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We derive the Boltzmann equation and the collision kernel for massive spin-1=2 particles, using the
Wigner-function formalism and employing an expansion in powers of ℏ. The phase space is enlarged to
include a variable related to the spin degrees of freedom. This allows us to reduce the transport equations of
the independent components of the Wigner function to one scalar equation. To next-to-leading order in ℏ,
we find that the collision kernel contains both local and nonlocal terms. We show that off-shell
contributions cancel in the Boltzmann equation. Our framework can be used to study spin-polarization
phenomena induced by vorticity as recently observed in heavy-ion collisions and in condensed-matter
systems.
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I. INTRODUCTION

Polarization phenomena in nuclear collisions have
recently been the focus of intense research. The large
orbital angular momentum in noncentral heavy-ion colli-
sions can (at least partially) be transferred as vorticity to the
hot and dense matter created in the collision zone. This, in
turn, may align the spins of particles along the direction of
the global orbital angular momentum, leading to a nonzero
spin polarization [1–4]. Such a mechanism is rather similar
to the time-honored Barnett effect [5]. In a nonrelativistic
system, the alignment of spins by rotation implies the
alignment of magnetic moments, and thus polarization is
equivalent to magnetization. In a relativistic system, how-
ever, both particles and antiparticles are present, and while
the spins of particles and antiparticles align in the same
direction through rotation, the magnetic moments align in
the opposite direction, which reduces the magnetization.
Thus, a system with equal numbers of particles and
antiparticles is polarized, but not magnetized. This effect
is a prime example for the interplay between a macroscopic
quantity, the rotation, and a microscopic quantity, which is
inherently of quantum nature: the spin of the particles.
The STAR Collaboration found that Lambda baryons

emitted in noncentral heavy-ion collisions are indeed

emitted with a finite global polarization (i.e., a polarization
along the direction of the global angular momentum),
providing evidence of spin polarization generated by vor-
ticity [6]. The global polarization predicted bymodels based
on the assumption of local thermodynamic equilibrium of
spin degrees of freedom turn out to be in good agreement
with the experimental findings [4,7–13]. More recently, the
STARCollaborationmeasured the projection of the Lambda
polarization along the beam direction, the so-called longi-
tudinal polarization, as a function of the azimuthal angle of
the particles [14]. Unfortunately, the same theoretical
models which were able to describe the global-polarization
data predict an opposite signwith respect to the experimental
observations, often dubbed the “polarization sign problem”
[15,16]. A number of attempts [17–24] have been made to
explain the polarization sign problem, but as of yet, no
definite conclusion has been reached.
The polarization sign problem suggests that spin degrees

of freedom have nontrivial dynamics, which is not captured
by the theoretical models used to accurately describe the
global-polarization data. One possibility is that nonequili-
brium effects of spin degrees of freedom have to be
included in the kinetic and hydrodynamic description of
the hot and dense matter. A theory of relativistic spin
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hydrodynamics, first introduced in Refs. [25,26] and
followed by Refs. [27–32], has also been recently derived
from various approaches: kinetic theory [33–39], effective
action [40–42], entropy-current analysis [43,44], and holo-
graphic duality [45,46].
From a microscopic point of view, the dynamics under-

lying the conversion between orbital and spin angular
momentum (and vice versa) can be understood in terms
of particle collisions. Such dynamics was studied in the
nonrelativistic case in a seminal paper by Hess and
Waldmann, where a kinetic theory for a dilute gas of
particles with spin was formulated [47]. One of the main
conclusions of this work is that, in order to describe
polarization phenomena through rotation (e.g., the
Barnett effect), one needs nonlocal particle collisions.
The authors were not able to provide a first-principle
derivation of the nonlocal collision kernel, and they
phenomenologically added terms in their kinetic theory
to describe the orbital-to-spin angular momentum conver-
sion. A nonrelativistic Boltzmann equation with a nonlocal
collision term was then discussed by Hess in Ref. [48].
Detailed derivations of nonlocal collision terms for a
nonrelativistic system of spinless particles can be found,
e.g., in Refs. [49–51]. In the relativistic case, a microscopic
mechanism based on nonlocal scatterings between wave
packets was proposed in Ref. [19] to explain the generation
of the spin-vorticity coupling in heavy-ion collisions.
However, to the best of our knowledge, a systematic
derivation of a nonlocal collision kernel in the relativistic
Boltzmann equation for particles with spin based on
quantum field theory has only been performed very
recently in our previous work [34] [for related efforts,
see also Refs. [52,53] ].
In Ref. [34], we presented a Boltzmann equation using

the Wigner-function formalism, which includes the non-
locality of the scattering process between particles and
established its connection with spin hydrodynamics. In this
paper, we now give the details of the derivation. The
Wigner-function formalism provides a first-principle for-
mulation of kinetic theory and also turns out to be a very
powerful tool for the description of anomalous transport in
the quark-gluon plasma created in heavy-ion collisions
(see, e.g., Refs. [54–61]). Our derivation is based on a
semiclassical expansion of the Wigner function, i.e., an
expansion in the Planck constant ℏ, where spin effects are
considered to be of at least first order in ℏ. As it will
become clear in the following, an expansion in the Planck
constant is also effectively an expansion in gradients. Thus,
vorticity, which is a quantity of first order in gradients, is of
the same order as spin polarization. The latter can therefore
be generated from the former through nonlocal scattering
processes.
The structure of the paper is the following. In Sec. II, we

derive the quantum transport equations from the Wigner-
function formalism. In order to have a more compact

transport equation for the components of the Wigner
function, in Sec. III. we enlarge the phase space by
introducing a variable related to spin. In Secs. IV and V,
we explicitly derive the local and nonlocal parts of the
collision term, respectively. Such calculations are based on
the method discussed in Ref. [62]. Finally, conclusions are
given in Sec. VII. We use the notation and conventions
a ·b¼ aμbμ, a½μbν� ≡ aμbν − aνbμ, gμν ¼ diagðþ;−;−;−Þ,
ϵ0123 ¼ −ϵ0123 ¼ 1, and repeated indices are summed over.

II. QUANTUM TRANSPORT EQUATIONS

We start from the Wigner function for spin-1=2 particles
defined as [62–64]

Wαβðx; pÞ ¼
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yh∶ψ̄βðx1Þψαðx2Þ∶i; ð1Þ

with x1;2 ¼ x� y=2 and ψðxÞ; ψ̄ðxÞ being Dirac spinor
fields. Here, h∶∶i denotes the normal-ordered ensemble
average. In our previous work [65] (see also related work in
Refs. [66–72]), we derived general solutions of the equa-
tions of motion for the Wigner function in the free-
streaming limit. Here, we extend this idea by including
collisions and thus account for the effect of interactions.
The Lagrangian for Dirac fields used in this paper is of the
form

LD ¼ ψ̄

�
iℏ
2
γ · ∂↔ −m

�
ψ þ LI; ð2Þ

with ∂↔ ≡ ∂⃗ − ∂⃖ and LI being a general interaction
Lagrangian. We remark that, if LI contains gauge-field
interactions, Eq. (1) has to be modified to include a gauge
link in order to ensure gauge invariance; see, e.g., Ref. [64].
We obtain the following equation of motion,

ðiℏγ · ∂ −mÞψðxÞ ¼ ℏρðxÞ; ð3Þ

where ρ ¼ −ð1=ℏÞ∂LI=∂ψ̄ . From Eq. (3), one derives the
transport equation for the Wigner function [62],

�
γ ·

�
pþ i

ℏ
2
∂
�
−m

�
Wαβ ¼ ℏCαβ; ð4Þ

where

Cαβ ≡
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yh∶ψ̄βðx1Þραðx2Þ∶i: ð5Þ

By acting γ · ðpþ i ℏ
2
∂Þ þm onto Eq. (4) and taking the

real part, we obtain a modified on-shell condition for the
Wigner function
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�
p2 −m2 −

ℏ2

4
∂2

�
Wαβðx; pÞ ¼ ℏδMαβðx; pÞ; ð6Þ

with

δMαβ ≡ 1

2

Z
d4y

ð2πℏÞ4 e
− i
ℏp·y

× h∶½ρ̄ðx1Þðiℏγ · ∂⃖ þmÞ�βψαðx2Þ
þψ̄βðx1Þ½ð−iℏγ · ∂ þmÞρðx2Þ�α∶i: ð7Þ

On the other hand, from the imaginary part, we find a
Boltzmann-like equation for the Wigner function,

p · ∂Wαβðx; pÞ ¼ Cαβðx; pÞ; ð8Þ

with

Cαβ ¼
i
2

Z
d4y

ð2πℏÞ4 e
− i
ℏp·y

× h∶½ρ̄ðx1Þð−iℏγ · ∂⃖ þmÞ�βψαðx2Þ
−ψ̄ βðx1Þ½ðiℏγ · ∂ þmÞρðx2Þ�α∶i: ð9Þ

Wewill restrict the following considerations to the positive-
energy part of the Wigner function. The extension to
negative energies is straightforward. Thus, in what follows,
all mass-shell delta functions are implicitly accompanied
by a θðp0Þ, which we do not explicitly denote for the sake
of simplicity.
In order to reveal the dependence on the Wigner function

on the right-hand side of Eq. (9), it is convenient to
calculate the ensemble average by performing the
trace over the noninteracting initial n-particle states defined
as [62]

jp1;…; pn; r1;…; rniin ≡ a†in;r1ðp1Þ � � � a†in;rnðpnÞj0i; ð10Þ

where pi and ri, i ¼ 1;…; n, denote the particle momen-
tum and spin projection, respectively, and a†in;riðpiÞ is the
creation operator for that particle. Since we are interested
in a kinetic description, we neglect initial correlations.
This corresponds to the molecular-chaos assumption.
Furthermore, we restrict ourselves to two-particle states;
i.e., we only consider binary collisions. Hence, Eq. (9) can
be written in the form [62] (see Appendix A for details)

Cαβ ¼
1

2ð4πℏm2Þ2
X

r1;r2;s1;s2

Z
d4x1d4x2d4p1d4p2d4q1d4q2

×
in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦαβðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

×
Y2
j¼1

exp

�
i
ℏ
qj · xj

�
ūsj

�
pj þ

qj
2

�
Winðxþ xj; pjÞurj

�
pj −

qj
2

�
; ð11Þ

where the operator Φ is given by

ΦαβðpÞ≡ i
2

Z
d4y

ð2πℏÞ4e
− i
ℏp·y∶

	�
Pμ;ρ̄

�
y
2

�
γμ
�
β

ψα

�
−
y
2

�

þmρ̄β

�
y
2

�
ψα

�
−
y
2

�
− ψ̄β

�
y
2

��
γμρ

�
−
y
2

�
;Pμ

�
α

−mψ̄β

�
y
2

�
ρα

�
−
y
2

�

∶; ð12Þ

where Pμ is the total 4-momentum operator. We also
introduced the variable qj, which is the conjugate to xj
in the Wigner transformation, but not related to the particle
momentapi.We notice that the Boltzmann-like equation (8)
with the collision kernel (11) is not a closed equation for the
interacting Wigner functionW, as Cαβ is a functional of the
initial Wigner function Win. However, for a dilute system,
we further approximate

