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In this paper, we study the pion leading-twist distribution amplitude (DA) ϕ2;πðx; μÞ by improving the
traditional light-cone harmonic oscillator model within the reconstruction of the function φ2;πðxÞ. In order
to constrain the model parameters, we calculate its moments hξni2;π jμ in the framework of the QCD
background field theory sum rule up to tenth order. Considering the fact that the sum rule of the zeroth
moment hξ0i2;π jμ cannot be normalized, we suggest a more reasonable sum rule formula for hξni2;πjμ. Then,
we obtain the values of hξni2;πjμ0 with n ¼ ð2; 4; 6; 8; 10Þ at the initial scale μ0 ¼ 1 GeV. The first two

moments are hξ2i2;πjμ0 ¼ 0.271� 0.013 and hξ4i2;πjμ0 ¼ 0.138� 0.010, and the corresponding Gegen-

bauer moments are a2;π2 ðμ0Þ ¼ 0.206� 0.038 and a2;π4 ðμ0Þ ¼ 0.047� 0.011, respectively. After fitting the
moments hξni2;π jμ, we obtain the appropriate model parameters by using the least squares method. The
resultant behavior for the twist-2 pion DA is closer to the AdS/QCD and lattice results, but narrower than
that obtained using the Dyson-Schwinger equation. Furthermore, we calculate the pion-photon transition
form factors (TFFs) and B → π TFFs within the light-cone sum rule approach, which conform with
experimental and theoretical results.

DOI: 10.1103/PhysRevD.104.016021

I. INTRODUCTION

Light meson light-cone distribution amplitudes (DAs)
are universal nonperturbative objects, which describe the
momentum fraction distributions of partons in a meson
for a particular Fock state. These DAs enter exclusive
processes based on the factorization theorems in the
perturbative QCD theory (pQCD), and therefore they are
key parameters in the QCD predictions for corresponding
processes. In the standard treatment of exclusive processes
in QCD proposed by Brodsky and Lepage [1], cross
sections are arranged according to different twist structures
of meson DAs, in which the leading-twist DA contribution
usually dominates due to the fact that the contributions

from the higher twists are highly power suppressed at short
distance. Thereafter, the study of the pionic leading-twist
DA—which describes the momentum distribution of the
valence quarks in a pion—attracted much attention in the
literature.
So far, a large number of studies on the pionic leading-

twist DA rely on its Gegenbauer expansion series [2,3]; the
nonperturbative expansion coefficients, denoted a2;πn ðμÞ,
are called Gegenbauer moments which encode the long-
distance dynamics at low energy scales (∼1 GeV), and only
the even Gegenbauer moments are nonzero due to the
isospin symmetry. In many applications of the pion lead-
ing-twist DA involving a high normalization scale, the
higher Gegenbauer moment contributions are suppressed
due to the fact that the anomalous dimension of a2;πn ðμÞ
grows with n, and only the lowest Gegenbauer moments are
retained. Therefore, people usually adopt the truncated
form involving only the first few terms in the Gegenbauer
expansion series as an approximate form of ϕ2;πðx; μÞ.
Those Gegenbauer moments can be calculated directly via
some nonperturbative methods, such as QCD sum rules
[4–9] or lattice gauge theory [10–13]. Using QCD sum
rules to calculate a2;πn ðμÞ is realized by calculating hξni2;πjμ.
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Recently, we realized that these calculations need to be
improved. Using the QCD sum rules method, the analytic
formula is for hξni2;πjμ × hξ0i2;πjμ, but this is usually seen
as the sum rules of hξni2;πjμ due to the normalization of
ϕ2;πðx; μÞ. In fact, due to the incompleteness of our sum
rules calculation, the deviation of hξ0i2;πjμ from the
normalization must be considered. This motivates us to
recalculate the moments of the pionic leading-twist DA
with QCD sum rules.
On the other hand, the truncated form mentioned

above does not seem to be enough to describe the
behavior of the DA below the low energy scale. A
natural idea is to consider the contributions of higher-
order Gegenbauer polynomials, which requires the cal-
culation of higher-order Gegenbauer moments. But there
is a very serious difficulty in doing so, that is, it is
difficult to get reliable higher a2;πn ðμÞ. Through the
mathematical relationship between a2;πn ðμÞ and hξni2;πjμ,
we can find that with the increase of order n, the
reliability of a2;πn ðμÞ decreases sharply, which makes
our calculation of higher a2;πn ðμÞ meaningless. So people
try to study the behavior of ϕ2;πðx; μÞ in other ways. In
Ref. [14], in the framework of the Dyson-Schwinger
equations, the authors obtained pionic leading-twist DAs
(DS model) that are concave and significantly broader
than the asymptotic DAs. Making use of the approximate
bound-state solution of a hadron in terms of the quark
model as the starting point, Brodsky, Huang, and Lepage
(BHL) suggested the light-cone harmonic oscillator
(LCHO) model which is obtained by connecting the
equal-time wave function (WF) in the rest frame and the
WF in the infinite-momentum frame [15]. Meanwhile, the
holographic Schrödinger equation for a meson maps onto
the fifth dimension of anti–de Sitter space with a QCD
potential (AdS/QCD) [16].
In this paper, we study the pionic leading-twist DA

