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Based on the flavor structure of four-quark effective operators, we develop an automatic computation
program to calculate hadronic two-body B meson decay amplitudes, and apply it to their global analysis in
the perturbative QCD (PQCD) approach. Fitting the PQCD factorization formulas for B → PP; VP decays
at leading order in the strong coupling αs to measured branching ratios and direct CP asymmetries, we
determine the Gegenbauer moments in light meson light cone distribution amplitudes (LCDAs). It is found
that most of the fitted Gegenbauer moments of the twist-2 and twist-3 LCDAs for the pseudoscalar meson
P (P ¼ π, K) and vector meson V (V ¼ ρ, K�) agree with those derived in QCD sum rules. The shape
parameter for the Bs meson distribution amplitude and the weak phase ϕ3ðγÞ ¼ ð75.2� 2.9Þ° consistent
with the value in Particle Data Group are also obtained. It is straightforward to extend our analysis to higher
orders and higher powers, when the corresponding subleading contributions are available in the PQCD
approach, and to the global determination of LCDAs for other hadrons.
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I. INTRODUCTION

The study of heavy quark physics is firmly in the
precision era nowadays. On the experimental side, the B
factories, i.e., the BABAR, Belle, and LHCb, have collected
abundant data of exclusive B meson decays, which can be
employed not only to explore involved rich QCD dynamics
but also to probe the origin of CP violation and potential
new physics signals [1]. Vastly more data will be still
accumulated by the upgraded LHCb and Belle-II
Collaborations [2–4]. On the theoretical side, tremendous
progress on the development of QCD treatments of
exclusive B meson decays with controllable uncertainties
has been achieved. Strict confrontation between data and
theoretical expectations has led to some mild tensions

between experimental observations and the Standard
Model [1], which may be vaguely attributed to new physics
beyond the Standard Model. This undoubtedly motivates
the attempt to gain deeper understanding of QCD dynamics
in exclusive B meson decays and better control of hadronic
uncertainties.
The b quark mass mb, much larger than the QCD

hadronic scale ΛQCD, renders QCD analyses of exclusive
B meson decays possible. Nonperturbative dynamics in
heavy meson decays is reflected by infrared divergences in
radiative corrections. When a factorization theorem holds,
infrared divergences are absorbed into hadron light cone
distribution amplitudes (LCDAs), so that the remnant,
being infrared finite, is calculable at the parton level in
perturbation theory. A physical quantity, such as a heavy-
to-light transition form factor, is then factorized into a
convolution of a b quark decay hard kernel with hadron
LCDAs in parton momentum fractions. The corresponding
factorization theorem should be proved to all orders in the
strong coupling αs and to certain power in ΛQCD=mb.
LCDAs, despite of being nonperturbative, are universal,
i.e., process independent. With this universality, LCDAs,
determined by nonperturbative methods like QCD sum
rules [5–7] and lattice QCD [8–10], or extracted from
experimental data, can be employed to make predictions for
other modes involving the same hadrons.
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The theoretical approaches based on factorization the-
orems in the heavy quark limit include light cone QCD sum
rules (LCSR) [11–13], the QCD-improved factorization
(QCDF) [14], the perturbative QCD (PQCD) factorization
[15–20], and the soft-collinear effective theory (SCET)
[21,22]. The collinear factorization applies to relevant
correlators in LCSR, where some hadronic states are
expanded into parton Fock states characterized by different
twists. The QCDF approach is an extension of the naive
factorization assumption for hadronic two-body B meson
decays in the collinear factorization theorem. The SCET for
kinematic regions with energetic final state hadrons is
equivalent to the collinear factorization theorem, but for-
mulated in terms of effective operators. The kT factoriza-
tion theorem is the basis of the PQCD approach, which is
more appropriate in the endpoint region of parton momen-
tum fractions. Many efforts have been devoted to system-
atic investigation of hadronic two-body B meson decays at
various orders in αs and powers in ΛQCD=mb [23–25]. In all
the above formalisms nonperturbative hadron LCDAs
provide one of major sources of theoretical uncertainties.
A hadron LCDA can be expanded into a series of

Gegenbauer polynomials with the coefficients, namely,
the Gegenbauer moments being determined by other
methods as aforementioned. Though some attempts have
been made to calculate Gegenbauer moments using lattice
QCD [8–10], not all LCDAs are constrained in this way so
far. Here we will perform a global fit of the Gegenbauer
moments in light meson LCDAs to measured branching
ratios and direct CP asymmetries in hadronic two-body B
meson decays in the PQCD approach. It is known that
enormous efforts have been devoted for several decades to
global determinations of parton distribution functions from
experimental data, which serve as the nonperturbative
inputs to the factorization of inclusive QCD processes.
What we are proposing, i.e., the global fit of hadron
LCDAs, is a parallel version for exclusive processes. We
believe that it is time to initiate such a pronounced program,
and the global analysis of hadronic two-body B meson
decays represents the first attempt along this line.
The involved decay amplitudes at leading order (LO)

of the strong coupling αs will be constructed automatically
with a computation program by making use of flavor
SU(3) properties. We establish a Gegenbauer-moment-
independent database, by means of which each decay
amplitude is expressed as a combination of the relevant
Gegenbauer moments and Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. The Gegenbauer moments in the
leading-twist (twist-2) and next-to-leading-twist (twist-3)
LCDAs for the pseudoscalar meson P (P ¼ π, K) and
vector meson V (V ¼ ρ, K�) are then fixed in the global fit,
most of which are found to agree with those from QCD sum
rules [5–7]. It should be noticed that the precision of
extracted LCDAs depends on the accuracy of the involved
hard kernels. As a by-product, the shape parameter for the

Bs meson distribution amplitude (DA) and the weak phase
ϕ3ðγÞ ¼ ð75.2� 2.9Þ° consistent with the value in Particle
Data Group [26] are also obtained. Though we have
focused on the B → PP;VP decays at LO in PQCD,
our work provides the first setup for a global analysis of
exclusive B meson decays, and can be generalized straight-
forwardly to include other modes, and higher-order and/or
higher-power corrections, when they are available.
The rest of this paper is organized as follows. We give a

brief overview of the theoretical framework for hadronic
two-body B meson decays in Sec. II. The automatic
derivation of the decay amplitudes in the PQCD approach
is formulated in Sec. III, where the Gegenbauer-moment-
independent database for the considered modes is estab-
lished. We perform a global fit of meson LCDAs and the
CKM angle ϕ3ðγÞ to a limited number of physical observ-
ables in the B → PP; VP decays, and present the numerical
results in Sec. IV. We also compare our predictions for
some other modes excluded in the fit with experimental
data. A few remarks and future improvements on our
analysis are outlined at the end of this section. Section V
contains a summary of the present work. The explicit
factorization formulas and their ingredients are collected in
the Appendix.

II. THEORETICAL FORMALISM

In exclusive processes, such as heavy-to-light transition
form factors, the range of a parton momentum fraction x,
contrary to that in an inclusive case, is not experimentally
controllable, and runs from 0 to 1. Hence, the end point
region with x → 0 is unavoidable. If no end point singu-
larity is developed, implying that the end point region is
likely power suppressed, the collinear factorization will
work. If such a singularity occurs, the collinear factoriza-
tion will break down, and the kT factorization should be
adopted. In fact, the observation QF2ðQ2Þ=F1ðQ2Þ ∼
const: [27,28], F1 and F2 being the proton Dirac and
Pauli form factors, respectively, and Q being a momentum
transferred, indicates that the kT factorization is an appro-
priate tool for studying exclusive processes [29]. It has been
shown that infrared divergences appearing in loop correc-
tions to exclusive processes can be absorbed into hadron
LCDAs in the kT factorization without breaking the gauge
invariance [30]. Since the kT factorization theorem was
proposed [31,32], there had been broad applications to
various processes [33].
The application of the collinear factorization theorem to

exclusive B meson decays, for instance, the B → π tran-
sition form factors, suffers the end point singularities
mentioned above [34–36]: the twist-2 and twist-3 contri-
butions are logarithmically and linearly divergent, respec-
tively. The inclusion of parton transverse momenta kT ,
regulating the end point singularities, induces soft loga-
rithms in higher-order corrections. Their overlap with
the existent collinear logarithms generates the double
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logarithms αs ln2 kT , which must be organized in order not
to spoil perturbative expansion. The basic idea for the kT
resummation of the double logarithms into a Sudakov
factor has been elaborated in [15–17,31,37], where the
explicit expressions of the Sudakov exponents can be
found. The resultant Sudakov suppression on the low kT
contribution in the end point region renders the magnitude
of k2T roughly OðmbΛQCDÞ. The coupling constant
αsð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbΛQCD

p Þ=π ∼ 0.13 is then small enough to justify
the perturbative evaluation of heavy-to-light transition form
factors at large recoil [18,38,39].
On the other hand, the double logarithms αs ln2 x from