W ¼ Win þ…; ð13Þ

where the ellipsis corresponds to corrections of higher order
in density, which we neglect [62]. We will invert this
relation and replace Win in the collision term by W.
Furthermore, we see that the collision term in Eq. (11)
takes into account the nonlocality of the collision process, as
the Wigner functions depend on xþ xj. If the Wigner
function varies slowly in space and time on the microscopic
scale corresponding to the interaction range, we can
Taylor expandWðxþ xj; pjÞ around x and keep only terms
up to first order in gradients (equivalent to first order in ℏ)
[62], i.e.,

Wðxþ xj; pjÞ ¼ Wðx; pjÞ þ xj · ∂Wðx; pjÞ: ð14Þ

Substituting Eqs. (13) and (14) into Eq. (11), it follows
that

DERIVATION OF THE NONLOCAL COLLISION TERM IN THE … PHYS. REV. D 104, 016022 (2021)

016022-3



Cαβ ¼
ð2πℏÞ6
ð2mÞ4

X
r1;r2;s1;s2

Z
d4p1d4p2d4q1d4q2

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦαβðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

×
Y2
j¼1

ūsj

�
pj þ

qj
2

�
fWðx; pjÞδð4ÞðqjÞ − iℏ½∂μ

qjδ
ð4ÞðqjÞ�∂μWðx; pjÞgurj

�
pj −

qj
2

�
; ð15Þ

where we performed the integration over d4x1 and d4x2.
Equation (15) is the collision kernel for the Boltzmann
equation (8), which we will use as a starting point for the
explicit computation of collision effects.
Following Refs. [34,65,68,69], we employ an expansion

in powers of ℏ for the Wigner function; i.e., we search for
solutions of the form

W ¼ Wð0Þ þ ℏWð1Þ þ ℏ2Wð2Þ þOðℏ3Þ: ð16Þ
We notice that, since gradients are always accompanied by
factors of ℏ, such an expansion is also a gradient expansion.
We also stress that the gradient expansion of the
nonlocal term has to be considered as an ℏ expansion,
as Eq. (15) shows.
Furthermore, in our treatment, we will consider an

expansion around equilibrium,

W ¼ Weq þ δW; ð17Þ

where Weq is the equilibrium Wigner function and δW the
deviation from equilibrium. In our scheme, we always
consider δW to be at least of first order in an expansion in
gradients. As a consequence, if we take into account only
the lowest-order gradient correction in the nonlocal colli-
sion term, we can neglect contributions from δW in the
second term in the second line of Eq. (15), as they would be
of higher order in gradients.
It is now convenient to decompose the Wigner

function in terms of a basis of the generators of the
Clifford algebra

W ¼ 1

4

�
F þ iγ5P þ γ · V þ γ5γ ·Aþ 1

2
σμνSμν

�
; ð18Þ

where σμν ≡ i
2
½γμ; γν�, and substitute it into Eq. (4) to obtain

the equations of motion for the coefficient functions. The
real part of Eq. (4) yields

p · V −mF ¼ ℏDF ; ð19aÞ

ℏ
2
∂ ·AþmP ¼ −ℏDP ; ð19bÞ

pμF −
ℏ
2
∂νSνμ −mVμ ¼ ℏDμ

V ; ð19cÞ

−
ℏ
2
∂μP þ 1

2
ϵμναβpνSαβ þmAμ ¼ −ℏDμ

A; ð19dÞ

ℏ
2
∂ ½μVν� − ϵμναβpαAβ −mSμν ¼ ℏDμν

S ; ð19eÞ

while from the imaginary part we obtain

ℏ∂ · V ¼ 2ℏCF ; ð20aÞ

p ·A ¼ ℏCP; ð20bÞ

ℏ
2
∂μF þ pνSνμ ¼ ℏCμ

V ; ð20cÞ

pμP þ ℏ
4
ϵμναβ∂νSαβ ¼ −ℏCμ

A; ð20dÞ

p½μVν� þ ℏ
2
ϵμναβ∂αAβ ¼ −ℏCμν

S : ð20eÞ

Here, we defined Di ¼ ReTrðΓ̃iCÞ, Ci ¼ ImTrðΓ̃iCÞ,
i¼F ;P;V;A;S, Γ̃F ¼ 1, Γ̃P ¼ −iγ5, Γ̃V ¼ γμ, Γ̃A ¼ γμγ5,
Γ̃S ¼ σμν. Note that each coefficient function will obey a
modified on-shell condition and a Boltzmann-like equa-
tion, as can be readily seen from Eqs. (6) and (8).
We now assume that effects related to spin, and con-

sequently to the polarization, are at least of first order in ℏ.
This excludes the case of a large initial polarization of the
system; i.e., we focus on situations where a nonzero
polarization arises only through scatterings in the presence
of a nonvanishing medium vorticity. Therefore, since Aμ is
related to the polarization vector [65], its zeroth-order
contribution is assumed vanish, Að0Þμ ¼ 0, and conse-
quently, from Eq. (19e), Sð0Þμν ¼ 0. Equation (19b) then
implies that Pð0Þ ¼ 0. Thus, at zeroth order, all pseudo-
scalar quantities vanish, and, as a consequence, also the
collision terms which carry pseudoscalar quantum numbers

must vanish at zeroth order, Dð0Þ
P ¼ Cð0Þ

P ¼ 0. Using
Eqs. (19b) and (20b), this, in turn, implies that

P ¼ Oðℏ2Þ; p ·A ¼ Oðℏ2Þ: ð21Þ

For the vector part, at zeroth order, the only vector at our
disposal is pμ, i.e.,

Dμ
V ¼ pμδV þOðℏÞ; ð22Þ

with a scalar function δV. Thus, from Eq. (19c), we obtain
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Vμ ¼ 1

m
pμF̄ þOðℏ2Þ; ð23Þ

where we defined F̄ ≡ F − ℏδV. We can extend this
definition to any order in ℏ by setting

F̄ ≡ m
p2

Trðp · γWÞ: ð24Þ

We note that the assumption of polarization entering at first

order in ℏ implies that also the axial-vector Dð0Þμ
A and the

antisymmetric tensors Dð0Þμν
S and Cð0Þμν

S must vanish.
We can now write down the modified on-shell conditions

for F̄ and Aμ. From Eqs. (19a), (19c), and (20e), the
modified on-shell condition for the vector component reads

ðp2 −m2ÞVμ ¼ ℏpμDF þ ℏmDμ
V þOðℏ2Þ; ð25Þ

which, from Eq. (23), implies

ðp2 −m2ÞF̄ ¼ ℏδMF þOðℏ2Þ

¼ ℏm

�
DF þ m

p2
p ·DV

�
þOðℏ2Þ; ð26Þ

where δMF can be expressed at any order in ℏ by δM,
defined in Eq. (7), via the relation

δMF ¼ m
p2

Trðp · γδMÞ: ð27Þ

Furthermore, from Eqs. (19d) and (19e), we obtain

ðp2 −m2ÞAμ ¼ ℏδMμ
A þOðℏ2Þ ¼ Oðℏ2Þ; ð28Þ

with

δMμ
A ¼ Trðγμγ5δMÞ; ð29Þ

which, as a quantity with axial-vector quantum numbers, is
itself of orderOðℏÞ. This shows that, under the assumptions
adopted, the axial-vector component, unlike F̄ , remains on
the mass shell at first order in ℏ even in the presence of
interactions.
The Boltzmann equations are derived from Eqs. (20a)

and (20e), using Eqs. (21) and (23), and read up to
corrections of order Oðℏ2Þ,

p · ∂F̄ ¼ mCF; ð30aÞ

p · ∂Aμ ¼ mCμ
A; ð30bÞ

with CF ¼ 2CF and Cμ
A ≡ − 1

m ϵ
μναβpνCSαβ. From Eqs. (8),

(24), and (30), one finds

CF ¼ 1

p2
Trðp · γCÞ; ð31aÞ

Cμ
A ¼ 1

m
Trðγμγ5CÞ; ð31bÞ

which establishes the connection to C given in Eq. (15).
Equations (31) will be used to determine the right-hand
sides of Eqs. (30), which, together with Eq. (21), form a
closed system of equations for F̄ and Aμ, as will be
explicitly shown in the following.

III. SPIN IN PHASE SPACE

We now introduce spin as an additional variable in phase
space [30,33,34,73–75]. The advantage of this concept is
that it immediately connects the first-principle quantum
description to a “classical” description of spin, which can
be used, e.g., for hydrodynamics [34]. Furthermore, as we
will see later, it combines the full dynamics of the
Boltzmann-like equations (30) into one scalar equation
and provides a natural interpretation for the conservation
laws and the collisional invariants [34].
It is convenient to define the single-particle distribution

function in the phase space extended by the additional spin
variable s as

fðx; p; sÞ≡ 1

2
½F̄ ðx; pÞ − s ·Aðx; pÞ�: ð32Þ

This definition holds at any order in ℏ. We then introduce
the covariant integration measure

Z
dSðpÞ≡

ffiffiffiffiffiffiffi
p2

3π2

s Z
d4sδðs · sþ 3Þδðp · sÞ; ð33Þ

which has the propertiesZ
dSðpÞ ¼ 2; ð34aÞ

Z
dSðpÞsμ ¼ 0; ð34bÞ

Z
dSðpÞsμsν ¼ −2

�
gμν −

pμpν

p2

�
: ð34cÞ

Consequently,

F̄ ðx; pÞ ¼
Z

dSðpÞfðx; p; sÞ; ð35aÞ

Aμðx; pÞ ¼
Z

dSðpÞsμfðx; p; sÞ: ð35bÞ

Higher moments of f with respect to the variable s can be
also related to F and Aμ and do not yield any further
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information. From Eqs. (19c), (19e), and (23), we obtain
relations for Vμ and Sμν, which are valid up to corrections
of order Oðℏ2Þ,

Vμðx;pÞ¼
Z

dSðpÞ
�
1

m
pμþ ℏ

2m
∂νΣ

μν
s

�
fðx;p;sÞþOðℏ2Þ;

Sμνðx;pÞ¼
Z

dSðpÞ
�
Σμν
s þ ℏ

2m2
∂ ½μpν�

�
fðx;p;sÞþOðℏ2Þ;

ð36Þ

where we defined

Σμν
s ≡ −

1

m
ϵμναβpαsβ: ð37Þ

Similarly as for the Wigner function, we can write a
modified on-shell condition and the Boltzmann equation
for the scalar distribution f. Using Eqs. (26) and (28), the
on-shell condition is given by

