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We derive the Boltzmann equation and the collision kernel for massive spin-1/2 particles, using the
Wigner-function formalism and employing an expansion in powers of 7. The phase space is enlarged to
include a variable related to the spin degrees of freedom. This allows us to reduce the transport equations of
the independent components of the Wigner function to one scalar equation. To next-to-leading order in 7,
we find that the collision kernel contains both local and nonlocal terms. We show that off-shell
contributions cancel in the Boltzmann equation. Our framework can be used to study spin-polarization
phenomena induced by vorticity as recently observed in heavy-ion collisions and in condensed-matter

systems.
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I. INTRODUCTION

Polarization phenomena in nuclear collisions have
recently been the focus of intense research. The large
orbital angular momentum in noncentral heavy-ion colli-
sions can (at least partially) be transferred as vorticity to the
hot and dense matter created in the collision zone. This, in
turn, may align the spins of particles along the direction of
the global orbital angular momentum, leading to a nonzero
spin polarization [1-4]. Such a mechanism is rather similar
to the time-honored Barnett effect [5]. In a nonrelativistic
system, the alignment of spins by rotation implies the
alignment of magnetic moments, and thus polarization is
equivalent to magnetization. In a relativistic system, how-
ever, both particles and antiparticles are present, and while
the spins of particles and antiparticles align in the same
direction through rotation, the magnetic moments align in
the opposite direction, which reduces the magnetization.
Thus, a system with equal numbers of particles and
antiparticles is polarized, but not magnetized. This effect
is a prime example for the interplay between a macroscopic
quantity, the rotation, and a microscopic quantity, which is
inherently of quantum nature: the spin of the particles.

The STAR Collaboration found that Lambda baryons
emitted in noncentral heavy-ion collisions are indeed
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emitted with a finite global polarization (i.e., a polarization
along the direction of the global angular momentum),
providing evidence of spin polarization generated by vor-
ticity [6]. The global polarization predicted by models based
on the assumption of local thermodynamic equilibrium of
spin degrees of freedom turn out to be in good agreement
with the experimental findings [4,7—13]. More recently, the
STAR Collaboration measured the projection of the Lambda
polarization along the beam direction, the so-called longi-
tudinal polarization, as a function of the azimuthal angle of
the particles [14]. Unfortunately, the same theoretical
models which were able to describe the global-polarization
data predict an opposite sign with respect to the experimental
observations, often dubbed the “polarization sign problem”
[15,16]. A number of attempts [17-24] have been made to
explain the polarization sign problem, but as of yet, no
definite conclusion has been reached.

The polarization sign problem suggests that spin degrees
of freedom have nontrivial dynamics, which is not captured
by the theoretical models used to accurately describe the
global-polarization data. One possibility is that nonequili-
brium effects of spin degrees of freedom have to be
included in the kinetic and hydrodynamic description of
the hot and dense matter. A theory of relativistic spin
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hydrodynamics, first introduced in Refs. [25,26] and
followed by Refs. [27-32], has also been recently derived
from various approaches: kinetic theory [33-39], effective
action [40—42], entropy-current analysis [43,44], and holo-
graphic duality [45,46].

From a microscopic point of view, the dynamics under-
lying the conversion between orbital and spin angular
momentum (and vice versa) can be understood in terms
of particle collisions. Such dynamics was studied in the
nonrelativistic case in a seminal paper by Hess and
Waldmann, where a kinetic theory for a dilute gas of
particles with spin was formulated [47]. One of the main
conclusions of this work is that, in order to describe
polarization phenomena through rotation (e.g., the
Barnett effect), one needs nonlocal particle collisions.
The authors were not able to provide a first-principle
derivation of the nonlocal collision kernel, and they
phenomenologically added terms in their kinetic theory
to describe the orbital-to-spin angular momentum conver-
sion. A nonrelativistic Boltzmann equation with a nonlocal
collision term was then discussed by Hess in Ref. [48].
Detailed derivations of nonlocal collision terms for a
nonrelativistic system of spinless particles can be found,
e.g., in Refs. [49-51]. In the relativistic case, a microscopic
mechanism based on nonlocal scatterings between wave
packets was proposed in Ref. [19] to explain the generation
of the spin-vorticity coupling in heavy-ion collisions.
However, to the best of our knowledge, a systematic
derivation of a nonlocal collision kernel in the relativistic
Boltzmann equation for particles with spin based on
quantum field theory has only been performed very
recently in our previous work [34] [for related efforts,
see also Refs. [52,53]].

In Ref. [34], we presented a Boltzmann equation using
the Wigner-function formalism, which includes the non-
locality of the scattering process between particles and
established its connection with spin hydrodynamics. In this
paper, we now give the details of the derivation. The
Wigner-function formalism provides a first-principle for-
mulation of kinetic theory and also turns out to be a very
powerful tool for the description of anomalous transport in
the quark-gluon plasma created in heavy-ion collisions
(see, e.g., Refs. [54-61]). Our derivation is based on a
semiclassical expansion of the Wigner function, i.e., an
expansion in the Planck constant 7, where spin effects are
considered to be of at least first order in A. As it will
become clear in the following, an expansion in the Planck
constant is also effectively an expansion in gradients. Thus,
vorticity, which is a quantity of first order in gradients, is of
the same order as spin polarization. The latter can therefore
be generated from the former through nonlocal scattering
processes.

The structure of the paper is the following. In Sec. II, we
derive the quantum transport equations from the Wigner-
function formalism. In order to have a more compact

transport equation for the components of the Wigner
function, in Sec. IIl. we enlarge the phase space by
introducing a variable related to spin. In Secs. IV and V,
we explicitly derive the local and nonlocal parts of the
collision term, respectively. Such calculations are based on
the method discussed in Ref. [62]. Finally, conclusions are
given in Sec. VII. We use the notation and conventions
a-b=a'b,, ayb, =a,b,—a,b,, g, = diag(+, -, —, —-),

€912 = —¢;153 = 1, and repeated indices are summed over.

II. QUANTUM TRANSPORT EQUATIONS

We start from the Wigner function for spin-1/2 particles
defined as [62-64]

Wop(x. p) = / DY oy wal) ). (1)

with x;, =x=+y/2 and y(x),p(x) being Dirac spinor
fields. Here, (::) denotes the normal-ordered ensemble
average. In our previous work [65] (see also related work in
Refs. [66-72]), we derived general solutions of the equa-
tions of motion for the Wigner function in the free-
streaming limit. Here, we extend this idea by including
collisions and thus account for the effect of interactions.
The Lagrangian for Dirac fields used in this paper is of the
form

_(ih =
£D=w<3y-3—m)w+£1, (2)

with 0=0-0 and L; being a general interaction
Lagrangian. We remark that, if £; contains gauge-field
interactions, Eq. (1) has to be modified to include a gauge
link in order to ensure gauge invariance; see, e.g., Ref. [64].
We obtain the following equation of motion,

(ihy - 0 = m)y(x) = hp(x), (3)

where p = —(1/h)0L; /0. From Eq. (3), one derives the
transport equation for the Wigner function [62],

h
|:}, ’ <p + iZa) - m:| Waﬂ = hca/}v (4)
where
d4y ipy .= .
Co= [ e P ). 6)

By acting y - (p + i20) + m onto Eq. (4) and taking the
real part, we obtain a modified on-shell condition for the
Wigner function
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hz
<p2 - m? — zaz) W, p) = hoMy(x.p). (6)
with

_1 d4y —ipy
éMaﬁ=2/(2;;h)4e h
x (2 [p(x) ) iy - D + m)] gwa(x2)
Frg(xy)[(=ihy - O+ m)p(x1)],:). (7)

On the other hand, from the imaginary part, we find a
Boltzmann-like equation for the Wigner function,

p- aW{lﬂ('x7 p) = C(lﬂ(x7 p)’ (8)

with

i d4y i
C = — — e WPy
) / Qany "

x (:[p(x)) (=iy - O+ m)] ga(x2)

—p(x))[(ihy - O + m)p(x,)],:). )
|

1

Cpp=—"—"—
P2 (4nhm?)

T1,72,81,82

q1 q>
X <P1 R 2 A )
in

2 2

where the operator @ is given by

eare Lol o] ()
(o (2)wQ)lr (]
(Do

where P* is the total 4-momentum operator. We also
introduced the variable g;, which is the conjugate to x;
in the Wigner transformation, but not related to the particle
momenta p;. We notice that the Boltzmann-like equation (8)
with the collision kernel (11) is not a closed equation for the
interacting Wigner function W, as Cy is a functional of the
initial Wigner function W;,. However, for a dilute system,
we further approximate

q)aﬂ(p)

We will restrict the following considerations to the positive-
energy part of the Wigner function. The extension to
negative energies is straightforward. Thus, in what follows,
all mass-shell delta functions are implicitly accompanied
by a 0(py), which we do not explicitly denote for the sake
of simplicity.