radiative corrections were observed in the semileptonic
decay B → πlν [40] and in the radiative decay B → γlν
[41]. It has been argued that when the end point region is
important, these double logarithms should be organized
into a quark jet function systematically in order to improve
perturbative expansion. The procedure is referred to as the
threshold resummation [42]. The resultant jet function has
been shown to vanish quickly as x → 0. It turns out that in a
self-consistent perturbative evaluation of the heavy-to-light
transition form factors, where the original factorization
formulas are further convoluted with the jet function, the
end point singularities do not exist [42]. The threshold
resummation for the jet function has been pushed to the
next-to-leading-logarithm accuracy recently [43]. Note that
either the threshold or kT resummation smears the end point
singularities. To suppress the soft contribution sufficiently,
both resummations are required, such that reliable results
for the heavy-to-light transition form factors can be
attained.
We emphasize that the power counting for a parton

transverse momentum kT is nontrivial, compared to the
power counting for the fixed scales like mb and ΛQCD. The
kT factorization is suitable for a multiscale process, like a
heavy-to-light transition form factor, towhich the region of a
small momentum fraction x dominates. The small x intro-
duces an additional intermediate scale xm2

b ∼mbΛQCD,
respecting the hierarchy m2

b ≫ xm2
b ≫ Λ2

QCD. A parton
kT , being an integration variable in a kT factorization
formula, can take values of orders of the above scales.
The kT factorization should apply, as a hard kernel depends
on the large scalem2

b and the intermediate scalembΛQCD, but
not on the small scale Λ2

QCD, and the factorization of hadron
wave functions hold for a parton kT at both the intermediate
and small scales. Once these criteria are satisfied, the kT
dependence in a hard kernel is not negligible [30], and a
convolution between the hard kernel and thewave functions
in kT is demanded. If a hard kernel involves only the large
scale, the kT dependence of the hard kernel can be neglected.
It is then integrated out in the wave functions, and one is led
to the collinear factorization.
Since a wave function contains the contributions char-

acterized by both the intermediate and small scales, it is

legitimate to further factorize the former out of the wave
function, as the intermediate scale is regarded as being
perturbative. This gives the aforementioned kT resumma-
tion, which is justified perturbatively for the scale
k2T ∼mbΛQCD. After this organization, the remaining piece,
i.e., the initial condition for the Sudakov resummation,
involves only the small scale Λ2

QCD, and corresponds to a
hadron DA. Note that a more sophisticated formalism,
called the joint resummation, which organizes the mixed
logarithms formed by the above two different scales, has
been developed in [44]. Similarly, it is also legitimate to
further factorize the contribution characterized by an
intermediate scale out of a hard kernel in the kT factori-
zation. This refactorization yields the jet function, through
which the logarithms of xm2

b are resummed to all orders.
The effective Hamiltonian for hadronic two-body B

meson decays is given by [45]

Heff ¼
GFffiffiffi
2

p
�X

q¼u;c

VqbV�
qD½C1O

q
1 þ C2O

q
2�

− VtbV�
tD

X10
i¼3

CiOi

�
þ H:c:; ð1Þ

with the Fermi constant GF, the CKM matrix elements
VqbðDÞ,D ¼ d, s, the local four-quark operatorsOi, and the
Wilson coefficients Ci. All the factorizable, nonfactorizable
and power-suppressed annihilation contributions resulting
from the above four-quark operators are calculable in the
PQCD approach without the end point singularities. The
arbitrary cutoffs introduced in QCDF [46,47] are not
necessary, and PQCD factorization formulas involve only
universal and controllable inputs. The B → M2M3 decay
amplitude is generically factorized into the convolution of
the Wilson coefficient C, a six-quark hard kernel H, the jet
function Jt, and the Sudakov factor Swith meson LCDAs ϕ
[48–51],

A ¼ ϕB ⊗ C ⊗ H ⊗ Jt ⊗ S ⊗ ϕM2
⊗ ϕM3

; ð2Þ

all of which are well defined and gauge invariant. The
partition of nonperturbative and perturbative contributions
depends on factorization schemes. However, a decay
amplitude, as a convolution of the above factors, is
independent of factorization schemes in principle.

III. DATABASE FOR GLOBAL FIT

A. Light cone distribution amplitudes

The momenta pB, p2, and p3 of the B̄ meson, emitted
mesonM2, and recoiling mesonM3, respectively, and their
associated parton momenta are chosen, in the light cone
coordinates, as
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pB ¼ mBffiffiffi
2

p ð1; 1; 0TÞ; k1 ¼
�
x1

mBffiffiffi
2

p ; 0; k1T

�
;

p2 ¼
mBffiffiffi
2

p ð1; 0; 0TÞ; k2 ¼
�
x2

mBffiffiffi
2

p ; 0; k2T

�
;

p3 ¼
mBffiffiffi
2

p ð0; 1; 0TÞ; k3 ¼
�
0; x3

mBffiffiffi
2

p ; k3T

�
; ð3Þ

which are labeled in Fig. 1 withmB being the Bmeson mass and xi being the momentum fractions. The light meson LCDAs
are defined through the matrix elements

hPðpÞjq1αð0Þq̄2βðzÞj0i ¼
iffiffiffiffiffiffiffiffi
2Nc

p
Z

1

0

dxeixp·z½γ5pϕAðxÞ þ γ5m0ϕ
PðxÞ þm0γ5ð=v=n − 1ÞϕTðxÞ�αβ;

hVðp; ϵ�LÞjq1αð0Þq̄2βðzÞj0i ¼
−1ffiffiffiffiffiffiffiffi
2Nc

p
Z

1

0

dxeixp·z½mV=ϵ�LϕVðxÞ þ =ϵ�Lpϕ
t
VðxÞ þmVϕ

s
VðxÞ�αβ; ð4Þ

where Nc ¼ 3 is the number of colors, m0 is the chiral
enhancement scale for the pseudoscalar meson P, the
dimensionless vector v ¼ ffiffiffi

2
p

p=MB lies in the direction of
the meson momentum p, the dimensionless vector n lies in
the direction of the quark coordinate zwithn · v ¼ 1, andmV
(ϵL) is the mass (longitudinal polarization vector) of the
vector meson V. The light meson LCDAs are expanded as

ϕPðxÞ ¼
fP

2
ffiffiffiffiffiffiffiffi
2Nc

p 6xð1− xÞ½1þ af1C
3=2
1 ð1− 2xÞ

þ af2C
3=2
2 ð1− 2xÞ þ af4C

3=2
4 ð1− 2xÞ�;

ϕP
PðxÞ ¼

fP
2

ffiffiffiffiffiffiffiffi
2Nc

p ½1þ afP2C
1=2
2 ð1− 2xÞ þ afP4C

1=2
4 ð1− 2xÞ�;

ϕT
PðxÞ ¼ −

fP
2

ffiffiffiffiffiffiffiffi
2Nc

p ½C1=2
1 ð1− 2xÞ þ afT2C

1=2
3 ð1− 2xÞ�;

ϕVðxÞ ¼
fV

2
ffiffiffiffiffiffiffiffi
2Nc

p 6xð1− xÞ½1þ afjj1 C3=2
1 ð1− 2xÞ

þ afjj2 C3=2
2 ð1− 2xÞ�;

ϕt
VðxÞ ¼

3fTV
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1− 2xÞ2;

ϕs
VðxÞ ¼

3fTV
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1− 2xÞ; ð5Þ

in terms of the orthogonal Gegenbauer polynomials

C1=2
1 ðtÞ¼ t; C1=2

2 ðtÞ¼1

2
ð3t2−1Þ; C1=2

3 ðtÞ¼1

2
tð5t2−3Þ;

C3=2
1 ðtÞ¼3t; C3=2

2 ðtÞ¼3

2
ð5t2−1Þ;

C3=2
4 ðtÞ¼15

8
ð1−14t2þ21t4Þ; ð6Þ

where the decay constants fP, fV and fTV can be extracted
from leptonic decay widths such as Γðπ → μνÞ and
Γðτ → ρνÞ, and the superscripts f of the Gegenbauer
moments label the species of mesons.
The B meson DA is defined via the matrix element

Z
d4z
ð2πÞ4 e

ik·zh0jbαð0Þq̄βðzÞjB̄ðpBÞi

¼ iffiffiffiffiffiffiffiffi
2Nc

p
�
ðpB þmBÞγ5

�
ϕBðkÞ −

=nþ − =n−ffiffiffi
2

p ϕ̄BðkÞ
��

αβ

;

ð7Þ

with the light spectator momentum k, and the dimension-
less vectors nþ ¼ ð1; 0; 0TÞ and n− ¼ ð0; 1; 0TÞ. In this
work we adopt the model for the BðsÞ meson DA,

ϕBðsÞ ðx;bÞ¼NBðsÞx
2ð1−xÞ2exp

�
−
m2

BðsÞx
2

2ω2
BðsÞ

−
1

2
ω2
BðsÞb

2

�
; ð8Þ

where the constant NBðsÞ is fixed by the normalization

condition
R
ϕBðsÞ ðx; b ¼ 0Þdx ¼ fBðsÞ=ð2

ffiffiffiffiffiffiffiffi
2Nc

p Þ with the
BðsÞ meson decay constant fBðsÞ , the shape parameter
ωBðsÞ will be determined in the next section, and b is the

FIG. 1. A leading order Feynman diagram for the B̄ðpBÞ →
M2ðp2ÞM3ðp3Þ decay.
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impact parameter conjugate to the transverse momentum
kT . It has been argued [38] that the contribution from ϕ̄BðkÞ
is power suppressed, so it will be neglected in the numerical
analysis below.