ϕ2;πðx; μÞ based on the improved LCHO model. The
determination of model parameters depends on the
moments hξni2;πjμ rather than the Gegenbauer moments

a2;πn ðμÞ, and we will adopt a new method, that is, the least
squares method of fitting, to determine the model param-
eters directly. In particular, to get more accurate values of
the moments hξni2;πjμ, we recalculate these moments with
the QCD sum rules in the framework of the background
field theory (BFTSR) and adopt a more reasonable and
accurate sum rules formula for hξni2;πjμ.
The remaining parts of this paper are organized as

follows. In Sec. II A, we recalculate the pionic leading-
twist DA moments using BFTSR. In Sec. II B, we give a
brief overview of the LCHO model, put forward the
improved new model, and introduce the least squares
method to determine the model parameters. Numerical
results are given in Sec. III. Section IV is reserved for a
summary.

II. THEORETICAL FRAMEWORK

A. BFTSR for the moments of ϕ2;πðx;μÞ
To derive the sum rules for the pionic leading-twist DA

moments hξni2;πjμ, we adopt the following correlation
function:

Πðn;0Þ
2;π ðz; qÞ ¼ i

Z
d4xeiq·xh0jTfJnðxÞJ†0ð0Þgj0i

¼ ðz · qÞnþ2Iðn;0Þ2;π ðq2Þ; ð1Þ

where z2 ¼ 0, n ¼ ð0; 2; 4;…Þ since the odd moments
vanish due to the isospin symmetry, and the currents

JnðxÞ ¼ d̄ðxÞ=zγ5ðiz ·D
↔ÞnuðxÞ; ð2Þ

J†0ð0Þ ¼ ūð0Þ=zγ5dð0Þ: ð3Þ

In the physical region, the correlation function (1) can be
calculated by inserting a complete set of intermediate
hadronic states. Combining the definition

h0jd̄ð0Þ=zγ5ðiz ·D
↔Þnuð0ÞjπðqÞi ¼ iðz · qÞnþ1fπhξni2;πjμ

ð4Þ

and the quark-hadron duality, the hadron expression of
Eq. (1) can be obtained as

ImIðn;0Þ2;π;hadðq2Þ ¼ πδðq2 −m2
πÞf2πhξni2;πjμ

þ π
3

4π2ðnþ 1Þðnþ 3Þ θðq
2 − sπÞ; ð5Þ

where mπ is the pion mass, fπ is the decay constant, and sπ
stands for the continuum threshold. In Eq. (4), the moments
hξni2;πjμ are defined with the pionic leading-twist DA
ϕ2;πðx; μÞ as follows:

hξni2;πjμ ¼
Z

1

0

dxð2x − 1Þnϕ2;πðx; μÞ: ð6Þ

In the deep Euclidean region, we apply the operator
product expansion (OPE) for the correlation function (1).
The corresponding calculation is performed in the frame-
work of BFTSR. For the basic assumption of BFTSR,
the corresponding Feynman rules, and the OPE calcula-
tion technology, we refer to Refs. [17,18] for a detailed
discussion.
The hadronic expression of the correlation function (1) in

the physical region and its OPE in the deep Euclidean
region can be matched with the dispersion relation. After
applying the Borel transformation for both sides, the sum
rules for the moments of the pionic leading-twist DA
ϕ2;πðx; μÞ can be obtained as
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hξni2;πjμhξ0i2;πjμf2π
M2em

2
π=M2 ¼ 3

4π2
1

ðnþ 1Þðnþ 3Þ ð1 − e−sπ=M
2Þ þ ðmd þmuÞhq̄qi

ðM2Þ2 þ hαsG2i
ðM2Þ2

1þ nθðn − 2Þ
12πðnþ 1Þ

−
ðmd þmuÞhgsq̄σTGqi

ðM2Þ3
8nþ 1

18
þ hgsq̄qi2

ðM2Þ3
4ð2nþ 1Þ

81
−
hg3sfG3i
ðM2Þ3

nθðn − 2Þ
48π2

þ hg2s q̄qi2
ðM2Þ3

2þ κ2

486π2

×
�
−2ð51nþ 25Þ

�
− ln

M2

μ2

�
þ 3ð17nþ 35Þ þ θðn − 2Þ

�
2n

�
− ln

M2

μ2

�
þ 49n2 þ 100nþ 56

n

− 25ð2nþ 1Þ
�
ψ

�
nþ 1

2

�
− ψ

�
n
2

�
þ ln 4

���
; ð7Þ

where M is the Borel parameter, and for the vacuum condensates we have taken

hq̄qi ¼ hd̄di ¼ hūui;
hgsq̄σTGqi ¼ hgsd̄σTGdi ¼ hgsūσTGui;

hgsq̄qi2 ¼ hgsd̄di2 ¼ hgsūui2;
hg2s q̄qi2 ¼ hg2s d̄di2 ¼ hg2s ūui2;

and with hs̄si=hq̄qi ¼ κ,

g2s
X

hgsψ̄ψi2 ¼ ð2þ κ2Þhg2s q̄qi2; ðψ ¼ u; d; sÞ:

In the OPE calculation for the correlation function (1), we have corrected the mistake of a vacuum matrix element,
h0jGA

μνGB
ρσ;λτj0i, used in the previous work [18]. That is,

h0jGA
μνGB

ρσ;λτj0i ¼ δAB
��

−
1

1296

X
hgsψ̄ψi2 −

1

384
hgsfG3i

�
½2gλτðgμσgνρ − gμρgνσÞ þ gρτðgμσgνλ − gμλgνσÞ

þ gστðgμλgνρ − gμρgνλÞ� þ
�
−

1

1296

X
hgsψ̄ψi2 þ

1

384
hgsfG3i

�
½gμτðgρνgσλ − gρλgνσÞ þ gντ

× ðgρλgσμ − gρμgσλÞ�
�
: ð8Þ

It needs to be noted that, by taking n ¼ 0 in Eq. (6) and
considering the normalization of the pionic leading-twist
DA ϕ2;πðx; μÞ, one can obtain the zeroth moment

hξ0i2;πjμ ¼ 1: ð9Þ

Therefore, in many QCD sum rules calculations people
usually substitute Eq. (9) as input directly into the sum rules
(7), and take Eq. (7) as the sum rules of the moments
hξni2;πjμ. This will give rise to an extra deviation to the
predicted values of hξni2;πjμ; the reason is that the zeroth
moment hξ0i2;πjμ on the lhs of Eq. (7) is not strictly that in
Eq. (9). By taking n ¼ 0 in Eq. (7), one can obtain the sum
rule of hξ0i2;πjμ,

hξ0i22;πjμf2π
M2em

2
π=M2 ¼ 1

4π2

�
1þ αs

π

�
ð1 − e−sπ=M

2Þ þ ðmd

þmuÞ
hq̄qi
ðM2Þ2 þ

hαsG2i
ðM2Þ2

1

12π
−

1

18
ðmd þmuÞ

×
hgsq̄σTGqi

ðM2Þ3 þ 4

81

hgsq̄qi2
ðM2Þ3 þ hg2s q̄qi2

ðM2Þ3
2þ κ2

486π2

×

�
−50

�
− ln

M2

μ2

�
þ 105

�
: ð10Þ

Obviously, hξ0i2;πjμ on the lhs of the sum rule (7) cannot be
normalized in the whole Borel parameter region. The
reason is that our calculation is not complete. The high-
order corrections and high-dimensional corrections have
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not been calculated, and they are also impossible to
calculate completely. In fact, the authors of Ref. [8]
discovered this more than 30 years ago. They obtained
hξ0i2;πjμ ≃ 0.83, and took fπhξ0i2;πjμ as the normalization
factor to calculate the values of hξ2i2;πjμ and hξ4i2;πjμ. In
this paper, we argue that we need to further consider the
impact of the sum rule of hξ0i2;πjμ, Eq. (10), in the full
Borel parameter region when using the sum rule (7) to
calculate hξni2;πjμ. Therefore, in order to obtain more
accurate moments hξni2;πjμ, we suggest the following form:

hξni2;πjμ ¼
ðhξni2;πjμhξ0i2;πjμÞjFrom Eq: ð7Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hξ0i22;πjμ
q

jFrom Eq: ð10Þ
: ð11Þ

Meanwhile, another advantage of Eq. (11) is that it can also
eliminate some systematic errors caused by the continuum
state, the absence of high-dimensional condensates, and the
selection and determination of various input parameters.
It should be mentioned that Eq. (10) is usually used to

predict the pion decay constant fπ based on the premise
that hξ0i2;πjμ ≡ 1. After the previous discussion, we think
that the sum rule of hξ0i2;πjμ varies with the Borel
parameter M2, especially when fπ has a definite exper-
imental value. In order to ensure the QCD sum rule’s
predictive ability for other meson decay constants, we need
to assume that hξ0i2;πjμ can be normalized in an appropriate
Borel window.

B. Improved LCHO model for ϕ2;πðx;μÞ
Based on the BHL description [15], the LCHO model of

the pion leading-twist WF was derived in Refs. [19,20] and
its form is

Ψ2;πðx;k⊥Þ ¼
X
λ1λ2

χλ1λ22;π ðx;k⊥ÞΨR
2;πðx;k⊥Þ; ð12Þ

where k⊥ is the pionic transverse momentum, and λ1 and λ2
are the helicities of the two constituent quarks. χλ1λ22;π ðx;k⊥Þ
stands for the spin-space WF that comes from the Wigner-
Melosh rotation, whose explicit forms for different λ1λ2 are
exhibited in Table I, and which can also been seen in
Refs. [21–24].