ðp2 −m2Þfðx; p; sÞ ¼ ℏMðx; p; sÞ þOðℏ2Þ; ð38Þ

with

Mðx; p; sÞ ¼ 1

2
½δMFðx; pÞ − s · δMAðx; pÞ�: ð39Þ

In order to find a solution for Eq. (38), we employ the
quasiparticle approximation; i.e., we assume that the
distribution f is of the form

fðx; p; sÞ ¼ mδðp2 −M2Þfðx; p; sÞ; ð40Þ

where fðx; p; sÞ is a function without singularity at
p2 ¼ M2 ≡m2 þ ℏδm2, with δm2ðx; p; sÞ being a correc-
tion to the mass-shell condition for free particles arising
from interactions. After Taylor expanding the delta function
to first order in ℏ and assuming that fðx; p; sÞ has
no singularity at p2 ¼ m2, i.e., ðp2 −m2Þδðp2 −m2Þ
fðx; p; sÞ ¼ 0, we can relate δm2 with M,

ℏMðx; p; sÞ ¼ ℏδm2ðx; p; sÞδðp2 −m2Þmfðx; p; sÞ
þOðℏ2Þ; ð41Þ

where we used ðp2 −m2Þδ0ðp2 −m2Þ ¼ −δðp2 −m2Þ. As
a consequence of our assumption that spin degrees of
freedom enter at first order, the s dependence of ℏδm2

appears at least at Oðℏ2Þ.
The Boltzmann equation for f is derived from Eqs. (30)

and (32) and reads

p · ∂fðx; p; sÞ ¼ mC; ð42Þ

where we introduced the collision kernel

C≡ 1

2
ðCF − s · CAÞ: ð43Þ

As will be shown in the following, up to first order in ℏ, the
collision term has the following structure:

C ¼ Cð0Þ
l þ ℏfCð1Þ

l þ Cð1Þ
nl g≡ Cl þ ℏCð1Þ

nl : ð44Þ
Here, local and nonlocal contributions are denoted by
subscripts l and nl, respectively. As already mentioned,
the zeroth-order contribution is purely local [76], while the
first-order contribution has both local and nonlocal parts. In
the next sections, we will calculate the local and nonlocal
collision terms explicitly.

IV. LOCAL COLLISIONS

In order to explicitly calculate the collision term, we
follow Ref. [62]. We first focus on the local part, i.e., the
term proportional to δð4ÞðqiÞ in the second line of Eq. (15).
The matrix element of Φ appearing in this equation,
with Φ given by Eq. (12), is calculated in Appendix B.
The local contribution is thus obtained from Eq. (B10) with
qi ¼ 0 [62],

ð2πℏÞ6inhp1; p2; r1; r2jΦjp1; p2; s1; s2iin
¼

X
rs

urðpÞūsðpÞwrs
r1r2s1s2ðp1; p2; pÞ; ð45Þ

with

wrs
r1r2s1s2ðp1;p2;pÞ¼2δðp2−m2Þ

	X
r0

Z
dP0

×δðpþp0−p1−p2Þhp;p0;r;r0jtjp1;p2;s1;s2i
×hp1;p2;r1;r2jt†jp;p0;s;r0i
þ½iπℏp0δð3Þðp−p1Þðhp;p2;r;r2jtjp;p2;s1;s2iδr1s
−hp;p2;r1;r2jt†jp;p2;s;s2iδrs1Þþð1↔2Þ�



; ð46Þ

where the symbol ð1 ↔ 2Þ denotes the exchange of the
indices 1 and 2, dP≡ d4pδðp2 −m2Þ, and
hp; p0; r; r0jtjp1; p2; s1; s2i

≡ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πℏÞ7

2

r
ūrðpÞouthp0; r0j∶ρð0Þ∶jp1; p2; s1; s2iin

ð47Þ
is the conventional scattering amplitude due to the inter-
action ρ, which can be computed using standard techniques
from quantum field theory [62,77]. We are now ready to
calculate the local part of Eq. (44). To this end, we insert
Eq. (45) into Eq. (15); then Eq. (15) into Eqs. (31); and,
finally, we plug Eqs. (31) into Eq. (43). In this way, the
local part of the collision kernel is given by
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Cl ¼
1

8m4

X
r1;r2;s1;s2

Z
d4p1d4p2

X
r0;s0

hs0r0 ðp; sÞ

× wr0s0
r1r2s1s2ðp1; p2; pÞ

Y2
j¼1

ūsjðpjÞWðx; pjÞurjðpjÞ;

ð48Þ
where we have used

pμδsr ≡ 1

2
ūsðpÞγμurðpÞ; ð49Þ

nμsrðpÞ≡ 1

2m
ūsðpÞγ5γμurðpÞ ð50Þ

and defined

hsrðp; sÞ≡ δsr þ s · nsrðpÞ: ð51Þ
The factor δðp2 −m2Þ in Eq. (46) shows that the local term
is always on shell. This comes from the difference
GðpÞ −G⋆ðpÞ ¼ 2πiℏ2δðp2 −m2Þ, with

GðpÞ ¼ −
ℏ2

p2 −m2 þ iϵp0
; ð52Þ

which appears in the first line of Eq. (B11) when we set
qi ¼ 0. We now use the Clifford decomposition (18) to
write Eq. (48) as

Cl ¼
1

32m2

X
r1;r2;s1;s2

Z
d4p1d4p2

X
r0;s0

hs0r0 ðp; sÞ

× wr0s0
r1r2s1s2ðp1; p2; pÞ

Y2
j¼1

�
F ðx; pjÞδsjrj

þ 1

m
p · Vðx; pjÞδsjrj þ nsjrjðpjÞ ·Aðx; pjÞ

þ 1

2
Σμjνj
sjrj ðpjÞSμjνjðx; pjÞ

�
; ð53Þ

where we defined

Σμν
rs ðpÞ≡ 1

2m
ūrðpÞσμνusðpÞ ¼

1

m
ϵμναβpαnrsβðpÞ: ð54Þ

Using Eqs. (35b), (36), and (40), the relations pμΣ
μν
s ¼

pμΣ
μν
sr ¼ 0, and

Σμν
srΣsμν ¼ 2

p2

m2
s · nsr; ð55Þ

we can rewrite Eq. (53) in the form

Cl ¼
1

8

X
r1;r2;s1;s2

Z
dΓ1dΓ2

X
r0;s0

hs0r0 ðp; sÞ

× wr0s0
r1r2s1s2ðp1; p2; pÞ

Y2
j¼1

hsjrjðpj; sjÞfðx; pj; sjÞ;

ð56Þ

where

Z
dΓ≡

Z
d4pδðp2 −m2Þ

Z
dSðpÞ: ð57Þ

Plugging Eq. (46) into (56), the collision term reduces to

Cl ¼ δðp2 −m2ÞCon-shell;l½f�; ð58Þ

where

Con-shell;l½f� ¼
1

4

X
r1;r2;s1;s2

X
r;r0;s

Z
dΓ1dΓ2dP0hsrðp; sÞ δð4Þðpþ p0 − p1 − p2Þhp; p0; r; r0jtjp1; p2; s1; s2i

× hp; p2; r1; r2jt†jp; p0; s; r0i
Y2
j¼1

hsjrjðpj; sjÞfðx; pj; sjÞ

þ i
πℏ
4

X
r2;s1;s2

X
r;s

Z
dΓ2dS1ðpÞhs2r2ðp2; s2Þfðx; p; s1Þ

× fðx; p2; s2Þ½hsrðp; sÞhs1sðp; s1Þhp; p2; r; r2jtjp; p2; s1; s2i
−hs1sðp; sÞhsrðp; s1Þhp; p2; r; r2jt†jp; p2; s1; s2i� ð59Þ
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is the local collision term on the mass shell. Using the
identity

X
s0
nμrs0 ðpÞnνs0sðpÞ ¼ −

�
gμν −

pμpν

m2

�
δrs

þ i
m
ϵμναβpαnrsβðpÞ; ð60Þ

we can simplify

X
s

½hsrðp; sÞhs1sðp; s1Þ − hs1sðp; sÞhsrðp; s1Þ�

¼ sμs1ν
X
s

½nμsrðpÞnνs1sðpÞ − nμs1sðpÞnνsrðpÞ�

¼ −i
2

m
sμs1νϵμναβpαns1rβðpÞ ð61Þ

to obtain

Con-shell;l½f�¼
1

4

X
r1;r2;s1;s2

X
r;r0;s

Z
dΓ1dΓ2dP0hsrðp;sÞδð4Þðpþp0−p1−p2Þhp;p0;r;r0jtjp1;p2;s1;s2i

×hp;p2;r1;r2jt†jp;p0;s;r0i
Y2
j¼1

hsjrjðpj;sjÞfðx;pj;sjÞ

þ i
πℏ
8

X
r2;s1;s2

X
r;s

Z
dΓ2dS1ðpÞhs2r2ðp2;s2Þfðx;p;s1Þfðx;p2;s2Þ½hsrðp;sÞhs1sðp;s1Þþhs1sðp;sÞhsrðp;s1Þ�

×hp;p2;r;r2jt− t†jp;p2;s1;s2iþ
πℏ
4m

X
r2;s1;s2

X
r

Z
dΓ2dS1ðpÞhs2r2ðp2;s2Þfðx;p;s1Þ

×fðx;p2;s2Þsμs1νϵμναβpαns1rβðpÞhp;p2;r;r2jtþ t†jp;p2;s1;s2i: ð62Þ

The expression above can be further simplified by noting that the term involving the amplitude with the operator t − t† is
related to the first term through the optical theorem [62]

iπℏhp; p1; r; r1jt − t†jp; p1; s; s1i ¼ −
X
r0;r0

1

Z
dP0dP0

1hp; p1; r; r1jtjp0; p0
1; r

0; r01i hp0; p0
1; r

0; r01jt†jp; p1; s; s1i: ð63Þ

Hence, the collision term is cast into the form

Con-shell;l½f� ¼
1

4

X
r1;r2;s1;s2

X
r;r0;s

Z
dΓ1dΓ2dP0hsrðp; sÞ δð4Þðpþ p0 − p1 − p2Þhp; p0; r; r0jtjp1; p2; s1; s2i

× hp; p2; r1; r2jt†jp; p0; s; r0i
Y2
j¼1

hsjrjðpj; sjÞfðx; pj; sjÞ −
1

8

X
r2;s1;s2

X
r;s;r0;r0

1

Z
dΓ2dP0dP0

1dS1ðpÞhs2r2ðp2; s2Þ

× fðx; p; s1Þfðx; p2; s2Þ½hsrðp; sÞhs1sðp; s1Þþhs1sðp; sÞhsrðp; s1Þ�hp; p2; r; r2jtjp0; p0
1; r