B. SU(3) flavor structure

To calculate hadronic two-body B meson decay ampli-
tudes systematically, we introduce the following SU(3)
matrix elements for various species of mesons,

B− ¼ ð1; 0; 0Þ; B̄ ¼ ð0; 1; 0Þ; B̄0
s ¼ ð0; 0; 1Þ;

Mπþ ¼ Mρþ ¼

0
B@

0 0 0

1 0 0

0 0 0

1
CA; MKþ ¼ MK�þ ¼

0
B@

0 0 0

0 0 0

1 0 0

1
CA; MK0 ¼ MK�0 ¼

0
B@

0 0 0

0 0 0

0 1 0

1
CA;

ffiffiffi
2

p
Mπ0 ¼

ffiffiffi
2

p
Mρ0 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

ffiffiffi
2

p
Mηq ¼

ffiffiffi
2

p
Mω ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; Mηs ¼ Mϕ ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA;

Mπ− ¼ Mρ− ¼ MT
πþ ; MK− ¼ MK�− ¼ MT

Kþ ; MK̄0 ¼ MK̄�0 ¼ MT
K0 ; ð9Þ

which reflect the internal structure of the flavor SU(3)
group. The isosinglet mesons like ηq; ηs;ω, and ϕ will not
be considered in the global analysis below, but their
properties are listed here for completeness. We will take
into account these hadrons, as extending the database in the
future. The matrices relevant for the heavy-to-light tran-
sitions are given by

δu ¼

0
B@

1 0 0

0 0 0

0 0 0

1
CA; Λd ¼

0
B@

0

1

0

1
CA;

Λs ¼

0
B@

0

0

1

1
CA; eQ ¼

0
B@

1 0 0

0 − 1
2

0

0 0 − 1
2

1
CA: ð10Þ

The factorization formula for a B → PP decay amplitude
in Eq. (2) can be divided into four pieces, Fe from the
factorizable emission diagrams in Figs. 2(a) and 2(b), Me
from the nonfactorizable emission diagrams in Figs. 2(c)
and 2(d), Fa from the factorizable annihilation diagrams in
Figs. 3(a) and 3(b), and Ma from the non-factorizable
annihilation diagrams in Figs. 3(c) and 3(d), each of which
contains at least one hard gluon exchange. All the diagrams
receive contributions from the ðV − AÞðV − AÞ operators
denoted by LL, from the ðV − AÞðV þ AÞ operators
denoted by LR, and from the ðS − PÞðSþ PÞ operators
denoted by SP. The ðS − PÞðSþ PÞ operators appear under
the Fierz transformation of the ðV − AÞðV þ AÞ ones. The
explicit expressions for the above contributions, together
with the Sudakov factors and hard kernels, are presented in
the Appendix.

(a) (b) (c) (d)

FIG. 2. Emission diagrams with possible four-quark operator insertions.

(a) (b) (c) (d)

FIG. 3. Annihilation diagrams with possible four-quark operator insertions.
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We decompose the total B → M2M3 decay amplitude
into the combination

M ¼ GFffiffiffi
2

p VubV�
uq½AuðB → M2M3Þ�

−
GFffiffiffi
2

p VtbV�
tq½AtðB → M2M3Þ�; ð11Þ

where AuðB → M2M3Þ denotes the tree contribution with
the product VubV�

uf of the CKM matrix elements, and
AtðB → M2M3Þ denotes the penguin contribution with the
product VtbV�

tf. These amplitudes are written, in terms of
the matrices in Eqs. (9) and (10), as

AuðB → M2M3Þ ¼ ½FLL
e ða1Þ þMLL

e ðC1Þ�BM3δuM2Λf þ ½FLL
e ða2Þ þMLL

e ðC2Þ�BM3ΛfTr½δuM2�
þ ½FLL

annða1Þ þMLL
annðC1Þ�BδuM3M2Λf þ ½FLL

annða2Þ þMLL
annðC2Þ�BΛfTr½δuM3M2�;

AtðB → M2M3Þ ¼ ½FLL
e ða3Þ þ FLR

e ða5Þ þMLL
e ðC4Þ þMSP

e ðC6Þ�BM3ΛfTr½M2�
þ ½FLL

e ða4Þ þ FSP
e ða6Þ þMLL

e ðC3Þ þMLR
e ðC5Þ�BM3M2Λf

þ ½FLR
e ða7Þ þ FLL

e ða9Þ þMSP
e ðC8Þ þMLL

e ðC10Þ�BM3ΛfTr½eQM2�
þ ½FSP

e ða8Þ þ FLL
e ða10Þ þMLR

e ðC7Þ þMLL
e ðC9Þ�BM3eQM2Λf

þ ½FLL
annða3Þ þ FLR

annða5Þ þMLL
annðC4Þ þMSP

annðC6Þ�BΛfTr½M3M2�
þ ½FLL

annða4Þ þ FSP
annða6Þ þMLL

annðC3Þ þMLR
annðC5Þ�BM3M2Λf

þ ½FLR
annða7Þ þ FLL

annða9Þ þMSP
annðC8Þ þMLL

annðC10Þ�BΛfTr½eQM3M2�
þ ½FSP

annða8Þ þ FLL
annða10Þ þMLR

annðC7Þ þMLL
annðC9Þ�BeQM3M2Λf; ð12Þ

with the Wilson coefficients a1 ¼ C2 þ C1=3,
a2 ¼ C1 þ C2=3, a2n−1 ¼ C2n−1 þ C2n=3, and a2n ¼
C2n þ C2n−1=3 (n ≥ 2). The unitarity of the CKM matrix
is assumed in this work. The weak phase ϕ3ðγÞ is defined
via the CKM matrix element Vub ≡ jVubje−iγ .
The B → VP decay amplitudes can be simply inferred

from the B → PP amplitudes through the replacements of
light meson LCDAs and of a chiral enhancement scale by a
vector meson mass. For the B → V2P3 emission and B →

P2V3 annihilation, we apply the rule ϕð2Þ;ð3Þ
3 → −ϕð2Þ;ð3Þ

3 ,
and further flip the signs of the LR and SP amplitudes,
where the subscript (2) means twist 2, and (3) means twist

3. For the B → V2P3 annihilation, we apply ϕð2Þ
3 → −ϕð2Þ

3

and ϕð3Þ
3 → ϕð3Þ

3 , and further flip the signs of the LR and SP
amplitudes. The above rule holds for both the pseudoscalar
P and vector V mesons, and for the factorizable and
nonfactorizable diagrams. For the B → P2V3 emission,

we apply ϕð2Þ
3 → −ϕð2Þ

3 and ϕð3Þ
3 → ϕð3Þ

3 , and further flip the
signs of the nonfactorizable LR amplitudes and the
factorizable SP amplitudes.
As shown in Eq. (5), there are nine Gegenbauer moments

afs in total for the twist-2 pseudoscalar LCDA ϕPðxÞ and
twist-3 LCDAs ϕP

PðxÞ and ϕT
PðxÞ. Note that the Gegenbauer

moment aπ1 vanishes due to the isospin symmetry, and afP4
are not included in the fit, because they cannot be con-
strained effectively under the current limited experimental
accuracy. Thus, a B → PP decay amplitude contains 9 × 9
combinations of the Gegenbauer moments,

M ∼
X9
n;m¼1

afna
f
mMnm; ð13Þ

where the products afna
f
m of the Gegenbauer moments aπ2 ,

aπ4 , a
π
P2, a

π
T2, a

ρk
2 , aK1 , a

K
2 , a

K
4 , and aK

�k
2 have been factored

out explicitly. We compute the factorization formula Mnm,
which involves only the Gegenbauer polynomials associ-
ated with afn and afm, to establish a 9 × 9 database. Each
database has 20 sets of values, corresponding to the Wilson
coefficients a1 � � � a10 and C1 � � �C10 in Eq. (12). To
analyze the B → VP decays, we construct a 9 × 4 × 2
database for Mnm in a similar manner, where ×2 is
attributed to the two possible final states P2V3 and
V2P3. The inputs for the Fermi constant, the meson decay
constants, the meson masses, and the chiral enhancement
scale are the same as in [52], and the magnitudes of the
CKM matrix elements are referred to [26] in the above
computations.