In order to reveal the dependence on the Wigner function
on the right-hand side of Eq. (9), it is convenient to
calculate the ensemble average by performing the
trace over the noninteracting initial n-particle states defined
as [62]

|p1’ e Pns s eees rn>in = a;n,rl (pl) e ai-rn,rn(pn)‘0>7 (10)

where p; and r;, i = 1, ..., n, denote the particle momen-
tum and spin projection, respectively, and aiTn,rl_ (p;) is the
creation operator for that particle. Since we are interested
in a kinetic description, we neglect initial correlations.
This corresponds to the molecular-chaos assumption.
Furthermore, we restrict ourselves to two-particle states;
i.e., we only consider binary collisions. Hence, Eq. (9) can
be written in the form [62] (see Appendix A for details)

: > [ Endndpd pdada,

q1 q> .
p1+ 5 ,Pr + > ,S1,S2>in

2 .
1 _ qj q;
X HCXP (g‘]j : xj) U, (Pj +?j> Win(x +x;, pj)u,, (Pj —71> (11)

W:Win+"" (13)

where the ellipsis corresponds to corrections of higher order
in density, which we neglect [62]. We will invert this
relation and replace W;, in the collision term by W.
Furthermore, we see that the collision term in Eq. (11)
takes into account the nonlocality of the collision process, as
the Wigner functions depend on x + x;. If the Wigner
function varies slowly in space and time on the microscopic
scale corresponding to the interaction range, we can
Taylor expand W(x + x;, p;) around x and keep only terms
up to first order in gradients (equivalent to first order in 7)
[62], i.e.,

Substituting Egs. (13) and (14) into Eq. (11), it follows
that
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2zh)° q q q q
Caﬁ = ((Zm))4 Z /d4pld4pzd4Q1d442‘ <P1 —317172 —?23’1,”2 q)aﬂ(p) P1 +317P2 +?2;Sl,52 '
r1.r,81,82 n n
2
_ q; . q;
<14, (pj - 5]) {W(x. p)6) (q,) - infot, 69 (,))0,W (x. p,)}u, (w - z) (15)
j=1
where we performed the integration over d*x; and d*x,. "
Equation (15) is the collision kernel for the Boltzmann EBV‘V”] — e p, Ay — mS™ = hDY (19e)
equation (8), which we will use as a starting point for the
explicit computation of collision effects. while from the imaginary part we obtain
Following Refs. [34,65,68,69], we employ an expansion
in powers of 7 for the Wigner function; i.e., we search for 7oV = 2hC (20a)
solutions of the form *
W=wO 4 awlh) 4+ n2w@ + O(n3).  (16) p-A=nCp, (20b)
We notice that, since gradients are always accompanied by h . » "
factors of 7, such an expansion is also a gradient expansion. D) IMF + p,S* = hCy, (20c)
We also stress that the gradient expansion of the
nonlocal term has to be considered as an 7 expansion h
’ = pvaf _ W
as Eq. (15) shows. P*P + 4€M 0y Sap = —hCy, (20d)
Furthermore, in our treatment, we will consider an
. d equilibrium, A )
expansion around equilibrium EnvI Eeﬂmﬁ R (20¢)

W = We, + W, (17)

where W, is the equilibrium Wigner function and 6W the
deviation from equilibrium. In our scheme, we always
consider 6W to be at least of first order in an expansion in
gradients. As a consequence, if we take into account only
the lowest-order gradient correction in the nonlocal colli-
sion term, we can neglect contributions from W in the
second term in the second line of Eq. (15), as they would be
of higher order in gradients.

It is now convenient to decompose the Wigner
function in terms of a basis of the generators of the
Clifford algebra

1 1
W:Z(]-‘+i}/573+}"V+757'v4+§5””3/w>’ (18)

where 6#* = £ [y#, y*], and substitute it into Eq. (4) to obtain
the equations of motion for the coefficient functions. The
real part of Eq. (4) yields

p-V—mF =hDg, (19a)
h
S0-A+mP=-hDp,  (19b)
h
prF — 5(9”8”" —mW = hDY, (19¢)
h W 1 uvaf " H

Here, we defined D, =ReTr(T',C), C; =ImTr(T;C),
i:f,P,V,A,S, f]: = l,fp = —iys,fv :}/ﬂ,fA = }/”]/5,
I's = ¢". Note that each coefficient function will obey a
modified on-shell condition and a Boltzmann-like equa-
tion, as can be readily seen from Egs. (6) and (8).

We now assume that effects related to spin, and con-
sequently to the polarization, are at least of first order in 7.
This excludes the case of a large initial polarization of the
system; i.e., we focus on situations where a nonzero
polarization arises only through scatterings in the presence
of a nonvanishing medium vorticity. Therefore, since A* is
related to the polarization vector [65], its zeroth-order
contribution is assumed vanish, A% =0, and conse-
quently, from Eq. (19e), S©% = 0. Equation (19b) then
implies that P®) = 0. Thus, at zeroth order, all pseudo-
scalar quantities vanish, and, as a consequence, also the
collision terms which carry pseudoscalar quantum numbers
must vanish at zeroth order, D§S) = an = 0. Using
Egs. (19b) and (20b), this, in turn, implies that

P = O(h?), p-A=0(Rn?). (21)
For the vector part, at zeroth order, the only vector at our
disposal is p*, i.e.,

DY, = prsV + O(h), (22)

with a scalar function 6V. Thus, from Eq. (19c), we obtain
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1 _
V== prF o+ O(R), (23)

where we defined F =F —hsV. We can extend this
definition to any order in # by setting

Tr(p - yW). (24)

We note that the assumption of polarization entering at first
order in 7 implies that also the axial-vector DEE)” and the

antisymmetric tensors Dg))” “ and Cg))” * must vanish.

We can now write down the modified on-shell conditions
for 7 and A*. From Egs. (19a), (19¢), and (20e), the
modified on-shell condition for the vector component reads

(p? = m*)V* = hp*D g + hmD%, + O(A?),  (25)
which, from Eq. (23), implies
(p?> —m*)F = héMy + O(h?)

where M can be expressed at any order in /7 by 6M,
defined in Eq. (7), via the relation

oMy = Te(p - yoM). (27)
P

Furthermore, from Egs. (19d) and (19e), we obtain
(p* —m*) A" = héMly + O(R?*) = O(h?),  (28)
with
MY = Tr(y"y M), (29)

which, as a quantity with axial-vector quantum numbers, is
itself of order O(#). This shows that, under the assumptions
adopted, the axial-vector component, unlike F, remains on
the mass shell at first order in 7 even in the presence of
interactions.

The Boltzmann equations are derived from Egs. (20a)
and (20e), using Egs. (21) and (23), and read up to
corrections of order O(h?),

p - 0F = mCp, (30a)

p - OA = mC, (30b)

with Cp = 2Cr and €} = — L e p Cg,5. From Egs. (8),
(24), and (30), one finds

1
Cr =3 Trp 7€), (31a)

Ch = Te(pyC), (31b)
which establishes the connection to C given in Eq. (15).
Equations (31) will be used to determine the right-hand
sides of Egs. (30), which, together with Eq. (21), form a
closed system of equations for F and A¥, as will be
explicitly shown in the following.

III. SPIN IN PHASE SPACE

We now introduce spin as an additional variable in phase
space [30,33,34,73-75]. The advantage of this concept is
that it immediately connects the first-principle quantum
description to a “classical” description of spin, which can
be used, e.g., for hydrodynamics [34]. Furthermore, as we
will see later, it combines the full dynamics of the
Boltzmann-like equations (30) into one scalar equation
and provides a natural interpretation for the conservation
laws and the collisional invariants [34].