0; r01i

× hp0; p0
1; r

0; r01jt†jp; p2; s1; s2i þ
πℏ
4m

X
r2;s1;s2

X
r

Z
dΓ2dS1ðpÞhs2r2ðp2; s2Þfðx; p; s1Þ

× fðx; p2; s2Þsμs1νϵμναβpαns1rβðpÞ hp; p2; r; r2jtþ t†jp; p2; s1; s2i: ð64Þ

In order to write the collision term in a compact form, we
insert factors of one for the phase-space spin variable in the
form 1 ¼ ð1=2Þ R dSðpÞ and obtain

Con-shell;l½f�≡ Cpþs½f� þ Cs½f�; ð65Þ

with

Cpþs½f�≡
Z

dΓ1dΓ2dΓ0dS01ðpÞW ½fðx;p1;s1Þfðx;p2;s2Þ

−fðx;p;s01Þfðx;p0;s0Þ�; ð66aÞ

Cs½f�≡
Z

dΓ2dS1ðpÞWfðx; p; s1Þfðx; p2; s2Þ; ð66bÞ

where
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W≡ 1

32

X
s;r;s0

1

½hss0
1
ðp;s01Þhs01rðp;sÞþhss0

1
ðp;sÞhs0

1
rðp;s01Þ�

×
X

s0;r0;s1;s2;r1;r2

hs0r0 ðp0;s0Þhs1r1ðp1;s1Þhs2r2ðp2;s2Þ

×hp;p0;r;r0jtjp1;p2;s1;s2ihp1;p2;r1;r2jt†jp;p0;s;s0i
×δð4Þðpþp0−p1−p2Þ ð67Þ

and

W≡ πℏ
4m

X
s1;s2;r;r2

ϵμναβsμsν1p
αnβs1rðpÞhs2r2ðp2; s2Þ

× hp; p2; r; r2jtþ t†jp; p2; s1; s2i: ð68Þ

The term Cpþs½f� in Eq. (65) describes momentum- and
spin-exchange interactions, while the term Cs½f� corre-
sponds to spin exchange without momentum exchange. If
the distribution functions do not depend on the spin
variables, i.e., fðx; p; sÞ≡ fðx; pÞ, we recover the colli-
sion term familiar from the Boltzmann equation, where
averaging and summation over spins is done directly in the
cross section. We do not obtain Pauli-blocking factors
because of the low-density approximation [62]. Moreover,
this implies that, in equilibrium, only Boltzmann instead of
Fermi-Dirac distributions will appear. If the distribution
functions depend on spin, the two terms on the right-hand
side of Eq. (65) require further discussion. Considering
Cpþs½f�, the term proportional to fðx; p1; s1Þfðx; p2; s2Þ
has the form of a gain term for particles with momentum
p and spin s, while the term proportional to
fðx; p; s01Þfðx; p0; s0Þ does not have an obvious interpre-
tation as a loss term, because the spin variable is s01, not s.
However, it is possible to define a new distribution

function and a new collision term such that we recover the
standard interpretation of gain and loss terms in the latter
without changing the physics. The underlying idea is that,
since the phase-space spin variable is not observable,
physical quantities are only obtained after integrating over
the former; see, e.g., Eq. (35b). Therefore, we seek to
replace the distribution function fðx; p; sÞ by another
distribution function f̃ðx; p; sÞ and likewise the collision
term C½f� by C̃½f̃�, such that

p · ∂f̃ðx; p; sÞ ¼ C̃½f̃�; ð69aÞ
Z

dSðpÞbQ̃ðx; p; sÞ ¼
Z

dSðpÞbQðx; p; sÞ ð69bÞ

is fulfilled for Q ∈ ff;C½f�g, Q̃ ∈ ff̃; C̃½f̃�g, b ∈ f1; sμg.
In other words, after integration over the spin variable, the
new distribution function f̃ðx; p; sÞ and the collision term
C̃½f̃� are equivalent to the old ones. Moreover, they fulfill
the same Boltzmann equation. Consequently, the new

quantities f̃ðx; p; sÞ and C̃½f̃� describe the same physics
as the old ones. Equations (69) constitute a “weak equiv-
alence principle,” stating that f and f̃ formally obey the
same equation of motion and give identical results when
integrating over the spin variable.
We now want to derive the collision term C̃pþs½f̃�, which

satisfies the weak equivalence principle. The ultimate goal
is to modify Eq. (66a) and the first line of Eq. (67) in such a
way that s1 is replaced by s and the integration over dS01ðpÞ
disappears, so that one obtains a collision term which has a
standard gain and loss term. According to Eq. (43), we will
show this separately for the (pþ s) parts of CF and Cμ

A,
respectively. The calculation for CF is actually straightfor-
ward, so we only present the somewhat more complicated
case of Cμ

A. Considering
R
dSðpÞsαCpþs½f�, one encounters

a term of the form

1

2

X
s0
1

Z
dSðpÞdS01ðpÞsαsμs0β1 s01ν

× ½nμs0
1
rðpÞnνss0

1
ðpÞ þ nμss0

1
ðpÞnνs0

1
rðpÞ�

¼ −
Z

dSðpÞdS01ðpÞsαsμs0β1 s01ν
�
gμν −

pμpν

p2

�
δrs

¼ 2

Z
dSðpÞsαsβδrs ¼ −4

�
gαβ −

pαpβ

p2

�
δrs; ð70Þ

where we used Eq. (60) in the first and Eq. (34c) in the last
step. With this relation, and similar ones for the other terms,
we see that, after integration over dSðpÞ, the replacement

X
s0
1

Z
dS01ðpÞ½hss01ðp; s01Þhs01rðp; sÞ þ hss0

1
ðp; sÞhs0

1
rðp; s01Þ�

→ 4hsrðp; sÞ ð71Þ

fulfills the weak equivalence principle.
Furthermore, by definition, Eq. (32), f is linear in s, and,

since Að0Þμ ¼ 0, the s dependence enters only at first order
in ℏ, i.e., f ¼ fðℏsÞ. We assume that both f and f̃ can be
Taylor expanded in terms of ℏs. Inserting this Taylor
expansion on the left- and right-hand sides of Eq. (69b), we
conclude that, to orderOðℏÞ, the only choice for f̃ is f̃ ≡ f,
with deviations entering at order Oðℏ2Þ. With Eq. (71), we
then find that, with the relations

R
dSðpÞsμ ¼ 0 andR

dSðpÞsμsνsλ ¼ 0, the choice

C̃pþs½f�≡
Z

dΓ1dΓ2dΓ0W̃

× ½fðx;p1;s1Þfðx;p2;s2Þ−fðx;p;sÞfðx;p0;s0Þ�;
ð72Þ

with
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W̃≡ δð4Þðpþp0 −p1 −p2Þ
1

8

X
s;r

hsrðp;sÞ

×
X

s0;r0;s1;s2;r1;r2

hs0r0 ðp0;s0Þhs1r1ðp1;s1Þhs2r2ðp2;s2Þ

× hp;p0; r; r0jtjp1;p2; s1; s2ihp1; p2;r1; r2jt†jp;p0;s; s0i;
ð73Þ

satisfies the weak equivalence principle (69) up to OðℏÞ.
Let us now focus on Cs½f�. We will argue that this term

has already the expected structure with gain and loss terms.
In order to see this, let us first note thatCs½f� corresponds to
collisions where the momentum of each particle is con-
served, but the spin can change: ðp; s1Þ; ðp2; s2Þ →
ðp; sÞ; ðp2; s0Þ [62]. Here, the distribution functions
fðx; p; ·Þ and fðx; p0; ·Þ describe the particles before and
after the collision, which means that they contribute to both
the gain and the loss term. We see from Eq. (68) that the

interchange of sμ and sν1 flips the sign of W. This means
that a net gain of particles with (p, s) corresponds to a net
loss of particles with ðp; s1Þ. Thus, Cs½f� contains both
gain and loss terms.

V. NONLOCAL COLLISIONS

In order to calculate the nonlocal collision term, we focus
on the second term in the second line of Eq. (15). Note that
the ∂μ

qjδ
ð4ÞðqjÞ term implies that the momentum pμ of the

Wigner function is not on shell anymore, which is in
contrast to the local term. In fact, when we integrate by
parts, the nonlocal kernel in Eq. (15) can be divided into
two terms:

Cð1Þ
nl ¼ Cð1Þ

nl;1 þ Cð1Þ
nl;2: ð74Þ

In the first term, the qj-derivative acts on the spinors, i.e.,

Cð1Þ
nl;1 ¼

i
8m4

X
r1;r2;s1;s2

Z
d4p1d4p2d4q1d4q2δð4Þðq1Þδð4Þðq2Þ

× Tr

��
1

p2
p · γ −

1

m
s · γγ5

�
ð2πℏÞ6

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

�

×

	
ūs1

�
p1 þ

q1
2

�
Wðx; p1Þur1

�
p1 −

q1
2

�
∂μ
q2

�
ūs2

�
p2 þ

q2
2

�
∂μWðx; p2Þur2

�
p2 −

q2
2

��

þ ∂μ
q1

�
ūs1

�
p1 þ

q1
2

�
∂μWðx; p1Þur1

�
p1 −

q1
2

��
ūs2

�
p2 þ

q2
2

�
Wðx; p2Þur2

�
p2 −

q2
2

�

; ð75Þ

which is on shell because of δð4Þðq1Þδð4Þðq2Þ, i.e.,

Cð1Þ
nl;1 ¼ δðp2 −m2ÞCð1Þ

on-shell;nl;1: ð76Þ

In the second term in Eq. (74), the qj-derivative acts on the matrix element of Φ, i.e.,

Cð1Þ
nl;2 ¼

i
8m4

X
r1;r2;s1;s2

Z
d4p1d4p2d4q1d4q2δð4Þðq1Þδð4Þðq2Þ

×

	
ūs1

�
p1 þ

q1
2

�
Wðx; p1Þur1

�
p1 −

q1
2

�
ūs2

�
p2 þ

q2
2

�
∂μWðx; p2Þur2

�
p2 −

q2
2

�
∂μ
q2

þ ūs1

�
p1 þ

q1
2

�
½∂μWðx; p1Þ�ur1

�
p1 −

q1
2

�
ūs2

�
p2 þ

q2
2

�
Wðx; p2Þur2

�
p2 −

q2
2

�
∂μ
q1




× Tr

��
1

p2
p · γ −

1

m
s · γγ5

�
ð2πℏÞ6

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

�
; ð77Þ

which in general contains off-shell parts, cf. Appendix D.
Note that the factor ð2πℏÞ6 in front of the matrix element in
Eqs. (75) and (77) is part of the normalization of the latter,
cf. Eq. (45), and does not participate in the ℏ-counting,
which is obvious since it is not accompanied by any

gradient ∂μ. As discussed in relation to Eq. (17), in our
expansion scheme, the zeroth-order distribution function
is identified with the equilibrium distribution. Off-
equilibrium contributions are at least of first order in
gradients and will thus enter the nonlocal collision term
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only at higher order. Thus, in the following discussion, we
will always assume that the distribution functions in the
nonlocal collision term are identical to the zeroth-order
equilibrium distribution.
In Appendix D, it is shown that Cð1Þ

nl;2 can be divided into
an on-shell and an off-shell part,

Cð1Þ
nl;2 ¼ Cð1Þ

off-shell þ δðp2 −m2ÞCð1Þ
on-shell;2

¼ Cð1Þ
off-shell þ δðp2 −m2ÞðCð1Þ

on-shell;2;1 þ Cð1Þ
on-shell;2;2Þ;

ð78Þ

and it is proved that the off-shell contribution Cð1Þ
off-shell

cancels the off-shell part of the left-hand side of the
Boltzmann equation (42) when substituting Eq. (40).

