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We consider relatively heavy neutrinos νH , mostly contributing to a sterile state νs, with mass in the
range 10 MeV ≲ms ≲mπ ∼ 135 MeV, which are thermally produced in the early Universe in collisional
processes involving active neutrinos and freezing out after the QCD phase transition. If these neutrinos
decay after the active neutrino decoupling, they generate extra neutrino radiation but also contribute to
entropy production. Thus, they alter the value of the effective number of neutrino species Neff as, for
instance, measured by the cosmic microwave background (CMB), as well as affect primordial
nucleosynthesis (BBN), notably 4He production. We provide a detailed account of the solution of the
relevant Boltzmann equations. We also identify the parameter space allowed by current Planck satellite data
and forecast the parameter space probed by future stage-4 ground-based CMB observations, expected to
match or surpass BBN sensitivity.
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I. INTRODUCTION

Feebly interacting particles characterized by extremely
suppressed interactions with the Standard Model particles
have received growing interest in the past decade (see [1]
for a recent review). In this context, a fourth neutrino mass
state νH with mass ∼Oð100Þ MeV, mostly contributing to
an electroweak singlet neutrino state νs due to Z-width
constraints [2], emerges rather naturally in extensions of the
Standard Model, like dynamical electroweak symmetry
breaking [3] or the neutrino minimal Standard Model
(νMSM) [4,5]. In the latter case, such particles can be
related to fundamental problems of particle physics like the

origin of neutrino mass, the baryon asymmetry in the early
Universe, and the nature of dark matter.
The parameter space of a fourth neutrino in this mass

range is strongly constrained by collider and beam-dump
experiments for a dominant mixing with either νe and νμ
[6,7], but it is significantly less constrained if mixed
with ντ, with bounds at high masses coming from
searches of decays of D mesons and τ leptons [8] and
SuperKamiokande data [9]. Furthermore, νH can be emitted
by a core-collapse supernova. In this context, limits have
been placed from the SN 1987A observation, requiring that
the SN core may not emit too much energy in the νs
channel, since this additional energy loss would shorten
the observed neutrino burst [10–13]. Additionally, in
Refs. [12,14], a possible role of heavy sterile neutrinos
in enhancing supernova explosions has been discussed.
Further and complementary constraints on heavy sterile

neutrinos can also be placed from cosmological arguments.
Indeed, νs can be produced in the early Universe via
collisional processes involving active neutrinos and then
decay into lighter species. In particular, for masses in the
range 10 MeV≲ms ≲mπ ∼ 135 MeV, the main decay
channels are νs → ναν̄βνβ [with a branching ratio (b.r.)
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of Oð60%–90%Þ, depending on the mixing] and νs →

νeþe− [with a branching ratio ofOð10%–40%Þ, depending
on the mixing]. The decay products of the sterile neutrinos
are injected into the primordial plasma, with the timescale
of the event determining its phenomenological impact. If
the decay is over when active neutrinos are still tightly
coupled to the electromagnetic (e.m.) plasma dominated by
photons and e� pairs, full equilibrium conditions are
quickly established and no effect remains, but for an
unobservable renormalization of the baryon to photon ratio
η.1 If significant decay happens after the active neutrinos
have decoupled, part of the energy injected will end up in
extra neutrino radiation and part heats the e.m. plasma up.
The latter adds to the eventual heating due to eþe−
annihilation and increases the photon to neutrino temper-
ature beyond its standard value of Tγ=Tν ≃ ð11=4Þ1=3.
Together with the former effect, this alters the effective
number of neutrino species Neff , with the two processes
going in opposite directions. Also, the nonthermal νe and ν̄e
spectra enter weak interactions, altering—together with
Neff—the neutron-to-proton ratio which rules the abun-
dance of the primordial yields [10,11,15–18], affecting, in
particular, the 4He abundance encoded in the primordial
helium mass fraction parameter Yp.
The aim of our paper is to perform a detailed calculation

of heavy sterile neutrino decoupling in the early Universe,
in particular, computing the effects on Neff and Yp and
assessing the impact of the approximations presented in the
seminal works of Refs. [10,11]. Compared instead to the
most recent calculations such as Refs. [18,19], we put more
emphasis on the low-mass sterile neutrino range, where the
number of effects is limited, hopefully offering a peda-
gogically complete and contained treatment, besides clar-
ifying some points of disagreement. At high masses, new
channels involving pions open up and are responsible for
extra effects on primordial nucleosynthesis as well as Neff
(some of these interesting effects have been described in
Refs. [17–19]). In the same spirit, we will limit ourselves to
neutrinos that decouple after the QCD phase transition,
which translates on the chosen parameter space. One of our
primary goals is to compare the effect on BBN with the
latest constraints by the Planck satellite experiment as well
as forecasts of future stage-4 (S4) ground-based CMB
observations [20]. We shall illustrate the shifting cosmo-
logical constraining power, from a BBN-dominated one to
a CMB-dominated one, expected to be basically completed
by the S4 era.

The plan of our work is as follows. In Sec. II, we present
the heavy sterile neutrino model we will use as a bench-
mark. In Sec. III, we discuss and solve the kinetic equations
describing the sterile neutrino evolution in the early
Universe. In Sec. IV, we characterize the impact of heavy
sterile neutrino decays on active neutrinos and on Neff . In
Sec. V, we present the current constraints and forecasts on
sterile neutrino parameter space from BBN and CMB data.
Finally, in Sec. VI, we summarize our results and conclude.
In Appendix A, we report useful analytical approximations
of the decay and scattering rates involving sterile neutrinos.
Appendix B details the steps involved in the dimensional
reduction of the collision integrals used in the numerical
integrations. Appendix C is devoted to a comparison of our
results with others previously reported in the literature.

II. HEAVY STERILE NEUTRINO MODEL

We consider heavy sterile neutrinos with masses
10 MeV≲ms ≲ 135 MeV, mixed dominantly with one
active neutrino να (α ¼ e, μ, τ) as

να ¼ cos θαsνl þ sin θαsνH;

νs ¼ − sin θαsνl þ cos θαsνH; ð1Þ

where νl and νH are a light and a heavy mass eigenstate,
respectively, and θαs ≪ 1; i.e., νl is mostly active and νH is
mostly sterile. We can relate the mixing angle to the unitary
mixing matrix U, where

jUαsj2 ≃
1

4
sin2 2θαs ≃ θ2αs: ð2Þ

Through neutral-current interactions, νH can decay into a
νl and a pair of other light leptons. It can also scatter with
other species in the plasma. With a little abuse of
notation, we shall refer to νH as νs and to νl as να.
Unless stated otherwise, we shall consider neutrinos to be
Dirac particles.
In vacuum, in the mass range of our interest, the decay

rate of sterile neutrinos is dominated by three lepton final
states. In what follows, we shall neglect terms of the order
of mν=mW;Z in the matrix elements. Their relevant decay
processes and matrix elements are presented in Table I.
Unless stated otherwise, we adopt the case of mixing with
ντ as our benchmark. In some cases, we will consider
mixing with νe in the mass rangems < me þmμ in order to
compare with previous literature.2

The decay rate of sterile neutrinos into three neutrinos
(summed over all flavors) is given by (see, e.g., [21])

1This process leads instead to observable consequences if the
renormalization happens during or after primordial nucleosyn-
thesis (BBN), creating, e.g., an effective mismatch of ηBBN with
respect to the value extracted from cosmic microwave back-
ground (CMB) ηCMB. This is not relevant in the parameter space
explored here, and we will ignore it in the following.

2This is just a simplification to avoid including the additional
charged current decay channel νs → eþ νμ þ μ.
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X
β

Γðνs → ντν̄βνβÞ ¼
jUτsj2
192π3

G2
Fm

5
s ; ð3Þ

while the decay into a neutrino plus eþe− pair, in the limit
where me=ms ≪ 1 is neglected, is

Γðνs → ντeþe−Þ ¼
jUτsj2
192π3

G2
Fm

5
sðg̃2L þ g2RÞ; ð4Þ

where

gL ¼ 1

2
þ sin2 θW;

g̃L ¼ gL − 1 ¼ −
1

2
þ sin2 θW;

gR ¼ sin2 θW; ð5Þ

and, in the case of mixing with νe, g̃L is replaced by gL. As a
result, the total decay width is written

Γνs ¼ τ−1s ¼ jUτsj2
192π3

G2
Fm

5
sð1þ g̃2L þ g2RÞ

¼ 3.90 × 105jUτsj2
�

ms

100 MeV

�
5

s−1: ð6Þ

Note that, for Majorana neutrinos, the widths for the
exclusive decay processes would be the same as for the
Dirac case, but the inclusive decay is a factor of 2 larger,
since, for each final state accessible to a Dirac particle, two

channels are present (i.e., a channel and its L-number
conjugate).
Two-body reactions affect the sterile neutrino chemical

and kinetic equilibrium. Those of interest for us are
reported, together with the relevant squared matrix ele-
ments, in Table II. Our results agree with those reported in
Tables 5 and 6 in Ref. [18], bearing in mind their different
definition of jMj2, just summed over helicities of initial and
final states instead of averaged over the initial state as in our
case.3 In relation instead to Refs. [10,22], we find system-
atically lower matrix elements compared to their Tables 1
and 2, by a factor of 2. We believe that this is likely a typo
in the quantities reported rather than in their results, since
we do find agreement with the rates they compute.