It is convenient to define the single-particle distribution
function in the phase space extended by the additional spin
variable 8 as

f(v.p.8) =5 [Flup) -2 Al )l (32

This definition holds at any order in 4. We then introduce
the covariant integration measure

/dS(p) = \/3P—Z/d4§5(§-§+3)5(p-§), (33)

which has the properties

/ ds(p) =2, (342)

/ ds(p)# = 0, (34b)

/ dS(p)#'s” = -2 (g’“’ - p;f ) (34c)
Consequently,

F(x,p) =/dS(p)f(x,p,é>» (35a)

ap) = [ s, G5)

Higher moments of { with respect to the variable 8 can be
also related to F and A* and do not yield any further
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information. From Egs. (19¢), (19¢), and (23), we obtain
relations for V¥ and S*, which are valid up to corrections
of order O(h?),

Vi(xp) = [[asip) (et g 0,22 )itnp.8) +O0),

s tp) = [ (o) (32 + 501 i p8) + O),
(36)
where we defined
= 1 P p, 3. (37)
m

Similarly as for the Wigner function, we can write a
modified on-shell condition and the Boltzmann equation
for the scalar distribution {. Using Eqgs. (26) and (28), the
on-shell condition is given by

(p* = m*)f(x, p.8) = KM (x, p,8) + O(h?), (38)

with
M(x. p.8) = 5 (oM (x. p) ~ 8- 6M,(x. p)]. (39)

In order to find a solution for Eq. (38), we employ the
quasiparticle approximation; i.e., we assume that the
distribution f is of the form

f(x.p.8) = m&(p* = M*)f(x, p. 8). (40)

where f(x,p,8) is a function without singularity at
p* = M?* = m? + hém?, with 6m?(x, p, 8) being a correc-
tion to the mass-shell condition for free particles arising
from interactions. After Taylor expanding the delta function
to first order in 7 and assuming that f(x,p,8) has
no singularity at p?=m?, ie., (p>-—m?)s(p>—m?)
f(x, p.8) =0, we can relate 5m* with I,

AM(x, p, 8) = hom?(x, p, 8)6(p> — m*)mf(x, p,8)

+ O(h?), (41)
where we used (p? — m?)8' (p* — m?) = =8(p? — m?). As
a consequence of our assumption that spin degrees of
freedom enter at first order, the 8 dependence of Adm?
appears at least at O(h?).

The Boltzmann equation for { is derived from Egs. (30)
and (32) and reads

p - 0f(x, p, 8) = mG, (42)

where we introduced the collision kernel

1
2

As will be shown in the following, up to first order in #, the
collision term has the following structure:

¢

(Cr—8-Ca). (43)

c=6" +n{c vy =6 +n6l). (44

Here, local and nonlocal contributions are denoted by
subscripts [ and nl, respectively. As already mentioned,
the zeroth-order contribution is purely local [76], while the
first-order contribution has both local and nonlocal parts. In
the next sections, we will calculate the local and nonlocal
collision terms explicitly.

IV. LOCAL COLLISIONS

In order to explicitly calculate the collision term, we
follow Ref. [62]. We first focus on the local part, i.e., the
term proportional to 5(*)(g,) in the second line of Eq. (15).
The matrix element of @ appearing in this equation,
with @ given by Eq. (12), is calculated in Appendix B.
The local contribution is thus obtained from Eq. (B10) with
g; =0 [62],

(277)%,(p1. P2s 115 12| @ 1y P23 51, 82)in

= Zur(p)ﬁs(p)wifrzslsz(pl’ p2’p)’ (45)
with
W;f"lesz (pl’p27p) :25<p2 _mz){Z/dP/

X8(p+p' =pi—=p2)(p. P17 |t|p1.p2is1.52)
X (p1,pair1, 2|t | p.plss. 1)
+[izhp° 83 (p—p1)((p, pasr. 2t P, p2ss1,52)8,,

—<p,p2;r1,r2|ﬂ|p,p2;s,sz>am>+<1ezn}, (46)

where the symbol (1 <> 2) denotes the exchange of the
indices 1 and 2, dP = d*pé(p* — m?), and
(p.p'sr.rlt|p1. paisi. )

(2zh)’
2

i (P)ouP's 7'1:p(0):P1, P25 515 52)in
(47)

is the conventional scattering amplitude due to the inter-
action p, which can be computed using standard techniques
from quantum field theory [62,77]. We are now ready to
calculate the local part of Eq. (44). To this end, we insert
Eq. (45) into Eq. (15); then Eq. (15) into Egs. (31); and,
finally, we plug Egs. (31) into Eq. (43). In this way, the
local part of the collision kernel is given by
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=gt > [ DY

r172,81,852
2

X W;/lsr/zslsz (Ph P2 P) H ﬁs, (Pj)W(% pj)”ri<pj>7
Jj=1

(48)
where we have used
1_
pﬂésr = E s(p)yﬂur(p)’ (49)
e (p) = 5ty ()7 u, () (50)
S 2m s r
and defined
hsr(p’§> Eésr+§'nsr(p)' (51)

The factor 5(p*> — m?) in Eq. (46) shows that the local term
is always on shell. This comes from the difference

G(p) — G*(p) = 2zin*5(p? — m?), with
hZ
G(p)=—-—>+—, 52
(p) p2_m2—|—i€p0 ( )

which appears in the first line of Eq. (B11) when we set
q; = 0. We now use the Clifford decomposition (18) to
write Eq. (48) as

Z /d4pld4p22h

r172,81,82

¢ = 30m?2

2

pr1r2s1s2 Pi1> P2, P H|: X, pj S
j=1

1
TP V(x,p;)ds,r, + 1y, (pj) - Alx. p))

|
+ 3 )y, 00| (53)
J

Gon shell,/ [f

rl r2.81.82 r,r s

2

X <p,p2;r1,r2\ﬁ|p,p’;s,r Hhs i pj’

J=1

where we defined

1
TN (p) =5—

- v 1 vay
m ur(p)aﬂ Ms(p) = Eeﬂ ﬂpanrsﬂ<p)' (54)

Using Eqgs. (35b), (36), and (40), the relations p, X" =
puZr =0, and

r

T =208 1, (55)

we can rewrite Eq. (53) in the form

/ dFla’FZZh

rl 12,851,852

X Wr]rzslxz (pl’ P2, P H hx,-rj (p/’ g/)f(x’ pj’ §j)’
j=1

(56)

where

[ar=[@pstr-w) [aso). )

Plugging Eq. (46) into (56), the collision term reduces to

¢ = 5(]72 - mz)(gon—shell.l[f]’ (58)

where

Z Z/dl“ dT,dP'hy,(p.8) 89 (p + p' = pi = p2){p. p's 7. [t py. pai sy 52)

f(x, Pj’gj)

+l_ Z Z/drzds p)hs7r2(p29§2) (X p, 5)

2,851,852 TI,§

X f(xv P2, 52)[}1“([7, g’)hsls(pv Q’l
_hsls(p’ Q’)hsr(p’ §1)<p’ P2,

)(p.pair,

'Sl7s2>

'S17S2>} (59)
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is the local collision term on the mass shell. Using the

identity
H
n (gﬂ” o )6

S rt (p)nt (p) =

i
+ E €ﬂvaﬂpanrsﬁ (p) ’ (60)

we can simplify

(son shell, l

’l r.81.82r,r s

2
p7p/;s’r/>Hhsjrj(pj7§/)

X<P7p2;rl7

Z[hsr(p7 g’)hsls(pv §1) - hsls(p’ 5)/’1”(]7, §1)]

N

= 8,81, ) [ (p)nt (p) — nb,s(p)nte(p)]

N

2
Q’ §1V€/" panv]rﬂ(p) (61)

to obtain

Z Z/dr dUydP'hy, (p,8) Y (p+ p' = p1—p2)(p. P57 71| 1, p2isi.s2)

f(x,p;.8))

+x— SN / dT2dS (p)hs,r, (P2:82) (X, p,81)f (X, p2.82) [y (P, 8) B, (P, 81) + B (P, 8) gy (P, 81)]

Fp,81,82 1,8

< (pparasli=ppsis o S 3 [ dradsi(p)

7'2\| Sy r

X f(x,p2.8,)8,8;,€""

vzrz (pZ’ Q’Z)f(x’p9§l)

Ppang 5(P)(p.pasr.ra|t+17|p, paisy.sa). (62)

The expression above can be further simplified by noting that the term involving the amplitude with the operator 7 — ' is

related to the first term through the optical theorem [62]

inh(p, pi;

Hence, the collision term is cast into the form

(gon shelll
fl r2,81:82 r,r,s

2
X<p’p2;rlar2|tT|p9pl;sr Hh
=1

~.

x f(x,p,8

r2 S1.82

s.51) Z/dP’dP’ (p. prsroriltlp, phs v 7h) (P phs

;8. 81)- (63)

Z Z/drdfzdPhsr(p, 8) Y (p +p' = py = p2){p. P'ir. P ltlpr. P2 sy s2)

1
pj»8;)f(x, pj’gj)_g Z

/ dU',dP'dPdS,(p)hs,,, (P2, 8,)

r2:81:82 1,8,1,7)

