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We obtain new estimates for the parameters λ2E, λ
2
H and their ratio R ¼ λ2E=λ

2
H , which appear in the

second moments of the B-meson light-cone distribution amplitudes defined in the heavy-quark effective
field theory. The computation is based on two-point QCD sum rules for the diagonal correlation function
and includes all contributions up to mass dimension seven in the operator-product expansion. For the ratio
we get R ¼ ð0.1� 0.1Þ with λ2H ¼ ð0.15� 0.05Þ GeV2 and λ2E ¼ ð0.01� 0.01Þ GeV2.

DOI: 10.1103/PhysRevD.104.016027

I. INTRODUCTION

Light-cone distribution amplitudes (LCDAs) are of great
importance in exclusive B-meson decays like B → ππ or
B → πK in the heavy quark limit and allow for the study of
CP-violation in weak interactions. They parametrize matrix
elements of nonlocal heavy-light currents separated along
the light-cone at leading order in the heavy-quark effective
theory (HQET) [1] in terms of expansions in wave
functions of increasing twist [2,3]. In particular, LCDAs
appear in factorization theorems such as QCD factorization
[2,4,5], since these amplitudes encode the nonperturbative
nature of the strong interactions and are crucial in B-meson
decay form factor computations. General definitions have
been obtained in [2,3]. Contrary to light-meson distribution
amplitudes, which also appear in factorization theorems,
the properties of the B-meson distribution amplitudes are
less known. However, they have been extensively studied
recently. Their evolution equations have been investigated
for the leading twist two-particle LCDA in [6–10] and for
higher twist amplitudes in [11]. Moreover, the decay B →
γlν is of particular interest, because it provides a simple
example to probe the light-cone structure of the B-meson.
Here, the photon has a large energy compared to the strong
interaction scale Λ, so QCD factorization can be used to
study parameters like the inverse moment λB [12–18].
Three-particle LCDAs have also been investigated

e.g., in [3,19], where the corresponding Mellin moments
have been defined and identities between two-particle and

three-particle LCDAs have been found. In general, these
three-particle LCDAs occur in higher dimensional vacuum
to meson matrix elements including nonlocal quark oper-
ators. But in the case of local quark operators, these matrix
elements can be expressed in terms of the parameters λ2E;H,
which also contribute to the second Mellin moments of the
three-particle B-meson distribution amplitudes.
These are the parameters of particular interest in this

work. They have been first investigated by Grozin and
Neubert [3] within the framework of QCD sum rules
[20–22]. All contributions to the operator-product expan-
sion (OPE) [23] in local vacuum condensates up to mass
dimension five have been considered there. Up to mass
dimension four, the leading order contribution is of OðαsÞ,
while the leading order of the mass dimension five
condensate contributes at Oðα0sÞ.
The extraction of these parameters is connected to a

rather large uncertainty, because the sum rules turn out to be
unstable with respect to the variation of the Borel param-
eter. Notice that such a dependence is not unexpected, since
it is well known [24–26] that higher dimensional con-
densates tend to give large contributions to correlation
functions including higher dimensional operators.
Further study by Nishikawa and Tanaka [26] lead to

deviations from the original values for λ2E;H. These authors
argued in their work that a consistent treatment of allOðαsÞ
contributions should resolve the stability problem, which is
related to the fact that the OPE does not converge for the
parameters λ2E;H in [3]. For this analysis, they included the
OðαsÞ corrections of the coupling constant FðμÞ as well,
which, albeit leading to good convergence of the OPE,
obey large higher order perturbative corrections [27,28].
Moreover, they included as an additional nonperturbative
correction the dimension six diagram of OðαsÞ in order to
check the convergence of the OPE beyond mass dimension
five and calculated theOðαsÞ corrections for the dimension
five condensate. After performing a resummation of the
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large logarithmic contributions, which results into more
stable sum rules and into a more convergent OPE compared
to [3], they obtained new estimates for the parameters λ2E;H.
If we compare the estimates from [3,26] in Table III, we see
that the values for λ2E;H differ by approximately a factor of
three, although the ratio λ2E=λ

2
H gives nearly the same value.

It is therefore timely to investigate new alternative sum
rules which also allow for the predictions of λ2E;H. Instead of
analysing a correlation function with a three-particle and a
two-particle current, we consider sum rules based on a
diagonal correlation function of two quark-antiquark-gluon
three-particle currents. We include all leading order con-
tributions up to mass dimension seven. The advantage of
this sum rule is that it is positive definite and hence we
expect that the quark-hadron duality is more accurate
compared to [3,26]. But due to the high mass dimension
of the correlation function, we see that the OPE does not
show better convergence than in the nondiagonal case.
Moreover, the continuum and higher excited states are
dominating the sum rule. This problem will be resolved by
considering combinations of the parameters λ2E;H, in par-
ticular the R-ratio R ¼ λ2E=λ

2
H.

The paper is organized as follows: In Sec. II we derive
the sum rules for the parameters λ2E;H and the sum
ðλ2H þ λ2EÞ. Section III is devoted to the computation of
the OPE contributions which enter the sum rules. In Sec. IV
we present the numerical analysis of the sum rules and state
our final results for the parameters λ2E;H. Additionally, we
investigate the ratio given by the quotient of these param-
eters. Finally, we conclude in Sec. V.

II. DERIVATION OF THE QCD SUM RULES
IN HQET

In this chapter we derive the sum rules for the diagonal
quark-antiquark-gluon three-particle correlation function.
Before we start, the definition of the HQET parameter λ2E;H
is in order [3]:

h0jgsq̄ α⃗ ·E⃗γ5hvjB̄ðvÞi ¼ FðμÞλ2E; ð1Þ

h0jgsq̄ σ⃗ ·H⃗γ5hvjB̄ðvÞi ¼ iFðμÞλ2H: ð2Þ

From a physical point of view, these quantities parametrize
the local vacuum to B̄-meson matrix elements, which
contain the chromoelectric and chromomagnetic fields in
HQET. The chromoelectric field is given by Ei ¼ G0i and
Hi ¼ − 1

2
ϵijkGjk denotes the chromomagnetic field, with

Gμν ¼ Ga
μνTa. Here, the tensorGμν ¼ i

gs
½Dμ; Dν� is the field

strength tensor, while gs corresponds to the strong coupling
constant. Furthermore, the fields q̄ in Eq. (1) and (2)
indicate light quark fields, whereas the field hv denotes the
HQET heavy quark field. Moreover, v is the velocity of the
heavy B̄-meson. The Dirac matrices αi are given by γ0γi

and σi ¼ γiγ5. In addition to that the HQET decay constant
FðμÞ is defined via the matrix element

h0jq̄γμγ5hvjB̄ðvÞi ¼ iFðμÞvμ ð3Þ

and can be related to the BðB̄Þ-meson decay constant in
QCD up to one loop order [29]:

fB
ffiffiffiffiffiffiffi
mB

p ¼ FðμÞKðμÞ

¼ FðμÞ
�
1þ CFαs

4π

�
3 · ln

mb

μ
− 2

�
þ � � �

�

þO
�

1

mb

�
: ð4Þ

Its explicit scale dependence has to cancel with the one of
the matching prefactor in order to lead to the constant fB.
Values for fB can be found in [30] and estimate this decay
constant to be

fB ¼ ð192.0� 4.3Þ MeV: ð5Þ

The coupling constant FðμÞ will be of particular impor-
tance for the derivation of the relevant low-energy param-
eters in the following QCD sum rule analysis. But since we
are investigating the sum rules at leading order accuracy,
corrections of the orderOðαsÞ andOð 1

mb
Þ will be neglected.