ΨR
2;πðx;k⊥Þ ¼ A2;πφ2;πðxÞ exp

�
−
k2⊥ þm2

q

8β22;πxx̄

�
; ð13Þ

indicates the spatial WF, where x̄ ¼ 1 − x, A2;π is the
normalization constant, the k⊥-dependent part of the
spatial WF ΨR

2;πðx;k⊥Þ comes from the approximate
bound-state solution in the quark model for the pion
[25] and determines the WF’s transverse distribution via
the harmonious parameter β2;π, while the x-dependent part
φ2;πðxÞ dominates the WF’s longitudinal distribution. In
principle, the spatial WF ΨR

2;πðx;k⊥Þ should include a
Jacobi factor. The numerical calculation in Sec. III C will
show that the Jacobi factor has little effect on the behavior
of the pionic leading-twist DA. In Table I and Eq. (13), mq

stands for the mass of the constitute quarks u and d in the
pion. In our previous work [26], the experimental data of
the pion-photon transition form factor reported by the
CELLO, CLEO, BABAR, and BELLE collaborations
based on the LCHO model with the longitudinal dis-
tribution function φI

2;πðxÞ [see Eq. (18)] were fit by
adopting the least squares method. We take the constituent
quark mass mq and the model parameter B as the fitting
parameters, and obtain mq ¼ ð216; 246; 347; 222Þ MeV
for CELLO, CLEO, BABAR, and BELLE data, respec-
tively. The corresponding goodness of fit values are
Pχ2min

=nd ¼ ð0.187=3; 0.986=13; 0.416=15; 0.958=13Þ. We
take mq ¼ 200 MeV in this paper. Otherwise, mq is taken
to be 250MeV in the invariant meson mass scheme [27–33]
and 330 MeV in the spin-averaged meson mass scheme
[34–38]. Therefore, we will discuss the impact of different
values of mq on the behavior of our pionic leading-twist
DA in detail by taking mq ¼ 200–350 MeV.
Using the relationship between the pionic leading-twist

DA and WF,

ϕ2;πðx; μÞ ¼
2

ffiffiffi
6

p

fπ

Z
jk⊥j2≤μ2

d2k⊥
16π3

Ψ2;πðx;k⊥Þ; ð14Þ

the leading-twist DA for the pion, ϕ2;πðx; μÞ, can be
obtained. That is, after integrating over the transverse
momentum k⊥ in Eq. (14), we have

ϕ2;πðx; μÞ ¼
ffiffiffi
3

p
A2;πmqβ2;π
2π3=2fπ

ffiffiffiffiffi
xx̄

p
φ2;πðxÞ

×

(
Erf

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ μ2

8β22;πxx̄

s #
− Erf

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q

8β22;πxx̄

s #)
;

ð15Þ

TABLE I. Expressions of the spin-space wave function χλ1λ22;π ðx;k⊥Þ with different λ1λ2.

λ1λ2 ↓↓ ↑↑ ↑↓ ↓↑

χλ1λ22;π ðx;k⊥Þ − kxþikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

qþk2⊥Þ
p − kx−ikyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
qþk2⊥Þ

p mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

qþk2⊥Þ
p − mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
qþk2⊥Þ

p
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where ErfðxÞ ¼ 2
R
x
0 e

−t2dx=
ffiffiffi
π

p
is the error function. The

error function part in Eq. (15) comes from the k⊥-
dependent part of the WF Ψ2;πðx;k⊥Þ and gives a good
end-point behavior for ϕ2;πðx; μÞ, and φ2;πðxÞ dominates
the broadness of ϕ2;πðx; μÞ. Obviously, the specific form of
ϕ2;πðx; μÞ is determined by the parameters A2;π and β2;π and
the function φ2;πðxÞ. There are two important constraints
[15] which can be used to constrain the parameters A2;π

and β2;π:
(1) The WF normalization condition provided from the

process π → μν,

Z
1

0

dx
Z

d2k⊥
16π3

Ψðx;k⊥Þ ¼
fπ
2

ffiffiffi
6

p : ð16Þ

(2) The sum rule derived from the π0 → γγ decay
amplitude,

Z
1

0

dxΨðx;k⊥ ¼ 0Þ ¼
ffiffiffi
6

p

fπ
: ð17Þ

Then, the pionic leading-twist DA ϕ2;πðx; μÞ only
depends on the mathematical form of φ2;πðxÞ. By solving
the renormalization group equation of the pionic leading-
twist DA, ϕ2;πðx; μÞ can be written as the expansion form of
the Gegenbauer series [2,3]. Based on this, in our previous
paper φ2;πðxÞwas taken to be the linear superposition of the
first several Gegenbauer polynomials. For example, in
Refs. [26,39–41] we took