1S (X, P2, $2)[hsr (P, 8)R m(p 81 )+hy, (P 8)hs (P, 80P, pas v, altlp’, pis v ry)

X (P phs ' 1|Efp, pas st 52) +— > Z/dl“zdS

szrz (pZ’ §2)f(x’ P> Q’l)

X f(X, P2, §2)§/4§lueﬂy(l/ pans]r/f(p) <p’ P2, r2|[ +t |p’ P25 515 S2>' (64)

In order to write the collision term in a compact form, we
insert factors of one for the phase-space spin variable in the
form 1 = (1/2) [dS(p) and obtain

(gon—shell,l[f] (’p+s [f} +C [f] (65)

with

(,p+s[f]z/dl“lszdl“’dS’l(p)W[f(x,pl,él)f(x,pz,ﬁz)

—f(x,p.8))f(x,p".8)], (66a)
6f) = [ dradS, (p)Bf (. p.#1) (. pa&e). (660
where
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1
WES_ZZ [ (P8} (P.8) + Dy (p,8) g (P.3])]

o "
$,7,8)

x D

s 81,850,711

hs/,f(p', g,)hs]rl (pl 7§1)h32"2 (p2’§2)

X (p,p'sr.r|t|p1. passi.s2)(p1. pasri.ra|tt . p'ss,s”)
x8W(p+p'=pi—p2) (67)
and
nh
= m eﬂvaﬂgﬂgﬁpanelr(p)hszrg (va Q’Z)
Sl,Sz,r,rz
X (p.pasr |t +17]p, pr3 sy, ). (68)

The term €. [f] in Eq. (65) describes momentum- and
spin-exchange interactions, while the term C[f] corre-
sponds to spin exchange without momentum exchange. If
the distribution functions do not depend on the spin
variables, i.e., f(x, p,8) = f(x, p), we recover the colli-
sion term familiar from the Boltzmann equation, where
averaging and summation over spins is done directly in the
cross section. We do not obtain Pauli-blocking factors
because of the low-density approximation [62]. Moreover,
this implies that, in equilibrium, only Boltzmann instead of
Fermi-Dirac distributions will appear. If the distribution
functions depend on spin, the two terms on the right-hand
side of Eq. (65) require further discussion. Considering
C,s[f], the term proportional to f(x, py,8;)f(x, p2.$,)
has the form of a gain term for particles with momentum
p and spin 8, while the term proportional to
f(x,p,8))f(x,p',8") does not have an obvious interpre-
tation as a loss term, because the spin variable is 8/, not 8.

However, it is possible to define a new distribution
function and a new collision term such that we recover the
standard interpretation of gain and loss terms in the latter
without changing the physics. The underlying idea is that,
since the phase-space spin variable is not observable,
physical quantities are only obtained after integrating over
the former; see, e.g., Eq. (35b). Therefore, we seek to
replace the distribution function f(x, p,8) by another
distribution function f(x, p,8) and likewise the collision

term €[f] by €[f], such that

p-Of(x.p.8) = €[f], (69a)

/ dS(p)bO(x. p.3) = / dS(p)bQ(x. p.3)  (69b)

is fulfilled for Q € {f,C[f]}, O € {f.C[f]}, b € {1,8"}.

In other words, after integration over the spin variable, the
new distribution function f(x p,8) and the collision term
G[f] are equivalent to the old ones. Moreover, they fulfill
the same Boltzmann equation. Consequently, the new

quantities f(x, p,8) and G[f] describe the same physics
as the old ones. Equations (69) constitute a “weak equiv-
alence principle,” stating that f and f formally obey the
same equation of motion and give identical results when
integrating over the spin variable.

We now want to derive the collision term €[], which
satisfies the weak equivalence principle. The ultimate goal
is to modify Eq. (66a) and the first line of Eq. (67) in such a
way that 8, is replaced by 8 and the integration over dS/ (p)
disappears, so that one obtains a collision term which has a
standard gain and loss term. According to Eq. (43), we will
show this separately for the (p + s) parts of Cp and C,
respectively. The calculation for Cy is actually straightfor-
ward, so we only present the somewhat more complicated
case of C'}. Considering [ dS(p)8*C,[f], one encounters
a term of the form

1
33 [ dstyasip)ses,els,
5
u

x [, (p)nSy (p) + iy (P, (P)]

a v Py

app
= Z/dS(p)Q’aQﬂ(sm =-4 <gaﬂ - i f >5rsv (70)
p

where we used Eq. (60) in the first and Eq. (34c¢) in the last
step. With this relation, and similar ones for the other terms,
we see that, after integration over dS(p), the replacement

Z/dsll (P)[hss’l (p7§/1)hs’lr(p7 Qy) + hss’l (p7§)hs’lr(p7§ll)]
— 4h,.(p,3) (71)

fulfills the weak equivalence principle.

Furthermore, by definition, Eq. (32), f is linear in 8, and,
since A% = 0, the 8 dependence enters only at first order
in A, i.e., f = f(h8). We assume that both f and f can be
Taylor expanded in terms of #3. Inserting this Taylor
expansion on the left- and right-hand sides of Eq. (69b), we
conclude that, to order O(#), the only choice for f is f = f,
with deviations entering at order O(#?). With Eq. (71), we
then find that, with the relations [dS(p)8* =0 and
[ dS(p)8"8'8* =0, the choice

@p-&-s[f] E/drldFZdF/W

X[f(x.p1.81)f (x,p2,82) = f(x, p.8) f (x. p',8')],
(72)

with
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1
_ o4 }:
W=6¥(p+p'=pi-pa)g — frlp-2)

>

o oo .
s 81,850,171,

X hs’r’(p/’é/)hslrl (plvél)hszrz(va?’Z)

X(p, p'sr, 7 ltlpy, passis s2)(prs pasri ol p, p's s, '),
(73)

satisfies the weak equivalence principle (69) up to O(h).

Let us now focus on €[f]. We will argue that this term
has already the expected structure with gain and loss terms.
In order to see this, let us first note that €[ f] corresponds to
collisions where the momentum of each particle is con-
served, but the spin can change: (p,3,),(p,, %) —
(p.8).(p,.8') [62]. Here, the distribution functions
f(x,p,-) and f(x, p’,-) describe the particles before and
after the collision, which means that they contribute to both
the gain and the loss term. We see from Eq. (68) that the
|

GElll.)l_ Z /d4P1d4P2d4CI1d4CI25 (%)5(4)(42)

r] 72,851,852

1 1
X TTKFP Y _Zg : 775> (2”h)6in<l71 > 7P2

x{ﬁsl<p1+%>W(X,P1)Mrl<pl_%>au[ <pz+ )8 W(x, py)u, <P2

interchange of 8" and &/ flips the sign of 28. This means
that a net gain of particles with (p, 8) corresponds to a net
loss of particles with (p, ;). Thus, €[f] contains both
gain and loss terms.

V. NONLOCAL COLLISIONS

In order to calculate the nonlocal collision term, we focus
on the second term in the second line of Eq. (15). Note that
the 8’;/.5(4)(q ;) term implies that the momentum p* of the
Wigner function is not on shell anymore, which is in
contrast to the local term. In fact, when we integrate by
parts, the nonlocal kernel in Eq. (15) can be divided into
two terms:

(1)

Gnl = 65111)1 + (55111)2 (74)

In the first term, the g;-derivative acts on the spinors, i.e.,

q1
2

q
@(p) ,P2+?2;51,S2>']
mn

-2)]

9
5 P+

+ 94, [usl <p1 + )3 W(x, pr)uy, (Pl 6121” i, <P2 + %) W(x, pa)u,, (Pz - %) } (75)
which is on shell because of 6% (q,)6*(q,), i.e
1
(gnl)l - 5(]72 - mz)o:(()n)—shell,nl,l' (76)

In the second term in Eq. (74), the g;-derivative acts on the matrix element of @, i.e.,

61(111)2:% Z /d4p1d4 2d4q1d*q,6%(q1)5% (g2)

ry.r2,81,82

x {ﬁs] (p, +%> W(x, p1)u,, (m —%) <p

w1+ 2 )0, ), (1= 2 ),

1 1 q
XTrK—zP-Y——ﬁ-WS)(Zﬂh)G <p1 '
P m in

which in general contains off-shell parts, cf. Appendix D.
Note that the factor (277)° in front of the matrix element in
Egs. (75) and (77) is part of the normalization of the latter,
cf. Eq. (45), and does not participate in the 7-counting,
which is obvious since it is not accompanied by any

2

016022-

—5 P2

%) W(x, Pz)ur2 <P2 - %) 3‘;1 }

q q
@(p)|p +71,P2 +72;S1,Sz>‘ } (77)

2+ >8 W(x, pa)u, (Pz—

<P2 +

q> .
__7r17r2

2

|
gradient d,. As discussed in relation to Eq. (17), in our
expansion scheme, the zeroth-order distribution function
is identified with the equilibrium distribution. Off-
equilibrium contributions are at least of first order in
gradients and will thus enter the nonlocal collision term

10
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only at higher order. Thus, in the following discussion, we
will always assume that the distribution functions in the
nonlocal collision term are identical to the zeroth-order
equilibrium distribution.