As already discussed before, Grozin and Neubert [3]
introduced the parameters λ2E;H. For this, they considered
the correlation function shown in Eq. (6). The starting point
for our calculation is the correlation function given in
Eq. (7).

ΠGN ¼ i
Z

ddxe−iωv·xh0jTfq̄ð0ÞΓμν
1 gsGμνð0Þhvð0Þ

× h̄vðxÞγ5qðxÞgj0i; ð6Þ

Πdiag ¼ i
Z

ddxe−iωv·xh0jTfq̄ð0ÞΓμν
1 gsGμνð0Þhvð0Þ

× h̄vðxÞΓρσ
2 gsGρσðxÞqðxÞgj0i: ð7Þ

Notice that at this point we do not require a specific choice
of the quantities Γμν

1 and Γρσ
2 , which indicate an arbitrary

combination of Dirac γ-matrices, but in the following steps
it is convenient to choose these matrices such that combi-
nations of the HQET parameters λ2E;H are projected out.
This requires that the perturbative and nonperturbative
contributions to the OPE in Sec. III are computed for
general Γμν

1 and Γρσ
2 . Since we are considering a diagonal

Greens function, the structure of Γρσ
2 is directly related to

Γμν
1 by replacing indices. From now on we use the notation:

Γ1 ≡ Γμν
1 ; ð8Þ
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Γ2 ≡ Γρσ
2 : ð9Þ

Moreover, we are working in the B̄-meson rest frame,
where v ¼ ð1; 0⃗ÞT , in order to simplify the calculations.

The next step in the derivation of the sum rules will
be to exploit the unitary condition, where the ground state
B̄-meson is separated from the continuum and excited
states:

1

π
ImΠdiagðωÞ ¼

X
n

ð2πÞ3δðω − pnÞh0jq̄ð0ÞΓ1gsGμνð0Þhvð0Þjnihnjh̄vðxÞΓ2gsGρσðxÞqðxÞj0idΦn

¼ δðω − Λ̄Þh0jq̄ð0ÞΓ1gsGμνð0Þhvð0ÞjB̄ihB̄jh̄vð0ÞΓ2gsGρσð0Þqð0Þj0i
þ ρhadrðωÞΘðω − ωthÞ: ð10Þ

In Eq. (10), we introduced the binding energy Λ̄ ¼ mB −mb,
which is one of the important low-energy parameters in this
formalism. Furthermore, we separated the full n-particle
contribution in the first line into a ground state contribution,
which will be the dominant contribution in our chosen
stability window, and a continuum contribution including
broad higher resonances. In the case of QCD correlation
functions, the exponential in Eq. (7) would generally take the
form e−iqx with q denoting the external momentum. Due to
the fact that there is no spatial component in theB-meson rest
frame, transitions from the ground state to the excited states
in Eq. (10) are possible by injecting energy q0 into the
system. In this work we explicitly chose q ¼ ω · v such that
we end up with the correlation function shown in Eq. (7).
The matrix elements occurring in (10) can be decom-

posed in the following way [3,26]:

h0jq̄ð0ÞΓ1gsGμνð0Þhvð0ÞjB̄i

¼−i
6
FðμÞfλ2HðμÞTr½Γ1Pþγ5σμν�

þ ½λ2HðμÞ−λ2EðμÞ�Tr½Γ1Pþγ5ðivμγν− ivνγμÞ�g: ð11Þ
Notice that the second decomposition is indeed valid

since the B-meson ground state explicitly depends on the
velocity v and σμν ¼ i

2
½γμ; γν� corresponds to the usual

antisymmetric Dirac tensor. In (11) we made use of the
covariant trace formalism, further investigated in [3,31].
The next step will be to use the standard dispersion

relation, after using the residue theorem and the Schwartz
reflection principle1:

ΠdiagðωÞ ¼
1

π

Z
∞

0

ds
ImΠdiagðsÞ
s − ω − i0þ

¼ 1

Λ̄ − ω − i0þ
h0jq̄ð0ÞΓ1gsGμνð0Þhvð0ÞjB̄i

× hB̄jh̄vð0ÞΓ2gsGρσð0Þqð0Þj0i

þ
Z

∞

sth
ds

ρhadrðsÞ
s − ω − i0þ

: ð12Þ

In Eq. (12) we introduce the threshold parameter sth, which
is another relevant low-energy parameter that separates the
ground state contribution from higher resonances and
continuum contributions.
We can now move on and evaluate the ground state

contribution:

h0jq̄ð0ÞΓ1gsGμνð0Þhvð0ÞjB̄ihB̄jh̄vð0ÞΓ2gsGρσð0Þqð0Þj0i

¼ −i
6
FðμÞ½λ2HðμÞTr½Γ1Pþγ5σμν�

þ ½λ2HðμÞ − λ2EðμÞ�Tr½Γ1Pþγ5ðivμγν − ivνγμÞ��

×
−i
6
F†ðμÞ½λ2HðμÞTr½γ5PþΓ2σρσ�

− ½λ2HðμÞ − λ2EðμÞ�Tr½γ5PþΓ2ðivργσ − ivσγρÞ��: ð13Þ

Notice that the term involving the difference of both
HQET parameter ðλ2H − λ2EÞ does not change its sign under
complex conjugation.
In order to derive the sum rules which ultimately

determine the parameters λ2E;H, we make an explicit choice
for the matrices Γ1 and Γ2 [3]. Following the same
approach as [3], we choose our gamma matrices Γ1;2 as:

Γ1 ¼
i
2
σμνγ5 ð14Þ

to obtain the ðλ2H þ λ2EÞ2 sum rule. Furthermore, for the
projection of the λ4H sum rule we choose

Γ1 ¼ i

�
1

2
δνα − vνvα

�
σμαγ5 ð15Þ

and for λ4E:

Γ1 ¼ ivνvασμαγ5: ð16Þ

Notice that these choices are Lorentz covariant in com-
parison to Eq. (1) and (2). The corresponding expressions
for Γ2 can be obtained from Γ1 by replacing μ → ρ, ν → σ.
Using the relation in Eq. (13), we can obtain expressions
for ΠE;H and ΠHE:

1For more details on QCD sum rules or HQET sum rules,
see [32,33].
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ΠE;HðωÞ ¼ FðμÞ2 · λ4E;H ·
1

Λ̄ − ω − i0þ

þ
Z

∞

sth
ds

ρhadrE;HðsÞ
s − ω − i0þ

ð17Þ

ΠHEðωÞ ¼ FðμÞ2 · ðλ2H þ λ2EÞ2 ·
1

Λ̄ − ω − i0þ

þ
Z

∞

sth
ds

ρhadrHE ðsÞ
s − ω − i0þ

ð18Þ

Note that the threshold parameter sth in Eq. (17) does
not necessarily coincide with the threshold parameter in
Eq. (18).
To parametrize the hadronic spectral density, we make

use of the global and semilocal quark-hadron duality
(QHD) [34,35] in order to connect the hadronic spectral
density with the spectral density which is described by the
OPE [20,23,29,33]. This is the essential idea of this
formalism. However, power suppressed nonperturbative
effects become dominant in comparison to the perturbative
contribution for −jωj ≈ ΛQCD. In the QCD sum rule
approach [20], these effects are parametrized in terms of
a power series of local condensates as a consequence of the
nontrivial QCD vacuum structure. These condensates carry
the quantum numbers of the QCD vacuum. For conven-
ience, we show explicitly in the Appendix the expansion
and averaging of the vacuum matrix element (7) in order to
obtain the quark condensate h0jq̄qj0i, the gluon condensate
h0jGa

μνGa
ρσj0i, the quark-gluon condensate h0jq̄gsσ · Gqj0i

and the triple-gluon condensate h0jg3sfabcGa
μνGb

ρσGc
αλj0i.

Although we can handle the Euclidean region, the
physical states described by the spectral function in
Eq. (17) and (18) are defined for ω ∈ R. But since there
is no estimate for the hadronic spectral density ρhadrX ðsÞ, we
need to make use of two statements. First, we exploit that
for ω ≪ 0 the hadronic and the OPE spectral functions
coincide at the global level:

Πhadr
X ¼ ΠOPE

X for X ∈ fH;E;HEg: ð19Þ

Asymptotic freedom guarantees that this equality holds.
Moreover, we need to employ the semilocal quark-hadron
duality, which connects the spectral densities:

Z
∞

sthX

ds
ρhadrX ðsÞ

s − ω − i0þ
¼

Z
∞

sthX

ds
ρOPEX ðsÞ

s − ω − i0þ
; ð20Þ

where X needs be chosen according to (19). In the low-
energy region, where nonperturbative effects dominate, the
duality relation is largely violated due to strong resonance
peaks, while in the high-energy region these peaks become
broad and overlapping. Once a sum rule is obtained, the
approximations made by QHD are consistent (see Sec. IV
for more details). So it is necessary to work in the transition

region where the condensates are important, but still small
and local enough such that perturbative methods can be
applied.
Based on the relations in Eq. (19), (20), we separate

the integral over the OPE spectral density by introducing
the threshold parameter sth. Hence, we end up with the
following form for the sum rules:

FðμÞ2 · λ4E;H
1

Λ̄ − ω − i0þ
¼

Z
sth

0

ds
ρOPEE;H ðsÞ

s − ω − i0þ
; ð21Þ

FðμÞ2 · ðλ2H þ λ2EÞ2
1

Λ̄ − ω − i0þ
¼

Z
sth

0

ds
ρOPEHE ðsÞ

s − ω − i0þ
:

ð22Þ

Finally, we perform a Borel transformation, which removes
possible subtraction terms and leads further to an expo-
nential suppression of higher resonances and the con-
tinuum. In addition to that, the convergence of our sum
rule is improved. Generally, the Borel transform can be
defined in the following way [32,33]:

BMfðωÞ ¼ lim
n→∞;−ω→∞

ð−ωÞnþ1

Γðnþ 1Þ
�

d
dω

�
n
fðωÞ; ð23Þ

where fðωÞ illustrates an arbitrary test function.
Furthermore, we keep the ratio M ¼ −ω

n fixed, M denotes
the Borel parameter.
After applying this transformation, we derive the final

form of our sum rule expressions:

FðμÞ2 · λ4E;H · e−Λ̄=M ¼
Z

ωth

0

dωρOPEE;H ðωÞe−ω=M

¼
Z

ωth

0

dω
1

π
ImΠOPE

E;H ðωÞe−ω=M; ð24Þ

FðμÞ2 · ðλ2H þ λ2EÞ2 · e−Λ̄=M ¼
Z

ωth

0

dωρOPEHE ðωÞe−ω=M

¼
Z

ωth

0

dω
1

π
ImΠOPE

HE ðωÞe−ω=M:

ð25Þ

These are the QCD sum rules presented in the paper. In
order to obtain reliable values for the parameters λ2E;H from
the sum rules in Eq. (24) and (25), the Borel parameter M
needs to be chosen accordingly together with the threshold
parameter ωth. The next step will be to determine the
spectral function ΠOPE

X ðsÞ, which is given by the OPE:

MUSLEM RAHIMI and MARCEL WALD PHYS. REV. D 104, 016027 (2021)

016027-4



ΠOPE
X ðωÞ ¼ CX

pertðωÞ þ CX
q̄qhq̄qi þ CX

G2

�
αs
π
G2

�

þ CX
q̄Gqhq̄gsσ ·Gqi þ CX

G3hg3sfabcGaGbGci

þ CX
q̄qG2hq̄qi

�
αs
π
G2

�
þ � � � ð26Þ

The Wilson coefficients C in Eq. (26) will be discussed in
Sec. III. Moreover, we define a more convenient notation
for the condensate contributions:

hq̄qi ≔ h0jq̄qj0i; hG2i ≔ h0jGa
μνGa;μνj0i;

hq̄gsσ ·Gqi ≔ h0jq̄gsGμνσμνqj0i;
hg3sfabcGaGbGci ≔ h0jg3sfabcGa

μνGb;νρGc;μ
ρ j0i: ð27Þ

As previously mentioned, the condensates are uniquely
parametrized up to mass dimension five. Starting at
dimension six and higher, there occur many different
possible contributions, but some of them are related by
QCD equations of motions and Fierz identities [36] to each
other.2 Note that in the power expansion of Eq. (26) we
have only stated the dimension six and seven condensates,
which give a leading order contribution to the parame-
ters λ2E;H.
Moreover, there are many estimates for the values of the

condensates given in the literature, which have been
obtained from e.g., lattice QCD, sum rules [37], but
obtaining values for condensates of dimension six and
higher is an ongoing task due to the mixing with lower
dimensional condensates. Because of the lack of these
values, the vacuum saturation approximation [22] is
exploited in many cases, where a full set of intermediate
states is introduced into the higher dimensional condensate
and the assumption is used that only the ground state gives
a dominant contribution. Thus, the higher dimensional
condensate will be effectively reduced to a combination of
lower dimensional condensates.3