III. STERILE AND ACTIVE NEUTRINO
EVOLUTION IN THE EARLY UNIVERSE

A. Equations of motion

Following Ref. [23], in order to describe the time
evolution of the sterile neutrino ensemble in the early
Universe, it proves useful to define the following dimen-
sionless variables which replace time, momentum, and
photon temperature, respectively:

x≡ma; y ¼ pa; z ¼ Ta; ð7Þ

TABLE I. Squared matrix elements for sterile neutrino decay processes (assuming mixing with the species α, and β ≠ α), summed
over initial and final states and divided by the spin d.o.f. of the sterile neutrino. The particles involved in each decay are enumerated as
1 → 2þ 3þ 4. In the last lines, g̃L is replaced by gL in case of mixing with νe. The symmetry factor S ¼ 1=2! is included, when two
identical particles are present in the final state (first row).

Process G−2
F jUαsj−2jMj2

νs → να þ ν̄α þ να 32ðp1 · p4Þðp2 · p3Þ
νs → να þ νβ þ ν̄β 16ðp1 · p4Þðp2 · p3Þ
νs → να þ eþ þ e− 64½g̃2Lðp1 · p4Þðp2 · p3Þ þ g2Rðp1 · p3Þðp2 · p4Þ − g̃LgRm2

eðp1 · p3Þ�

TABLE II. Squared matrix elements for sterile neutrino scattering processes (assuming mixing with the species α, and β ≠ α), summed
over initial and final states and divided by the two spin d.o.f. of the sterile neutrino. The particles involved in each reaction are
enumerated as 1þ 2 → 3þ 4. In the last line, g̃L is replaced by gL in case of mixing with νe. The symmetry factor S ¼ 1=2! is included,
when two identical particles are present in the final state (second row).

Process G−2
F jUτsj−2jMj2

νs þ ν̄α → να þ ν̄α 64ðp1 · p4Þðp2 · p3Þ
νs þ να → να þ να 32ðp1 · p2Þðp3 · p4Þ
νs þ ν̄α → νβ þ ν̄β 16ðp1 · p4Þðp2 · p3Þ
νs þ ν̄β → να þ ν̄β 16ðp1 · p4Þðp2 · p3Þ
νs þ ν̄α → eþ þ e− 64½g̃2Lðp1 · p4Þðp2 · p3Þ þ g2Rðp1 · p3Þðp2 · p4Þ − g̃LgRm2

eðp1 · p3Þ�
νs þ e− → να þ e− 64½g̃2Lðp1 · p2Þðp3 · p4Þ þ g2Rðp1 · p4Þðp2 · p3Þ − g̃LgRm2

eðp1 · p3Þ�
νs þ eþ → να þ eþ 64½g2Rðp1 · p2Þðp3 · p4Þ þ g̃2Lðp1 · p4Þðp2 · p3Þ − g̃LgRm2

eðp1 · p3Þ�

3This is explicitly shown in their Eq. (D.1), where their factor
of 2 larger value in jMj2 is compensated by the further 1=g in their
integral prefactor, g ¼ 2 being the spin multiplicity.
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where m is an arbitrary mass scale which we set equal to
1 MeV. Note that the function a can be normalized, without
loss of generality, so that z ¼ 1 at the largest temperature of
interest here, when all particles in the plasma are in
equilibrium with each other, and neutrinos also share the
same temperature T. In terms of these variables, we can
write the equations of motion (EOMs) for the heavy sterile
neutrinos distribution function fνs as [10,11]

Hx∂xfνs ¼ Iνs ½fνs �: ð8Þ
A similar equation holds for the evolution of active neutrino
species fνα :

Hx∂xfνα ¼ Iνα ½fνα �; να ¼ νe; νμ; ντ: ð9Þ
In the previous expressions, H denotes the cosmic expan-
sion Hubble rate given by the Friedmann equation as
H2 ¼ 8πρ=ð3m2

PlÞ, where ρ is the total energy density

andmPl ¼ G−1=2
N is the Planck mass in terms of the Newton

constant GN. We will consider the plasma to be initially
thermally populated by pions and all lighter particles,
neglecting the nuclei contribution to ρ and assuming equal
distributions of particles and antiparticles.
The right-hand-side (rhs) term in Eqs. (8) and (9)

contains the sum of the collisional and decay terms for
sterile and active neutrinos, respectively, and reads

I½fν� ¼
1

2E

Z Y
i

�
d3pi

2Eið2πÞ3
�Y

f

�
d3pf

2Efð2πÞ3
�
ð2πÞ4δð4Þ

×

�X
i

pi −
X
f

pf

�
jMfij2Fðfi; ffÞ; ð10Þ

with jMfij2 the sum of the squared-matrix elements over
initial and final states, divided by the spin multiplicity of
the state of interest. In the case of I½fνs �, it contains decay
and scattering processes, as shown in Tables I and II,
respectively. In the case of I½fνa �, it contains scattering
processes analogous to those in Table II, apart from the
replacement ms → 0 and jUτsj2 → 1 − jUτsj2 or 1, depend-
ing if one is dealing with the mixed flavor or not; it also
contains the sterile neutrino decay source term, which is
calculated referring to the processes in Table I.
We use squared-matrix elements for the collisional

processes for active neutrinos consistent, e.g., with the
results in Table 3 in Ref. [18], modulo our different
definition of jMfij2, while we find once again that the
results reported, e.g., in Refs. [10,22] are a factor of 2 larger
than the correct ones. The statistical factor is written, in
general, as

Fðfi; ffÞ ¼ −
Y
i

fi
Y
f

ð1 ∓ ffÞ þ
Y
i

ð1 ∓ fiÞ
Y
f

ff;

ð11Þ

where fi;f are the distributions of the particles in the initial
(i) or final (f) states, the (−) sign (“blocking”) refers to
fermions and (þ) sign applies to bosons (“stimulated”
effect). Only fermions, however, are present in the proc-
esses of interest for us.
Because of the different timescales of the active neutrino

oscillation processes (see, e.g., [24]), we take into account
oscillations among active neutrinos by postprocessing the
flavor distributions via

I½fα� →
X
β

PαβI½fβ�; ð12Þ

where Pαβ are the time-averaged transition probabilities
[see, e.g., Eq. (26) in Ref. [17] ]. Medium modification
of the mixing parameters are also included, similarly
to Ref. [18].
To get the time evolution of sterile and active neutrino

distributions, we have to complete the set of equations
[Eqs. (8), (9), and (23)] with the continuity equation, stating
the conservation of the total energy density

d
dx

ρ̄ðxÞ ¼ 1

x
ðρ̄ − 3P̄Þ; ð13Þ

where ρ̄ and P̄ are the comoving energy density and
pressure of the primordial plasma, respectively:

ρ̄ ¼ ρ

�
x
m

�
4

;

P̄ ¼ P

�
x
m

�
4

: ð14Þ

Note that only massive components in the plasma contrib-
ute to the rhs of Eq. (13), while (neglecting plasma
corrections) relativistic species at equilibrium cancel out.
From Eq. (13), by using the expressions in Ref. [23] and
remembering that we consider equal particle and antipar-
ticle distributions,

ρ̄γ ¼
π2

15
z4; ð15Þ

ρ̄l ¼
2

π2
X
l

Z
∞

0

dyy2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lx
2=m2 þ y2

q

expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lx
2=m2 þ y2

q
=zÞ þ 1

; ð16Þ

P̄l ¼ 2

3π2
X
l

Z
∞

0

dy
y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
lx

2=m2 þ y2
q

×
1

expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lx
2=m2 þ y2

q
=zÞ þ 1

; ð17Þ

ρ̄π ¼
1

2π2
X
i

Z
∞

0

dyy2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i x
2=m2 þ y2

p
expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i x
2=m2 þ y2

p
=zÞ − 1

;

ð18Þ
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P̄π ¼
1

6π2
X
i

Z
∞

0

dy
y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
i x

2=m2 þ y2
p

×
1

expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i x
2=m2 þ y2

p
=zÞ − 1

; ð19Þ

ρ̄νa ¼ 3P̄νa ¼
1

π2

Z
∞

0

dyy3
X
α

fναðx; yÞ; ð20Þ

ρ̄νs ¼
1

π2

Z
∞

0

dyy2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

sx2=m2 þ y2
q

fνsðx; yÞ; ð21Þ

P̄νs ¼
1

3π2

Z
∞

0

dy
y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
sx2=m2 þ y2

p fνsðx; yÞ; ð22Þ

where i runs over the three pions πþ, π−, and π0 and l is
either the muon or the electron. Note that the Hubble
function can be now expressed as

H¼
ffiffiffiffiffiffi
8π

3

r
1

mPl

m2

x2
ðρ̄γþ ρ̄eþ ρ̄μþ ρ̄πþ ρ̄νa þ ρ̄νsÞ1=2: ð23Þ

Equation (13) gets contributions from all species and
can be recast into the equation for the zðxÞ relation. Let
us specify the different contributions. For photons, one has

dρ̄γ
dx

−
ρ̄γ − 3P̄γ

x
¼ dρ̄γ

dx
¼ 4π2z3

15

dz
dx

: ð24Þ

For the electrons, if setting κe ≡me=m, one finds

dρ̄e
dx

−
ρ̄e − 3P̄e

x
¼ 2z3

π2

�
−κ2e

x
z
Fþ
1

�
κex
z

�

þ dz
dx

�
κ2e

x2

z2
Fþ
1

�
κex
z

�
þ Fþ

2

�
κex
z

���
;

ð25Þ
where the functions F�

1 and F�
2 are defined, respectively, as

F�
1 ðτÞ≡

Z
∞

0

dωω2
expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ τ2

p
Þ

ðexpð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ τ2

p
Þ � 1Þ2 ;