In Appendix D, it is shown that 65111)2 can be divided into
an on-shell and an off-shell part,

i I i
6:;(11,)2 = G<<>f12-shen +6(p* - m2>(s:((m)-shcll,2

1) 1) (1
= Géff-shen + 5(1’2 - m2><(gf(m-sheu,2,1 + Gon)—shell,Z,Z)’
(78)

and it is proved that the off-shell contribution (Sgg_sheu
cancels the off-shell part of the left-hand side of the
Boltzmann equation (42) when substituting Eq. (40).
Furthermore, in Appendix D, we show that Q'f)i]) sheinz1 = 0,
if one inserts the zeroth-order equilibrium distribution [see
Eq. (D18)]. The explicit expression for Gf)h)-shen,z,z contains
momentum derivatives of matrix elements and is computed

in Appendix D; see Eq. (D16). This term is neglected as we
assume the scattering amplitude to be constant over scales

I
l;l
8
ﬂ:
N
=
~
+
\S)
~_
<
I
7 N
=
~.
|
S
~_
5
=
—
=
=
~.
SN—

1
= S i ()0 O (5. )
J
1
B p? +m
1

[pj X nsjrj (pj)] : Vf(o) (x7 p])

=50 | S (018 ) V),

2(pY) +m

where pl, = (m, 0) is the 4-momentum in the rest frame of
the particle. Using the result (81), defining the space-time
shift

AF = — P p .8y, (82)

2m(p -7+ m)
J

G i [f] = / dT,dT5dT"dS} (p)W [f (x, pa, 8,) A

_ a;\ , q;
+8Z us]- <p] + 2j> 7( urj (pj - 2j> a;tvgl())(x’ p]):|

of order of the interaction range defining the scattering
nonlocality. This is consistent with the low-density
approximation; see e.g., Ref. [78]. Therefore, the
Boltzmann equation contains only on-shell contributions
and can be written in terms of the distribution function

f(x,p,8) as

5([72 - mz)p . af(x, P, Q’) = 5(]72 - mz)(gon—shell[fL (79)

with

(gon—shell [f] = (gon-shell.l[f] + fl(s(();)_shen,nl,l [f]v (80)
where €, 11/ 1 the local term calculated in the previous
section.

We are now ready to calculate G,(llz)l We note that, since
in our scheme the lowest-order contribution to 4* and S*
is of first order in gradients, these terms can be neglected in
the nonlocal collision term, as the total contribution would
be of second order. Using the spinor identities (C2), the
relevant terms to compute in Eq. (75) are of the form

(81)

|
where 7 is the timelike unit vector which is (1,0)
in the frame where p# is measured, and applying similar
steps as in the derivation of Eq. (66), we find that Eq. (75)
becomes

1o Of (x, p1.81) + f(x. p1.81)Ay - Of (x, pa. )

— f(x, p',8") A} - Of (x, p,8)) — f(x, p,8))A"- Of (x, p', 8')]

7h .
- D /szdSl(p)th(pz,é’az)éﬂ%lye"”“ﬁpans,r/;<p,pz;r,rzlt+t'lp,pz;sl,Sz>

r\rp,81,82

X [f(x,p,81)A; - Of (x, P2, 82) + f(x, P2, 82) A1 - Of (x, p, )]

(83)
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We now observe that A-Jf(x,p,8) is the first-order
contribution of the Taylor expansion of f(x+ A, p,8).
Hence, after applying the weak equivalence principle (69)
to Eq. (83), we can summarize the total collision term up to
first order as

Gornlf] = / dT,d>dT'VY

X [f('x+ A17p1’§1)f(x+ AZ’ p2’§2)
—fx+A,p.8)f(x+ A p8)]

+/dF2dSl(p)¥9f(x+ Ay p.8)
X f(x —|— Az, pz, §2) (84)

The interpretation of Eq. (84) is the following: incoming
and outgoing particles are dislocated from the geometric
center x of the collision by a spacelike distance A*. This
leads to a finite difference between the incoming and
outgoing orbital angular momentum. This angular momen-
tum is converted into spin polarization through a collision,
which leads to the alignment of spin with the direction of
vorticity discussed in Ref. [34].

We remark that the nonlocality in Eq. (84) should be
distinguished from the nonlocality of a collision due to the
side-jump effect in the massless case without interactions as
it was discussed in Refs. [79,80]. The latter arises due to the
anomalous Lorentz transformation of the center of inertia of
massless particles [36,81,82]. If a collision of massless
particles is local in one reference frame, it will in general be
nonlocal in a boosted reference frame, as the transformation
behavior of the center of inertia leads to a position shift after
the collision. On the other hand, for massive particles, it is
always possible to define a space-time 4-vector associated
with the center of mass, which properly transforms as a

|

Lorentz vector as long as only local collisions are considered
[34,36]. In other words, if the collision is local in one
reference frame, it will stay local in all other reference
frames. Hence, massive particles with local collisions will
not experience any side-jump effect. The nonlocality in
Eq. (84) is thus a nonlocality (in the sense of a finite impact
parameter) in all reference frames, and, therefore, there is no
“no-jump frame.” In the massless case, this kind of non-
locality could be considered on top of the side-jump effect by
introducing a collision which is not local even in the center-
of-momentum frame. For a recent review about the differ-
ence between the centers of inertia and of mass and their
connection to field theory, see Ref. [36].

VI. EQUILIBRIUM

In order to find the conditions necessary to reach
equilibrium, we consider the standard form of the local
equilibrium distribution function [8,25,30]

1 ) ,
feq(x’ p,g) = Wexp _ﬁ(x> "p +Zgﬂu(x)zg .

(85)

The exponent in Eq. (85) is a linear combination of the
conserved quantities, which are momentum and total
angular momentum, where the Lagrange multipliers
P(x) = ut(x)/T(x) and Q*(x) have the interpretation
of fluid velocity over temperature and spin potential,
respectively [25,29]. Here, we absorbed the orbital part
of the angular momentum into the definition of f#(x) [8]
and for the sake of simplicity considered the case of zero
chemical potential, which corresponds to uncharged par-
ticles. We now insert Eq. (85) into Eq. (84) and obtain after
expanding up to first order in 7

A h v v v v
(gon—shell[ eq] = _/dl"’dl"ldl"2we—ﬂ‘([71+ﬁz) |:ayﬂy(Alllpl1/ +A’24P§ _Aﬂpy_Alﬂpw) —ZQW(Z’;,I +Zg2 _Zg _Zgr ):|

h v w v v
_/dFstl (p)dS’(pz)sze—/f'(P+Pz) {ayﬁu[(Alf - Aﬂ)pb + (Ag _A/”)plé] _Zgﬂu(zgl +2’gz _Z‘Ig _Z/;’ )}

Here, we used that the zeroth-order contribution to the
collision term vanishes for the distribution function (85). As
the orbital angular momentum tensor of the particle
with (p,8) is given by L¥* = Alp*, the parentheses in
the second and fourth lines can be interpreted as the balance
of orbital angular momentum in the respective collision.
Defining the total angular momentum J#* = L* + %Zg”
of the particle, which is assumed to be conserved in a
collision, JW + J" = J}* 4+ J4*, the conditions for the

vanishing of the collision term are for any W, 28 given by

(86)
aﬂﬁl/ + avﬂu =0, (87)

1
Q,=w, = _Ea[ﬂﬂb] = const. (88)

This corresponds to global (and not just local) equilibrium.