Furthermore, in Appendix D, we show that Cð1Þ
on-shell;2;1 ¼ 0,

if one inserts the zeroth-order equilibrium distribution [see

Eq. (D18)]. The explicit expression for Cð1Þ
on-shell;2;2 contains

momentum derivatives of matrix elements and is computed
in Appendix D; see Eq. (D16). This term is neglected as we
assume the scattering amplitude to be constant over scales

of order of the interaction range defining the scattering
nonlocality. This is consistent with the low-density
approximation; see e.g., Ref. [78]. Therefore, the
Boltzmann equation contains only on-shell contributions
and can be written in terms of the distribution function
fðx; p; sÞ as

δðp2 −m2Þp · ∂fðx; p; sÞ ¼ δðp2 −m2ÞCon-shell½f�; ð79Þ

with

Con-shell½f�≡ Con-shell;l½f� þ ℏCð1Þ
on-shell;nl;1½f�; ð80Þ

where Con-shell;l is the local term calculated in the previous
section.
We are now ready to calculate Cð1Þ

nl;1. We note that, since
in our scheme the lowest-order contribution to Aμ and Sμν

is of first order in gradients, these terms can be neglected in
the nonlocal collision term, as the total contribution would
be of second order. Using the spinor identities (C2), the
relevant terms to compute in Eq. (75) are of the form

i∂μ
qj

�
ūsj

�
pj þ

qj
2

�
∂μWðx; pjÞurj

�
pj −

qj
2

��
qj¼0

¼ i

�
∂μ
qj ūsj

�
pj þ

qj
2

�
urj

�
pj −

qj
2

�
∂μF ð0Þðx; pjÞþ∂μ

qj ūsj

�
pj þ

qj
2

�
γαurj

�
pj −

qj
2

�
∂μV

ð0Þ
α ðx; pjÞ

�
qj¼0

¼ 1

p0
j þm

pjνΣ
μν
sjrjðp⋆Þ∂μfð0Þðx; pjÞ

¼ 1

p0
j þm

½pj × nsjrjðpjÞ� · ∇fð0Þðx; pjÞ

¼ −
1

2ðp0
j þmÞ

Z
dSjðpjÞhsjrjðpj; sjÞðpj × sjÞ · ∇fð0Þðx; pjÞ; ð81Þ

where pμ⋆ ≡ ðm; 0Þ is the 4-momentum in the rest frame of
the particle. Using the result (81), defining the space-time
shift

Δμ ≡ −
ℏ

2mðp · t̂þmÞ ϵ
μναβpνt̂αsβ; ð82Þ

where t̂μ is the timelike unit vector which is (1,0)
in the frame where pμ is measured, and applying similar
steps as in the derivation of Eq. (66), we find that Eq. (75)
becomes

ℏCð1Þ
on-shell;nl;1½f� ¼

Z
dΓ1dΓ2dΓ0dS01ðpÞW ½fðx; p2; s2ÞΔ1 · ∂fðx; p1; s1Þ þ fðx; p1; s1ÞΔ2 · ∂fðx; p2; s2Þ

− fðx; p0; s0ÞΔ0
1 · ∂fðx; p; s01Þ − fðx; p; s01ÞΔ0 · ∂fðx; p0; s0Þ�

þ πℏ
4m

X
r;r2;s1;s2

Z
dΓ2dS1ðpÞhs2r2ðp2; s2Þsμs1νϵμναβpαns1rβhp; p2; r; r2jtþ t†jp; p2; s1; s2i

× ½fðx; p; s1ÞΔ2 · ∂fðx; p2; s2Þ þ fðx; p2; s2ÞΔ1 · ∂fðx; p; s1Þ�: ð83Þ
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We now observe that Δ · ∂fðx; p; sÞ is the first-order
contribution of the Taylor expansion of fðxþ Δ; p; sÞ.
Hence, after applying the weak equivalence principle (69)
to Eq. (83), we can summarize the total collision term up to
first order as

C̃on-shell½f� ¼
Z

dΓ1dΓ2dΓ0W̃

× ½fðxþ Δ1; p1; s1Þfðxþ Δ2; p2; s2Þ
− fðxþ Δ; p; sÞfðxþ Δ0; p0; s0Þ�

þ
Z

dΓ2dS1ðpÞWfðxþ Δ1; p; s1Þ

× fðxþ Δ2; p2; s2Þ: ð84Þ

The interpretation of Eq. (84) is the following: incoming
and outgoing particles are dislocated from the geometric
center x of the collision by a spacelike distance Δμ. This
leads to a finite difference between the incoming and
outgoing orbital angular momentum. This angular momen-
tum is converted into spin polarization through a collision,
which leads to the alignment of spin with the direction of
vorticity discussed in Ref. [34].
We remark that the nonlocality in Eq. (84) should be

distinguished from the nonlocality of a collision due to the
side-jump effect in the massless case without interactions as
it was discussed in Refs. [79,80]. The latter arises due to the
anomalous Lorentz transformation of the center of inertia of
massless particles [36,81,82]. If a collision of massless
particles is local in one reference frame, it will in general be
nonlocal in a boosted reference frame, as the transformation
behavior of the center of inertia leads to a position shift after
the collision. On the other hand, for massive particles, it is
always possible to define a space-time 4-vector associated
with the center of mass, which properly transforms as a

Lorentz vector as long as only local collisions are considered
[34,36]. In other words, if the collision is local in one
reference frame, it will stay local in all other reference
frames. Hence, massive particles with local collisions will
not experience any side-jump effect. The nonlocality in
Eq. (84) is thus a nonlocality (in the sense of a finite impact
parameter) in all reference frames, and, therefore, there is no
“no-jump frame.” In the massless case, this kind of non-
locality could be considered on top of the side-jumpeffect by
introducing a collision which is not local even in the center-
of-momentum frame. For a recent review about the differ-
ence between the centers of inertia and of mass and their
connection to field theory, see Ref. [36].

VI. EQUILIBRIUM

In order to find the conditions necessary to reach
equilibrium, we consider the standard form of the local
equilibrium distribution function [8,25,30]

feqðx; p; sÞ ¼
1

ð2πℏÞ3 exp
�
−βðxÞ · pþ ℏ

4
ΩμνðxÞΣμν

s

�
:

ð85Þ

The exponent in Eq. (85) is a linear combination of the
conserved quantities, which are momentum and total
angular momentum, where the Lagrange multipliers
βμðxÞ ¼ uμðxÞ=TðxÞ and ΩμνðxÞ have the interpretation
of fluid velocity over temperature and spin potential,
respectively [25,29]. Here, we absorbed the orbital part
of the angular momentum into the definition of βμðxÞ [8]
and for the sake of simplicity considered the case of zero
chemical potential, which corresponds to uncharged par-
ticles. We now insert Eq. (85) into Eq. (84) and obtain after
expanding up to first order in ℏ

C̃on-shell½feq�¼−
Z

dΓ0dΓ1dΓ2W̃e−β·ðp1þp2Þ
�
∂μβνðΔμ

1p
ν
1þΔμ

2p
ν
2−Δμpν−Δ0μp0νÞ−ℏ

4
ΩμνðΣμν

s1 þΣμν
s2 −Σμν

s −Σμν
s0 Þ

�

−
Z

dΓ2dS1ðpÞdS0ðp2ÞWe−β·ðpþp2Þ
	
∂μβν½ðΔμ

1−ΔμÞpνþðΔμ
2−Δ0μÞpν

2�−
ℏ
4
ΩμνðΣμν

s1 þΣμν
s2 −Σμν

s −Σμν
s0 Þ



:

ð86Þ

Here, we used that the zeroth-order contribution to the
collision term vanishes for the distribution function (85). As
the orbital angular momentum tensor of the particle
with ðp; sÞ is given by Lμν ¼ Δ½μpν�, the parentheses in
the second and fourth lines can be interpreted as the balance
of orbital angular momentum in the respective collision.
Defining the total angular momentum Jμν ¼ Lμν þ ℏ

2
Σμν
s

of the particle, which is assumed to be conserved in a
collision, Jμν þ J0μν ¼ Jμν1 þ Jμν2 , the conditions for the
vanishing of the collision term are for any W̃, W given by

∂μβν þ ∂νβμ ¼ 0; ð87Þ

Ωμν ¼ ϖμν ≡ −
1

2
∂ ½μβν� ¼ const: ð88Þ

This corresponds to global (and not just local) equilibrium.
We remark that the conditions for global equilibrium

given in Eqs. (87) and (88) are necessary for the collision
term to vanish if the standard ansatz for the equilibrium
distribution function in Eq. (85) is used. In other words,
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the standard concept of local equilibrium cannot be
adopted when both spin effects and nonlocal collisions
are considered. This result can be understood by looking
at the ordering of scales. The usual way to derive hydro-
dynamics from kinetic theory is by assuming that there is a
clear separation between some microscopic scale associ-
ated to the mean free path lmfp and a macroscopic scale
associated to the hydrodynamic gradients Lhydro. One can
then define the so-called Knudsen number Kn,

Kn≡ lmfp

Lhydro
; ð89Þ

and require that Kn ≪ 1. The expansion near equilibrium
as defined in Eq. (17) is a measure of how important
dissipative effects are and can be associated to an expan-
sion in the Knudsen number. Qualitatively, we can write

δf
feq

∼OðKnÞ; ð90Þ

where δf is a function which describes deviations of both
the scalar and axial-vector part of theWigner function from
equilibrium. For systems made of particles with spin, in
addition to the expansion in Eq. (90), we introduce an
expansion in powers of ℏ. In our framework, spin
effects and scattering nonlocality are treated as being of
the same order, and it is natural to consider Δ as a
new scale of the system.We can now relate a new parameter
κ to the ℏ-expansion of the Wigner function, defined as