III. COMPUTATION OF THE
WILSON COEFFICIENTS

In this chapter, the leading perturbative and nonpertur-
bative contributions to the correlation function in (17) and
(18) are calculated up to dimension seven. Since the leading
order of the diagonal correlator of two three-particle
currents is of OðαsÞ in the strong coupling constant, we
only investigate contributions up to this order in perturba-
tion theory. For the perturbative contribution we choose the
Feynman gauge for the background field, while the non-
perturbative contributions to the OPE are evaluated in the
fixed-point or Fock-Schwinger (FS) gauge [38,39]:

xμAμðxÞ ¼ 0 and AμðxÞ ¼
Z

1

0

duuxνGνμðuxÞ: ð28Þ

In the FS gauge, we set the reference point to x0 ¼ 0. This
reference point would occur in all intermediate steps of the
calculation and cancel in the end of the calculation. It is
well known that this gauge is particularly useful in QCD
sum rule computations.
Within the framework of QCD sum rules, the long-

distance effects are encoded in local vacuummatrix elements
of increasing mass dimension. In order to obtain these local
condensates, the gluon field strength tensor is expanded in its
spacetime coordinate x, which results in a simple relation
between the gluon field Aμ and the field strength tensorGμν.
Additionally, gluon fields do not interact with the heavy
quark in HQET, which can be easily seen by considering the
heavy-quark propagator in position space [26]:

hvð0Þh̄vðxÞ ¼ Θð−v · xÞδðd−1Þðx⊥ÞPþP

× exp

�
igs

Z
0

v·x
dsv · AðsvÞ

�
: ð29Þ

Here, xμ⊥ ¼ xμ − ðv · xÞvμ, Pþ ¼ ð1þ =vÞ=2 denotes the
projection operator and P illustrates the path ordering
operator. Besides these simplifications, there are three
additional vanishing subdiagrams depicted in Fig. 5 due
to the FS gauge.
Generally, all diagrams can be evaluated in position

space like in [3,26], but in this work we choose to work in
momentum space. We make use of dimensional regulari-
zation for the loop integrals with the convention
d ¼ 4 − 2ϵ. Figures 1–54 show the diagrams which need
to be computed in order to obtain the Wilson coefficients in
Eq. (26). The calculation of these coefficients proceeds in
the following way: First, we use FeynCalc [41] to decom-
pose tensor integrals to scalar integrals. In the next step,
these scalar integrals are reduced to master integrals by
integration-by-parts identities using LITERED [42].
We start by considering the perturbative contribution and

the contribution from the quark condensate in Fig. 1:

CX
pertðωÞ ¼

2αs
π3

· CFNc · Tr½Γ1PþΓ2=v� · μ̄4ϵ

× Γð−6þ 4ϵÞ · Γð2 − ϵÞ · ω6−4ϵe4iπϵ

× ½Γð2 − ϵÞ · T1
μρνσ þ Γð3 − ϵÞ · T2

μρνσ�; ð30Þ

CX
q̄qðωÞ ¼ −

αs
π
·CF · Tr½Γ1PþΓ2� · μ̄2ϵ · Γð−3þ 2ϵÞ

×ω3−2ϵe2iπϵ½Γð2− ϵÞ · T1
μρνσ þ Γð3− ϵÞ · T2

μρνσ�;
ð31Þ

2A list is given for example in the review [37].
3This has already been done for the dimension seven con-

densate in Eq. (26).

4All diagrams in this work have been created with Jaxo-
Draw [40].
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with

μ̄2 ≔
μ2eγE

4
; ð32Þ

T1
μρνσ ≔ gμρgνσ − gμσgνρ; ð33Þ

T2
μρνσ ≔ −gνσvμvρ þ gμσvνvρ þ gνρvμvσ − gμρvνvσ: ð34Þ

Notice that the tensor structures of T1;2
μρνσ satisfy the

symmetries imposed by the field strength tensors Gμν

and Gρσ. In particular, the expressions are anti-symmetric
under the exchange of fμ ↔ νg, fρ ↔ σg and symmetric
under the combined exchanges fμ ↔ ρ; ν ↔ σg and
fμ ↔ ν; ρ ↔ σg. The Wilson coefficient for the gluon
condensate and higher mass dimension correction for
the quark condensate share the same tensor structure as
the coefficients stated in Eq. (30) and (31). Furthermore, the
mass dimension five contribution with the non-Abelian
vertex in Eq. (39) and the dimension seven contribution in
Eq. (41) make use of these tensor structures as well.
The Wilson coefficient of the gluon condensate, which

corresponds to Fig. 2(a) can be expressed as:

CX
G2ðωÞ¼Tr½Γ1PþΓ2=v� ·

μ̄2ϵ

ð4−2ϵÞð3−2ϵÞ
×Γð−2þ2ϵÞ ·Γð2− ϵÞ ·ω2−2ϵe2iπϵ ·T1

μρνσ: ð35Þ
The mass dimension five contributions are given as:

CX
q̄Gq;1ðωÞ ¼ −

αs
π
· CF · Tr½Γ1PþΓ2� ·

μ̄2ϵ

ð4 − 2ϵÞ
× Γð−3þ 2ϵÞ · Γð3 − ϵÞ · ω1−2ϵe2iπϵ · T1

μρνσ;

ð36Þ

(a) (b)

FIG. 1. Feynman diagrams for the perturbative and hq̄qi
condensate contribution. The double line denotes the heavy
quark propagator. The solid line denotes the light quark propa-
gator and the curly line denotes the gluon propagator.

(a) (b)

FIG. 2. (a) shows the Feynman diagram for the dimension four
contribution, (b) a schematic illustration of the dimension five
condensate originating from the higher order expansion of the
dimension three contribution in Fig. 1.

(a) (b)

(c)

FIG. 3. Feynman diagrams for dimension five condensate
contributions.

(a) (b)

FIG. 4. Feynman diagrams for the dimension six and dimension
seven condensate, which contribute to the leading order estimate
of λ2E;H.