We remark that the conditions for global equilibrium
given in Eqgs. (87) and (88) are necessary for the collision
term to vanish if the standard ansatz for the equilibrium
distribution function in Eq. (85) is used. In other words,
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the standard concept of local equilibrium cannot be
adopted when both spin effects and nonlocal collisions
are considered. This result can be understood by looking
at the ordering of scales. The usual way to derive hydro-
dynamics from kinetic theory is by assuming that there is a
clear separation between some microscopic scale associ-
ated to the mean free path s, and a macroscopic scale
associated to the hydrodynamic gradients Lyygr,. One can
then define the so-called Knudsen number Kn,

Ui
Kn=_—20 (89)
Lhydro

and require that Kn < 1. The expansion near equilibrium
as defined in Eq. (17) is a measure of how important
dissipative effects are and can be associated to an expan-
sion in the Knudsen number. Qualitatively, we can write

o

eq

(Kn), (90)

where df is a function which describes deviations of both
the scalar and axial-vector part of the Wigner function from
equilibrium. For systems made of particles with spin, in
addition to the expansion in Eq. (90), we introduce an
expansion in powers of 7. In our framework, spin
effects and scattering nonlocality are treated as being of
the same order, and it is natural to consider A as a
new scale of the system. We can now relate a new parameter
Kk to the fi-expansion of the Wigner function, defined as

A nf
=

=—n~—. 91
Lhydro f(o) ( )

The relation between k and the Knudsen number is given by

A
x =——Kn. 92
o (92)

In order for the assumption of molecular chaos to hold, and
hence for particles to be considered as free between
scatterings, we require that A < ., implying

x < Kn. (93)

The physical implication of this condition is that a local-
equilibrium description of a fluid with spin and nonlocal
collisions in kinetic theory would be inconsistent with
the power counting. In fact, if we consider spin as of
first order in k, we cannot neglect dissipative effects at first
order in Kn. For related discussions, see also Refs. [26,41].

We can also express the condition in Eq. (93) in terms of
the properties of the system. To this end, consider ¢ to be a
cross section and n the particle density. The geometric area

given by the cross section, ¢ = 772, defines a typical

int®

interaction range, r; = +/o/x. On the other hand, the
particle density n defines the typical interparticle distance
d ~ n~'/3. From Eq. (82), we conclude that A ~ i1/m, i.e.,
A is of the order the Compton wavelength of the particle.
Since ¢y, ~ (on) ™!, the condition we need to satisfy reads

. 3
i~3<@) <1 (94)

fmfp Tint d

As long as the interparticle distance is much larger than the
interaction range, this condition is fulfilled, even if the
Compton wavelength exceeds the interaction range.

The dissipative currents (bulk viscous pressure, diffusion
current, and shear-stress tensor) can be expanded in terms
of powers of gradients of temperature, chemical potential,
and fluid velocity. Such a gradient expansion is, by virtue
of Eq. (89), an expansion in powers of the Knudsen
number. The first-order terms in this expansion correspond
to the relativistic generalization of Navier-Stokes theory.
However, it has been shown that this theory is acausal and
unstable [83]. To remedy this shortcoming, transient
theories of relativistic dissipative hydrodynamics have been
developed [84], where the dissipative currents relax to their
Navier-Stokes values on a timescale proportional to g,
Such theories effectively resum all orders of the gradient
expansion and render relativistic dissipative hydrodynam-
ics causal and stable. However, since the values of the
dissipative currents can now differ from their asymptotic
(Navier-Stokes) values, at least at early times, besides the
Knudsen number, another, independent, dimensionless
quantity enters, the inverse Reynolds number R™!, which
is defined as the ratio of a dissipative current over a quantity
in thermodynamic equilibrium (e.g., pressure or particle
density). Consequently, at early times 7 < ¢, the inverse
Reynolds number may differ from the Knudsen number.
However, for late times ¢ 2 ¢, all dissipative currents
relax to their Navier-Stokes values, and we therefore do not
need to differentiate between Kn and R~!.

VII. CONCLUSIONS

In this paper, we provided a detailed derivation of the
collision term in the Boltzmann equation starting from the
Wigner-function formalism put forward in Ref. [34]. The
main result of this work is to provide an explicit expression
of the nonlocal collision kernel based on the framework
developed in Ref. [62]. The advantage of this formalism is
that it relates the collision kernel to vacuum scattering
amplitudes, which can be computed using standard field-
theory techniques. Employing the 7, or gradient, expansion
to solve for the Wigner function, it follows that the nonlocal
term enters at next-to-leading order. Enlarging the phase
space to include a classical variable related to spin degrees of
freedom allows one to write the equations of motion for the
Clifford components of the Wigner function as a single
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scattering nonlocality and spin hydrodynamics is analyzed.
An important question for phenomenological applications,
which can be addressed using nonequilibrium spin
dynamics, is whether spin equilibrates sufficiently fast on

APPENDIX A: ENSEMBLE AVERAGE OF THE
COLLISION TERM

the timescale of the evolution of the hot and dense system Consider an arbitrary operator O. In kinetic theory,
created in heavy-ion collisions. Recent works addressing the  \here dilute systems are considered, it is permissible to
spin-equilibration time can be found in Refs. [76,85-89]. take the ensemble average (O) with respect to the initial,
free n-particle states defined in Eq. (10). The ensemble
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|

'rlr/r

in«plv s Pps gy e rn’0|p/1’ ""p;l;r/h ""r;l»in

n! 2
= 2[2 <m'n—m)'> in(pl, s D Tl oo F | DY s P s s T

m=0
X il Pimtts oo Prs T ts oo Tn| Ol Pl s oo Py g ts o3 i (A2)
l . .
Here, the symbol 2 indicates the antisymmetrization with Cop = (€D 5(p)e i), (AS)

respect to all momenta and spin indices. Neglecting initial
correlations, the expectation values of the creation and

with @, given by Eq. (12). At this point, we can calculate
L1 . . f
annihilation operators factorize according to

Cyp using Eq. (A1) with the factorization in Eq. (A3). For

<ai*n . (p1) - .aj'n rn(pn)ain, 'Jl( p/l)"'ain,rf, (ph)) the scattering kernel C,4, Eq. (A3) corresponds to the
assumption of molecular chaos. Furthermore, since we
= Z H al, . (p;)an, ; (P))). (A3)  consider only binary scatterings, we restrict ourselves to

7

two-particle states, i.e., n = 2. Hence, after exploiting the
fact that two-particle states are eigenstates of the total

where *J3 denotes the sum over all permutations of primed momentum, Eq. (A5) takes the form

and unprimed variables with (—1)® =1 for even permu-

tations and (—1)® = —1 for odd permutations. oo
We are now interested in computing the ensemble Cop =38 Z / dP,dP,dPdP,
average of the collision operator in Eq. (9). Using the URERS
relation for the field operator in the Heisenberg picture X . Ap1s P2 1 12| @(D) P Do P Vi

_X — —Px X —LP~X 2 L
W(X 2) en W( 2>en s (A4) H wpi=p})- m,r/.(pj)ain,r}(p;'»' (A6)

where P* is the total 4-momentum operator, and applying a
similar formula also to , p, p, Eq. (9) reads The positive-energy part of the initial noninteracting field is
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V) =y G [ Pt p)an p). (47

Using the inverse relation

1 4y ehP X (x
m/d xXe r(p)l//m( )
= 25(P2 - mz)ain,r(p)’ (AS)

we can express Eq. (A6) in terms of the initial Wigner
function

d4

Y iy .
Win,(l/}(x9 p) = /We hpy<'l//in,/}(xl)l//in,a(XZ)'>'

(A9)

The result is given in Eq. (11).
|

q

@(p)

pr=L gy =Ly
o 1 292 29172

X{ <p’;r’ y(0)
out
+
_{y(ﬁ%)m] <p,;r, y
out

2

(0):|py +%

In deriving Eq. (B2), we also made use of the fact that one-
and two-particle states are eigenstates of the total momen-
tum operator; hence, the expectation value involving, e.g.,
w(—y/2), is given by

y q1 q>
P/;V'l//( )’P +—,P2+— S1,52>
0ut< 2 2 2 in

— enP'=P1=01/2-p2—q2/2)y

x < p/; p
out

In order to compute the matrix element on the right-hand
side of this equation, we write the field y(0) as a general
solution of the Dirac equation in the presence of interaction

w(0)

P1+ﬂ»P2+2;Sl,S2 . (B3)
2 2 in

w(0) = yn(0) + / FrSp(-x)p(x).  (B4)

where vy, is given in Eq. (A7) and Sk(x) is the retarded
Green’s function, which we express as a Fourier transform

Sas) = s [ ApSelp)en (B3)

with

q1 q> q1
P1+?,P2+?;S1752> <P1——,P2—
inin

q1
pP1+—+5.02+

APPENDIX B: CALCULATION OF THE
EXPECTATION VALUE OF &

We want to explicitly compute the scattering-matrix
element in Eq. (15),

q1 q> .
) ’p2+ ) ’sl’s2>in’

(B1)