F�
2 ðτÞ≡

Z
∞

0

dωω4
expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ τ2

p
Þ

ðexpð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ τ2

p
Þ � 1Þ2 ; ð26Þ

with the signs � that take into account the boson and
fermion nature of the particle, respectively. A similar

expression holds for muons, with κe → κμ. For each pion
species i, one has instead

dρ̄i
dx

−
ρ̄i − 3P̄i

x
¼ z3

2π2

�
−κ2i

x
z
F−
1

�
κix
z

�

þ dz
dx

�
κ2i

x2

z2
F−
1

�
κix
z

�
þ F−

2

�
κex
z

���
:

ð27Þ

For sterile neutrinos (κs ≡ms=m),

dρ̄s
dx

−
ρ̄s − 3P̄s

x
¼ 1

π2

Z
∞

0

dyy2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2sx2 þ y2
q ∂fνsðx; yÞ

∂x
þ fνsðx; yÞ

�
κ2sxþ y2=x− ðκ2sxþ y2=xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2sx2 þ y2
p

��

¼ 1

π2

Z
∞

0

dyy2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2sx2 þ y2

q ∂fνsðx; yÞ
∂x :

ð28Þ

For active quasimassless neutrinos, if α ¼ e, μ, τ, one
has

dρ̄νa
dx

−
ρ̄νa − 3P̄νa

x
¼ dρ̄νa

dx
¼

X
α

1

π2

Z
∞

0

dyy3
∂fνα
∂x : ð29Þ

Down to a few MeV, the active neutrinos are coupled to the
rest of the plasma, which means that at sufficiently high
temperatures (low x) we can write fνα ¼ 1=ðexpðy=zÞ þ 1Þ
and

∂fνα
∂x ¼ dz

dx

∂fνα
∂z ¼ dz

dx
y expðy=zÞ

z2ðexpðy=zÞ þ 1Þ2 ðearly timesÞ:

ð30Þ

As a result, in computing the z ¼ zðxÞ relation we can
save considerable computer time by considering two
different regimes: Eq. (30) for x < xd, while numerically
computing fνα from the Boltzmann Eq. (9) for x > xd,
where xd represents any epoch before neutrino decoupling,
but otherwise arbitrary. In terms of the step function Θ,
collecting all terms for photons, electrons, pions, and active
and sterile neutrinos and isolating dz=dx, Eq. (13) can be
written as

�
z3
�
4π2

15
þ Aðx=zÞ

π2

�
þ 3Θðxd − xÞ

π2z2

Z
∞

0

dyy4
expðy=zÞ

ðexpðy=zÞ þ 1Þ2
�
dz
dx

¼ z3

π2
Bðx=zÞ − 1

π2

Z
∞

0

dyy2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2sx2 þ y2
q ∂fνsðx; yÞ

∂x þ yΘðx − xdÞ
X
α

∂fνα
∂x

�
; ð31Þ
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where we defined

AðwÞ ¼ 2
X
l

ðκ2lw2Fþ
1 ðκlwÞ þ Fþ

2 ðκlwÞÞ

þ 1

2

X
i

ðκ2i w2F−
1 ðκiwÞ þ F−

2 ðκiwÞÞ ð32Þ

and

BðwÞ ¼ 2
X
l

κ2lwF
þ
1 ðκlwÞ þ

1

2

X
i

κ2i wF
−
1 ðκiwÞ: ð33Þ

Together with z ¼ 1 as initial condition, Eq. (31) gives the
“time-temperature” evolution. Provided that xd is suffi-
ciently small, roughly xd ≲ 0.2 (i.e., T ≳ 5 MeV), the
computed behavior is insensitive to the choice of xd, as
we illustrate in Fig. 1, where the extra comoving neutrino
energy density evolution is computed using xd ¼ 0.1 (red
solid curve) and xd ¼ 0.2 (black dotted curve), for param-
eters ms ¼ 100 MeV and τs ¼ 0.045 s. The results are
almost equal except for small numerical differences when
0.1 < x < 0.2. In the following, we fix xd ¼ 0.1. Note that

the parentheses on the rhs of Eq. (31) describe the “heating”
of the e.m. plasma due to the sterile neutrino entropy
release: At early times, all of the decay products end up in
the coupled plasma of photons and active neutrinos, raising
z compared to standard expectations. At late times, a
sizable fraction decays into (decoupled) active neutrinos;
hence, the term in parentheses largely cancels out. The only
nontrivial evolution of z is then due to the finite mass term
of e�, affecting their annihilation at late time.

B. Evolution of heavy sterile neutrinos

In Ref. [11], an analytical solution of Eq. (8) was
provided under the following assumptions.

(i) The equilibrium distribution functions “inside” the
collisional integral [Eq. (10)] are taken in the
Boltzmann (classical) approximation, with Pauli
blocking factors correspondingly neglected.

(ii) Electrons are considered ultrarelativistic, with terms
in m2

e neglected throughout.
We repeated the derivation of Ref. [11] under these
approximation, finding

Idec ¼
ð1þ g̃2L þ g2RÞG2

Fm
5
1jUsτj2

192π3
ms

Es
ðfeqs − fsÞ

≡ms

Es

1

τs
ðfeqs − fsÞ ð34Þ

and

Iscatt ¼
G2

FjUsτj2ð1þ g̃2L þ g2RÞT3m2
s

π3
ðfeqðE1Þ − fðE1ÞÞ

×

�
3

2
ζð3Þ þ 7Tπ4

72

�
E1

m2
s
þ p2

1

3E1m2
s

��

¼ 3 × 26

τs
ðfeqðE1Þ − fðE1ÞÞ

×

�
3ζð3Þ
2

T3

m3
s
þ 7π4

72

T4E1

m5
s

�
1þ p2

1

3E2
1

��
; ð35Þ

in agreement with their results quoted as

∂xfνsðx; yÞ ¼
1.48x
τs=s

� ffiffiffiffiffiffiffiffiffiffiffi
g�

10.75

r �
1=2 ðfeqðE1Þ − fðE1ÞÞ

ðxTÞ2
�
ms

Es
þ 3 × 27T3

�
3

4

ζð3Þ
m3

s
þ 7Tπ4

144

�
E1

m5
s
þ p2

1

3E1m5
s

���
; ð36Þ

where feqνs is the Fermi-Dirac equilibrium distribution
of the sterile neutrinos, τs is the sterile neutrino lifetime,
and Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s þ ðy=xÞ2
p

is the sterile neutrino energy.
Details of the reduction of integrals in Eq. (10) under
approximations (i) and (ii) are given in Appendix A.
We also solve the sterile neutrino kinetic equations

numerically, relaxing the approximations (i) and (ii) in

Eq. (10), for both sterile neutrinos and active neutrinos.
Following the well-known technique developed in
Ref. [25], it is possible to analytically reduce the nine-
dimensional collisional integral into a two-dimensional
one, which is then integrated numerically. We developed
an equivalent technique for the decay processes. We report
the details in Appendix B.
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FIG. 1. Comparison between the comoving extra active neu-
trino energy using xd ¼ 0.1 (red curve) and xd ¼ 0.2 (black
curve), for parameters ms ¼ 100 MeV and τs ¼ 0.045 s.
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Our solutions are obtained by assuming initial thermal
equilibrium for all species, starting from a temperature
T ¼ min½2ms; 150 MeV�. To compare the difference in
using numerical results vs the analytical approximation,
in Table III we report the sterile neutrino freeze-out
temperature TD, for a few representative points in param-
eter space, according to the condition IðTDÞ ¼ HðTDÞ,
with I given by Eq. (10). We find typical differences at a
few percent level and in all cases below 10%. Although we
are using the numerical results in the following, when
requiring only moderate precision on the sterile decoupling,
the analytical approximation seems largely sufficient and
allows one to significantly gain in computing time.

IV. IMPACT ON COSMOLOGICAL
OBSERVABLES

After the distribution functions and temperature evolu-
tion are found, we relate them to the observables Neff
(notably at the CMB epoch) and Yp (notably at the BBN
epoch) to derive some constraints.