IV. NUMERICAL RESULTS

A. Least-square fit and Bayesian analysis

We determine the Gegenbauer moments and the weak
phase ϕ3ðγÞ by fitting the branching ratios and direct CP
asymmetries formulated from the decay amplitudes in
Eq. (13) to experimental data using the nonlinear least-
χ2 method [53]. The least-χ2 method minimizes the
summed residual S,
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S ¼
Xn
i¼1

r2i ; ri ¼ yi − ŷi; ð14Þ

where ri is the residual at the ith point xi, yi (ŷi) represents
the experimental data (response value), and n is the number
of data points. One defines a model function ŷi ¼ fðxi; β⃗Þ,
where the vector β⃗ contains the m adjustable parameters
considered in the fit. The minimum of Eq. (14) is obtained
by equating the gradient to zero,

∂S
∂βj ¼ 2

X
i

ri
∂fðxi; β⃗Þ

∂βj ¼ 0; j ¼ 1; 2;…; m: ð15Þ

For a linear model, fðxi; β⃗Þ can be decomposed into a sum
of multiple linear functions GjðxiÞ with the corresponding

coefficients βj, fðxi; β⃗Þ ¼
P

j βjGjðxiÞ. One then regards
the function GjðxiÞ as a matrix, and solves for βj from
Eq. (15) with the data yi.
A nonlinear model is more subtle, to which there is no

closed-form solution in general. A possible approach is to
select some initial values of the parameters, and refine the
parameters by iteration. At each iteration, the model
function fðxi; β⃗Þ is linearized through the first-order
Taylor series expansion at βkj ,

fðxi; β⃗Þ ≈ fðxi; β⃗kÞ þ
X
j

∂fðxi; β⃗Þ
∂βj ðβj − βkjÞ;

≡ fðxi; β⃗kÞ þ
X
j

JijΔβj; ð16Þ

with k being an iteration number, and J being a Jacobian
function. The minimum of the residual at this iteration is
achieved by equating the gradient to zero,

∂S
∂Δβj¼−2

Xn
i¼1

Jij

�
yi−fðxi; β⃗kÞ−

Xm
k¼1

JikΔβk
�
¼ 0; ð17Þ

where Δβj can be solved by inverting the Jacobian matrix.
The parameters then take the values βkþ1

j ¼ βkj þ Δβj for
the next iteration.
Because of the approximations in the Taylor expansion

and in the matrix inversion (if the Jacobian matrix is not a
square one), no algorithm works for all nonlinear models,
and fit results may be sensitive to initial conditions. To
stabilize a complicated nonlinear fit, one can perform a
Bayesian analysis (conditionally biased fit). Instead of the
single χ2 term corresponding to Eq. (14),

χ2 ¼
Xn
i¼1

�
yi − ŷi
δyi

�
2

; ð18Þ

with δyi being the errors of experimental data, we employ a
modified version

χ2m ¼ χ2 þ χ2prior; χ2prior ¼
X
j

ðβj − β̃jÞ2
σ̃2j

: ð19Þ

The second term χ2prior is a stabilizing function, where β̃j are
artificially introduced default values for the fitted param-
eters with some errors σ̃j. When the summed residual in
Eq. (19) are minimized, the χ2prior term favors βj in the range

ðβ̃j − σ̃j; β̃j þ σ̃jÞ. The values of β̃j and σ̃j should be
chosen reasonably according to prior physical knowledge
on the fitted parameters. In the present study we select the
Gegenbauer moments derived in QCD sum rules as our
Bayesian data β̃, and five times of the errors from QCD sum
rules for our σ̃, which reduce the weight of χ2prior in the fit.
The Bayesian analysis is one of the standard methods for

data fitting, which has been widely adopted in data analysis
for high-energy experimental physics and lattice calcula-
tions. We repeat that the introduction of the χ2prior term in
Eq. (19) is to make fitted results, especially those in
complicated processes like hadronic Bmeson decays, more
stable. It is very difficult to fit the Gegenbauer moments of
higher orders or in higher-twist LCDAs. Applying the
Bayesian analysis, we can stabilize our fits and exclude
results in unfavored regions, such as the regions with
Gegenbauer moments much larger than unity. Although the
sum-rule values have been input as the prior information for
the analysis, the associated uncertainties are magnified by
five times to reduce the bias effect to a very low level. To
verify this statement, we compare the fitted leading
moment aπ2 in the Bayesian and unbiased fits. The former
yields aπ2 ¼ 0.644� 0.075 as shown in Table I, while the
latter returns aπ2 ¼ 0.635� 0.098, which are consistent
with each other within errors, and differ from the sum-
rule input aπ2 ¼ 0.25� 0.15 also given in Table I. This
comparison confirms that the bias effect is indeed minor in
our fits.

B. Bs meson distribution amplitude

We point out that the BðsÞ meson DA appears in all the
BðsÞ → M2M3 decay amplitudes, so it is difficult to extract
the shape parameters ωBðsÞ in a global fit. The investigation
in [38] shows thatωB ¼ 0.4 GeV for theBmeson DA leads
to reasonable results for the B → π transition form factors,
which agree with those from light cone sum rules and
lattice QCD. Therefore, we choose this value as the input,
and perform the global fit to determine the Gegenbauer
moments of the light meson LCDAs. As to the shape
parameter ωBs

in the Bs meson DA, it is observed that the
Gegenbauer moments fitted from the Bs → PP data are not
sensitive to its variation: we scan the range of ωBs

from 0.4
to 0.6 GeV, and make sure that the fitted Gegenbauer
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moments are relatively stable in the range 0.45 GeV <
ωBs

< 0.55 GeV. We then select the data of several
precisely measured channels, Bs → KþK−, Kþπ−, K0K̄0,
and πþπ−, and compare them with the reconstructed data
from the PQCD factorization formulas. The comparison
displayed in Fig. 4, where the red bands are from the
experimental data and the blue bands are from the recon-
structed data, indicates that the choice ωBs

¼ 0.48 GeV is
preferred: with this value of ωBs

, the PQCD results from

the fit accommodate the selected four piece of data
simultaneously.

C. Global fit

We fit the PQCD factorization formulas with the data-
base constructed in the previous section to the measured
branching ratios and direct CP asymmetries ACP in the
BðsÞ → PP; VP decays, which are collected in the left
columns of Table II. The ACP data marked in red, which

FIG. 4. Dependencies of the experimental data and the reconstructed data on ωBs
.

TABLE I. Gegenbauer moments and the γ angle from a joint fit for the twist-2 and twist-3 LCDAs. The Gegenbauer moments from
QCD sum rules (QSR) [5–7], lattice QCD (LQCD) [55,56] and the light-front quark model (LF) [57] are also listed for comparison.

aπ1 aπ2 aπ4 aπP2 aπT2 aρk1 aρk2
Fit � � � 0.644� 0.075 −0.41� 0.098 1.08� 0.15 −0.48� 0.33 � � � 0.16� 0.084
QSR � � � 0.25� 0.15 −0.015� 0.025 � � � � � � � � � 0.15� 0.07
LQCD � � � 0.101� 0.024 � � � � � � � � � � � � 0.132� 0.0027
LF � � � 0.12� 0.05 −0.003� 0.03 � � � � � � � � � 0.02� 0.02

aK1 aK2 aK4 aKP2 aKT2 aK
�k

1 aK
�k

2
γ

Fit 0.331� 0.082 0.28� 0.10 −0.398� 0.073 � � � � � � � � � 0.137� 0.029 ð75.2� 2.9Þ°
QSR 0.06� 0.03 0.25� 0.15 � � � � � � � � � 0.03� 0.02 0.11� 0.09
LQCD 0.053� 0.003 0.09� 0.02 � � � � � � � � � � � � � � �
LF 0.09� 0.13 0.03� 0.03 0.02� 0.03 � � � � � � 0.11� 0.14 −0.03� 0.07
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have larger errors, do not provide a strong constraint in the
fit. Note that the LHCb Collaboration has updated their
prediction for ACPðB0 → K̄0π0Þ, which reads ð−13.8�
2.5Þ% [57], based on the ACPðBþ → Kþπ0Þ measurement
via the sum rule for these direct CP asymmetries. The data
of those modes, which are greatly affected by subleading
contributions according to the existent PQCD calculations
[52,58,59], namely, suffer significant theoretical uncertain-
ties, are excluded in our fit. The Gegenbauer moments of
both the twist-2 and twist-3 LCDAs from a joint fit,
corresponding to the shape parameters wB ¼ 0.4 GeV
and wBs