κ ≡ Δ
Lhydro

∼
ℏfð1Þ

fð0Þ
: ð91Þ

The relation between κ and theKnudsen number is given by

κ ¼ Δ
lmfp

Kn: ð92Þ

In order for the assumption of molecular chaos to hold, and
hence for particles to be considered as free between
scatterings, we require that Δ≲ lmfp, implying

κ ≲ Kn: ð93Þ

The physical implication of this condition is that a local-
equilibrium description of a fluid with spin and nonlocal
collisions in kinetic theory would be inconsistent with
the power counting. In fact, if we consider spin as of
first order in κ, we cannot neglect dissipative effects at first
order in Kn. For related discussions, see also Refs. [26,41].
We can also express the condition in Eq. (93) in terms of

the properties of the system. To this end, consider σ to be a
cross section and n the particle density. The geometric area
given by the cross section, σ ≡ πr2int, defines a typical

interaction range, rint ≡
ffiffiffiffiffiffiffiffi
σ=π

p
. On the other hand, the

particle density n defines the typical interparticle distance
d ∼ n−1=3. From Eq. (82), we conclude that Δ ∼ ℏ=m, i.e.,
Δ is of the order the Compton wavelength of the particle.
Since lmfp ∼ ðσnÞ−1, the condition we need to satisfy reads

Δ
lmfp

∼
Δ
rint

�
rint
d

�
3 ≲ 1: ð94Þ

As long as the interparticle distance is much larger than the
interaction range, this condition is fulfilled, even if the
Compton wavelength exceeds the interaction range.
The dissipative currents (bulk viscous pressure, diffusion

current, and shear-stress tensor) can be expanded in terms
of powers of gradients of temperature, chemical potential,
and fluid velocity. Such a gradient expansion is, by virtue
of Eq. (89), an expansion in powers of the Knudsen
number. The first-order terms in this expansion correspond
to the relativistic generalization of Navier-Stokes theory.
However, it has been shown that this theory is acausal and
unstable [83]. To remedy this shortcoming, transient
theories of relativistic dissipative hydrodynamics have been
developed [84], where the dissipative currents relax to their
Navier-Stokes values on a timescale proportional to lmfp.
Such theories effectively resum all orders of the gradient
expansion and render relativistic dissipative hydrodynam-
ics causal and stable. However, since the values of the
dissipative currents can now differ from their asymptotic
(Navier-Stokes) values, at least at early times, besides the
Knudsen number, another, independent, dimensionless
quantity enters, the inverse Reynolds number R−1, which
is defined as the ratio of a dissipative current over a quantity
in thermodynamic equilibrium (e.g., pressure or particle
density). Consequently, at early times t≲ lmfp, the inverse
Reynolds number may differ from the Knudsen number.
However, for late times t≳ lmfp, all dissipative currents
relax to their Navier-Stokes values, and we therefore do not
need to differentiate between Kn and R−1.

VII. CONCLUSIONS

In this paper, we provided a detailed derivation of the
collision term in the Boltzmann equation starting from the
Wigner-function formalism put forward in Ref. [34]. The
main result of this work is to provide an explicit expression
of the nonlocal collision kernel based on the framework
developed in Ref. [62]. The advantage of this formalism is
that it relates the collision kernel to vacuum scattering
amplitudes, which can be computed using standard field-
theory techniques. Employing the ℏ, or gradient, expansion
to solve for the Wigner function, it follows that the nonlocal
term enters at next-to-leading order. Enlarging the phase
space to include a classical variable related to spin degrees of
freedom allows one to write the equations of motion for the
Clifford components of the Wigner function as a single
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scalarBoltzmann equation. Furthermore,we proved that this
scalar equation contains only on-shell contributions. An
implication of this work is that the conditions for the
collision term to vanish are those of global equilibrium
[34]. Moreover, in Refs. [34,36], the relation between the
scattering nonlocality and spin hydrodynamics is analyzed.
An important question for phenomenological applications,
which can be addressed using nonequilibrium spin
dynamics, is whether spin equilibrates sufficiently fast on
the timescale of the evolution of the hot and dense system
created in heavy-ion collisions. Recent works addressing the
spin-equilibration time can be found in Refs. [76,85–89].
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APPENDIX A: ENSEMBLE AVERAGE OF THE
COLLISION TERM

Consider an arbitrary operator O. In kinetic theory,
where dilute systems are considered, it is permissible to
take the ensemble average hOi with respect to the initial,
free n-particle states defined in Eq. (10). The ensemble
average hOi is derived in Ref. [62] and reads

hOi ¼
X∞
n¼0

4n

n!

X
r1���rn

X
r0
1
���r0n

Z
dP1 � � � dPndP0

1 � � � dP0
n

× in⟪p1;…; pn; r1;…; rnjOjp0
1;…; p0

n; r01;…; r0n⟫in

× ha†in;r1ðp1Þ � � � a†in;rnðpnÞain;r0
1
ðp0

1Þ � � � ain;r0nðp0
nÞi;
ðA1Þ

where dPi ≡ d4piδðp2
i −m2Þ, dP0

i ≡ d4p0
iδðp02

i −m2Þ and
where we defined

in⟪p1;…; pn; r1;…; rnjOjp0
1;…; p0

n; r01;…; r0n⟫in

¼ A
Xn
m¼0

ð−1Þm
�

n!
m!ðn −mÞ!

�
2

in
hp1;…; pm; r1;…; rmjp0

1;…; p0
m; r01;…; r0niin

× inhpmþ1;…; pn; rmþ1;…; rnjOjp0
mþ1;…; p0

n; r0mþ1;…; r0niin: ðA2Þ

Here, the symbol A indicates the antisymmetrization with
respect to all momenta and spin indices. Neglecting initial
correlations, the expectation values of the creation and
annihilation operators factorize according to

ha†in;r1ðp1Þ � � � a†in;rnðpnÞain;r0
1
ðp0

1Þ � � �ain;r0nðp0
nÞi

¼
X
P

ð−1ÞP
Yn
j¼1

ha†in;rjðpjÞain;r0jðp0
jÞi; ðA3Þ

where P denotes the sum over all permutations of primed
and unprimed variables with ð−1ÞP ¼ 1 for even permu-
tations and ð−1ÞP ¼ −1 for odd permutations.
We are now interested in computing the ensemble

average of the collision operator in Eq. (9). Using the
relation for the field operator in the Heisenberg picture

ψ

�
x −

y
2

�
¼ e

i
ℏP·xψ

�
−
y
2

�
e−

i
ℏP·x; ðA4Þ

where Pμ is the total 4-momentum operator, and applying a
similar formula also to ψ̄ ; ρ; ρ̄, Eq. (9) reads

Cαβ ¼ hei
ℏP·xΦαβðpÞe− i

ℏP·xi; ðA5Þ

with Φαβ given by Eq. (12). At this point, we can calculate
Cαβ using Eq. (A1) with the factorization in Eq. (A3). For
the scattering kernel Cαβ, Eq. (A3) corresponds to the
assumption of molecular chaos. Furthermore, since we
consider only binary scatterings, we restrict ourselves to
two-particle states, i.e., n ¼ 2. Hence, after exploiting the
fact that two-particle states are eigenstates of the total
momentum, Eq. (A5) takes the form

Cαβ ¼ 8
X

r1;r2;r01;r
0
2

Z
dP1dP2dP0

1dP
0
2

× inhp1; p2; r1; r2jΦðpÞjp0
1; p

0
2; r

0
1; r

0
2iin

×
Y2
j¼1

e
i
ℏðpj−p0

jÞ·xha†in;rjðpjÞain;r0jðp0
jÞi: ðA6Þ

The positive-energy part of the initial noninteracting field is
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ψ inðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2πℏÞ3
s X

r

Z
dPe−

i
ℏp·xurðpÞain;rðpÞ: ðA7Þ

Using the inverse relation

1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πℏÞ5

p Z
d4xe

i
ℏp·xūrðpÞψ inðxÞ

¼ 2δðp2 −m2Þain;rðpÞ; ðA8Þ

we can express Eq. (A6) in terms of the initial Wigner
function

Win;αβðx; pÞ ¼
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yh∶ψ̄ in;βðx1Þψ in;αðx2Þ∶i:

ðA9Þ

The result is given in Eq. (11).

APPENDIX B: CALCULATION OF THE
EXPECTATION VALUE OF Φ

We want to explicitly compute the scattering-matrix
element in Eq. (15),

in

�
p1−

q1
2
;p2−

q2
2
;r1;r2

����ΦðpÞ
����p1þ

q1
2
;p2þ

q2
2
;s1;s2

�
in
;

ðB1Þ

where the operator ΦðpÞ is given in Eq. (12). Inserting a
completeness relation of free out states and following
similar steps as done in Ref. [62], we obtain after the
y-integration

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
;p2 þ

q2
2
; s1; s2

�
in
¼ i

X
r0

Z
dP0δð4Þðpþp0 −p1 −p2Þ

×

	
out

�
p0; r0

����ψð0Þ
����p1 þ

q1
2
;p2 þ

q2
2
; s1; s2

�
inin

�
p1 −

q1
2
;p2 −

q2
2
; r1; r2

����∶ρ̄ð0Þ∶
����p0; r0

�
out

�
γ ·

�
p−

q1 þ q2
2

�
þm

�

−
�
γ ·

�
pþ q1 þ q2

2

�
þm

�
out

�
p0; r0

����∶ρð0Þ∶
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
inin

�
p1 −

q1
2
; p2 −

q2
2
;r1; r2

����ψ̄ð0Þ
����p0; r0

�
out



:

ðB2Þ

In deriving Eq. (B2), we also made use of the fact that one-
and two-particle states are eigenstates of the total momen-
tum operator; hence, the expectation value involving, e.g.,
ψð−y=2Þ, is given by

out

�
p0; r0

����ψ
�
−
y
2

�����p1 þ
q1
2
; p2 þ

q2
2
; s1; s2

�
in

¼ e
i
2ℏðp0−p1−q1=2−p2−q2=2Þ·y

×
out

�
p0; r0

����ψð0Þ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in
: ðB3Þ

In order to compute the matrix element on the right-hand
side of this equation, we write the field ψð0Þ as a general
solution of the Dirac equation in the presence of interaction

ψð0Þ ¼ ψ inð0Þ þ
Z

d4xSRð−xÞρðxÞ; ðB4Þ

where ψ in is given in Eq. (A7) and SRðxÞ is the retarded
Green’s function, which we express as a Fourier transform

SRðxÞ ¼
1

ð2πℏÞ4
Z

d4pS̃RðpÞe− i
ℏp·x; ðB5Þ

with

S̃RðpÞ ¼ −
1

ℏ
ðγ · pþmÞGðpÞ; ðB6Þ

and GðpÞ defined in Eq. (52). The matrix element of ψ is
thus given by

out

�
p0; r0

����ψð0Þ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

¼
�
us1

�
p1 þ

q1
2

�
δð3Þ

�
p0 − p2 −

q2

2

�
δr0s2 − ð1 ↔ 2Þ

�

×
p00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πℏÞ3
p þ S̃R

�
p1 þ

q1
2
þ p2 þ

q2
2
− p0

�

×
out

�
p0; r0

����∶ρð0Þ∶
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in
;