A. Impact on effective number of active neutrinos Neff

Heavy νs affect the total energy density in nonelectro-
magnetic species. This is usually quantified in terms of the
effective number of neutrinos Neff , which is defined from
the density in all species but electromagnetically interacting
ones, as (see, for instance, [24])

NeffðxÞ ¼
ρinstγ

ργ

X
i≠e:m:

ρi
ρν0

¼
�
z0ðxÞ
zðxÞ

�
4
�
3þ Δρνe

ρν0
þ Δρνμ

ρν0
þ Δρντ

ρν0
þ ρνs
ρν0

�
;

ð37Þ
where the rhs is specific for our four-neutrino model, where
Δρνα are the changes in the neutrino energy densities with
respect to ρν0 , the energy density in the instantaneous
decoupling limit, due to the nonequilibrium effects. Note
that, at early times around T ≃ 100 MeV when all
species are relativistic and share the same temperature,
Neff → 4. Asymptotically, when all sterile neutrinos have

disappeared and the eþe− annihilation is complete:
(i) z0 → ð11=4Þ1=3 ≃ 1.4, the asymptotic Standard Model
photon-neutrino temperature ratio in the instantaneous
decoupling limit; (ii) z → zfin, the actual final photon or
neutrino temperature; (iii) ρνs=ρν0 → 0, since all sterile
neutrinos have decayed away. At large x, we expect
Neff ≳ 3, since, due to the branching fraction, the contri-
bution due to extra radiation in the neutrino sector largely
compensates the entropy transfer, which would tend to
lower Neff below 3 via the z-dependent prefactor in the rhs
of Eq. (37). Indeed, this behavior can be seen in
Fig. 2, where we have plotted the Neff evolution for
ms ¼ 30 MeV, ττs ¼ 0.15 s (solid red line) and
ms ¼ 100 MeV, ττs ¼ 0.055 s (dashed black line), assum-
ing mixing with ντ. Note how the more massive neutrino
decays deeper in its nonrelativistic regime and well after its
decoupling: The initial decline is due to the still-coupled
massive neutrino, experiencing “Boltzmann suppression.”
Soon after, it decouples and its contribution to the plasma
rises, with Neff that follows this trend. The growth is
somewhat less steep than naively expected in the absence of
decays, since this process partially counteracts the sterile
neutrino energy density relative growth. This growth turns
into a sharp decline around x ≃ 0.25, when decay takes

TABLE III. Altered cosmologies in the presence of sterile neutrinos. τ is the lifetime of the sterile neutrino considered, Ta
D is the

decoupling temperature obtained with the evolution in Eq. (36), Tn
D is the decoupling temperature obtained solving the Boltzmann

equation numerically, and Yp is the estimated value of 4He abundance, discussed in Sec. IV B.

ms [MeV] sin2 θτ4 τ½s� Tn
D [MeV] Ta

D [MeV] Yp

20.0 2.6 × 10−2 3.0 × 10−1 4.35 4.26 0.2514
40.0 2.8 × 10−3 8.8 × 10−2 9.24 10.00 0.2520
60.0 5.5 × 10−4 6.0 × 10−2 16.83 16.20 0.2509
80.0 1.5 × 10−4 5.0 × 10−2 26.53 25.22 0.2628
100.0 5.8 × 10−5 4.4 × 10−2 37.10 37.65 0.2705
130.0 1.6 × 10−5 4.2 × 10−2 59.13 59.00 0.2881
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FIG. 2. Neff evolution in x for ms ¼ 30 MeV, ττs ¼ 0.15 s
(red, solid line) and ms ¼ 100 MeV, ττs ¼ 0.055 s (black,
dashed line).
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over. If all its entropy were transferred to the active
neutrinos only, Neff would stay constant. The partial
redistribution to the e.m. plasma causes a minor decline
in Neff , basically complete by x ∼ 1. Modulo quantitative
differences, the lighter and longer-lived neutrino depicted
with the red line follows the same stages but shifted to the
right, since it stays coupled longer and decays later.
The contribution of the sterile neutrino to this dynamics

is more clearly visible in Fig. 3, while Fig. 4 shows the
entropy dilution effect entering z, which partially counter-
acts the extra energy density in neutrinos and also affects
Neff . All other parameters being the same, the effect on z is
more pronounced, as expected due to the larger branching
ratio in e.m. species. Note that a further, “standard”
enhancement in z, due to e� annihilation, happens at
x ≫ 1 and is not visible in the figure. In Fig. 5, we show
the evolution of the active neutrino energy densities. Note

how they already depart from equilibrium somewhat by
x ∼ 0.2 (forms ¼ 100 MeV), when the major enhancement
happens due to the bulk of the decays.

B. Impact on Yp

Another important parameter affected by a massive
sterile neutrino scenario is the Yp value, i.e., a proxy for
the primordial 4He mass fraction. The effect arises due to
the modified expansion history, i.e., via the role that Neff
and zðxÞ play in the Hubble functionHðxÞ, but above all via
the distortions to the electron (anti)neutrino distribution
entering the isospin changing reactions between neutrons
and protons. In Fig. 6, we illustrate the typical ντ and νe
spectra (νμ being intermediate between the two) associated
to heavy sterile neutrino decays, in the case of mixing with
ντ: Despite mixing among the active species, the largest
distortion remains in the ντ species; also, heavier neutrinos
lead to more energetic residual distortions. Alterations due
to heavy sterile neutrino decays also affect other nuclei
such as deuterium, but these are subleading compared to
the effect on Yp (see, e.g., Fig. 3 in Ref. [18]), and for
simplicity we will limit ourselves to model the modifica-
tions on Yp. Both CMB and BBN are sensitive to Yp, but
astrophysical determinations of Yp and, thus, a comparison
with primordial nucleosynthesis predictions are currently
more constraining.
A precise standard model calculation Yprec

p;SM for the best-
fit cosmological parameter Ωbh2 ¼ 0.02225 [26] with a
number of subtle effects included (see [27,28] for details) is
available from PArthENoPE [29,30]. This result is rescaled
via the ratio of the Born estimate of the Yp for the νs model,
YBorn
p;νs , over the Born standard model calculation YBorn

p;SM, as

x
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z
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=0.15 ssττ=30 MeV sm

=0.055 sesτ=100 MeV sm

=0.055 ssττ=100 MeV sm

FIG. 4. Evolution of the dimensionless temperature z vs x for
ms ¼ 30 MeV, τes ¼ 0.15 s (red, dash-dotted line) ττs ¼ 0.15 s
(purple, solid line) and ms ¼ 100 MeV, τes ¼ 0.055 s (blue,
dashed line), and ττs ¼ 0.055 s (black, dotted line).
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FIG. 3. Comoving energy density evolution for the sterile
neutrino vs x for ms ¼ 30 MeV, ττs ¼ 0.15 s (red, solid line)
and ms ¼ 100 MeV, ττs ¼ 0.055 s (black, dashed line).
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FIG. 5. Comoving energy density evolution for the three active
neutrinos vs x for ms ¼ 30 MeV, ττs ¼ 0.15 s (dashed lines) and
ms ¼ 100 MeV, ττs ¼ 0.055 s (solid lines). Each sets of curves,
from top to bottom, represents the ντ, νμ, and νe energy density
evolution, respectively, reflecting the assumed sterile mixing with
ντ and the active neutrino mixing matrix. Here, xd ¼ 0.2 is
assumed.
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Yp ¼ Yprec
p;SM

YBorn
p;νs

YBorn
p;SM

: ð38Þ

Each term of the fraction on the rhs can be estimated as
(see, e.g., [31])

Yp ¼ 2XnðtonÞe−ton=τn ; Xn ¼
nn

np þ nn
; ð39Þ

dXn

dx
¼ ½ωBðp → nÞð1 − XnÞ − ωBðn → pÞXn�

xH
; ð40Þ

where ton ≃ 180 s corresponds to the onset of the BBN (i.e.,
deuterium bottleneck opening around T ≃ 0.08 MeV),4

τn is the neutron lifetime, and ωB are the rates in the
Born approximation of the processes in Table IV (with
Δ≡mn −mp ≃ 1.29 MeV) that can be written as

ωB ¼ G2
FðC2

V þ 3C2
AÞ

2π3

Z
∞

0

dpp2q20θðq0ÞF: ð41Þ

The distributions entering in F, as well as HðxÞ, are taken
from the numerical solutions of our system of equations. In
the last column in Table III, we show the results for some
relevant sterile neutrino parameters.

V. CONSTRAINTS AND FORECASTS

In order to obtain constraints on heavy sterile neutrinos,
we compare our results on Neff and on the modification on
Yp with both the latest CMB and BBN measurements. For
BBN, we use the current bound at 2σ [32]:

Yp ¼ 0.245� 0.006: ð42Þ
Concerning CMB, if limiting oneself to Neff , the latest

measurements of the Planck Collaboration provide a value
Neff ¼ 2.99� 0.17 [26]. Therefore, we could exclude at 2σ
extra radiation leading to ΔNeff > 0.33. In practice, the
massive sterile neutrino model under consideration here
leads to changes in both Neff and Yp, and the CMB is
sensitive to both (albeit much less to Yp than BBN, at the
moment). Hence, we infer the CMB constraints using a
reduced Gaussian likelihood matrix involving Neff and Yp,
of the form [18]

χ2CMB ¼ ðΘ − ΘobsÞΣ−1
CMBðΘ − ΘobsÞT; ð43Þ

Θ ¼ ðNeff ; YpÞ; ð44Þ
Θobs ¼ ð2.97; 0.246Þ; ð45Þ

ΣCMB ¼
�

σ21 σ1σ2ρ12

σ1σ2ρ12 σ22

�
; ð46Þ

ðσ1; σ2Þ ¼ ð0.2650; 0.0177Þ; ð47Þ
ρ12 ¼ −0.845: ð48Þ

To obtain results at 2σ, we have to consider a value of
χ2 ¼ 6.18, value obtained by requiring that the integral of
the χ2 distribution with two d.o.f. is equal to 0.9545. Our
results from CMB measurements and from BBN based on
Yp are shown in Fig. 7 for the constraints on the decay time
and in Fig. 8 for the constraints on the mixing parameter,
for the most interesting case of mixing with ντ. As a side
result and in order to allow for cross-checks with past
literature, in Figs. 9 and 10 we also report the correspond-
ing results for a mixing with νe. Besides the current
constraints, we also show the sensitivity forecast of the
future CMB-S4 observations, with uncertainties ðσ1; σ2Þ ¼
ð0.062; 0.0053Þ according to Ref. [33], considering the
same Θobs as in Eq. (45).

TABLE IV. Relevant quantities for n − p reactions.