¼ 0.48 GeV, have been collected in Tables I with
χ2=d:o:f: ¼ 0.77. These values represent the Gegenbauer
moments at the scale of 1 GeV, where the LCDAs are
defined [58]. The errors in our fit mainly arise from the
experimental uncertainty. The χ2prior term in the Bayesian
analysis introduces little error to the fit results. Some
higher-order moments or moments of higher-twist
LCDAs cannot be constrained effectively due to the current
limited experimental accuracy. This is the reason why the

values of the moments aKP2, a
K
T2, and a

K�k
1 are not presented

in Table I. Overall speaking, our results are closer to those
from QCD sum rules than to those from lattice QCD
[54,55] and the light-front quark model [56].
It is seen that some fitted Gegenbauer moments, like aρk2 ,

aK2 , and aK
�k

2 , agree well with those from QCD sum rules
[5,7] within 1σ error, which are listed in Table I for
comparison. We stress that our fit is based on the LO
PQCD factorization formulas, and that next-to-leading-order

(NLO) corrections change the heavy-to-light transition form
factors by about 30% [60,61]. It is difficult to estimate how
much systematic error is caused byNLOeffects for the fitting
at LO, because NLO corrections to the nonfactorizable
amplitudes in hadronic two-body B meson decays have
not yet been completed in the PQCD approach. Higher-
power contributions (such as the power-suppressed contri-
bution from another B meson DA ϕ̄B in Eq. (8), which was
shown to be of the same order as the NLO one in [62]) have
not been taken into account either. Therefore, it is likely that
some fitted Gegenbauer moments, like aπ2 , differ more
significantly from those in QCD sum rules. The outcome
of aπP2, slightly larger than unity, can be reduced by including
the higher moment aπP4 into the fit. As explained before, a

π
P4

is not considered here, because it cannot be constrained
effectively under the current experimental accuracy. It is
worth mentioning that the weak phase ϕ3ðγÞ is found to be
ð75.2� 2.9Þ°, consistent with the value ð72.1þ4.1

−4.5Þ° in
Particle Data Group [26], and ð69.8� 2.1� 0.9Þ° from
the factorization-assisted topological diagram approach
[63]. The agreements of our results with the Gegenbauer
moments from sum rules and with ϕ3ðγÞ extracted in other
methods support the PQCD factorization for hadronic two-
body B meson decays.
With the fitted Gegenbauer moments in Table I, we

calculate the branching ratios and ACP in the LO PQCD
approach, and present the results in the right columns of
Table II. It is observed that all the considered data, except
the B− → π0K�− branching ratio, are well reproduced. The
observables removed from the fit, i.e., those suffering

TABLE II. Experimental data for branching ratios and direct CP asymmetries ACP [26], and the theoretical results derived from the
fitted Gegenbauer moments in Table I. The data with precision less than 3σ are marked in red.

Channel

Data Fit

Branching ratio (10−6) ACP (%) Branching ratio (10−6) ACP (%)

B0 → K̄0K0 1.21� 0.16 −60� 70 1.23� 0.08 0� 0

B0 → K̄0π0 9.90� 0.50 0� 13 8.98� 0.19 −4.02� 0.48
B0 → K−πþ 19.6� 0.50 −8.3� 0.6 20.3� 0.36 −8.34� 0.36
B0 → π−πþ 5.12� 0.19 32� 4 5.24� 0.17 23.2� 2.1
B0 → ρ0K̄0 3.40� 1.10 4� 20 3.06� 0.37 2.853� 0.068
B0 → π0K̄�0 3.30� 0.60 −15� 13 1.73� 0.10 −6.02� 0.6
B0 → π−ρþ=πþρ− 23.0� 2.30 13� 6= − 8� 8 23.33� 0.8 −24.3� 1=8.1� 1.1
B− → K0K− 1.31� 0.17 4� 14 1.47� 0.09 22.5� 2.7
B− → π0K− 12.9� 0.50 3.7� 2.1 12.99� 0.23 −6.44� 0.6
B− → K̄0π− 23.7� 0.80 −1.7� 1.6 23.15� 0.42 −2.84� 0.24
B− → ρ−π0 10.9� 1.40 2� 11 8.73� 0.25 24.2� 2.3
B− → π0K�− 6.80� 0.90 −39� 21 3.51� 0.19 −33.5� 1.7
B− → K−K�0 0.59� 0.08 12� 10 0.476� 0.022 22.5� 1.3
Bs → K−Kþ 26.6� 2.20 −14� 11 24.8� 1.50 −8.1� 2.3
Bs → π−πþ 0.7� 0.1 � � � 0.798� 0.092 −1.62� 0.39
Bs → K0K̄0 20.0� 6.00 0� 0 26.2� 1.60 0� 0

Bs → π−Kþ 5.80� 0.70 22.1� 1.5 5.69� 0.64 22.1� 1.2
Bs → KþK�−=K−K�þ 19.0� 5.0 � � � 15.28� 0.90 −33.8� 1.3=53.5� 2.4
Bs → K0K̄�0=K̄0K�0 20.0� 6.00 � � � 15.06� 0.96 0� 0
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significant theoretical uncertainties, are also predicted in
the LO PQCD formalism, and compared with the data in
Table III. The predicted branching ratios are very close to
the values obtained in the previous PQCD calculations,
so the deviation from the data remains. In particular, ACP in
the B− → π−ρ0 mode has been predicted to be large and
negative in most QCD approaches [64,65], but its data are
as small as 0.009� 0.019 [26]. The inclusion of higher-
order and higher-power contributions to hadronic two-body
B meson decays may improve the consistency. The
theoretical errors given in Tables II and III arise only from
those of the fitted Gegenbauer moments and ϕ3ðγÞ. More
precise measurements are urged, and subleading contribu-
tions should be included into the PQCD framework to
strengthen the constraint on the Gegenbauer moments and
to sharpen the confrontation between theoretical predic-
tions and experimental data.

D. Remarks and future developments

A few remarks are given as follows:
(i) We have focused only on the branching ratios and

direct CP asymmetries in the B → PP; VP decays,
and neglected those modes involving isosinglet
mesons in the above analysis. Other observables,
such as mixing-induced CP asymmetries and polar-
izations in B → VV decays, can be included
straightforwardly. Though more parameters will
be introduced through LCDAs for transversely
polarized vector mesons, sufficient precise measure-
ments on polarization observables can be achieved at
LHCb and Belle-II.

(ii) LCDAs also appear in the factorization formulas for
heavy-to-light transition form factors that govern
semileptonic B meson decays. One can take into
account experimental constraints from these decays
in the future, in particular those from their depend-
ence on the lepton-pair invariant mass squared q2.

(iii) As we have pointed out, decay widths of a few
modes are suppressed at LO in PQCD, and may be

well described with the inclusion of higher-order
contributions [58,67]. Some sources of power cor-
rections have been explored in Refs. [68,69]. A new
database will be established in a similar way by
using the flavor structure for these radiative and
power corrections, via which the precision of a
global analysis can be enhanced.

(iv) We did not consider all systematic and parametric
uncertainties in the current analysis, such as the ones
originating from the variations of factorization scales
and nonperturbative QCD parameters.

(v) If a high-precision global study reveals notable
tensions between theoretical results and experimen-
tal data in the future, it may hint that new physics
effects are inevitable. One is then motivated to
include new physics contributions, which can also
be analyzed according to the flavor structure of new
physics operators.

V. SUMMARY

As stated in the introduction, nonperturbative hadron
LCDAs provide one of major sources of theoretical
uncertainties in all the factorization-based approaches to
hadronic two-body B meson decays. In this paper we have
performed a global analysis of the light meson LCDAs by
fitting the LO PQCD factorization formulas for BðsÞ →
PP;VP decays to available data of branching ratios and
directCP asymmetries. A computation code was developed
based on the flavor structure of the four-quark effective
operators to establish the database, which contains the part
of decay amplitudes without the Gegenbauer moments.
This database facilitates the global fit, from which the
Gegenbauer moments of the twist-2 and twist-3 LCDAs for
the pseudoscalar meson P (P ¼ π, K) and vector meson V
(V ¼ ρ, K�) were determined. Most of our fit results agree
with the moments derived in QCD sum rules, and those
with discrepancies deserve more thorough investigation
that takes into account higher-order and higher-power
corrections in the PQCD approach. The weak phase

TABLE III. LO PQCD predictions for the observables removed from the fit, and compared with those in previous PQCD analyses
[52,58,59,66].