(a) (b)

(c)

FIG. 5. Vanishing subdiagrams in the Fock-Schwinger gauge.
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CX
q̄Gq;2ðωÞ ¼

αs
4π

·
CF · μ̄2ϵ

ð4 − 2ϵÞð3 − 2ϵÞ · Γð−1þ 2ϵÞ · Γð1 − ϵÞ

× ω1−2ϵe2iπϵ · ½Tr½Γ1PþΓ2σμνσρσ�
− ð1 − ϵÞ · Tr½Γ1PþΓ2=viðvμγν − vνγμÞσρσ��;

ð37Þ

CX
q̄Gq;3ðωÞ ¼

αs
4π

·
CF · μ̄2ϵ

ð4 − 2ϵÞð3 − 2ϵÞΓð−1þ 2ϵÞ · Γð1 − ϵÞ

× ω1−2ϵe2iπϵ · ½Tr½Γ1PþΓ2σμνσρσ�
þ ð1 − ϵÞ · Tr½Γ1PþΓ2σμνiðvργσ − vσγρÞ=v��;

ð38Þ

CX
q̄Gq;4ðωÞ ¼

iαs
32π

·
CACF · μ̄2ϵ

ð2 − ϵÞð3 − 2ϵÞ · Tr½Γ1PþΓ2σ
χβ�Γð−1þ 2ϵÞ · Γð1 − ϵÞ · ω1−2ϵe2iπϵ·

× ½fgμχT1
νρβσ − ðβ ↔ χÞg þ ð1 − ϵÞðfvβgμρðvσgνχ − vνgσχÞ − ðρ ↔ σÞg

þ fvνgμχðvσgβρ − vρgβσÞ − ðβ ↔ χÞgÞ� − ðμ ↔ νÞ; ð39Þ

Although the other contributions for the mass dimension
five condensate (Fig. 3) possess a more complicated tensor
structure, all symmetries described before are still satisfied.
We obtain the total Wilson coefficient for the mass
dimension five condensate if we sum up all four previous
contributions, namely CX

q̄Gq ¼
P

4
k¼1 C

X
q̄Gq;k. The last two

diagrams depicted in Fig. 4 are of mass dimension six and
seven. Their contributions are expected to be smaller
compared to the dimension five contributions, such that
we observe that the OPE starts to converge. Other con-
tributions to mass dimension six are vanishing or are of
Oðα2sÞ. Thus, the triple-gluon condensate is the only
relevant condensate at this order and the Wilson coefficient
reads:

CX
G3ðωÞ ¼ μ̄2ϵ

64π2
· Bμλρνσα · Γð2ϵÞ · Γð1 − ϵÞ · ω−2ϵe2iπϵ

× ½Tr½−i · Γ1PþΓ2=vσλα�
þ Tr½Γ1PþΓ2ðvαγλ − vλγαÞ���; ð40Þ

where the expression Bμλρνσα is defined in Appendix.
Finally, we state the expression for the dimension seven
contribution:

CX
q̄qG2ðωÞ ¼ −Tr½Γ1PþΓ2� ·

T1
μρνσ

ωþ i0þ
·

π2

2Ncð4− 2ϵÞð3− 2ϵÞ :

ð41Þ

According to Eq. (17) and (18), we still need to take the
imaginary part of these diagrams. We choose to compute
directly the loop diagrams and take the imaginary part of
the resulting expression. Following Cutkosky rules, another
approach would be to perform the calculation by consid-
ering all possible cuts for the diagrams. Apart from the
diagrams in Fig. 3, the diagrams are finite. (a) and (b) in
Fig. 3 include both a three-particle and a two-particle cut,

where the latter requires a nontrivial renormalization
procedure [43]. The optical theorem states that both
calculations yield the same result. Besides the diagram
in Fig. 2(b), all diagrams in Fig. 1–4 can generally be
calculated by using perturbative methods. Figure 2(b)
stems from higher order corrections in the expansion of
the nonperturbative quark condensate in Eq. (A1).
Moreover, the diagrams contributing to the quark-gluon
condensate in Fig. 3(a) and (b) obey the same structure as
the contributions in [3,26] and hence a cross-check is
possible after replacing the quark condensate by the quark-
gluon condensate and keeping in mind that the Lorentz
structures differ. By taking the imaginary part of all Wilson
coefficients discussed above, plugging the results into
Eq. (24), (25) and performing the integration over ω up
to the threshold parameter ωth, we obtain the final expres-
sion for the sum rules shown in Eq. (44) to Eq. (46).
For convenience, we introduced the function:

GnðxÞ ≔ 1 −
Xn
k¼0

xk

k!
e−x: ð42Þ

We see that the sum rules for λ4E;H in Eq. (45) and (46) have
got the same expression for the perturbative contribution.
This contribution is in addition to that positive, since we are
studying a positive-definite correlation function in Eq. (7).
Furthermore, the quark, the gluon and the triple-gluon
condensate in Eq. (45), (46) have different signs and the
Wilson coefficients in Eq. (37), (38), and (39) vanish for λ4E.
This will have implications on the stability of the sum rule
for the parameter λ4E and will be investigated in Sec. IV. The
dimension three, four and six condensates do not appear in
Eq. (44), since the signs differ in Eq. (46) compared to (45).
All sum rules involve the decay constant FðμÞ, whose

calculation in terms of the correlation function can be
found, e.g., in Ref. [26]. For consistency, we will retain the
result at leading order in αs

QCD SUM RULES FOR PARAMETERS OF THE B-MESON … PHYS. REV. D 104, 016027 (2021)

016027-7



F2ðμÞ · e−Λ̄=M ¼ 2NcM3

π2
·G2

�
ωth

M

�
− hq̄qi þ 1

16M2
hq̄gsG · σqi: ð43Þ

FðμÞ2 · ðλ2H þ λ2EÞ2e−Λ̄=M ¼ αsCACF

π3
· 24M7 · G6

�
ωth

M

�
−
αsCFCA

4π
· hq̄gsσ ·Gqi ·M2 ·G1

�
ωth

M

�

−
3αsCF

2π
· hq̄gsσ ·Gqi ·M2 ·G1

�
ωth

M

�
−

π2

2Nc
hq̄qi

�
αs
π
G2

�
; ð44Þ

FðμÞ2 · λ4He−Λ̄=M ¼ αsCACF

π3
· 12M7 ·G6

�
ωth

M

�
−
αsCF

π
hq̄qi · 6 ·M4 ·G3

�
ωth

M

�

þ 1

2

�
αs
π
G2

�
·M3 · G2

�
ωth

M

�
−
αsCFCA

8π
· hq̄gsσ ·Gqi ·M2 ·G1

�
ωth

M

�

−
3αsCF

4π
· hq̄gsσ ·Gqi ·M2 ·G1

�
ωth

M

�
þ hg3sfabcGaGbGci

64π2
·M · G0

�
ωth

M

�

−
π2

4Nc
hq̄qi

�
αs
π
G2

�
; ð45Þ

FðμÞ2 · λ4Ee−Λ̄=M ¼ αsCACF

π3
· 12M7 ·G6

�
ωth

M

�
þ αsCF

π
hq̄qi · 6 ·M4 ·G3

�
ωth

M

�

−
1

2
hαs
π
G2i ·M3 · G2

�
ωth

M

�
−
αsCF

2π
· hq̄gsσ ·Gqi ·M2 ·G1

�
ωth

M

�

−
hg3sfabcGaGbGci

64π2
·M · G0

�
ωth

M

�
−

π2

4Nc
hq̄qi

�
αs
π
G2

�
: ð46Þ

IV. NUMERICAL ANALYSIS

In this section we first compute the HQET parameters by
using the sum rules in Eq. (43), (44), (45) and (46)
following the procedure described in Sec. III. In particular,
we consider the ratios (44) to (46) divided by (43) in order
to cancel the dependence on the low-energy parameter Λ̄
and the decay constant FðμÞ. The numerical inputs for the
necessary parameters are given in Table I. But when we
investigate the optimal window for the Borel parameter M,
we observe that the sum rules are dominated by higher
resonances and the continuum contribution. This questions

the reliability of our estimates for λ2E;Hð1 GeVÞ and their
ratio:

RðμÞ ¼ λ2EðμÞ
λ2HðμÞ

ð47Þ

at μ ¼ 1 GeV. Hence, we study different combinations of
Eq. (44), (45), (46) and (43).
We plot higher dimensional contributions for λ4H in the

lower part of Fig. 6(a) and we observe that each power
correction enhances the total value of λ4H. The dimension
five contribution leads to the largest contribution in
Fig. 6(a). The fact that correlation functions with a large
mass dimension experience large contributions from local
condensates with a high mass dimension for small values of
the Borel parameter M is a well-known fact. Moreover, the
contributions from dimensions greater than five become
smaller indicating convergence of the OPE. The upper plot
in Fig. 6(a) shows the sum of all contributions up to mass
dimension seven for different threshold parameters ωth.
This variation of the parameter ωth indicates the stability of
the sum rule, since the Borel parameter M and ωth are
correlated. Furthermore, it can be explicitly seen that in the
highly nonperturbative regime with smallM the condensate
contributions become dominant and therefore the sum rule

TABLE I. List of the numerical inputs, which will be used in
our analysis. The vacuum condensates are normalized at the point
μ ¼ 1 GeV. For the strong coupling constant we use the two-loop

expression with Λð4Þ
QCD ¼ 0.31 GeV.

Parameters Value Ref.

αsð1 GeVÞ 0.471 [44]
hq̄qi ð−0.242� 0.015Þ3 GeV3 [45]
hαsπ G2i ð0.012� 0.004Þ GeV4 [37]
hq̄gG · σqi=hq̄qi ð0.8� 0.2Þ GeV2 [46]
hg3sfabcGaGbGci ð0.045� 0.045Þ GeV6 [22]
Λ̄ ð0.55� 0.06Þ GeV [47]
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becomes unreliable. To find the optimal window for the
threshold ωth, we vary the function FðμÞ in Eq. (43) for
different values of ωth, see Fig. 7(a). As we can see, the
decay constant FðμÞ gives reliable values in the interval
0.8 GeV ≤ ωth ≤ 1.0 GeV. In order to confirm that our
threshold choice gives reasonable results, we compute the
physical decay constant fB by using Eq. (4), see Fig. 7(b).

We observe in Fig. 7(b) that for M ≥ 0.8 GeV the depend-
ence on the threshold parameter ωth between 0.8 GeV and
1.0 GeV becomes stable and reliable. Although the error of
the decay constant fB given in Eq. (5) is small, we assume a
conservative uncertainty of 50%, because we neglect the
OðαsÞ contributions for the HQET decay constant FðμÞ,
which are known to be large and moreover our sum rules

(a) (b)

(c)

FIG. 6. Figure (a), (b) and (c) show the full OPE of Eq. (44), (45) and (46) within the threshold interval 0.8 GeV ≤ ωth ≤ 1.0 GeV,
respectively. The lower figures illustrate the individual contributions to the OPE for ωth ¼ 0.9 GeV. The plots only show the central
values.
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only account for the contributions up to mass dimension
seven. The corresponding analysis in [26] shows the impact
of these corrections, which reduce the uncertainty of the
analysis to 15%–20%. Another method to determine the
interval for the threshold parameter ωth is by taking the
derivative with respect to the Borel parameter ∂=∂ð−1=MÞ
in Eq. (45). Dividing this expression by the original sum
rule in Eq. (45) yields an estimate for the parameter Λ̄
which needs to be compatible with the value stated in
Table I. Both methods give the same interval for ωth,
namely 0.8 GeV ≤ ωth ≤ 1.0 GeV.
Similarly, we plot higher dimensional contributions for

the sum rule inEq. (44) in Fig. 6(b). The lower plot illustrates
each order of the power expansion individually.Here,we see
that the dimension three, four and six condensates do not
contribute to the sum rule. The terms corresponding to the
dimension five condensate provide again the largest con-
tribution and beyond this dimension the power expansion is
expected to converge, which is indicated by the small
contribution of mass dimension seven. Again, the upper
plot in Fig. 6(b) shows the value of ðλ2H þ λ2EÞ2 as a function
of M for different threshold parameter ωth. The determi-
nation of the threshold window for ωth follows the same
argumentation as for the sum rule in Eq. (45). In particular,
both methods lead again to the same conclusion and we
obtain the interval 0.8 GeV ≤ ωth ≤ 1.0 GeV.
The sum rule for the parameter λ4E in Eq. (46) requires

further investigation. Figure 6(c) presents in the upper plot
the sum of all contributions up to mass dimension seven,
while in the lower plot each contribution is considered
individually. In comparison to the sum rules in Eq. (44) and
Eq. (45), the mass dimension three and four condensates
contribute with the opposite sign to this sum rule. Since
these contributions are large, this sum rule becomes
unreliable and unstable compared to the previously studied
sum rules. Additionally, the dominant dimension five

contributions from Eq. (37), (38) and (39) do not appear
in this sum rule, thus the extraction of an estimate for λ2E
from this sum rule gives an unreliable value. Moreover, we
observe that the dimension seven contribution also gives a
sizeable contribution, which questions the convergence of
the OPE itself.
The fact that this sum rule becomes unstable can be seen

from the threshold interval for ωth. Only the argumentation
via the decay constants FðμÞ and fB give an appropriate
interval, namely 0.55GeV≤ωth≤0.65GeV. Furthermore,
the variation of the threshold seems to give larger devia-
tions than for the sum rules in Eq. (44) and (45) indicating a
less stable sum rule with larger uncertainties.
To obtain the lower bound for the Borel parameterM, we

choose a value where the dimension seven condensate
contribution is smaller than 40% of the total OPE. Notice
that too small values ofM spoil the convergence of the OPE
since the condensate contributions become dominant. For
the sum rules in Eq. (44) and (45), this condition is fulfilled
for 0.5 GeV ≤ M. Based on Fig. 6(a) and 6(b), we also see
that for 0.5 GeV ≤ M the sum rule starts to become more
reliable. As already mentioned, the sum rule for λ4E in
Eq. (46) is more unstable compared to λ4H and ðλ2H þ λ2EÞ2.
Hence, this method to obtain the lower bound of M does
not work for λ4E. Instead, we choose the values based on
Fig. 6(c). We see that for 0.5 GeV ≤ M the OPE becomes
more reliable and therefore a good choice for the lower
bound. This estimate of the lower bound is taken into
account in the uncertainty analysis.
For the determination of the upper bound of the Borel

parameter we introduce:

Rcont ¼ 1 −
R ωth
0 dω 1

π ImΠOPE
X ðωÞe−ω=MR

∞
0 dω 1

π ImΠOPE
X ðωÞe−ω=M ð48Þ

(a) (b)

FIG. 7. Figure (a) shows the comparison of the central values of the decay constant FðμÞ for different values of ωth. The value of the
binding energy can be found in Table I. Figure (b) shows the comparison of the central values of the physical decay constant fB with
different values of ωth. The dashed line indicates the lattice result and the shaded green area illustrates its corresponding uncertainty.
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for X ∈ fH;E;HEg. The value of Rcont guarantees that
the ground state still gives a sizeable contribution com-
pared to the higher resonances and continuum contribution.
For reliable results of the sum rule we expect Rcont ≤ 50%
for M ≤ Mmax. Thus, Eq. (48) fixes the upper bound for
the Borel parameter. But in the case of Eq. (44), (45)
and (46), the continuum contribution is dominant,
which is to be expected from the large mass dimension
of the considered correlation function in Eq. (7). Therefore,
an upper bound for M is not feasible according to this
method.
To resolve this problem, we consider two combinations

of the sum rules in Sec. III, which have the feature that Rcont
becomes about 50% for a reasonable value of M. The
combinations are the following:

ðλ2H þ λ2EÞ2
λ4H

¼ ð1þRÞ2 and

FðμÞ2e−Λ̄=M þ FðμÞ2e−Λ̄=Mλ4H
FðμÞ2e−Λ̄=M − FðμÞ2e−Λ̄=Mλ4E

ð49Þ

with R defined in Eq. (47). The combination ð1þRÞ2 is
an appropriate choice, because the dominant mass dimen-
sion five contributions due to Eq. (45) lower the value

of Rcont significantly. On the other hand, the second
combination in Eq. (49) is dominated by the large
Oðα0sÞ contributions from FðμÞ such that λ4E;H become
only small corrections. For both combinations in Eq. (49)
the parameter is Rcont ≤ 50% for Mmax ¼ 0.8 GeV.
In Table II we summarize the lower and upper bounds for

the parameters M and ωth.
In Fig. 8(a) and 8(b) we plot both combinations as a

function ofM for different values of ωth within its threshold
window.
Finally, we are at the point to extractR and λ2E;H based on

Eq. (49). The uncertainties of λ2E;H and for the ratio R are
partially determined by varying each input parameter indi-
vidually according to their uncertainty, see Table I. For the
strong coupling constant we use the two-loop expression

with Λð4Þ
QCD ¼ 0.31 GeV to obtain αsð1 GeVÞ ¼ 0.471. We

vary Λð4Þ
QCD in the interval 0.29 GeV ≤ Λð4Þ

QCD ≤ 0.33 GeV,
which corresponds to the running coupling αsð1 GeVÞ ¼
0.44–0.50. In the last step, we square each uncertainty in
quadrature:

Rð1GeVÞ¼0.1þ
�þ0.03

−0.03

�
ωth

þ
�þ0.01

−0.02

�
M

þ
�þ0.01

−0.01

�
αs

þ
�þ0.01

−0.01

�
hq̄qi

þ
�þ0.02

−0.03

�
hαsπG2i

þ
�þ0.05

−0.04

�
hq̄gG·σqi

þ
�þ0.02

−0.02

�
hg3sfabcGaGbGci

¼0.1�0.07 ð50Þ

TABLE II. Summary of the threshold and Borel window for the
combination in Eq. (49).

Sum rule Borel window Threshold window

Eq. (49) 0.5GeV≤M≤0.8GeV 0.8GeV≤ωth≤1.0GeV

(a) (b)

FIG. 8. Figure (a) shows the Borel sum rule for ð1þRÞ2 for the window 0.8 GeV ≤ ωth ≤ 1.0 GeV. The shaded green area illustrates
the Borel window. Similarly, Figure (b) shows the Borel sum rule for ðFðμÞ2e−Λ̄=M þ FðμÞ2e−Λ̄=Mλ4HÞ=ðFðμÞ2e−Λ̄=M − FðμÞ2e−Λ̄=Mλ4EÞ
for the window 0.8 GeV ≤ ωth ≤ 1.0 GeV.
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λ2Hð1 GeVÞ ¼
�
0.150þ

�þ0.002

−0.003

�
ωth

þ
�þ0.002

−0.004

�
M

þ
�þ0.001

−0.001

�
hαsπ G2i

þ
�þ0.001

−0.001

�
hq̄gG·σqi

þ
�þ0.001

−0.001

�
hg3sfabcGaGbGci

�
GeV2

¼ ð0.150� 0.006Þ GeV2 ð51Þ

For λ2H, the variation of the strong coupling constant αs, the
dimension three and dimension six condensates do not
change the central value significantly. Therefore, these
uncertainties can be neglected.

λ2Eð1 GeVÞ ¼
�
0.010þ

�þ0.004

−0.005

�
ωth

þ
�þ0.002

−0.003

�
M

þ
�þ0.001

−0.001

�
αs

þ
�þ0.003

−0.003

�
hq̄qi

þ
�þ0.003

−0.004

�
hαsπG2i

þ
�þ0.007

−0.006

�
hq̄gG·σqi

þ
�þ0.002

−0.002

�
hg3sfabcGaGbGci

�
GeV2

¼ ð0.010� 0.009Þ GeV2: ð52Þ

Notice that the threshold parameter ωth and the Borel
parameterM are correlated, which can be deduced from the
determination of the Borel window and the threshold
interval. But since the variation of ωth with respect to M
is negligible, it is possible to choose one point in the
parameter space of both parameters where the conditions
from above are satisfied and obtain an estimate for the
uncertainty by varying ωth.
Besides these contributions, there are other uncertainties

due to several approximations and systematic errors. Since
we truncated the perturbative series at OðαsÞ and the
power corrections at dimension seven, we introduce
another error which is more complicated to determine.
Moreover, there is also an intrinsic uncertainty caused by
the sum rule approach, for instance generated by the use of
the quark-hadron duality. The total uncertainties stated in
Eq. (50), (51) and (52) only list those quantities, which give
deviations from the central values.