Process F q0

νe þ n → e− þ p fνðq0Þð1 − feðp0ÞÞ −Δþ p0

e− þ p → νe þ n feðp0Þð1 − fνðq0ÞÞ −Δþ p0

eþ þ p → ν̄e þ p feðp0Þð1 − fνðq0ÞÞ Δþ p0

ν̄e þ p → eþ þ n fνðq0Þð1 − feðp0ÞÞ Δþ p0

n → e− þ ν̄e þ p ð1 − fνðq0ÞÞð1 − feðp0ÞÞ Δ − p0

e− þ ν̄e þ p → n fνðq0Þfeðp0Þ Δ − p0
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FIG. 6. ντ and νe distribution functions vs y at x ¼ 1 for the
same cases reported in Fig. 5.

4Note that, while strictly speaking ton is altered in the
nonstandard scenario considered here, the bulk of the change
in Yp comes from the prefactor ∝ Xn in Eq. (39). A simple
estimate yields the scaling ton ≃ 180s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HSM=H

p
, where HSM and

H are the Hubble parameter values at the beginning of BBN in the
Standard Model and the case under exam, respectively. For a
typical allowed modification of Neff ¼ 3.2, the effect on ton is
2%, propagating to a 0.3% effect on Yp, about one order of
magnitude below the 2σ observational error on Yp considered in
the following; see Eq. (42). As a consequence, neglecting the
change of ton does not lead to appreciably different results.
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We conclude that the CMB provides already the best
constraints for ms ≲ 50 MeV, while BBN takes over at
larger masses. However, we expect that CMB-S4 will attain
leading constraining power in the whole range of parameter
space considered here, if performing close to expectations.
Qualitatively similar considerations apply for mixing with
νe, although the transition mass is around ms ∼ 20 MeV,
and the future improvement of CMB-S4 over BBN is less
significant. Note that, in particular, for the CMB, at the same
mass and lifetime the bounds aremore stringent for amixing
with ντ than onewith νe: This is due to the fact that the bound
is dominated by Neff and, due to the larger b.r. in neutrinos
for the case ofmixingwith ντ, the growth of neutrino density
via nonthermal injection is only mildly compensated by the
entropy effect. For the case ofmixingwith νe, there is instead
a substantial compensation via the growth of z.

In the case of the BBN bound, however, the leading
effect is due to νe distortions, which are larger when the
mixing is with νe; the effect of Neff > 3 altering H is,
however, more relevant when the mixing is with ντ, so that
the two constraints are closer to each other in this case.
Our BBN constraints are largely consistent with recent

calculations presented in Ref. [18], while our CMB con-
straints are consistent with theirs at low masses while more
stringent than theirs at high masses. A more detailed
comparison and discussion are reported in Appendix C,
where we identify the origin of the difference in the
estimate of ΔNeff . In particular, contrarily to the results
of Ref. [18], we always obtain ΔNeff > 0 for the parameter
space of interest. We have supplemented our numerical
calculations with a qualitative study of the Boltzmann
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FIG. 7. Bounds in the plane ðms; τsÞ obtained from CMB (red
curve) and BBN-Yp (blue curve), as well as forecast sensitivity of
CMB-S4 (black curve), for a sterile neutrino mixed with ντ (or
νμ). The 2σ excluded region is the one above the curves.
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FIG. 8. Bounds in the plane ðms; θτsÞ obtained from CMB (red
curve) and BBN-Yp (blue curve), as well as forecast sensitivity of
CMB-S4 (black curve), for a sterile neutrino mixed with ντ (or
νμ). The 2σ excluded region is the one under the curves.
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FIG. 9. Bounds in the plane ðms; τsÞ obtained from CMB (red
curve) and BBN-Yp (blue curve), as well as forecast sensitivity of
CMB-S4 (black curve), for a sterile neutrino mixed with νe. The
2σ excluded region is the one above the curves.
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FIG. 10. Bounds in the plane ðms; θesÞ obtained from CMB (red
curve) and BBN-Yp (blue curve), as well as forecast sensitivity of
CMB-S4 (black curve), for a sterile neutrino mixed with νe. The
2σ excluded region is the one under the curves.
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equation in the analytical approximation of Ref. [11] to
further support our conclusions.

VI. CONCLUSIONS

Heavy sterile neutrinos with masses OðMeV − GeVÞ are
predicted in extensions of the Standard Model such as the
neutrino minimal Standard Model (νMSM). Besides affect-
ing collider and supernovae observables, their mass and
mixing angle parameters can be also constrained with
cosmological observables, notably CMB and BBN.
We have numerically studied the evolution of sterile

neutrinos with 10 MeV≲ms ≲ 135 MeV in the early
Universe and set constraints on the mixing angles or life-
times using the Neff and Yp observables. In order to achieve
these results, we have solved the exact Boltzmann equation
for sterile and active neutrino evolution while taking into
account the temperature evolution of electrons and photons.
Also, we checked the correctness of analytical approxima-
tions in the literature and verified that they are adequate to
describe sterile neutrino decoupling at better than 10% level.
For the least constrained (and, thus, phenomenologically

most interesting) sector of mixing with ντ, atms ≳ 50 MeV
these cosmological bounds surpass the traditional bench-
mark of 0.1 s lifetime often considered in the literature, up
to about 0.03 s for the highest masses considered. While
currently CMB is more constraining at low masses and
BBN dominates at high masses, we expect the future
CMB-S4 experiments to yield the dominant constraining
power by the end of the decade, unless the systematic error
affecting the astrophysical determinations of Yp can be
significantly reduced.
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APPENDIX A: REDUCTION OF THE DECAY
AND COLLISIONAL INTEGRALS

In this Appendix, we show how, under the approxima-
tions adopted in Ref. [11], we can analytically solve the
integrals appearing on the rhs in Eq. (8), namely,

Icoll þ Idec ¼
1

2E

Z Y
i

�
d3pi

2Eið2πÞ3
�Y

f

�
d3pf

2Efð2πÞ3
�

× ð2πÞ4δð4Þ
�X

i

pi −
X
f

pf

�
jMfij2Fðfi; ffÞ;

ðA1Þ

with jMfij2 the sum of the squared-matrix elements for the
decay and scattering processes and

Fðfi; ffÞ ¼ −
Y
i

fi
Y
f

ð1 − ffÞ þ
Y
i

ð1 − fiÞ
Y
f

ff: ðA2Þ

Please note that our results are obtained with a numerical
integration of the collisional integrals in Eq. (A1), after the
dimensional reduction recapped in Appendix B, not with
the analytical approximations. Also, none of the approx-
imations reported below is new and can be skipped unless
one is interested in reproducing the analytical approxima-
tions. However, for pedagogical purposes, we thought it is
useful to report them here in great detail, not to force
readers to go back to the decades-old original literature.

1. Decay integral

Following the approximations of Ref. [11], we assume
that in Eq. (A1) the energy distributions are represented by
Maxwell-Boltzmann distributions instead of Fermi-Dirac
ones. Moreover, we neglect the Pauli blocking factor,
assuming ð1 − fiÞ ≃ 1. Then one gets

Idec¼
1

2E1ð2πÞ5
Z

d3p2

2E2

d3p3

2E3

d3p4

2E4

jMfij2

× ½−f1þe−E2=Te−E3=Te−E4=T �δð4Þðp1−p2−p3−p4Þ;
ðA3Þ

where the label 1 indicated the sterile neutrino and jMfij2 is
the sum over the dominant decay processes

νs → ντναν̄α;

νs → ντeþe−;

with α ¼ e, μ, τ. Performing the integral over d3p4 in
Eq. (A3) using the delta function enforcing E1 ¼
E2 þ E3 þ E4, one obtains that e−E2=Te−E3=Te−E4=T ¼
e−E1=T ¼ feq1 . Moreover, using the property of the delta
function in Eq. (B1), we can write
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Idec ¼ ðfeq1 − f1Þ
1

2E1ð2πÞ5
Z

d3p2

2E2

d3p3

2E3

jMfij2δððp1 − p2 − p3Þ2Þ ¼ ðfeq1 − f1Þ
m1

E1

ΓD; ðA4Þ

where the sterile neutrino decay rate ΓD is given by [10]

ΓD ≡ 1

2m1ð2πÞ5
Z

d3p2

2E2

d3p3

2E3

d3p4

2E4

jMfij2δðp1 − p2 − p3 − p4Þ

¼ 1

2m1ð2πÞ5
Z

d3p2

2E2

d3p3

2E3

jMfij2δððp1 − p2 − p3Þ2Þ ¼
ð1þ g̃2L þ g2RÞG2

Fm
5
1jUsτj2

192π3
: ðA5Þ

Thus, we end up with

Idec ¼
ms

Es

1

τs
ðfeqs − fsÞ; ðA6Þ

where τs ¼ 1=ΓD is the sterile neutrino lifetime.

We could also write the corresponding source term for an
active species at the same level of approximation (i.e.,
neglecting the blocking factor and the inverse decay)
following the treatment detailed in Ref. [13], which we
direct the reader to for details. This yields

Hx
dfa
dx

ðx; yÞ ≃
X
i

Bi

τs

Z
d cos θ

Z
∞

0

dys
y2s
y2

ðfsðx; ysÞ − feqs ðx; ysÞÞF a;i

�
y

γð1þ β cos θÞ ; cos θ
�
; ðA7Þ

where Bi is the branching ratio of the ith exclusive reaction,
γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðysmÞ2=ðxmsÞ2

p
, β ¼ ys=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmsx=mÞ2 þ y2s

p
, and

F a;i is the double-differential distribution (with respect to y
and to the angular variable θ) of the daughter particle a in
the reaction i in the sterile neutrino rest frame, normalized
to 1. The integral kernel in the integral above acts as a
constraint picking the “right” momentum for the daughter
neutrino, weighting it for the occupation factor of the parent
sterile species. In practice, we always use the full numerical
integration rather than this approximate expression.

