-N model. In Sec. IV we distin-
guished two scenarios of shock development which are both
illustrated in Fig. 14. Figure 14(a) shows the pion mass and
the potential derivative in the broken symmetry phase,
where the shock eventually proceeds to move to unphysical
values for ρ. This leads to the creation of a temporary
maximum in the potential, depicted in Fig. 15(a), which
flattens out again for k → 0. Figure 15(a) shows the typical
form of a potential in the broken symmetry phase with a

degenerate global minimum at k ¼ 0. In Fig. 14(b) the
shock freezes at some positive finite value. The temporary
maximum still vanishes due to convexity restoration; how-
ever, it remains at a positive value such that the potential in
the symmetric phase has a unique global minimum at
σ0 ¼ 0 GeV. The shock position and the position of the
temporary maximum coincide in the deep infrared.

APPENDIX G: FIELD-DEPENDENT PION AND
QUARK MASSES

Here we provide plots for the field-dependent quark
mass m2

q and pion mass m2
π for the case of high temper-

atures and high chemical potential in the symmetric phase.
It can be seen from Figs. 16(a) and 16(b) that the RG flow
generates massive pions, similar to the computations with
constant Yukawa coupling. The quark mass is expected to
vanish in the symmetric phase as can be seen from
Fig. 16(d).

(a) (b)

FIG. 14. Shock development at high densities. The potential derivative ∂ρVkðρÞ is plotted in the vicinity of the phase transition at
μ ¼ 0.30 GeV and μ ¼ 0.32 GeV in the large-Nf limit with Nπ ¼ 3. The numerical oscillations around the shock were flattened out by
a minmod slope limiter. The figure depicts the grid points on which the computation was carried out. (a) Derivative of the potential in the
broken phase. The developing shock travels to unphysical values of the field value ρ and the potential is flattened out. (b) Derivative of
the potential in the symmetric phase. The developing shock freezes in at finite ρ, creating a global mimumum at ρ ¼ 0.

(a) (b)

FIG. 15. The effective potential VkðρÞ in the vicinity of the phase transition at μ ¼ 0.30 GeV and μ ¼ 0.32 GeV in the large-Nf limit
with Nπ ¼ 3. (a) Potential in the broken phase. (b) Potential in the symmetric phase.
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APPENDIX H: REGULATORS AND
THRESHOLD FUNCTIONS

In the present work we use the three-dimensional flat or
Litim regulator; see [78]. The flat bosonic regulator is

RϕðpÞ ¼ p2rϕðxÞ; rϕðxÞ ¼
�
1

x
− 1

	
θð1 − xÞ; ðH1Þ

with x ¼ p2=k2, and the fermionic one reads

Rq ¼ =prqðxÞ; rqðxÞ ¼
�

1ffiffiffi
x

p − 1

	
θð1 − xÞ: ðH2Þ

The threshold functions lB=F;d1 and LðdÞ
n;m in (D3) and (D4)

are taken from [47] and shown for the sake of completeness
for Zϕ ¼ Zq ¼ 1; see (4).

The functions lðB=F;dÞ0 are deduced from bosonic and
fermionic loops in d dimensions, to wit,

lðB=F;dÞ0 ðm̂2
ϕ;k;TÞ ¼

T
2k

X
n∈Z

Z
dxx

d−1
2

∂trϕðxÞ− rϕðxÞ
ω2
n

k2 þ x½1þ rϕðxÞ�þm2
ϕ;k

¼ 2

d− 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

ϕ;k

q �
1

2
þnBðT;m̂2

ϕ;kÞ
�
:

ðH3Þ

In (H3), nB is the Bose-Einstein distribution and m̂2 ¼
m2=k2 the dimensionless masses. The threshold functions

lðB=F;dÞn for diagrams with loops containing nþ 1 bosonic
and fermionic propagator terms are obtained by taking a
derivative with respect to m̂2:

∂m̂2lðB=F;dÞn ðm̂2Þ ¼ −ðnþ δn0ÞlðB=F;dÞnþ1 ðm̂2Þ: ðH4Þ

Thus the function lðB;4Þ1 corresponds to the last term in
Fig. 1, containing a bosonic regulator and two propagators.

The function Lð4Þ
ð1;1Þ in (D4) consists of the first two terms

in Fig. 1. It can be obtained with a m̂2
q;k derivative from

FBð1;1Þ that describes a loop with one fermionic and one
bosonic propagator:

(a) (b)

(c) (d)

FIG. 16. RG-time evolution of the pion and quark masses in the broken symmetry phase. The computation was performed using
K ¼ 120 cells and a local approximation order ofNp ¼ 2. (a) Pion mass at high temperatures (T ¼ 280 MeV) and zero density. (b) Pion
mass at high densities (μ ¼ 460 MeV) and zero temperature. (c) Quark mass at high temperatures (T ¼ 280 MeV) and zero density.
(d) Quark mass at high densities (μ ¼ 460 MeV) and zero temperature.
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FBð1;1Þðm̂2
q;k; m̂

2
ϕ;k;T; μÞ ¼

T
k
Re

�X
n∈Z

1
ω2
n

k2 þ x½1þ rϕðxÞ� þ m̂2
ϕ;k

×
1

ðνnþiμÞ2
k2 þ x½1þ rqðxÞ�2 þm2

q;k

�

¼ Re

8<
: 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

ϕ;k

q �
1

2
þ nBðT; m̂2

ϕ;kÞ
�

×

"
1

m̂2
q;k þ 1 − ðμk − iπT

k −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

ϕ;k

q
Þ2

þ 1

m̂2
q;k þ 1 − ðμk − iπT

k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

ϕ;k

q
Þ2
#

−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

q;k

q
 
nFðT;−μ; m̂2

q;kÞ −
1

2

1

m̂2
ϕ;k þ 1 − ðμk − iπT

k −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

q;k

q
Þ2
!

−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

q;k

q
 
nFðT; μ; m̂2

q;kÞ −
1

2

1

m̂2
ϕ;k þ 1 − ðμk − iπT

k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

q;k

q
Þ2
!9=
;; ðH5Þ

where

nFðT; μ; m̂2
q;kÞ ¼

1

exp
n

k
T


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

q;k

q
þ μ

k

�o
þ 1

: ðH6Þ

Lð4Þ
ð1;1Þ can now be generated by taking derivatives with respect to the fermionic mass m̂2

q;k and the bosonic mass m̂2
ϕ;k. These

derivatives correspond to multiplying a fermionic or bosonic propagator to the loop in FBð1;1Þ:

∂m̂2
q;k
FBðm;nÞ ¼ −mFBðmþ1;nÞ; ∂m̂2

ϕ;k
FBðm;nÞ ¼ −nFBðm;nþ1Þ:

This leads us to

LðdÞ
ð1;1Þ ¼

T
2k

X
n∈Z

Z
dxx

d−1
2

8<
: ∂trϕðxÞ

ν2n
k2 þ x½1þ rqðxÞ�2 þm2

q;k

×

 
1

ω2
n

k2 þ x½1þ rϕðxÞ� þm2
ϕ;k

!
2

þ 2rqðxÞ
ω2
n

k2 þ x½1þ rϕðxÞ� þm2
ϕ;k

×

 
1

ν2n
k2 þ x½1þ rqðxÞ�2 þm2

q;k

!
2
9=
;

¼ 2

d − 1
ðFBð1;2Þ þ FBð2;1ÞÞ: ðH7Þ
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