O(p)|p1+-

P Lo
o 1 2’2 2’1’2

where the operator ®(p) is given in Eq. (12). Inserting a
completeness relation of free out states and following
similar steps as done in Ref. [62], we obtain after the
y-integration

q .
p1+7‘,p2+§;s1,s2>, —lZ/dP’6<4><p+p'—p1—p2>
in 7

%;i’hrz :p(0): p/;r’> [y- <p—L ;—%) —i—m}
out
q q _
—2;S1,S2> <P1—71,P2—72;r1772 w(0) P';r'> }
inin out
(B2)
Sr(p) = —g(Y'Per)G(p), (B6)

and G(p) defined in Eq. (52). The matrix element of y is
thus given by

<p'- /w(0)

Tl ot

q>
+S + = + +—=-
Zﬂh R<P1 P2 P>

2
where we made use of the orthogonality condition
(p,rlp’. 7y = p°6®) (p —p')8,,. Plugging Eq. (B7) into
Eq. (B2) and using Eqgs. (B6), (52), as well as the relation

(r -kt m)gy =D u(k),i

r

q1 q> .
1+ 5 s P2+ 5 ,S1,52>in

q2
p ‘p1+—,p2+2 SI,S2> s
in

(B7)

r(k)/}’ (BS)

we obtain
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q1 q>
p1+ ) , Do+ ) ,Sl,s2>in

q q
<P1 __1,p2__2;r1’r2 q)(P)

2 2

m

i 1 q> qz\ 2
=— I P ) _ 23 s 50 qz g —E s
ZrZs{ 2(27Zh>3 |: (p P1 + 2> <p + \/<p2 + 2> +m P1 P2 s\ r

xu (pr X d)y (p 0x@) [, 4 Do 50 s ) u(p- L) £ (1o 2)
2 2 ). 2 2 . 2]

1 q; q2)?
e 50 (p=p;=L2)s5( 0 _& 2_E _E, s
2(2ﬂh)3[ <p P 2> <p +\/<p2 2) T En T 0
+ + +
X Uy p+6h 12 ﬁs p_ql 12 ﬁr p+QI 42 P21 p(O) P1 +ﬁ’p2+@;sl’s2 +(1 <_)2)
2 2 2 ) 2 5 -
+ +
‘hZ/dP'5(4)(P+p’—p1 - p2) {G<p+q1 q2> —G*<p—q1 qz)}
: 2 2
A +9) . +
su (p+ I T2 g (p I8Ny (DR L p0): | py + I s+ By,
2 2 2 ). 2 2 N

(0): |p; r’>0mus (p _4 ; q2> } (BY)

where we defined E, = /P> + m?. Finally, we use Eq. (47) to write

q1 q> .
X Pl—Evpz—E,rhrz

m

in<P1 —%vpz—%ﬂl»rz @(p)|p: +%,P2 +%§51,S2>m
= m;ur (p + & er%> it (p —%)Mf%sz(m,ql,pz,cm,p), (B10)
with
Wi ros15s (P1- Q1 P22 @2 D) ZZE/dP’# [G<p+(h ;qz) -G <p—ch ;qzﬂ

><5<4)(p+p’—p1—p1)<p+%;qz,p’;r,r’tp1+%,pz+%;shh>
x <p1—%,pz—%;r1,rz tTp—QI;qu,p’;s,r’>
— i27hsB) (p -m —I—qzz>5<p0 + +ng— o~ Epz)
X <p1—%,pz—%;r1,rz rf p—ch;qz,pz;s,Sz>5m1 + (1< 2)
+ i27hs® <p —pi— %>5<p° +p) - %g —E, - Em>
X <P1 +%’Pz+%;r, r fp+q1 —;qz9p2;slvs2>6r]x + (1 < 2). (B11)

Here, we made use of the fact that to linear order in q, we may replace \/(p, + q,/2)* + m> = pY £ ¢5/2. Working to
linear order is sufficient since we only consider zeroth- and first-order terms of a Taylor expansion in ¢; in Eq. (15). In this
form, the scattering-matrix element is inserted into Eq. (15). Furthermore, for the sake of simplicity, we define

W:frzslsz<p1’ P2 p) = Wrr‘frzslsz(plv 91 =0,p2,9, =0, p) (B12)
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APPENDIX C: SPINOR IDENTITIES

For any on-shell momentum p* = (E,.p), we can write
u(p) =L LM
' /2m(E, + m)

where pl = (m, 0) is the 4-momentum in the rest frame of the particle. Then, the following identities hold to first order in g*,

_ q q i v
1 - =oms, ———q,p,¥"(p.),
ity <p+2> ur<p 2> mé,, 2E, +m) quPuZsr (D)

_ q q im i
it (p + 5) Yiu, (p - 5) =2p%b,, + W%Z#(A) E,+ meaﬂquﬂpunsrp(p*)7

u(ps), (C1)

- q 5 a q a I e 10
1 S A e — H S, Cc2
Uy (P + 2)7 VU (P 2) "msr(P) Ep quPuOsr ( )
where we used Eqgs. (50), (54), and the identity
7YY =g+ g = gy — ey, (€3)

APPENDIX D: CALCULATION OF NONLOCAL COLLISION TERM

The second contribution of the nonlocal term in Eq. (77) term is given by

27h)°
i{ > / d*pid pydqd*q:6% (418" (42)

8m*
ry.r2,81,82

m q 9
Xy Tr|(—=p-y—38-yp° ——.Dr— =5,
{ qi r[(pzp 4 144 >in<P1 > ] ) I,

X iy, (p2)W(x, p2)uy, (p2)its, (p1)0,W(x, py)u,, (p1)

m q q
+9’52Tr[<pzp y—8- 775> <p1—7‘,p2—72;r1,r2

(s:nl)2 -

@(p)

q1 q>
p1+ > s P2+ > ,S1,52>in]

@(p) >

q q
P+ +?2251,52> }
in

x ity (pr)W(x, pi)uy, (p1)its, (p2)0,W(x, pa)u,,(p2)}
e Y[ Epidndadase)6 (q)
r.8,r1,r,81,52

q QDY s
{ |: Ug\ p — ?1 _2>< 2p V= 8- W/S) <p+ ! 2 2>Wr]r2slsz(pl’ch’p21 QZ’p):|
2) p1)

X g, (p2)W(x, po)u,, (p2)its, (p1)0,W(x, py)u, (

)ity
_ a1+ a\ (m a @\
+ o {us (p ! 2) (p y—8-yy ) r<p +71+72> Wi s (P1, @1s P2 6]2717)}

< iy, (P )W . py)it, (pr)is, (p2) O W (x. pa)is, <p2>}

i v
= W Z /d4p1d4p2{2( 0 ) [pzzzl;r(p*) + eyﬂﬂopugl(ssr]wrlrzslsz (p19p2 p)

7.8,51,7,51,8

x Oy, (p)W(x. pr )i, (p1)is, (p2) W (x. p)is, <p2>}

i . ]
T /d4pld4 2| i (p)p - yur(p) = 8,05 (p)r"r u,(p)

7\8,71,7,81,52 p
X{[aglwr]rzs]sz(plvqlﬁpZ q2, )]‘11 gr= Uﬁxz(pZ)W(x’pZ) rz(pZ) \l(pl)a W(.X' pl) r](pl)
lgy=

+ 10697 15, (P11 @1 P22 2. D))y —olhs, (POW (X, p1)uy, (P1) iy, (P2) O, W (x, pa)u,, (p2) }s (D1)
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where we used Eq. (B10) in the second step and, in the last step, Eq. (B12) and the relation

+ + _ + +
8“ zpﬂuY p_% 92 yiu, p+Q1 9 + 8,0, p_611 92 Yyhu, p+fh 9>
)4 2 2 2 2 41=¢>=0

l m2
= 200+ m) {? P2 (pa) + eyﬂaopugﬁsr} . (D2)

When inserting this equation into Eq. (D1), the term m?/p? = 1, since Wyl rsis,(P1> P2, p) puts the 4-momentum p* on
shell; see Eq. (46).