2. Collisional integral

In order to evaluate the collisional integral in Eq. (A1),
we assume below that they mix only with ντ. The relevant
collisional processes are shown in Table II and have a
squared interaction matrix given by

jMj2 ¼ 4C½ðp1 ·p2Þðp3 ·p4Þþ2ðp1 ·p4Þðp2 ·p3Þ�; ðA8Þ

where C ¼ 24G2
FjUτ4j2ð1þ g̃2L þ g2RÞ (remember that in

our definition of jMj2 we sum over all the degrees of
freedom and include the average over the relevant state).
We indicate with 1 the sterile neutrino state and evaluate the
quantities in the center of momentum frame; since particles
2, 3, and 4 are relativistic, p1 ¼ −p2, p3 ¼ −p4, E3 ¼ E4,
and E1 þ E2 ¼ E3 þ E4 ¼ 2E3 ¼ 2E4. We have

p1 · p2 ¼ E1E2 − p1 · p2 ¼ E1E2 þ p2
1

¼ E1E2 þ
p2
1 þ p2

2

2
¼ E2ðE1 þ p1Þ ðA9Þ

and

p3 · p4 ¼ E3E4 − p3 · p4 ¼ 2E3E4 ¼ 2E2
3: ðA10Þ

Thus,

p1 · p2 − p3 · p4 ¼ E1E2 þ
p2
1 þ p2

2

2
− 2

ðE1 þ E2Þ2
4

¼ p2
1 − E2

1

2
þ p2

2 − E2
2

2
¼ −

m2
s

2
: ðA11Þ

Hence,

ðp1 ·p2Þðp3 ·p4Þ ¼ ðp1 ·p2Þ2 þ
m2

s

2
ðp1 ·p2Þ

¼ ðp1 ·p2Þ2 þ
m2

s

2
½ðp3 ·p2Þ þ ðp4 ·p2Þ�:

ðA12Þ

Similarly,

p1 · p4 − p2 · p3 ¼ E1E4 − E2E3 − p1 · p4 þ p2 · p3

¼ E4ðE1 − E2Þ þ p3 · ðp1 þ p2Þ

¼ ðE1 þ E2Þ
2

ðE1 − E2Þ þ 0

¼ ðE2
1 − E2

2Þ
2

¼ m2
s

2
: ðA13Þ

Hence,
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ðp1 · p4Þðp2 · p3Þ ¼ ðp2 · p3Þ2 þ
m2

s

2
ðp2 · p3Þ: ðA14Þ

These equalities among Lorentz invariants hold in any frame. As a result, let us write

jMj2 ¼ 4C

�
ðp1 · p2Þ2 þ 2ðp2 · p3Þ2 þ

m2
s

2
½3ðp3 · p2Þ þ ðp4 · p2Þ�

�
≡ I½A� þ I½B� þ I½C�: ðA15Þ

We thus have

I½A�
4C

¼
Z

d3p2d3p3d3p4

ð2πÞ924E1E2E3E4

ðp1 · p2Þ2δðp1 þ p2 − p3 − p4Þð2πÞ4ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

¼
Z

d3p2d3p3

ð2πÞ523E1E2E3

ðp1 · p2Þ2δððp1 þ p2 − p3Þ2ÞðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

¼
Z

d3p2d3p3

ð2πÞ523E1E2E3

ðp1 · p2Þ2δðm2
s þ 2p1 · p2 − 2p2 · p3 − 2p3 · p1ÞðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

¼
Z

d3p2d3p3

ð2πÞ524E1E2E3

ðp1 · p2Þ2ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

δ

�
m2

s

2
þ ðp1 · p2Þ − E2E3ð1 − cos θ32Þ − E1E3ð1 − v1 cos θ31Þ

�

¼
Z

d3p2dE3d cos θ31dμ3E3

ð2πÞ524E1E2

ðp1 · p2Þ2
1

E2ð1þ cos θ31Þ þ E1ð1 − v1 cos θ31Þ

δ

�
E3 −

ðp1 · p2Þ þm2
s=2

E2ð1þ cos θ31Þ þ E1ð1 − v1 cos θ31Þ
�
ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

¼
Z

d3p2

ð2πÞ424E1E2

�
ðp1 · p2Þ3 þ ðp1 · p2Þ2

m2
s

2

�
ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

×
Z

dμ3
2π

Z
d cos θ31

1

½E2ð1þ cos θ31Þ þ E1ð1 − v1 cos θ31Þ�2

¼
Z

d3p2

ð2πÞ424E1E2

2ðp1 · p2Þ3 þ ðp1 · p2Þ2m2
s

2ðp1 · p2Þ þm2
s

ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ
Z

d3p2

ð2πÞ424E1E2

ðp1 · p2Þ2ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ; ðA16Þ

where θ and μ are the azimuth and polar angle, respectively, cos θ32 ¼ − cos θ31 due to the fact we evaluated the integral in
the center of momentum frame, and we used Eq. (A29), with a ¼ E1 þ E2 and b ¼ E2 − jp1j, as well as

δðκxÞ ¼ 1

jκj δðxÞ: ðA17Þ

Let us evaluate the integral over particle 2 (expressed in terms of Lorentz invariants) by the explicit replacement
p1 · p2 ¼ E1E2 − p1p2 cos θ12:

I½A�
4C

¼ ðfeqðE1Þ − fðE1ÞÞ
Z

dE2d cos θ12dμ2
ð2πÞ424E1

E3
2ðE1 − jp1j cos θ12Þ2feqðE2Þ

¼ ðfeqðE1Þ − fðE1ÞÞ
ð2πÞ324E1

2

�
E2
1 þ

jp1j2
3

�Z
dE2E3

2f
eqðE2Þ: ðA18Þ

Similarly,
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I½B�
8C

¼
Z

d3p2d3p3d3p4

ð2πÞ924E1E2E3E4

ðp2 · p3Þ2δðp1 þ p2 − p3 − p4Þð2πÞ4ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

¼
Z

d3p2

ð2πÞ424E1E2

ðp1 · p2Þ2
3

ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ ¼
1

3

I½A�
4C

⇒ I½B� ¼ 2

3
I½A�: ðA19Þ

Finally, taking into account that the integrals for the C term are symmetric under the relabeling 3 ↔ 4, we have with a
similar procedure of Eq. (A16)

I½C�
8Cm2

s
¼

Z
d3p2d3p3d3p4

ð2πÞ924E1E2E3E4

ðp2 · p3Þδðp1 þ p2 − p3 − p4Þð2πÞ4ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ

¼
Z

d3p2

ð2πÞ424E1E2

ðp1 · p2Þ
2

ðfeqðE1Þ − fðE1ÞÞfeqðE2Þ: ðA20Þ

Hence,

I½C�
8Cm2

s
¼ ðfeqðE1Þ − fðE1ÞÞ

Z
dE2d cos θ12dμ2

ð2πÞ424
E2
2

2
ð1 − v1 cos θ12ÞfeqðE2Þ

¼ ðfeqðE1Þ − fðE1ÞÞ
ð2πÞ324

Z
dE2E2

2f
eqðE2Þ: ðA21Þ

Summing all contributions, we have

Icoll
C

¼ ðfeqðE1Þ − fðE1ÞÞ
ð2πÞ3

�
5

6

�
E1 þ

jp1j2
3E1

�Z
dE2E3

2f
eqðE2Þ þ

m2
s

2

Z
dE2E2

2f
eqðE2Þ

�
: ðA22Þ

Assuming in this last step Fermi-Dirac distribution for particle 2, following the procedure in Ref. [11],

Icoll
C

¼ ðfeqðE1Þ − fðE1ÞÞ
ð2πÞ3

��
E1 þ

jp1j2
3E1

�
7π4

144
T4 þm2

s
3ζð3Þ
4

T3

�
; ðA23Þ

which implies

Icoll ¼ G2
FjUτ4j2ð1þ g̃2L þ g2RÞðfeqðE1Þ − fðE1ÞÞT3

��
E1 þ

jp1j2
3E1

�
7π4

72
T þ 3ζð3Þ

2π3
m2

s

�
: ðA24Þ

The above result agrees with that reported in Ref. [11] in the same limit:

Icoll ¼
4G2

FjUsτj2ð1þ g̃2L þ g2RÞT3m2
s

π3
ðfeqðE1Þ − fðE1ÞÞ

�
3

4
ζð3Þ þ 7Tπ4

144

�
E1

m2
s
þ p2

1

3E1m2
s

��

¼ 3 × 26

τs
ðfeqðE1Þ − fðE1ÞÞ

�
3ζð3Þ T

3

m3
s
þ 7π4

36

T4E1

m5
s

�
1þ p2

1

3E2
1

��
; ðA25Þ

with τs given in Eq. (6).
Finally, we report below some relations used in the numerous integrations:

Z
d3p
2E

� � � ¼
Z

d3pdp0

2E
δðp0 − EÞ ¼

Z
d4pδðp · p −m2ÞΘðp0Þ… ðA26Þ

so that, when p2
1 ¼ m2

s and p2
2 ¼ p4

3 ¼ p2
4 ¼ 0,
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Z
d3p4

2E4

Fðp1; p2; p3; p4Þδðp1 þ p2 − p3 − p4Þ

¼
Z

d4p4δðp2
4Þδðp1 þ p2 − p3 − p4ÞFðp1; p2; p3; p4Þ

¼ Fðp1; p2; p3; p1 þ p2 − p3Þ
× δðm2

s þ 2p1 · p2 − 2p1 · p3 − 2p2 · p3Þ: ðA27Þ

Also, we used some notable integrals:
(i)