Before we state our final results, we will first derive
upper bounds on the parameters λ2E;H. Due to the diagonal
structure of the correlation function, we know that the
spectral density is positive definite. By performing the limit
ωth → ∞ in Eq. (45) and (46), we include all possible
higher resonances and continuum contributions into our
analysis. Thus, we obtain a consistent upper bound onto
these parameters as it was already done in the case of
fD=fDs

decay constants in [48]. The values for the upper
bounds within the Borel window in Figs. 8(a) and 8(b) are

λ2H < 0.48þ0.17
−0.24 GeV2; ð53Þ

λ2E < 0.41þ0.19
−0.24 GeV2: ð54Þ

Now we extract our predictions for these parameters
based on our sum rule analysis. We expect that these
estimates should lie within the bounds of (53) and (54).
A conservative estimate of the uncertainties leads to the
following final results:

λ2Eð1 GeVÞ ¼ ð0.01� 0.01Þ GeV2; ð55Þ

λ2Hð1 GeVÞ ¼ ð0.15� 0.05Þ GeV2; ð56Þ

R ¼ 0.1� 0.1: ð57Þ

If we consider instead directly Eq. (44), (45) and take the
Borel window and the threshold parameter ωth as shown in
Table II, we obtain the values:

λ2Eð1 GeVÞ ¼ ð0.05� 0.03Þ GeV2; ð58Þ

λ2Hð1 GeVÞ ¼ ð0.16� 0.05Þ GeV2; ð59Þ

R ¼ 0.3� 0.2: ð60Þ

Note that we can also use (46) to obtain the value for λ2E,
however the threshold window must be chosen as
0.55 GeV ≤ ωth ≤ 0.65 GeV as shown in Fig. 6(c).
Although the sum rules in Eq. (44) to (46) are dominated

by continuum contributions and higher resonances for the
Borel window given in Table II, we see that the set of
parameters and their ratio R in Eq. (58) to (60) reproduce
the values for λ2E;H and R in Eq. (55) to (57) within the
errors. In particular the estimate for λ2H does not change
much, which indicates that the continuum contributions are

TABLE III. Comparison of our results for the parameters λ2E;H and R at μ ¼ 1 GeV.

Parameters Ref. [3] Ref. [26] This work

Rð1 GeVÞ (0.6� 0.4) (0.5� 0.4) (0.1� 0.1)
λ2Hð1 GeVÞ ð0.18� 0.07Þ GeV2 ð0.06� 0.03Þ GeV2 ð0.15� 0.05Þ GeV2

λ2Eð1 GeVÞ ð0.11� 0.06Þ GeV2 ð0.03� 0.02Þ GeV2 ð0.01� 0.01Þ GeV2
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well approximated by the sum rules in Eq. (45). All values
lie within the bounds given in Eq. (53) and (54). Our result
for λ2E in Eq. (55) is close to the result in [26] and agrees
within the error, see Table III. Additionally, our result for
λ2H tends toward the result in [3].

V. CONCLUSION

In this work we suggested alternative diagonal QCD sum
rules in order to estimate the HQET parameters λ2E;H and
their ratio R ¼ λ2E=λ

2
H. We included all leading contribu-

tions to the diagonal correlation function of three-particle
quark-antiquark-gluon currents up to mass dimension
seven. The advantage of these sum rules are that they
are positive definite and we expect that the quark-hadron
duality is more accurate compared to the previously studied
correlation functions in [3,26]. But we observe dominant
contributions from the continuum and higher resonances
due to the large mass dimension of the correlation function
within these sum rules. This is why we consider combi-
nations of these sum rules studied in Sec. IV, which satisfy
the condition that the ground state contribution still gives a
sizeable effect. Moreover, the OPE is expected to converge
for the two sum rules in Eq. (44) and (45) shown in
Fig. 6(a) and 6(b), because the investigated contributions
beyond mass dimension five become smaller. However, the
OPE in Eq. (46) needs additional higher order corrections,
since the contribution of dimension five and seven are both
large, which makes the sum rule unstable, see Fig. 6(c).
For a consistent treatment of the leading order contri-

butions we also included only the Oðα0sÞ contributions for
the HQET decay constant FðμÞ, although it is known that
the OðαsÞ contributions are sizeable [27]. Our results
compared to the values obtained in [3,26] are listed in
Table III.
With these new sum rules we obtain independent

estimates for the parameters λ2E;H and the R-ratio, which
are important ingredients for the second moments of the
B-meson light-cone distribution amplitudes in B-meson
factorization theorems. For future improvements of our
sum rules we suggest to include Oðα2sÞ corrections to the
OPE and consider even higher mass dimension in the
power expansion of local vacuum condensates. In this case
it would also be necessary to include the OðαsÞ contribu-
tions for FðμÞ. Especially the sum rule in (46) will benefit
greatly since we expect the convergence of the OPE, which
results in better determination of λ2E;H and consequently R.
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APPENDIX: PARAMETRIZATION OF THE
QCD CONDENSATES

Here we present the condensates that we have used in the
work. All results are based on [49] if not stated otherwise.
First, we Taylor expand the following matrix element:

h0jq̄ð0ÞΓ1PþΓ2qðxÞj0i
¼ h0jq̄ð0ÞΓ1PþΓ2qð0Þj0iþ xμh0jq̄ð0ÞΓ1PþΓ2Dμqð0Þj0i

þ xμxν

2
h0jq̄ð0ÞΓ1PþΓ2DμDνqð0Þj0iþ � � � ðA1Þ

The first term in Eq. (A1) corresponds to the quark
condensate.

h0jq̄iαð0ÞΓ1;αβPþ;βγΓ2;γδq
j
δð0Þj0i ¼

1

4Nc
· Tr½Γ1PþΓ2�

× hq̄qiδij; ðA2Þ
where ði; jÞ are color indices and ðα; β; γ; δÞ are spinor
indices. The second term in Eq. (A1) does not contribute.
Making use of the Dirac equation, we can rewrite the
covariant derivative as:

Dq ¼ −imqq: ðA3Þ
We assume mq ¼ 0 for light quarks.
Before we consider the third term in more detail, we

parametrize the dimension five matrix element:

h0jq̄iαð0ÞgsGμνð0Þqjδð0Þj0i ¼ h0jq̄gsσ ·Gqj0i ·
1

4Ncdðd− 1Þ
× δij · ðσμνÞδα: ðA4Þ

The third term in Eq. (A1) corresponds to the quark-gluon
condensate.

xμxν

2
h0jq̄iαð0ÞDμDνq

j
δð0Þj0i

¼ x2

16Ncd
δijδαδh0jq̄gsσ ·Gqj0i: ðA5Þ

The gluon condensate can be parametrized as:

h0jGa
μνGb

ρσj0i ¼
δab

dðd − 1ÞðN2
c − 1Þ hG

2iðgμρgνσ − gμσgνρÞ:

ðA6Þ
Next is the parametrization of the triple-gluon condensate,

whichwas denoted asBμλρνσα inEq. (40). The decomposition
of the triple-gluon condensate has been investigated in [50]:
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hg3sfabcGa
μνGb

ρσGc
αλi ¼

hg3sfabcGaGbGci
dðd − 1Þðd − 2Þ · ðgμλgρνgσα þ gμσgραgλν þ gρλgμαgνσ þ gανgμρgσλ

− gμσgρλgαν − gμλgραgνσ − gρνgμαgσλ − gσαgμρgνλÞ: ðA7Þ

The expression in Eq. (A7) corresponds to the tensor Bμλρνσα introduced in Eq. (40).
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