φI
2;πðxÞ ¼ 1þ B × C3=2

2 ð2x − 1Þ; ð18Þ

and

φII
2;πðxÞ ¼ 1þ B2 × C3=2

2 ð2x − 1Þ
þ B4 × C3=2

4 ð2x − 1Þ ð19Þ

was adopted in Ref. [18]. For the former, when the value of
the parameter B changes from 0.0 to 0.6, the pionic leading-
twist DA model, i.e., Eq. (15) can mimic the DA behavior
from asymptotic-like to CZ-like. For the latter, we further
consider the correction of a fourth-order Gegenbauer
polynomial. The mathematical form of φ2;πðxÞ can usually
be determined in two ways. The first one is to extract
φ2;πðxÞ from the experimental data of the exclusive
processes involving a pion [26,39–41], such as the semi-
leptonic decays B → πlνl andD → πlνl, the pion-photon
transition form factor FπγðQ2Þ, and the exclusive process
B0 → π0π0. The second one is to determine φ2;πðxÞ from
the moments hξni2;πjμ or the Gegenbauer moments a2;πn ðμÞ
of ϕ2;πðx; μÞ. In Ref. [18], we adopted the second method to
determine the mathematical form of φ2;πðxÞ and further the
behavior of ϕ2;πðx; μÞ.

In this paper, we will still make use of the second method
mentioned above to determine the behavior ofϕ2;πðx; μÞ, but
wewill improve it. The accuracy of the behavior ofϕ2;πðx; μÞ
obtained using this method is restricted by two aspects: the
rationality of the constructed mathematical form of φ2;πðxÞ
and the accuracy of moments. In order to obtain a better
mathematical form ofφ2;πðxÞ, a natural idea is to add higher-
order Gegenbauer polynomial corrections in φII

2;πðxÞ, as we
have done for the D; ηc; Bc; ηb twist-2 and -3 DAs in
Refs. [42–45]. However, such an improvement obviously
destroys the beauty and conciseness of themodel. Otherwise,
we find that the parameters B2 and B4 are close to the
Gegenbauer moments a2;π2 ðμÞ and a2;π4 ðμÞ, respectively.
From the relationship between hξni2;πjμ and a2;πn ðμÞ, it can
be seen that the reliability of a2;πn ðμÞ calculated using QCD
sum rules decreases sharply with the increase of order n. In
view of this, in this paper we will improve the mathematical
form of φ2;πðxÞ in another way, as well as propose a new
method of determining model parameters.
We notice that although it is difficult to improve the

pionic leading-twist DA by introducing higher Gegenbauer
polynomial corrections, our goal is still to make it more
reasonable and accurate by adjusting the behavior of
ϕ2;πðx; μÞ. We find that the factor

ffiffiffiffiffi
xx̄

p
in Eq. (15) can

regulate the DA’s behavior to some extent. Inspired by this,
we introduce a factor ½xx̄�α2;π into the WF’s longitudinal
distribution function φ2;πðxÞ, i.e.,

φIII
2;πðxÞ ¼ ½xx̄�α2;π : ð20Þ

In order to further apply our LCHO model to other meson
DAs, by combining the form of φI

2;πðxÞ and φIII
2;πðxÞ, we

propose a more complex form,

φIV
2;πðxÞ ¼ ½xx̄�α2;π ½1þ â2;π2 C3=2

2 ð2x − 1Þ�; ð21Þ

where the parameters α2;π and â2;π2 will be determined by
fitting the moments hξni2;πjμ directly through the method of
least squares, and the values of the moments hξni2;πjμ come
from Eq. (11) calculated under BFTSR in Sec. II A. In
order to distinguish our LCHO model with φIII

2;πðxÞ and
φIV
2;πðxÞ, and facilitate the discussion later, we will denote

the former as LCHO model-III and the latter as LCHO
model-IV.
Considering a set of N independent measurements yi

with known variance σi and mean μðxi; θÞ at known points
xi, the objective of the least squares method is to obtain the
best value of the fitting parameters θ by minimizing the
likelihood function [46]

χ2ðθÞ ¼
XN
i¼1

ðyi − μðxi; θÞÞ2
σ2i

: ð22Þ
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As for the present case, the function μðxi; θÞ indicates the
pionic leading-twist DA moments hξni2;πjμ defined by

combining Eqs. (6), (15), and (20) and θ ¼ ðα2;π; â2;π2 Þ;
the theoretical values of hξni2;πjμ calculated using QCD
sum rules in next section are assumed to be the value of yi
and its variance σi. The probability density function of χ2

can be obtained,

fðy; ndÞ ¼
1

Γðnd
2
Þ2nd=2 y

nd
2
−1e−

y
2; ð23Þ

where nd is the number of degrees of freedom. Then, one
can further calculate the following probability:

Pχ2 ¼
Z

∞

χ2
fðy; ndÞdy: ð24Þ

The magnitude of the probability Pχ2 (Pχ2 ∈ ½0; 1�) can be
used to judge the goodness of fit: when its value is closer to
1, a better fit is assumed to be achieved.