Z
dx

1

½aþ bx�2 ¼ −
1

bðaþ bxÞ þ const; ðA28Þ

implying that

Z þ1

−1
dx

1

½aþ bx�2 ¼
2

a2 − b2
: ðA29Þ

(ii)

Z
dx

ð1þxÞ2
½aþbx�4

¼−
a2það3bxþbÞþb2ð3x2þ3xþ1Þ

3b3ðaþbxÞ3 þconst;

ðA30Þ

implying that

Z þ1

−1
dx

ð1þ xÞ2
½aþ bx�4

¼ 8

3ða − bÞðaþ bÞ3 ¼
8

3

1

ða2 − b2Þðaþ bÞ2 :

ðA31Þ

(iii)

Z
dx

ð1þ xÞ
½aþ bx�3 ¼ −

aþ 2bxþ b
2b2ðaþ bxÞ2 þ const; ðA32Þ

implying that

Z þ1

−1
dx

ð1þ xÞ
½aþ bx�3 ¼

2

ða − bÞðaþ bÞ2 : ðA33Þ

APPENDIX B: NUMERICAL REDUCTION OF
THE DECAY AND COLLISIONAL INTEGRALS

In this Appendix, we show how the integrals in Eq. (A1)
can be reduced from nine to three dimensions (four in the
case of the decay processes) using the procedure reported in
Ref. [25]. Although the procedure is not new, we recall it
here for completeness.
Using the property

d3p4

2E4

¼ d4p4δðp2
4 −m2

4ÞΘðp0
4Þ; ðB1Þ

the integral over p4 is done using the delta in Eq. (A1). For
the scattering processes, we obtain

p4 ¼ p1 þ p2 − p3: ðB2Þ
Introducing the following angles:

cosðαÞ ¼ p1 · p2

p1p2

; ðB3Þ

cosðθÞ ¼ p1 · p3

p1p3

; ðB4Þ

cosðα0Þ ¼ p2 · p3

p2p3

¼ cos α cos θ þ sin α sin θ cos β; ðB5Þ

we can write

d3p2 ¼ p2
2dp2d cos αdβ; ðB6Þ

d3p3 ¼ p2
3dp3d cos θdμ; ðB7Þ

with β and μ the azimuthal angles for p2 and p3,
respectively. The integration over dβ is carried out using
the δ function:

p2
4 −m2

4 ¼ fðβÞ: ðB8Þ
We use the relation for the δ:Z

dβδðfðβÞÞ ¼
X
i

Z
dβ

1

jdfðβÞ=dβjβ¼βi

δðβ − βiÞ; ðB9Þ

where the βi are the roots of fðβÞ ¼ 0. Using the previously
introduced angles

dfðβÞ
dβ

¼ 2p2p3 sin α sin θ sin β; ðB10Þ

sin βi is found as �ð1 − cos2 βiÞ1=2, where

cos βi ¼
2E2E3 − 2p2p3 cos α cos θ −Q − 2E1E2 þ 2p1p2 cos αþ 2E1E2 − 2p1p3 cos θ

2p2p3 sin α sin θ
ðB11Þ
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and Q≡m2
1 þm2

2 þm2
3 −m2

4. The equation for cos β has
two solutions, but we can account for them by multiplying
by 1 and using as integration interval ½0; π�. The limits of
integration in d cos α come from demanding that
cos2 β ≤ 1, meaning that

ð2p2p3 sin α sin θ sin βÞ2 ≥ 0: ðB12Þ

This is the same requirement that ðdfðβÞ=dβÞ2 ≥ 0. There-
fore, we can write

Z
2π

0

dβδðfðβÞÞ¼2
1

jdfðβÞ=dβj2β¼βi

Θ
�				dfðβÞdβ

				
2

β¼βi

�
:

ðB13Þ

Introducing the following definitions:

γ ¼ E1E2 − E1E3 − E2E3;

ϵ ¼ p1p3 cos θ;

k ¼ p2
1 þ p2

3;

a ¼ p2
2ð−4kþ 8ϵÞ;

b ¼ p2ðp1 − ϵ=p1Þð8γ þ 4Qþ 8ϵÞ;
c ¼ −4γ2 − 4γQ −Q2 − 8γϵ − 4Qϵ − 4ϵ2

þ 4p2
2p

2
3ð1 − cos θÞ2;

the derivative can be written as

j dfðβÞ
dβ

jβ¼βi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos2 αþ b cos αþ c

p
: ðB14Þ

All possible matrix elements include only products of the four-momenta. All the products are analytically
integrable over d cos α and can be carried out by using these relations:

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax2 þ bxþ c
p Θðax2 þ bxþ cÞdx ¼ πffiffiffiffiffiffi

−a
p Θðb2 − 4acÞ;

Z
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax2 þ bxþ c
p Θðax2 þ bxþ cÞdx ¼ −

b
2a

πffiffiffiffiffiffi
−a

p Θðb2 − 4acÞ;
Z

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxþ c

p Θðax2 þ bxþ cÞdx ¼
�
3b2

8a2
−

c
2a

�
πffiffiffiffiffiffi
−a

p Θðb2 − 4acÞ:

The step function comes from demanding a real integration interval. This also ensures that the roots of ax2 þ bxþ c are not
outside the fundamental integration interval of ½−1; 1�. Integration over dμ is trivial, because there is no dependence on this
parameter.
All the possible products of these momenta are calculated below:

p1 · p2 ¼ E1E2 − p1p2 cos α;

p1 · p3 ¼ E1E3 − p1p3 cos θ;

p1 · p4 ¼ m2
1 þ ðE1E2 − p1p2 cos αÞ − ðE1E3 − p2p3 cos θÞ;

p2 · p3 ¼ ðE1E2 − p1p2 cos αÞ − ðE1E3 − p1p3 cos θÞ þ
Q
2
;

p2 · p4 ¼ ðE1E3 − p1p3 cos θÞ þm2
2 −

Q
2
;

p3 · p4 ¼ ðE1E2 − p1p2 cos αÞ −m2
3 þ

Q
2
:

To integrate over d cos θ, the solutions of b2 − 4ac are important for the integration interval:

cos θ ¼ −2γ − 2p2
2 −Q� 2p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ þ p2

1 þ p2
2 þ p2

3 þQ
p
2p1p2

: ðB15Þ

If there is to be a real integration interval, both of these solutions must be real, and we will refer to them as cos θmin and
cos θmax. The real integration limits are α ¼ sup½−1; cos θmin� and β ¼ inf½þ1; cos θmax� with α ≤ β. Finally, with these
conditions, it is possible to calculate numerically the collision integral left:

Ccoll½f� ¼
2

ð2πÞ4
1

2E1

Z
∞

0

Z
p1þp2

0

Z
β

α

p2
2dp2

2E2

p2
3dp3

2E3

d cos θFðfi; ffÞΛðp1; p2; p3ÞΘðAÞ; ðB16Þ
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where A is the parameter space allowed, Λ comes from the
following analytical integral:

Λðp1; p2; p3Þ≡
Z jMj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a cos2 αþ b cos αþ c
p

Θða cos2 αþ b cos αþ cÞd cos α; ðB17Þ
and Fðfi; ffÞ is the expression defined in Eq. (11) and
evaluated for p4 given in Eq. (B2).
Finally, for the decay processes, it is possible to follow a

similar procedure modulo the fact that we do not integrate
analytically over cos α and we define

p4 ¼ p1 − p2 − p3; ðB18Þ
γdec ≡ E2E3 − E2E1 − E3E1; ðB19Þ

bdec ≡ 4p2ð−p1 þ ϵ=p1Þð2γ þQþ 2eÞ: ðB20Þ

APPENDIX C: COMPARISON WITH
PREVIOUS RESULTS

To validate our code, we have first compared our results
with pioneering results obtained in Ref. [11], finding excel-
lent agreement with respect to several outputs; see, e.g.,
Fig. 11 showing the comoving density of the sterile species.
The most recent constraints on heavy decaying sterile

neutrinos have been reported in Ref. [18]. In Figs. 12 and
13, we compare BBN bounds from Ref. [18] with our BBN
bounds, while in Figs. 14 and 15 we compare CMB bounds
from Fig. 11 in Ref. [18] with CMB results from our code,
obtained using the same value of ΘObs as a benchmark.
While there is always a qualitative agreement, the

quantitative agreement between the results is rather good
only for the BBN case, while it shows some discrepancy in
the CMB case for high masses. From inspection of
Ref. [18] (e.g., Sec. 4.1.2, Appendix B) we infer that the