Channel

Data Fit PQCD
Branching ratio (10−6) ACP (%) Branching ratio (10−6) ACP (%) Branching ratio

B0 → KþK− 0.078� 0.015 � � � 0.155� 0.027 52.0� 15.0
B0 → πþK�− 7.5� 0.4 −27� 4 4.93� 0.28 −52.0� 2.1 5.1 [58]
B0 → π0ρ0 2.0� 0.5 −27� 24 0.026� 0.0022 −47� 21 0.15 [59]
B0 → K−ρþ 7.0� 0.9 20� 11 4.41� 0.6 48.3� 4.9 4.7 [58]
B− → ρ−K̄0 7.3� 1.2 −3� 15 3.39� 0.55 3.18� 0.55 3.6 [58]
B− → ρ0K− 3.7� 0.5 37� 1 2.24� 0.41 69.7� 3.0 2.5 [58]
B− → π−K̄�0 10.1� 0.8 −4� 9 5.17� 0.23 −0.61� 0.19 5.5 [58]
B− → π−ρ0 8.3� 1.2 0.009� 0.019 4.61� 0.36 −35.3� 1.8 ∼5.39 [66]
Bs → π−K�þ 2.9� 1.1 � � � 9.53� 0.24 −25.5� 1.0 7.6[52]
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ϕ3ðγÞ ¼ ð75.2� 2.9Þ° in consistency with the value in
Particle Data Group was also extracted. Predictions for the
modes, which were excluded in the fit due to large
theoretical uncertainties, are close to the existent PQCD
results, and still deviate from the data. To improve the
consistency, subleading contributions to hadronic two-body
B meson decays need to be included, when their derivation
is completed in the future.
Since theBðsÞ meson DA appears in all the BðsÞ → M2M3

decay amplitudes, it is difficult to constrain the shape
parameters ωBðsÞ in this DA in a global fit. The shape
parameter ωB ¼ 0.4 GeV is an input, and ωBs

¼ 0.48 GeV
is subject to a discretionary choice in the present study.
The difficulty is expected to be overcome, when data
for exclusive processes other than hadronic two-body B
meson decays are considered in the global fit. This is a
straightforward extension of the framework proposed
here, through which the global determination of LCDAs
for other hadrons is also feasible. We have initiated a
program for exclusive processes parallel to global fits of
parton distribution functions for inclusive processes. It is
worth a further pursuit with long-term and large-scale
endeavor.
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APPENDIX: B → PP DECAY AMPLITUDES

The explicit LO PQCD factorization formulas for the
B → PP decay amplitudes from the various current oper-
ators and topologies are presented in this appendix, with
CF ¼ 4=3, the Wilson coefficients ai, and ri ¼ m0i=mB,
where m0i is the chiral enhancement scale:

FLL
e ðaiÞ ¼ 8πCFm4

BfP2

Z
1

0

dx1dx3

Z
∞

0

b1db1b3db3ϕBðx1; b1ÞfaiðtaÞEeðtaÞ

× ½ð2 − x3ÞϕA
3 ðx3Þ þ r3ð2x3 − 1ÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ�heðx1; 1 − x3; b1; b3Þ

þ 2r3ϕP
3 ðx3Þaiðt0aÞEeðt0aÞheð1 − x3; x1; b3; b1Þg; ðA1Þ

FLR
e ðaiÞ ¼ −FLL

e ðaiÞ; ðA2Þ

FSP
e ðaiÞ ¼ 16πr2CFm4

BfM2

Z
1

0

dx1dx3

Z
∞

0

b1db1b3db3ϕBðx1; b1ÞfaiðtaÞEeðtaÞ

× ½ϕA
3 ðx3Þ þ r3ð3 − x3ÞϕP

3 ðx3Þ þ r3ð1 − x3ÞϕT
3 ðx3Þ�heðx1; 1 − x3; b1; b3Þ

þ 2r3ϕP
3 ðx3Þaiðt0aÞEeðt0aÞheð1 − x3; x1; b3; b1Þg; ðA3Þ

MLL
e ðCiÞ ¼ 32πCFm4

B=
ffiffiffi
6

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b2db2ϕBðx1; b1ÞϕA
2 ðx2Þ

× f½x2ϕA
3 ðx3Þ þ r3ðx3 − 1ÞðϕP

3 ðx3Þ þ ϕT
3 ðx3ÞÞ�CiðtbÞE0

eðtbÞ
× hnðx1; x2; 1 − x3; b1; b2Þ þ hnðx1; 1 − x2; 1 − x3; b1; b2Þ
× ½−ð2 − x2 − x3ÞϕA

3 ðx3Þ þ r3ð1 − x3ÞðϕP
3 ðx3Þ − ϕT

3 ðx3ÞÞ�Ciðt0bÞE0
eðt0bÞg; ðA4Þ

MLR
e ðCiÞ ¼ 32πCFm4

Br2=
ffiffiffi
6

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b2db2ϕBðx1; b1Þ

× fhnðx1; x2; 1 − x3; b1; b2Þ½r3ð1 − x3ÞðϕP
2 ðx2Þ þ ϕT

2 ðx2ÞÞðϕP
3 ðx3Þ − ϕT

3 ðx3ÞÞ
þ r3x2ðϕP

2 ðx2Þ − ϕT
2 ðx2ÞÞðϕP

3 ðx3Þ þ ϕT
3 ðx3ÞÞ þ x2ϕA

3 ðx3ÞðϕP
2 ðx2Þ − ϕT

2 ðx2ÞÞ�CiðtbÞE0
eðtbÞ

þ hnðx1; 1 − x2; 1 − x3; b1; b2Þ½ðx2 − 1ÞϕA
3 ðx3ÞðϕP

2 ðx2Þ þ ϕT
2 ðx2ÞÞ

þ r3ðx2 − 1ÞðϕP
2 ðx2Þ þ ϕT

2 ðx2ÞÞðϕP
3 ðx3Þ þ ϕT

3 ðx3ÞÞ
þ r3ðx3 − 1ÞðϕP

2 ðx2Þ − ϕT
2 ðx2ÞÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ�Ciðt0bÞE0

eðt0bÞg; ðA5Þ
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MSP
e ðCiÞ ¼ 32πCFm4

B=
ffiffiffi
6

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b2db2ϕBðx1; b1ÞϕA
2 ðx2Þ

× f½ðx3 − 1 − x2ÞϕA
3 ðx3Þ þ r3ð1 − x3ÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ�

× CiðtbÞE0
eðtbÞhnðx1; x2; 1 − x3; b1; b2Þ þ Ciðt0bÞE0

eðt0bÞ
× ½ð1 − x2ÞϕA

3 ðx3Þ þ r3ðx3 − 1ÞðϕT
3 ðx3Þ þ ϕP

3 ðx3ÞÞ�hnðx1; 1 − x2; 1 − x3; b1; b2Þg: ðA6Þ

FLL
annðaiÞ ¼ 8πCFm4

BfB

Z
1

0

dx2dx3

Z
∞

0

b2db2b3db3faiðtcÞEaðtcÞ

× ½−x3ϕA
2 ðx2ÞϕA

3 ðx3Þ − 2r2r3ð1þ x3ÞϕP
2 ðx2ÞϕP

3 ðx3Þ
þ 2r2r3ð1 − x3ÞϕP

2 ðx2ÞϕT
3 ðx3Þ�hað1 − x2; x3; b2; b3Þ

þ ½ð1 − x2ÞϕA
2 ðx2ÞϕA

3 ðx3Þ þ 2r2r3ð2 − x2ÞϕP
2 ðx2ÞϕP

3 ðx3Þ þ 2r2r3x2ϕP
3 ðx3ÞϕT

2 ðx2Þ�
× aiðt0cÞEaðt0cÞhaðx3; 1 − x2; b3; b2Þg: ðA7Þ

FLR
annðaiÞ ¼ FLL

annðaiÞ; ðA8Þ

FSP
annðaiÞ ¼ 16πCFm4

BfB

Z
1

0

dx2dx3

Z
∞

0

b2db2b3db3f½2r2ϕP
2 ðx2ÞϕA

3 ðx3Þ

þ x3r3ϕA
2 ðx2ÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ�aiðtcÞEaðtcÞhað1 − x2; x3; b2; b3Þ