III. NUMERICAL ANALYSIS

A. Basic input parameters

To do the numerical calculation, we adopt the latest data
from the Particle Data Group [46]: mπ ¼ 139.57039�
0.00017 MeV and fπ ¼ 130.2� 1.2 MeV. The current-
quark masses for the u, d quarks are adopted as
mu ¼ 2.16þ0.49

−0.26 MeV andmd ¼ 4.67þ0.48
−0.17 MeV at the scale

μ¼ 2 GeV. Based on these latest values, we can update the
vacuum condensates.
(1) For the double-quark condensate, we adopt the Gell-

Mann–Oakes–Renner relation:

muhūui þmdhd̄di ≃ −
f2πm2

π

2

¼ −ð1.651� 0.003Þ × 10−4 GeV4: ð25Þ

Combined with the u, d quark masses, we have

hq̄qi ¼ ð−2.417þ0.227
−0.114Þ × 10−2 GeV3

¼ ð−289.14þ9.34
−4.47Þ3 MeV3 ð26Þ

at the scale μ¼ 2 GeV.
(2) By combining Eqs. (25) and (26) and the relation

hgsq̄σTGqi ¼ m2
0hq̄qi withm2

0 ¼ 0.80� 0.02 GeV2

[47], the quark-gluon mixed condensate is

muhgsūσTGui þmdhgsd̄σTGdi
¼ −ð1.321� 0.033Þ × 10−4 GeV6; ð27Þ

hgsq̄σTGqi ¼ ð−1.934þ0.188
−0.103Þ × 10−2 GeV5: ð28Þ

(3) By adopting the data in Ref. [47],

ραshq̄qi2 ¼ ð5.8� 1.8Þ × 10−4 GeV6; ð29Þ

with ρ ≃ 3–4, combined with the value of the
double-quark condensate in Eq. (26), the four-quark
condensates can be obtained as

hgsq̄qi2 ¼ ð2.082þ0.734
−0.697Þ × 10−3 GeV6 ð30Þ

and

hg2s q̄qi2 ¼ ð7.420þ2.614
−2.483Þ × 10−3 GeV6: ð31Þ

(4) From Ref. [48], we have

hαsG2i ¼ 0.038� 0.011 GeV4 ð32Þ

and

hg3sfG3i ≃ 0.045 GeV6: ð33Þ

(5) For the ratio κ ¼ hs̄si=hq̄qi, Ref. [49] gives

κ ¼ 0.74� 0.03: ð34Þ

B. Renormalization group equation for the input
parameters and moments hξni2;πjμ

In the numerical calculation of the moments’ BFTSR
(11), we take the scale μ ¼ M as usual. From αsðMzÞ ¼
0.1179� 0.0010 with MZ ¼ 91.1876� 0.0021 GeV, and
combined with m̄cðm̄cÞ ¼ 1.27� 0.02 GeV and m̄bðm̄bÞ ¼
4.18þ0.03

−0.02 GeV [46], under the three-loop approximate

solution we predict ΛðnfÞ
QCD ≃ 324; 286; 207 MeV for the

number of quark flavors nf ¼ 3, 4, 5, respectively.
The renormalization group equations (RGEs) of the

quark mass and vacuum condensates are given as [50–52]

mqjμ ¼ mqjμ0
�
αsðμ0Þ
αsðμÞ

�
−4=β0

;

hq̄qijμ ¼ hq̄qijμ0
�
αsðμ0Þ
αsðμÞ

�
4=β0

;

hgsq̄σTGqijμ ¼ hgsq̄σTGqijμ0
�
αsðμ0Þ
αsðμÞ

�
−2=ð3β0Þ

;

hαsG2ijμ ¼ hαsG2ijμ0 ;
hg3sfG3ijμ ¼ hg3sfG3ijμ0 ; ð35Þ

with β0 ¼ ð33 − 2nfÞ=3. Obviously, the double-gluon
condensate and the triple-gluon condensate are energy-
scale independent. From Eq. (8), one can find that hg2s q̄qi2
and hg3sfG3i have the same RGE. In other words, hg2s q̄qi2
is also energy-scale independent, e.g.,

ZHONG, ZHU, FU, WU, and HUANG PHYS. REV. D 104, 016021 (2021)