ðB7Þ
where we made use of the orthogonality condition
hp; rjp0; r0i ¼ p0δð3Þðp − p0Þδrr0 . Plugging Eq. (B7) into
Eq. (B2) and using Eqs. (B6), (52), as well as the relation

ðγ · kþmÞαβ ¼
X
r

urðkÞαūrðkÞβ; ðB8Þ

we obtain
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in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

¼ i
2

X
r;s

	
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πℏÞ3
p �

δð3Þ
�
p − p1 þ

q2

2

�
δ

�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p2 þ

q2

2

�
2

þm2

s
− Ep1

− Ep2

�
δs1r

× ur

�
pþ q1 þ q2

2

�
ūs

�
p −

q1 þ q2
2

�
in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����∶ρ̄ð0Þ∶
����p2; s2

�
out
us

�
p −

q1 þ q2
2

�
þ ð1 ↔ 2Þ

�

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πℏÞ3
p �

δð3Þ
�
p − p1 −

q2

2

�
δ

�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p2 −

q2

2

�
2

þm2

s
− Ep1

− Ep2

�
δsr1

× ur

�
pþ q1 þ q2

2

�
ūs

�
p −

q1 þ q2
2

�
ūr

�
pþ q1 þ q2

2

�
out

�
p2; r2

����∶ρð0Þ∶
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in
þ ð1 ↔ 2Þ

�

− ℏ
X
r0

Z
dP0δð4Þðpþ p0 − p1 − p2Þ

�
G

�
pþ q1 þ q2

2

�
−G⋆

�
p −

q1 þ q2
2

��

× ur

�
pþ q1 þ q2

2

�
ūs

�
p −

q1 þ q2
2

�
ūr

�
pþ q1 þ q2

2

�
out

�
p0; r0

����∶ρð0Þ∶
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

×
in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����∶ρ̄ð0Þ∶
����p0; r0

�
out
us

�
p −

q1 þ q2
2

�

; ðB9Þ

where we defined Ep ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Finally, we use Eq. (47) to write

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

¼ 1

2ð2πℏÞ6
X
r;s

ur

�
pþ q1 þ q2

2

�
ūs

�
p −

q1 þ q2
2

�
wrs
r1r2s1s2ðp1; q1; p2; q2; pÞ; ðB10Þ

with

wrs
r1r2s1s2ðp1; q1; p2; q2; pÞ ¼ 2

X
r0

Z
dP0 1

iπℏ2

�
G

�
pþ q1 þ q2

2

�
− G⋆

�
p −

q1 þ q2
2

��

× δð4Þðpþ p0 − p1 − p1Þ
�
pþ q1 þ q2

2
; p0; r; r0

����t
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�

×

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����t†
����p −

q1 þ q2
2

; p0; s; r0
�

− i2πℏδð3Þ
�
p − p1 þ

q2

2

�
δ

�
p0 þ p0

2 þ
q02
2
− Ep1

− Ep2

�

×

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����t†
����p −

q1 þ q2
2

; p2; s; s2

�
δrs1 þ ð1 ↔ 2Þ

þ i2πℏδð3Þ
�
p − p1 −

q2

2

�
δ

�
p0 þ p0

2 −
q02
2
− Ep1

− Ep2

�

×

�
p1 þ

q1
2
; p2 þ

q2
2
; r; r2

����t
����pþ q1 þ q2

2
; p2; s1; s2

�
δr1s þ ð1 ↔ 2Þ: ðB11Þ

Here, we made use of the fact that to linear order in q2 we may replace
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 � q2=2Þ2 þm2

p
¼ p0

2 � q02=2. Working to
linear order is sufficient since we only consider zeroth- and first-order terms of a Taylor expansion in qi in Eq. (15). In this
form, the scattering-matrix element is inserted into Eq. (15). Furthermore, for the sake of simplicity, we define

wrs
r1r2s1s2ðp1; p2; pÞ≡ wrs

r1r2s1s2ðp1; q1 ¼ 0; p2; q2 ¼ 0; pÞ: ðB12Þ
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APPENDIX C: SPINOR IDENTITIES

For any on-shell momentum pμ ¼ ðEp;pÞ, we can write

urðpÞ ¼
γ · pþmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEp þmÞp urðp⋆Þ; ðC1Þ

wherepμ⋆ ¼ ðm; 0Þ is the 4-momentum in the rest frame of the particle. Then, the following identities hold to first order in qμ,

ūs

�
pþ q

2

�
ur

�
p −

q
2

�
¼ 2mδsr −

i
2ðEp þmÞ qμpνΣ

μν
sr ðp⋆Þ;

ūs

�
pþ q

2

�
γαur

�
p −

q
2

�
¼ 2pαδsr þ

im
2ðEp þmÞ qμΣ

αμ
sr ðp⋆Þ −

i
Ep þm

ϵαμνρqμpνnsrρðp⋆Þ;

ūs

�
pþ q

2

�
γ5γαur

�
p −

q
2

�
¼ 2mnαsrðpÞ −

i
Ep þm

ϵαμν0qνpμδsr; ðC2Þ

where we used Eqs. (50), (54), and the identity

γμγαγν ¼ gμαγν þ gανγμ − gνμγα − iϵμανργργ5: ðC3Þ

APPENDIX D: CALCULATION OF NONLOCAL COLLISION TERM

The second contribution of the nonlocal term in Eq. (77) term is given by

mCð1Þ
nl;2 ¼ i

ð2πℏÞ6
8m4

X
r1;r2;s1;s2

Z
d4p1d4p2d4q1d4q2δð4Þðq1Þδð4Þðq2Þ

×

	
∂μ
q1Tr

��
m
p2

p · γ − s · γγ5
�

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

�
× ūs2ðp2ÞWðx; p2Þur2ðp2Þūs1ðp1Þ∂μWðx; p1Þur1ðp1Þ

þ ∂μ
q2Tr

��
m
p2

p · γ − s · γγ5
�

in

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����ΦðpÞ
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�
in

�
× ūs1ðp1ÞWðx; p1Þur1ðp1Þūs2ðp2Þ∂μWðx; p2Þur2ðp2Þg

¼ i
16m4

X
r;s;r1;r2;s1;s2

Z
d4p1d4p2d4q1d4q2δð4Þðq1Þδð4Þðq2Þ

×

	
∂μ
q1

�
ūs

�
p −

q1
2
−
q2
2

��
m
p2

p · γ − s · γγ5
�
ur

�
pþ q1 þ q2

2

�
wrs
r1r2s1s2ðp1; q1; p2; q2; pÞ

�
× ūs2ðp2ÞWðx; p2Þur2ðp2Þūs1ðp1Þ∂μWðx; p1Þur1ðp1Þ

þ ∂μ
q2

�
ūs

�
p −

q1 þ q2
2

��
m
p2

p · γ − s · γγ5
�
ur

�
pþ q1

2
þ q2

2

�
wrs
r1r2s1s2ðp1; q1; p2; q2; pÞ

�

× ūs1ðp1ÞWðx; p1Þur1ðp1Þūs2ðp2Þ∂μWðx; p2Þur2ðp2Þ



¼ i
16m4

X
r;s;r1;r2;s1;s2

Z
d4p1d4p2

	
i

2ðp0 þmÞ ½pνΣ
μν
sr ðp⋆Þ þ ϵνλμ0pνsλδsr�wrs

r1r2s1s2ðp1; p2; pÞ

× ∂μūs1ðp1ÞWðx; p1Þur1ðp1Þūs2ðp2ÞWðx; p2Þur2ðp2Þ



þ i
16m4

X
r;s;r1;r2;s1;s2

Z
d4p1d4p2

�
m
p2

ūsðpÞp · γurðpÞ − sμūsðpÞγμγ5urðpÞ
�

× f½∂μ
q1w

rs
r1r2s1s2ðp1; q1; p2; q2; pÞ�q1¼q2¼0

ūs2ðp2ÞWðx; p2Þur2ðp2Þūs1ðp1Þ∂μWðx; p1Þur1ðp1Þ
þ ½∂μ

q2w
rs
r1r2s1s2ðp1; q1; p2; q2; pÞ�q1¼q2¼0

ūs1ðp1ÞWðx; p1Þur1ðp1Þūs2ðp2Þ∂μWðx; p2Þur2ðp2Þg; ðD1Þ
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where we used Eq. (B10) in the second step and, in the last step, Eq. (B12) and the relation

∂α
qj

�
m
p2

pμūs

�
p −

q1 þ q2
2

�
γμur

�
pþ q1 þ q2

2

�
þ sμūs

�
p −

q1 þ q2
2

�
γ5γμur

�
pþ q1 þ q2

2

��
q1¼q2¼0

¼ i
2ðp0 þmÞ

�
m2

p2
pνΣαν

sr ðp⋆Þ þ ϵνμα0pνsμδsr

�
: ðD2Þ

When inserting this equation into Eq. (D1), the term m2=p2 ¼ 1, since wrs
r1r2s1s2ðp1; p2; pÞ puts the 4-momentum pμ on

shell; see Eq. (46).
The qj-derivatives acting on wrs

r1r2s1s2ðp1; q1; p2; q2; pÞ in the last two lines of Eq. (D1) contain several terms. In order to
calculate them, it is convenient to split wrs

r1r2s1s2ðp1; q1; p2; q2; pÞ, cf. Eq. (B11), into a gain term,

wrs
r1r2s1s2;gain

ðp1; q1; p2; q2; pÞ ¼ 2
X
r0

Z
dP0 1

iπℏ2

�
G

�
pþ q1 þ q2

2

�
− G⋆

�
p −

q1 þ q2
2

��
δð4Þðpþ p0 − p1 − p1Þ

×
�
pþ q1 þ q2

2
; p0; r; r0

����t
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�

×

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����t†
����p −

q1 þ q2
2

; p0; s; r0
�
; ðD3Þ

and a loss term,

wrs
r1r2s1s2;loss

ðp1; q1; p2; q2; pÞ ¼ −i2πℏδð3Þ
�
p − p1 þ

q2

2

�
δ

�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p2 þ

q2

2

�
2

þm2

s
− Ep1

− Ep2

�

×

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����t†
����p −

q1 þ q2
2

; p2; s; s2

�
δrs1 þ ð1 ↔ 2Þ

þ i2πℏδð3Þ
�
p − p1 −

q2

2

�
δ

�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p2 −

q2

2

�
2

þm2

s
− Ep1

− Ep2

�

×

�
p1 þ

q1
2
; p2 þ

q2
2
; r; r2

����t
����pþ q1 þ q2

2
; p2; s1; s2

�
δr1s þ ð1 ↔ 2Þ: ðD4Þ

Since we compute a contribution of order OðℏÞ, the Wigner functions in Eq. (D1) can be approximated by their zeroth-
order expression, such that the terms proportional toW∂μW will give rise to terms proportional to fð0Þ∂μfð0Þ, with f being
the zeroth-order contribution to fðx; p; sÞ. To zeroth order, the s-dependence vanishes, such that fð0Þðx; p; sÞ≡ fð0Þðx; pÞ.
Acting with the qj-derivative on the gain part, Eq. (D3), the respective terms in Eq. (D1) lead to contributions of
the form