þ ½2r3ϕA
2 ðx2ÞϕP

3 ðx3Þ þ r2ð1 − x2ÞðϕP
2 ðx2Þ þ ϕT

2 ðx2ÞÞϕA
3 ðx3Þ�

× aiðt0cÞEaðt0cÞhaðx3; 1 − x2; b3; b2Þg: ðA9Þ

MLL
annðCiÞ ¼ 32πCFm4

B=
ffiffiffi
6

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db2b2db2ϕBðx1; b1Þ

× fhnaðx1; 1 − x2; 1 − x3; b1; b2Þ½ðx2 − 1ÞϕA
2 ðx2ÞϕA

3 ðx3Þ
− r2r3ððx3 − 1ÞðϕP

2 ðx2Þ þ ϕT
2 ðx2ÞÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ þ 4ϕP

2 ðx2ÞϕP
3 ðx3Þ

−x2ðϕP
2 ðx2Þ − ϕT

2 ðx2ÞÞðϕP
3 ðx3Þ þ ϕT

3 ðx3ÞÞÞ�CiðtdÞE0
aðtdÞ

þ h0naðx1; 1 − x2; 1 − x3; b1; b2Þ½x3ϕA
2 ðx2ÞϕA

3 ðx3Þ
þ r2r3ðx3ðϕP

2 ðx2Þ − ϕT
2 ðx2ÞÞðϕP

3 ðx3Þ þ ϕT
3 ðx3ÞÞ

þð1 − x2ÞðϕP
2 ðx2Þ þ ϕT

2 ðx2ÞÞðϕP
3 ðx3Þ − ϕT

3 ðx3ÞÞÞ�Ciðt0dÞE0
aðt0dÞg; ðA10Þ

MLR
annðCiÞ ¼ 32πCFm4

B=
ffiffiffi
6

p Z
1

0

dx1dx2dx3

Z
∞
b1db1b2db2ϕBðx1; b1Þ

× fhnaðx1; 1 − x2; 1 − x3; b1; b2Þ½r2ð1þ x2ÞϕA
3 ðx3ÞðϕP

2 ðx2Þ − ϕT
2 ðx2ÞÞ

þ r3ðx3 − 2ÞϕA
2 ðx2ÞðϕP

3 ðx3Þ þ ϕT
3 ðx3ÞÞ�CiðtdÞE0

aðtdÞ
þ h0naðx1; 1 − x2; 1 − x3; b1; b2Þ½r2ð1 − x2ÞϕA

3 ðx3ÞðϕP
2 ðx2Þ − ϕT

2 ðx2ÞÞ
− r3x3ϕA

2 ðx2ÞðϕP
3 ðx3Þ þ ϕT

3 ðx3ÞÞ�Ciðt0dÞE0
aðt0dÞg; ðA11Þ
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MSP
annðCiÞ ¼ 32πCFm4

B=
ffiffiffi
6

p Z
1

0

dx1dx2dx3

Z
∞

0

b1db1b2db2ϕBðx1; b1Þ

× fCiðtdÞE0
aðtdÞhnaðx1; 1 − x2; 1 − x3; b1; b2Þ½−x3ϕA

2 ðx2ÞϕA
3 ðx3Þ

− 4r2r3ϕP
2 ðx2ÞϕP

3 ðx3Þ þ r2r3ð1 − x3ÞðϕP
2 ðx2Þ − ϕT

2 ðx2ÞÞðϕP
3 ðx3Þ þ ϕT

3 ðx3ÞÞ
þ r2r3x2ðϕP

2 ðx2Þ þ ϕT
2 ðx2ÞÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ�

þ Ciðt0dÞE0
aðt0dÞh0naðx1; 1 − x2; 1 − x3; b1; b2Þ½ð1 − x2ÞϕA

2 ðx2ÞϕA
3 ðx3Þ

þ r2r3ð1 − x2ÞðϕP
2 ðx2Þ − ϕT

2 ðx2ÞÞðϕP
3 ðx3Þ þ ϕT

3 ðx3ÞÞ
þ r2r3x3ðϕP

2 ðx2Þ þ ϕT
2 ðx2ÞÞðϕP

3 ðx3Þ − ϕT
3 ðx3ÞÞ�g: ðA12Þ

The hard scales involved in the above decay amplitudes are defined by

ta ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x3

p
mB; 1=b1; 1=b3g;

t0a ¼ maxf ffiffiffiffiffi
x1

p
mB; 1=b1; 1=b3g;

tb ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð1 − x3Þ

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2 − x1jð1 − x3Þ

p
mB; 1=b1; 1=b2g;

t0b ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð1 − x3Þ

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − x1 − x2jð1 − x3Þ

p
mB; 1=b1; 1=b2g;

tc ¼ maxf ffiffiffiffiffi
x3

p
mB; 1=b2; 1=b3g;

t0c ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
mB; 1=b2; 1=b3g;

td ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þx3

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx2 − x1Þð1 − x3Þ

p
mB; 1=b1; 1=b2g;

t0d ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3ð1 − x2Þ

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx1 − ð1 − x2Þjx3

p
mB; 1=b1; 1=b2g: ðA13Þ

The hard kernels h in the decay amplitudes consist of two parts, the jet function JtðxiÞ derived in the threshold resummation
and the Fourier transformation of the virtual particle propagators:

heðx1; x3; b1; b3Þ ¼ ½θðb1 − b3ÞI0ð
ffiffiffi
x

p
3mBb3ÞK0ð

ffiffiffi
x

p
3mBb1Þ

þ θðb3 − b1ÞI0ð
ffiffiffi
x

p
3mBb1ÞK0ð

ffiffiffi
x

p
3mBb3Þ�K0ð

ffiffiffiffiffiffiffiffiffi
x1x3

p
mBb1ÞJtðx3Þ; ðA14Þ

hnðx1; x2; x3; b1; b2Þ ¼ ½θðb2 − b1ÞK0ð ffiffiffiffiffiffiffiffiffi
x1x3

p
mBb2ÞI0ð ffiffiffiffiffiffiffiffiffi

x1x3
p

mBb1Þþθðb1 − b2ÞK0ð ffiffiffiffiffiffiffiffiffi
x1x3

p
mBb1ÞI0ð ffiffiffiffiffiffiffiffiffi

x1x3
p

mBb2Þ�

×

� iπ
2
Hð1Þ

0 ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 − x1Þx3
p

mBb2Þ; x1 − x2 < 0

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 − x2Þx3

p
mBb2Þ; x1 − x2 > 0

; ðA15Þ

haðx2; x3; b2; b3Þ ¼
�
iπ
2

�
2

Jtðx3Þ½θðb2 − b3ÞHð1Þ
0 ð ffiffiffiffiffi

x3
p

mBb2ÞJ0ð ffiffiffiffiffi
x3

p
mBb3Þ

þ θðb3 − b2ÞHð1Þ
0 ð ffiffiffiffiffi

x3
p

mBb3ÞJ0ð ffiffiffiffiffi
x3

p
mBb2Þ�Hð1Þ

0 ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb2Þ; ðA16Þ

hnaðx1; x2; x3; b1; b2Þ ¼
iπ
2
½θðb1 − b2ÞHð1Þ

0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb1ÞJ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb2Þ

þ θðb2 − b1ÞHð1Þ
0 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb2ÞJ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb1Þ�

× K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − x1 − x2Þx3

p
mBb1Þ; ðA17Þ
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h0naðx1; x2; x3; b1; b2Þ ¼
iπ
2
½θðb1 − b2ÞHð1Þ

0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb1ÞJ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb2Þ

þθðb2 − b1ÞHð1Þ
0 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb2ÞJ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1 − x3Þ

p
mBb1Þ�

×

� iπ
2
Hð1Þ

0 ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 − x1Þð1 − x3Þ
p

mBb1Þ; x1 − x2 < 0

K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 − x2Þð1 − x3Þ

p
mBb1Þ; x1 − x2 > 0

; ðA18Þ

with the Bessel functionHð1Þ
0 ðzÞ ¼ J0ðzÞ þ iY0ðzÞ. The following approximate parametrization for the jet function has been

proposed for convenience [38],

JtðxÞ ¼
21þ2cΓð3=2þ cÞffiffiffi

π
p

Γð1þ cÞ ½xð1 − xÞ�c; ðA19Þ

with the parameter c ≈ 0.3. The prefactor in the above expression is chosen to obey the normalization
R
1
0 JtðxÞdx ¼ 1. The

jet function JtðxÞ gives a very small numerical effect to the nonfactorizable amplitude [42], so it is dropped from hn and hna.
The evolution factors Eð0Þ

e and Eð0Þ
a are written as

EeðtÞ ¼ αsðtÞ exp½−SBðtÞ − S3ðtÞ�; E0
eðtÞ ¼ αsðtÞ exp½−SBðtÞ − S2ðtÞ − S3ðtÞ�jb1¼b3 ; ðA20Þ

EaðtÞ ¼ αsðtÞ exp½−S2ðtÞ − S3ðtÞ�; E0
aðtÞ ¼ αsðtÞ exp½−SBðtÞ − S2ðtÞ − S3ðtÞ�jb2¼b3 ; ðA21Þ

in which the Sudakov exponents are given by

SBðtÞ ¼ s

�
x1

mBffiffiffi
2

p ; b1

�
þ 5

3

Z
t

1=b1

dμ̄
μ̄
γqðαsðμ̄ÞÞ; ðA22Þ

S2ðtÞ ¼ s

�
x2

mBffiffiffi
2

p ; b2

�
þ s

�
ð1 − x2Þ

mBffiffiffi
2

p ; b2

�
þ 2

Z
t

1=b2

dμ̄
μ̄
γqðαsðμ̄ÞÞ; ðA23Þ

with the quark anomalous dimension γq ¼ −αs=π. Replacing the kinematic variables ofM2 by those ofM3 in S2, we get the
expression for S3. The function sðQ; bÞ is expressed as

sðQ; bÞ ¼ Að1Þ

2β1
q̂ ln

�
q̂

b̂

�
−
Að1Þ

2β1
ðq̂ − b̂Þ þ Að2Þ

4β21

�
q̂

b̂
− 1

�
−
�
Að2Þ

4β21
−
Að1Þ

4β1
ln

�
e2γE−1

2

��
ln

�
q̂

b̂

�

þ Að1Þβ2
4β31

q̂

�
lnð2q̂Þ þ 1

q̂
−
lnð2b̂Þ þ 1

b̂

�
þ Að1Þβ2

8β31
½ln2ð2q̂Þ − ln2ð2b̂Þ�;