016021-6



hg2s q̄qi2jμ ¼ hg2s q̄qi2jμ0 : ð36Þ

Combined with the RGE of the double-quark condensate
and Eq. (36), one can find that hgsq̄qi2 and hq̄qi have the
same energy-scale evolution equation, e.g.,

hgsq̄qi2jμ ¼ hgsq̄qi2jμ0
�
αsðμ0Þ
αsðμÞ

�
4=β0

: ð37Þ

It should be noted that, according to the basic assumption
of BFTSR, gs in all of the above vacuum condensates is the
“coupling constant” between the background fields, which
is different from the one in pQCD, and should be absorbed
into vacuum condensates as part of these nonperturbative
parameters.
The RGE of the Gegenbauer moments of the pion

leading-twist distribution amplitude is

a2;πn ðμÞ ¼ a2;πn ðμ0ÞEnðμ; μ0Þ; ð38Þ

with

Enðμ; μ0Þ ¼
�
αsðμÞ
αsðμ0Þ

�
γð0Þn =ð2β0Þ

:

The leading-order (LO) anomalous dimension is

γð0Þn ¼ 8CF

�
ψðnþ 2Þ þ γE −

3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
;

with CF ¼ 4=3. Based on Eq. (38), the RGE of the
moments hξni2;πjμ can be obtained.
With the BFTSR of the moments of the pionic leading-

twist distribution amplitude ϕ2;πðx; μÞ shown in Eqs. (7),
(10), and (11), the values of hξni2;πjμ can be calculated. By
requiring that there is a reasonable Borel window to normal-
ize hξ0i2;πjμ with Eq. (10), one can get the continuum
threshold parameter as sπ ≃ 1.05 GeV2. In addition to the
traditional method to determine the contribution of the
continuum state, the continuum method can limit or over-
come model dependence and cleanly connect the data with
QCD itself [53]. To obtain the allowable Borel window for
the sum rules of hξni2;πjμ, we require that the continuum
state’s contribution and the dimension-six condensate’s
contribution be as small as possible, and the values for
hξni2;πjμ be stable in the Borel window. Based on the criteria,
the dimension-six contribution for hξni2;πjμ are limited to
less than 5% for all the nth-order. And the continuum
contribution for hξni2;πjμ are required no more than
ð30; 35; 40; 40; 40Þ% for n ¼ ð2; 4; 6; 8; 10Þ, respectively.
To have a deeper insight into the continuum state and

dimension-six contributions to the pionic leading-twist DA
moments hξni2;πjμ versus the Borel parameter M2 within
the BFTSR approach, we present the curves in Fig. 1.

The shaded bands indicate the Borel window for hξni2;πjμ
for n ¼ ð2; 4; 6; 8; 10Þ, respectively. The figure indicates
the following.
(1) The dimension-six contributions are constraint in the

region < 5% guaranteed good convergence for the
BFTSR results. And the continuum contributions no
more than 40% have agreement with the traditional
sum rule strictly.

(2) Borel parameters associated with the region of the
Borel window become larger with the increase of the
index n.

To study the influence of the Borel parameters on the
pionic DA moments in the Borel window, we list the
results hξni2;πjμ changed with Borel windows in Table II,
in which the hξni2;πjμ changed less than 10% with the
Borel windows, i.e., 4.1%; 6.1%; 8.6%; 8.8%; 7.1% for
n ¼ ð2; 4; 6; 8; 10Þ, respectively. Thus, the sum rules of
hξni2;πjμ are stable in the Borel windows. Furthermore, the
five curves for the pionic leading-twist DA moments, i.e.,
hξni2;πjμ for n ¼ ð2; 4; 6; 8; 10Þ versus the Borel parameter
M2 are shown in Fig. 2. The figure indicates the following.
(1) The curves for hξni2;πjμ change sharply in the small

Borel area, especially for the M2 ⇝ 1 GeV2.
(2) The values of hξni2;πjμ become small with the

increase of order n.
(3) The stable Borel parameterM2 for hξni2;πjμ becomes

larger with the increase of n.
After taking all uncertainty sources into consideration

and adopting the RGE of moments mentioned in the above
subsection, the first five nonvanishing values of hξni2;πjμ,
i.e., n ¼ ð2; 4; 6; 8; 10Þ within uncertainties coming from
every input parameter are shown in Table III. In which, the
scale are taken both the initial scale μ0 and typical scale
μ ¼ 2 GeV. As a deeper comparison, we also list those
moments obtained by the light-front (LF) holographic with
B ¼ 0 and B ≫ 1 [54,55], platykurtic [56], LF quark model
[57], QCD sum rules [5,58], renormalon model [59],
instanton vacuum [60,61], nonlocal condensate (NLC)
sum rules [62], Dyson-Schwinger [RL,DB] [14], lattice
[63–68]. At the same time, we also provide the inverse
moment hx−1ijμ ¼