authors find a systematically lower value of Neff than us
when masses are significantly large than ∼10 MeV and that
their Neff can also attain values below 3, while we always
find ΔNeff ≳ 0 (see, e.g., Fig. 2). This has been confirmed
by private communication with the corresponding author of
Ref. [18]. This behavior is also found in Ref. [17] (right
panel in Fig. 3) and is indeed traced back by the authors of
Ref. [18] to the solution scheme provided by the PYBBN
code. As a result, in Ref. [18], CMB bounds at large masses
are dominated by Yp (to which CMB is less sensitive)
rather than by Neff and are weaker than ours. Since BBN
bounds from Yp depend mostly on spectral distortions of
the electron-type neutrinos, it is not surprising that the
agreement is much better in this observable channel. For
the case of mixing with ντ, where Neff plays a slightly
bigger role, the agreement is not as excellent while
remaining good. Note that the inclusion of deuterium
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FIG. 12. Comparison of results from the BBN constraints for
the decay time of a sterile neutrino mixed only with active tauonic
(or muonic) neutrino in Refs. [11,18] and the one from our code.
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FIG. 13. Comparison of results from the BBN constraints for
the decay time of a sterile neutrino mixed only with active
electron neutrino in Refs. [11,18] and the one from our code.
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FIG. 11. Comparison between our results (red, solid line) and
Ref. [11] (black, dashed line) on the comoving density of the
sterile species for ms ¼ 100 MeV and τs ¼ 0.055 s.
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constraints is subleading to the effect on Yp (see Fig. 3 in
Ref. [18]), so neglecting it has no major impact on our BBN
bounds.
In the recent Ref. [34], a physical interpretation of the

effect on Neff found in Ref. [18] is discussed: It is claimed
that ΔNeff < 0 is a quasigeneric outcome of injection of
energy after neutrino decoupling, even for decay modes
mostly in neutrinos, as a result of a dominant entropy
transfer to e� via nonthermal neutrino interactions with
particles of the thermal bath; see Eqs. (3)–(5) in Ref. [34].
Although the authors of Ref. [34] draw some analogy of
their ΔNeff < 0 effect with the results of the pioneering
work [35] on a low-reheating scenario, we believe that this
is not very instructive, since the thermal neutrino bath is
obviously suppressed if the Universe starts at temperatures

comparable or lower than the neutrino decoupling, a
situation very different from the one under study.
Since we could not confirm numerically these surprising

results, we thought it useful to discuss their plausibility
with a qualitative study of the Boltzmann equation, in the
analytical approximation derived above, matching, e.g., the
one in Ref. [11]. If denoting with f1 the nonthermal
neutrino distribution under exam, it obeys an equation of
the form

x∂xf1 ¼
I½f1�
H

¼ 1

H
½SðxÞ þ ς2G2

Fðfeq − f1ÞT4E1�: ðC1Þ

The first termS ∝ ðfs − feqs Þ=τs ≃ fs=τs on the rhs is always
positive, since it describes the injection due to decays of the
sterile neutrinos.More precisely,S is an integral where ðfs −
feqs Þ enters as a kernel; see, e.g., Eq. (A7). The second
(collisional) term, where ς2 is a positive numerical constant,
is initially zero, since neutrinos are at equilibrium, but as a
result of the source term S, f1 grows above the equilibrium
value and leads to a negative value of the collisional term,
linear in ðfeq − f1Þ. A depletion of the neutrino distribution
to “subthermal” values, as apparently found in Ref. [34],
would imply reversing the sign of the collisional term, i.e.,
obtaining a positive value of ðfeq − f1Þ. However, this
second term being controlled by the source term S, it can
at most grow negative to the point of compensating the first
term, thus reaching an equilibrium between injection and
collisional redistribution of the energy. At that moment, the
derivative of f1 is driven to zero and f1 becomes constant. In
practice, unless none of the rates is fast compared to the
Hubble expansion H, the evolution follows one of the
following paths.

(i) The first term on the rhs in Eq. (C1) dominates over
the collisional term, which means that f1 grows
significantly larger than feq, with the scattering
incapable of fully compensating it.

(ii) The second term on the rhs in Eq. (C1) is dominant:
As a result, f1 tends to feq, annihilating the colli-
sional term or, more precisely, settling to a slightly
larger-than-thermal value to compensate for the
injection.

Hence, we conclude that either f1 freezes out at a value
larger than the equilibrium one (implying ΔNeff > 0) or in
the “worst” case it tends to the equilibrium distribution
(ΔNeff → 0þ), in contradiction with the conclusions of
Ref. [34]. In the above discussion, we neglected the effect
of the growing temperature as a result of the transfer of
entropy from the sterile neutrino decays: At this level of
approximation, however, its effect is to make the collisional
term increase via the T4 factor, as well as to increase feq, so
that the equilibrium distribution the particles are driven to is
not the same as the initial one.
For the sake of the argument, let us assume that, as a

result of collisions, the second term on the rhs in Eq. (C1)
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FIG. 14. Comparison of results from the CMB constraints for
the decay time of a sterile neutrino mixed only with active tauonic
(or muonic) neutrino in Ref. [18] and the one from our code
obtained using their same value of ΘObs as a benchmark.
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FIG. 15. Comparison of results from the CMB constraints for
the decay time of a sterile neutrino mixed only with an active
electron neutrino in Ref. [18] and the one from our code obtained
using their same value of ΘObs as a benchmark.
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starts becoming positive at some instant, i.e., feq > f1:
Then, f1 would start growing again (because the rhs
would be positive), and, hence, the rhs is brought closer to
zero. The feedback is such that any collisionally induced
depletion of neutrinos would be immediately compen-
sated, preventing a depletion of f1 in the circumstances
under exam. For that to happen, one needs a situation in
which feq grows due to the growth of temperature, with a
minimal impact on f1. This can be easily obtained if the
injection of energy from decay is dominantly in the
e.m. sector and the collisional terms is negligible, i.e.,
a situation of type (i) but in the e.m. sector, as naively
expected. We checked that this is indeed the case; namely,
one obtains ΔNeff < 0 when artificially pushing the b.r.
into neutrinos to subdominant values, and the decay
happens sufficiently late. These regimes are illustrated
in Fig. 16: If the sterile state decays early, the collisional
term is capable of restoring equilibrium and ΔNeff → 0, as
argued in situation (ii) described above, independently of
the channel in which energy is injected. For a decay
happening later and later, collisions are less and less
efficient in restoring equilibrium and ΔNeff > 0 for a
dominant b.r. into neutrino states, while ΔNeff < 0 for a
dominant b.r. into the e.m. channel.
All our numerical results qualitative agree with these

conclusions that can also be drawn from Eq. (C1). Since
Eq. (C1) is an approximation, one may wonder if the results
in Ref. [34] are due to some features not captured by
Eq. (C1) (and, for some unknown reason, also missed by
our numerical calculation). We believe that this is not the
case as we argue in the following.

(i) Equation (C1) neglects quantum statistics effects,
which appear, however, irrelevant to the arguments
inf Ref. [34] and are anyway present for both
electrons and neutrinos, without causing a qualita-
tive change in one sector compared to the other.

(ii) Equation (C1) assumes Tν ¼ T. However, this is not
crucial to the conclusions above. The presence of a
“two-temperature background” is essentially equiv-
alent to split the term ðfeq − f1Þ into a linear
combination of ðfeqν − f1Þ and ðfeqe − f1Þ, each
weighted by a positive factor. Both these functions
are negative under the effect of neutrino energy
injection: One has a fortiori ðfeqν − f1Þ < 0, since
feqν < feqe when T > Tν (and electrons are relativ-
istic), while ðfeqe − f1Þ < 0 must be satisfied if we
ask for T to grow larger than Tν as a result of
injection of energy in the neutrino sector. The T
evolution equation is indeed controlled by the
opposite of the neutrino collisional term, i.e., goes
as ðf1 − feqe Þ, as can be checked via Eq. (31).

(iii) Equation (C1) does not account for the quadratic
terms involving the nonthermal parts of the neu-
trino distributions, i.e., depending from ðfν − feqν Þ2,
since thermal distributions have been used in the
kernels of the collisional integrals; see Appendix A.
Note, however, that these are not the processes
claimed in Ref. [34] to be responsible for the
effect on Neff , since their Eqs. (3)–(5) explicitly
indicate reactions of the nonthermal neutrinos on
thermal background species, which are included in
the above treatment. Yet, let us entertain the
possibility that the results outlined by the authors
of Ref. [34] are physical and due to these nonlinear
effects and that it is only their interpretation or
attribution to be incorrect. One should then expect
that ΔNeff < 0 shows a “threshold” behavior with
respect to the amount of energy injected in neu-
trinos: The less nonthermal energy is injected, the
less likely these nonlinear interactions among non-
thermal particles should become when compared to
interactions with the thermal background. Hence,
the authors of Ref. [34] should have found that the
effect kicks in only above some fraction of the
background energy injected in the medium, grow-
ing quadratically above this value. Instead, not only
do they claim an effect also in the idealized case of
“single neutrino injection” (see their Fig. 1), but
clearly show an effect that is roughly linear in
the injected nonthermal energy (see Fig. 7, left:
The change is from slightly below −0.2% to about
−0.8% when moving from an injection of 1%
to 5%), inconsistent with this hypothetical
explanation.

In conclusion, to the best of our knowledge, we attribute
our departure from the results in Ref. [18] on the CMB
constraints at large masses to some unidentified systemat-
ics, probably the same effects responsible for the “univer-
sal” ΔNeff < 0 outcome described in Ref. [34] which
appears unphysical, for the reasons detailed above. The
toy model advocated in Ref. [34] to support their findings is
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FIG. 16. ΔNeff vs τs for ms ¼ 50 MeV in the limit of zero b.r.
into active neutrino states (solid red line) and zero b.r. into
electromagnetic sector (black dashed line).
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also untrustworthy, since it does not account for reverse
reactions (only reactions transferring energy from neutrinos
into e.m. particles are included) and does not implement the
physical requirement that only excess energy (above the

thermal value) can be effectively transferred in collisions.
As a consequence, it is, for instance, incapable of predicting
equilibration and ΔNeff → 0 when energy is injected at
early times.
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