þ Að1Þβ2
8β31

ln

�
e2γE−1

2

��
lnð2q̂Þ þ 1

q̂
−
lnð2b̂Þ þ 1

b̂

�
−
Að2Þβ2
16β41

�
2 lnð2q̂Þ þ 3

q̂
−
2 lnð2b̂Þ þ 3

b̂

�

−
Að2Þβ2
16β41

q̂ − b̂

b̂2
½2 lnð2b̂Þ þ 1� þ Að2Þβ22

432β61

q̂ − b̂

b̂3
½9ln2ð2b̂Þ þ 6 lnð2b̂Þ þ 2�

þ Að2Þβ22
1728β61

�
18ln2ð2q̂Þ þ 30 lnð2q̂Þ þ 19

q̂2
−
18ln2ð2b̂Þ þ 30 lnð2b̂Þ þ 19

b̂2

�
; ðA24Þ

with the variables

q̂≡ ln½Q=ð
ffiffiffi
2

p
ΛQCDÞ�; b̂≡ ln½1=ðbΛQCDÞ�; ðA25Þ

and the coefficients AðiÞ and βi,
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β1¼
33−2nf

12
; β2¼

153−19nf
24

;

Að1Þ ¼4

3
; Að2Þ ¼67

9
−
π2

3
−
10

27
nfþ

8

3
β1 ln

�
1

2
eγE

�
; ðA26Þ

where nf is the number of the quark flavors and γE is the
Euler constant. We adopt the one-loop running coupling
constant, so only the first four terms of Eq. (A24) are
picked up in the numerical analysis.
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W. Söldner et al., J. High Energy Phys. 04 (2017) 082.

[56] H. M. Choi and C. R. Ji, Phys. Rev. D 75, 034019 (2007).

GLOBAL ANALYSIS OF HADRONIC TWO-BODY B DECAYS … PHYS. REV. D 104, 016025 (2021)

016025-15

https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1140/epjc/s10052-013-2373-2
https://doi.org/10.1140/epjc/s10052-013-2373-2
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptz106
https://doi.org/10.1093/ptep/ptaa008
https://doi.org/10.23731/CYRM-2019-007.867
https://doi.org/10.23731/CYRM-2019-007.867
https://doi.org/10.1103/PhysRevD.71.014015
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2007/03/069
https://doi.org/10.1088/1126-6708/2007/03/069
https://doi.org/10.1016/j.physletb.2017.08.077
https://doi.org/10.1016/j.physletb.2017.08.077
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP11(2020)037
https://arXiv.org/abs/2011.09788
https://doi.org/10.1016/0550-3213(90)90612-H
https://doi.org/10.1016/0550-3213(90)90612-H
https://doi.org/10.1007/BF01580324
https://doi.org/10.1007/BF01580324
https://doi.org/10.1016/S0550-3213(01)00194-8
https://doi.org/10.1103/PhysRevLett.83.1914
https://doi.org/10.1103/PhysRevLett.74.4388
https://doi.org/10.1016/0370-2693(95)00557-2
https://doi.org/10.1103/PhysRevD.53.2480
https://doi.org/10.1103/PhysRevD.63.074006
https://doi.org/10.1103/PhysRevD.63.054008
https://doi.org/10.1103/PhysRevD.63.054008
https://doi.org/10.1103/PhysRevD.63.074009
https://doi.org/10.1103/PhysRevD.63.074009
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1007/JHEP04(2020)023
https://doi.org/10.1007/JHEP09(2016)112
https://doi.org/10.1007/JHEP09(2016)112
https://doi.org/10.1007/JHEP04(2020)055
https://doi.org/10.1007/JHEP04(2020)055
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevLett.84.1398
https://doi.org/10.1103/PhysRevLett.88.092301
https://doi.org/10.1103/PhysRevLett.88.092301
https://doi.org/10.1103/PhysRevD.69.053008
https://doi.org/10.1103/PhysRevD.76.034008
https://doi.org/10.1016/0550-3213(89)90372-6
https://doi.org/10.1016/0550-3213(92)90643-P
https://doi.org/10.1016/S0375-9474(01)00493-6
https://doi.org/10.1016/0370-2693(90)90853-X
https://doi.org/10.1016/0370-2693(90)90853-X
https://doi.org/10.1016/0370-2693(91)91538-7
https://doi.org/10.1016/0370-2693(91)91538-7
https://doi.org/10.1016/S0550-3213(00)00585-X
https://doi.org/10.1016/0550-3213(81)90339-4
https://doi.org/10.1103/PhysRevD.65.014007
https://doi.org/10.1103/PhysRevD.65.014007
https://doi.org/10.1016/S0550-3213(02)00623-5
https://doi.org/10.1103/PhysRevD.50.358
https://doi.org/10.1103/PhysRevD.50.358
https://doi.org/10.1103/PhysRevD.61.114510
https://doi.org/10.1103/PhysRevD.61.114510
https://doi.org/10.1103/PhysRevD.66.094010
https://doi.org/10.1140/epjc/s10052-021-09376-2
https://doi.org/10.1007/JHEP01(2014)004
https://doi.org/10.1007/JHEP01(2014)004
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1016/S0550-3213(00)00559-9
https://doi.org/10.1016/S0550-3213(01)00251-6
https://doi.org/10.1103/PhysRevD.55.5577
https://doi.org/10.1103/PhysRevD.56.1615
https://doi.org/10.1103/PhysRevD.60.094005
https://doi.org/10.1103/PhysRevD.60.094005
https://arXiv.org/abs/hep-ph/0110365
https://doi.org/10.1103/PhysRevD.76.074018
https://doi.org/10.5281/zenodo.4037174
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP08(2019)065
https://doi.org/10.1007/JHEP04(2017)082
https://doi.org/10.1103/PhysRevD.75.034019


[57] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 126,
091802 (2021).

[58] H. n. Li and S. Mishima, Phys. Rev. D 74, 094020 (2006).
[59] Z. Rui, X. Gao, and C. D. Lu, Eur. Phys. J. C 72, 1923

(2012).
[60] H. n. Li, Y. L. Shen, and Y. M. Wang, Phys. Rev. D 85,

074004 (2012).
[61] W. F. Wang and Z. J. Xiao, Phys. Rev. D 86, 114025

(2012).
[62] Y. Yang, L. Lang, X. Zhao, J. Huang, and J. Sun, Phys.

Rev. D 103, 056006 (2021).

[63] S. H. Zhou and C. D. Lü, Chin. Phys. C 44, 063101 (2020).
[64] H. Y. Cheng, arXiv:2005.06080.
[65] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D 95,

056008 (2017).
[66] C. D. Lu and M. Z. Yang, Eur. Phys. J. C 23, 275 (2002).
[67] D. C. Yan, P. Yang, X. Liu, and Z. J. Xiao, Nucl. Phys.

B931, 79 (2018).
[68] Y. M. Wang and Y. L. Shen, J. High Energy Phys. 12 (2017)

037.
[69] Y. M. Wang and Y. L. Shen, J. High Energy Phys. 05 (2018)

184.

HUA, LI, LÜ, WANG, and XING PHYS. REV. D 104, 016025 (2021)

016025-16

https://doi.org/10.1103/PhysRevLett.126.091802
https://doi.org/10.1103/PhysRevLett.126.091802
https://doi.org/10.1103/PhysRevD.74.094020
https://doi.org/10.1140/epjc/s10052-012-1923-3
https://doi.org/10.1140/epjc/s10052-012-1923-3
https://doi.org/10.1103/PhysRevD.85.074004
https://doi.org/10.1103/PhysRevD.85.074004
https://doi.org/10.1103/PhysRevD.86.114025
https://doi.org/10.1103/PhysRevD.86.114025
https://doi.org/10.1103/PhysRevD.103.056006
https://doi.org/10.1103/PhysRevD.103.056006
https://doi.org/10.1088/1674-1137/44/6/063101
https://arXiv.org/abs/2005.06080
https://doi.org/10.1103/PhysRevD.95.056008
https://doi.org/10.1103/PhysRevD.95.056008
https://doi.org/10.1007/s100520100878
https://doi.org/10.1016/j.nuclphysb.2018.04.007
https://doi.org/10.1016/j.nuclphysb.2018.04.007
https://doi.org/10.1007/JHEP12(2017)037
https://doi.org/10.1007/JHEP12(2017)037
https://doi.org/10.1007/JHEP05(2018)184
https://doi.org/10.1007/JHEP05(2018)184