The qj—derivaFiv.es acting on Wit ™ (P11, P2, G2, p) in the last two lines of Eq: D1 coptain several terms. In order to
calculate them, it is convenient to split w, ¢ o (P1.41. P2, q2. p), cf. Eq. (B11), into a gain term,

6] +q * q1+q
rlrzslszga1n<plaq1vp2 q2, p)_ZZ/dP/ |: ( l 2 2) G ( 1 2):| 5(4)(174‘17/_171_171)

<p+%;qz,p’;r,r

2
p]+?,p2+ S],S2>

q q 91T 49
X<P1—21,P2—22§’”1J’2’TP Dy, v (D3)
and a loss term,
s . (3) q: 0 ) 2 2
Wiinsisyoss(P1s s 2. G2, p) = —i2ahG7 (P =P+ 27 | 8{ PP+ [\ P2+ | +m” = E) —E),
0 q n G t+4q
XA P1—F P2~ 7T nNnft'\p— » P23 8,82 5rs +(1(_)2)
2 2 2 !
. q Q2>
+ 27h5B) <p —P1 _72) 5<P0 + \/<P2 —72> + m? -E, _EP2>
+
X <P1 +%’P2 +%2”7”2 fP+(Zl > qszZ;S17S2>5rls+ (1<2). (D4)

Since we compute a contribution of order O(#), the Wigner functions in Eq. (D1) can be approximated by their zeroth-
order expression, such that the terms proportional to W9, W will give rise to terms proportional to f ©) o.f (), with f being
the zeroth-order contribution to f(x, p, 8). To zeroth order, the 8-dependence vanishes, such that f©) (x, p, 8) = O (x, p).

Acting with the g;-derivative on the gain part, Eq. (D3), the respective terms in Eq. (DI) lead to contributions of
the form

+ +
O P05 )0y 5 )0 O 200 [ 6+ L2 = 6 (- 272
=4,=0

1 1 1
— L e 0 e o O (x ) O _ ]
MO PO ) O (g i+ ) (= aP = e = ) 4=0

= 900 p)fOw p2) s G(P) + G ()] (DS)

Due to the factor p> — m? in the denominator, this is an off-shell contribution to the Boltzmann equation. Further off-shell
contributions also emerge when the ¢ j—derivatives act on the loss term, Eq. (D4), i.e., in terms of the form
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im

S / dPdPahyy(p. 30)f 0 (x, p2) 0,0 (x, p)O, + f O (% P)OF O (x. p2) )

7S, F 572581582

. q> 61
X |:—1271’fl5(3) <p P1+ 2>5<p +P2+?2_ Pi _EP2>
«{ Q1 » P, 41 + 4> 92

1 27 2 29 1,12

ﬁp— 3 ,pz—T;S,S2>5rsl+(1<_>2)
0
. q q
+127tfl5(3 (p p1—72>5<190+19(2)—72_ pl_Epz)

q q 91 +4q q
X P1+—1,p2+—2;r,r2tp+ ! 2,p2+—2;s1,s2 8,5+ (1 < 2) 8r15,0r5,
2 2 2 2 91=9,=0
_im
> / AP, (p.31)0,[f 0 (x. p2)fO(x. p)) (8%, + 5,
7,8,51,F2,80
inh % q1 — 92 q> q: + g Q>
- 5 0 _Z_E - ) - ) tT - ) -9, 5 5
X [ E, .« (p + 5 p+q72> <p 3 P2= 55|t p > P2 = 538:82 )80, 6,

inh % 91— 92 92
S| p°—-2-E .|t
+Ep_%2 (p > p—%) <p+ 5 Pt inn

91+ 4 92
p+ l B » P2 +?;r1752>5r155rzs2:| . (D6)
q1=¢4>=0

It is clear that both on- and off-shell contributions are present, since

1 0 qO 0 qo : 2
2, (75 )| —o(( ) -#2)
P+7 q:O

We can collect all the off-shell contributions to the collision term as

%

= pdl(p? = m?). (D7)
q=0

1 i
(g(()ﬁz—shell = —2(p2 —m) p-0 Z dPyh,,(p, §)f(0> (X,Pl)fm) (x, p2)

r.8,11,12,81,52

1
x {22 / dPydP'—[G(p) + G* (P18 (p + p' = p1 = 1)
< (p. s ltlpr. pas st s2)(pis pasri ol |p. pls s 7)

+ i2ﬂhp°6(p2 - m2)[<P,P2§ ry,

18,826,y 05,, + (P, P23 T,

AT s2>5r155r2s2] } (DS)

We now show that the off-shell part (D8) cancels with the where the correction to the mass shell at zeroth order
off-shell part on the left-hand side of the Boltzmann  reads

equation (42). Using the quasiparticle approximation in
Eq. (40), the left-hand side of Eq. (42) is given by

im
m(O) :7 Z /dP dPZ sr(p §)

r,S,r1,F2,81,82

mp - 98(p* — m* — hom?) f(x, p, 8)

2
er|r23|v7 Pi1, P2, P H .Xp] (DIO)

1
=md(p* —m*)p - Of (x,p.8) + h———p - OM®
p —m

(DY) with
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M (P1.P2. D)
1
2% [ 4P s (6(0)+ G ()0 (/= pi =)
7]

X (p.p'sr.r|tlp1. paisi.sa)(pr.pairi |t p.plis.r)
+i2zxhp°s(p* —m?)
x {83 (p=p1)[(p1.p2sr1. 12|t | Py P23 5.52) B,
+ <p1,p2;r,r2|t|p,p2251752>5r1s] +(1 <_>2)}
(D11)

The steps to obtain Eq. (D10) are completely analogous to
the calculation that leads to the local collision term, since
we see from Eqgs. (7) and (8) that M is just the real part of
the quantity of which C given by Eq. (15) is the imagi-
nary part.

Comparing Eq. (D8) with Eq. (D10), we find up to first
order

1
1
m(g(()fg—shell =5 _ 5P MmO,

5 (D12)
p-—m

which implies that all off-shell contributions cancel on the
left- and right-hand sides and the Boltzmann equation
involves only on-shell terms. Thus, we obtain the following
kinetic equation for the distribution function f(x, p, 8):

5([72 - mZ)p : 6f(x, D §) = 5(172 - m2>(gon—shell[f],
(D13)
|

with

(son—shell [f] = (s:on—shell,l[f] + h@:gil)-she]l,nl,l [f]

1 |
+ h(gc(m)-sheu,m[f ]+ h(g(()n)—shell.ZQ [f]. (D14)

Here, we obtained from the first two lines in the last
equality in Eq. (D1),

(1
G’on—shell.Z,l [f]

1

~8m(p"+m) > (P (p.) +eH0p,88,)

r,s,r ry,r

« / dP\dP,dP'8® (p+ ' = p1 = ps)

X (p.p'sr.P|tlp1. pairi.r2) (pr. pairi ra|t| p plis. )
X [0, (x, p1) fO(x, p2) = 0,f O (x. p') fO (x. p)].
(D15)

where we properly relabeled indices and applied the optical
theorem (63). Furthermore, the on-shell contribution from
the last three lines in Eq. (D1) is given by

1
(g(()izsheu,z,zm ~ 4m Z Z / dP,dP,dP'h,(p, 5)5(4) (p+p —pi— P2)5(1’2 - mz)

r1.r2.81,82 1, s

< £ p2)0f (v, 21 + £ p1)OLf(x. p2>a;2]<p IR R

q1

q> +
X <P1 —?7P2—7;r1,r2t

2 2

91 92
P—F—575P ;svrl>5s1r15s2r2

t

q q>
P1 +—1,P2 +—251,32>

2 2 2 2

“Tor 2 / APy hyy(p.3)8,,,8(p> = m*)9,[f (x. p2)f (x. p)](9%, + 0,)

12,82

xi47rfl<p+@—ﬂ,p2—2;r,r2

r+ 1
2 2 2 +

As discussed in Sec. V, in accordance with the low-density
approximation, we neglect the momentum derivatives of
the scattering amplitude, and, hence, all terms in Eq. (D16)
vanish. We now show that the term in Eq. (D16) vanishes
once the zeroth-order distribution function is inserted. The
zeroth-order distribution function makes the zeroth-order
collision term G© vanish and is given by the usual
Boltzmann form

919 q
_ 21 _ 22,p2— 22;S’S2>_ (D16)
(0) _ —px)-p D
S p) (271?1)36 (D17)

(We consider here the simplest case of a neutral fluid.
Adding a chemical potential is trivial and does not
change the conclusion.) Inserting Eq. (D17) into Eq. (D15),
we find
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1 1 1

(S(()n)—shell,Z,l [f] =

(27h)3 8m(p° + m)

> P E(p.) +e¥0p,8,8,]

r.s,rry

x / dPdP,dP'8%) (p + p' = py — p»)

X (p,plir.Pltlpy, pasri, ra)(pi. pas . nalt | pL pls s, )

x 0,B(p1 + p3 — P’

=0.

—_ plﬁ)e_/}'(pl'«’pz)

(D18)

Therefore, we proved the structure of the Boltzmann equation and the on-shell collision terms given in Egs. (79) and (80).
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