½fð0Þðx; p2Þ∂μfð0Þðx; p1Þ∂q1μþfð0Þðx; p1Þ∂μfð0Þðx; p2Þ∂q2μ�
�
G

�
pþ q1 þ q2

2

�
−G⋆

�
p −

q1 þ q2
2

��
q1¼q2¼0

¼ −
1

2
ℏ2∂μfð0Þðx; p1Þfð0Þðx; p2Þ ∂qμ

�
1

ðpþ qÞ2 −m2 − iϵðp0 þ q0Þ−
1

ðp − qÞ2 −m2 þ iϵðp0 − q0Þ
�
q¼0

¼ ∂μfð0Þðx; p1Þfð0Þðx; p2Þ
pμ

p2 −m2
½GðpÞ þ G⋆ðpÞ�: ðD5Þ

Due to the factor p2 −m2 in the denominator, this is an off-shell contribution to the Boltzmann equation. Further off-shell
contributions also emerge when the qj-derivatives act on the loss term, Eq. (D4), i.e., in terms of the form
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im
2

X
r;s;r1;r2;s1;s2

Z
dP1dP2hsrðp; s1Þ½fð0Þðx; p2Þ∂νfð0Þðx; pÞ∂ν

q1 þ fð0Þðx; pÞ∂νfð0Þðx; p2Þ∂ν
q2 �

×

�
−i2πℏδð3Þ

�
p − p1 þ

q2

2

�
δ

�
p0 þ p0

2 þ
q02
2
− Ep1

− Ep2

�

×

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����t†
����p −

q1 þ q2
2

; p2 −
q2
2
; s; s2

�
δrs1 þ ð1 ↔ 2Þ

þ i2πℏδð3Þ
�
p − p1 −

q2

2

�
δ

�
p0 þ p0

2 −
q02
2
− Ep1

− Ep2

�

×

�
p1 þ

q1
2
; p2 þ

q2
2
; r; r2

����t
����pþ q1 þ q2

2
; p2 þ

q2
2
; s1; s2

�
δr1s þ ð1 ↔ 2Þ

�
q1¼q2¼0

δr1s1δr2s2

¼ im
2

X
r;s;r1;r2;s2

Z
dP2hsrðp; s1Þ∂ν½fð0Þðx; p2Þfð0Þðx; pÞ�ð∂ν

q1 þ ∂ν
q2Þ

×

�
−

iπℏ
Epþq2

2

δ

�
p0 þ q02

2
− Epþq2

2

��
p −

q1 − q2
2

; p2 −
q2
2
; r1; r2

����t†
����p −

q1 þ q2
2

; p2 −
q2
2
; s; s2

�
δrr1δr2s2

þ iπℏ
Ep−q2

2

δ

�
p0 −

q02
2
− Ep−q2

2

��
pþ q1 − q2

2
; p2 þ

q2
2
; r; r2

����t
����pþ q1 þ q2

2
; p2 þ

q2
2
; r1; s2

�
δr1sδr2s2

�
q1¼q2¼0

: ðD6Þ

It is clear that both on- and off-shell contributions are present, since

∂μ
q

1

2Epþq
2

δ

�
p0 þ q0

2
− Epþq

2

�����
q¼0

¼ ∂μ
qδ

��
p0 þ q0

2

�
2

− E2
pþq

2

�����
q¼0

¼ pμδ0ðp2 −m2Þ: ðD7Þ

We can collect all the off-shell contributions to the collision term as

Cð1Þ
off-shell ¼

i
2ðp2 −m2Þp · ∂ X

r;s;r1;r2;s1;s2

dP2hsrðp; sÞfð0Þðx; p1Þfð0Þðx; p2Þ

×

	
2
X
r0

Z
dP1dP0 1

iπℏ2
½GðpÞ þ G⋆ðpÞ�δð4Þðpþ p0 − p1 − p1Þ

× hp; p0; r; r0jtjp1; p2; s1; s2ihp1; p2; r1; r2jt†jp; p0; s; r0i

þ i2πℏp0δðp2 −m2Þ½hp; p2; r1; r2jt†jp; p2; s; s2iδrr1δs2r2 þ hp; p2; r; r2jtjp; p2; r1; s2iδr1sδr2s2 �


: ðD8Þ

We now show that the off-shell part (D8) cancels with the
off-shell part on the left-hand side of the Boltzmann
equation (42). Using the quasiparticle approximation in
Eq. (40), the left-hand side of Eq. (42) is given by

mp · ∂δðp2 −m2 − ℏδm2Þfðx; p; sÞ

¼ mδðp2 −m2Þp · ∂fðx; p; sÞ þ ℏ
1

p2 −m2
p · ∂Mð0Þ;

ðD9Þ

where the correction to the mass shell at zeroth order
reads

Mð0Þ ¼ im
2

X
r;s;r1;r2;s1;s2

Z
dP1dP2hsrðp; sÞ

×mrs
r1;r2;s1;s2ðp1; p2; pÞ

Y2
j¼1

δsjrjf
ð0Þðx; pjÞ; ðD10Þ

with
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mr;s
r1;r2;s1;s2ðp1;p2;pÞ

¼2
X
r0

Z
dP0 1

iπℏ2
½GðpÞþG⋆ðpÞ�δð4Þðpþp0−p1−p1Þ

×hp;p0;r;r0jtjp1;p2;s1;s2ihp1;p2;r1;r2jt†jp;p0;s;r0i
þ i2πℏp0δðp2−m2Þ
×fδð3Þðp−p1Þ½hp1;p2;r1;r2jt†jp;p2;s;s2iδrs1
þhp1;p2;r;r2jtjp;p2;s1;s2iδr1s�þð1↔2Þg:

ðD11Þ

The steps to obtain Eq. (D10) are completely analogous to
the calculation that leads to the local collision term, since
we see from Eqs. (7) and (8) that δM is just the real part of
the quantity of which C given by Eq. (15) is the imagi-
nary part.
Comparing Eq. (D8) with Eq. (D10), we find up to first

order

mCð1Þ
off-shell ¼

1

p2 −m2
p · ∂Mð0Þ; ðD12Þ

which implies that all off-shell contributions cancel on the
left- and right-hand sides and the Boltzmann equation
involves only on-shell terms. Thus, we obtain the following
kinetic equation for the distribution function fðx; p; sÞ:

δðp2 −m2Þp · ∂fðx; p; sÞ ¼ δðp2 −m2ÞCon-shell½f�;
ðD13Þ

with

Con-shell½f�≡ Con-shell;l½f� þ ℏCð1Þ
on-shell;nl;1½f�

þ ℏCð1Þ
on-shell;2;1½f� þ ℏCð1Þ

on-shell;2;2½f�: ðD14Þ

Here, we obtained from the first two lines in the last
equality in Eq. (D1),

Cð1Þ
on-shell;2;1½f�

¼−
1

8mðp0þmÞ
X

r;s;r0;r1;r2

ðpνΣ
μν
sr ðp⋆Þþ ϵνλμ0pνsλδsrÞ

×
Z

dP1dP2dP0δð4Þðpþp0 −p1−p2Þ

× hp;p0;r; r0jtjp1;p2;r1; r2ihp1;p2;r1; r2jt†jp;p0;s;r0i
× ½∂μfð0Þðx;p1Þfð0Þðx;p2Þ− ∂μfð0Þðx;p0Þfð0Þðx;pÞ�;

ðD15Þ

where we properly relabeled indices and applied the optical
theorem (63). Furthermore, the on-shell contribution from
the last three lines in Eq. (D1) is given by

Cð1Þ
on-shell;2;2½f� ¼

1

4m

X
r1;r2;s1;s2

X
r;r0;s

Z
dP1dP2dP0hsrðp; sÞδð4Þðpþ p0 − p1 − p2Þδðp2 −m2Þ

× ½fðx; p2Þ∂νfðx; p1Þ∂ν
q1 þ fðx; p1Þ∂νfðx; p2Þ∂ν

q2 �
�
pþ q1

2
þ q2

2
; p0; r; r0

����t
����p1 þ

q1
2
; p2 þ

q2
2
; s1; s2

�

×

�
p1 −

q1
2
; p2 −

q2
2
; r1; r2

����t†
����p −

q1
2
−
q2
2
; p0; s; r0

�
δs1r1δs2r2

−
m
16π

X
r2;s2

Z
dP2

X
r;s

hsrðp; sÞδr2s2δðp2 −m2Þ∂ν½fðx; p2Þfðx; pÞ�ð∂ν
q1 þ ∂ν

q2Þ

× i4πℏ

�
pþ q2

2
−
q1
2
; p2 −

q2
2
; r; r2

����tþ t†
����p −

q1
2
−
q2
2
; p2 −

q2
2
; s; s2

�
: ðD16Þ

As discussed in Sec. V, in accordance with the low-density
approximation, we neglect the momentum derivatives of
the scattering amplitude, and, hence, all terms in Eq. (D16)
vanish. We now show that the term in Eq. (D16) vanishes
once the zeroth-order distribution function is inserted. The
zeroth-order distribution function makes the zeroth-order
collision term Cð0Þ vanish and is given by the usual
Boltzmann form

fð0Þðx; pÞ ¼ 1

ð2πℏÞ3 e
−βðxÞ·p: ðD17Þ

(We consider here the simplest case of a neutral fluid.
Adding a chemical potential is trivial and does not
change the conclusion.) Inserting Eq. (D17) into Eq. (D15),
we find
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Cð1Þ
on-shell;2;1½f� ¼

1

ð2πℏÞ3
1

8mðp0 þmÞ
X

r;s;r0;r1;r2

½pνΣ
μν
sr ðp⋆Þ þ ϵνλμ0pνsλδsr�

×
Z

dP1dP2dP0δð4Þðpþ p0 − p1 − p2Þ

× hp; p0; r; r0jtjp1; p2; r1; r2ihp1; p2; r1; r2jt†jp; p0; s; r0i
× ∂μβλðpλ

1 þ pλ
2 − pλ − p0λÞe−β·ðp1þp2Þ

¼ 0: ðD18Þ

Therefore, we proved the structure of the Boltzmann equation and the on-shell collision terms given in Eqs. (79) and (80).
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