R
1
0 dxx−1ϕ2;πðx; μÞ in Table III. In addi-

tion, in order to show the advantages of the new sum rules
formula (11), the values of hξni2;πjμ obtained using the
formula combined with Eqs. (7) and (9) commonly used in
literature are also listed in this table. From the table, we can
make the following conclusions.
(1) Up to tenth-order accuracy, we provide a complete

series result for hξni2;πjμ within uncertainties.
(2) For the n ¼ ð2; 4Þ cases, our results have good

agreement with the DS model and lattice results.
(3) The inverse moment at μ ¼ 2 GeV of our prediction

is close to the platykurtic and NLC sum rules results.
(4) Comparing the values in the first and last rows, one

can find that the differences between corresponding
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moments are about 12%, 30%, 47%, 53%, and 64%
for n ¼ 2, 4, 6, 8, 10, respectively. These ratios can
be regarded as the improvement of accuracy due to
the adoption of the new sum rules formula (11). At
the same time, one can find that these differences
increase with the increase of the order n. The reason
is that the Borel window moves to the right with the
increase of order n (see Table II), and the deviation
of the sum rule of the zeroth moment [Eq. (10)] from
normalization increases with the increase of Borel
parameter. The errors in the first row are signifi-
cantly less than those in the last row. The reason is
that the sum rules (11) can eliminate some system-
atic errors caused by the selection and determination
of various input parameters. To calculate hξni2;πjμ by

combining Eqs. (7) and (9), we have required that
the continuum state contributions are less than 45%,
50%, 50%, 55%, 55%, and the dimension-six con-
tributions are not more than 10%, 15%, 15%, 15%,
15%, for the order n ¼ 2, 4, 6, 8, 10, respectively.
Those criteria are obviously much weaker than that
adopted for the sum rules (11) mentioned above,

FIG. 2. Pionic leading-twist DA moments hξni2;πjμ with n ¼
ð2; 4; 6; 8; 10Þ versus the Borel parameter M2, where all input
parameters are set to their central values. The shaded bands
indicate the Borel windows for n ¼ ð2; 4; 6; 8; 10Þ, respectively.

TABLE II. Determined Borel windows and corresponding
pionic leading-twist DAmoments hξni2;πjμ with n¼ð2;4;6;8;10Þ.
All input parameters are set to their central values.

n M2 hξni2;πjμ
2 [1.477, 1.961] [0.268, 0.257]
4 [2.257, 2.817] [0.132, 0.124]
6 [3.029, 3.878] [0.081, 0.074]
8 [3.803, 4.568] [0.057, 0.052]
10 [4.579, 5.307] [0.042, 0.039]

FIG. 1. Continuum state and dimension-six condensate contribute to the pionic leading-twist DA moments hξni2;πjμ versus the Borel
parameterM2 within the BFTSR approach. The shaded bands indicate the Borel window for hξni2;π jμ for n ¼ ð2; 4; 6; 8; 10Þ, respectively.
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which are obviously much larger. This means that
the sum rules (11) eliminate some systematic errors
caused by the continuum state and the absence of
high-dimensional condensates.

Moreover, considering the low reliability of high-order
Gegenbauer moments, we only give the values of the
second and forth Gegenbauer moments in this paper, which
are shown in Table IV. As a comparison, the values
obtained using QCD sum rules [69,70], lattice [63,64,67],
light-cone sum rules (LCSR) fitting [71–74], and Dyson-
Schwinger [RL,DB] [14] are also shown. Our predictions

agree with the predictions from QCD sum rules, LCSR
fitting, and the Dyson-Schwinger equations within errors.

C. Model parameters of the pionic leading-twist
DA and applications

Combining the normalization condition (16) and the sum
rule (17) derived from the π0 → γγ decay amplitude, and
making use of the least squares method mentioned in Sec. II
to fit the values of the moments hξni2;πjμ shown in Table III,
the parameters of our LCHO model-III can be obtained:

TABLE III. Our predictions for the first five nonvanishing moments and inverse moment of the pion DA, compared to other theoretical
predictions. The values obtained using the formula combining Eqs. (7) and (9) are also shown.

μ½GeV� hξ2i2;πjμ hξ4i2;πjμ hξ6i2;π jμ hξ8i2;π jμ hξ10i2;πjμ hx−1ijμ
BFTSR (this work) 1 0.271(13) 0.138(10) 0.087(6) 0.064(7) 0.050(6) 3.95
BFTSR (this work) 2 0.254(10) 0.125(7) 0.077(6) 0.054(5) 0.041(4) 3.33
Asymptotic ∞ 0.200 0.086 0.048 0.030 0.021 3.00
LF holographic (B ¼ 0) [54] 1,2 0.180, 0.185 0.067, 0.071 … … … 2.81,2.85
LF holographic (B ≫ 1) [54] 1,2 0.200, 0.200 0.085, 0.085 … … … 2.93,2.95
LF holographic [55] ∼1 0.237 0.114 … … … 4.0
Platykurtic [56] 2 0.220þ0.009

−0.006 0.098þ0.008
−0.005 … … … 3.13þ0.14

−0.10
LF quark model [57] ∼1 0.24(22) 0.11(9) … … … …
Sum rules [58] 1 0.24 0.11 … … … …
Renormalon model [59] 1 0.28 0.13 … … … …
Instanton vacuum [60,61] 1 0.22, 0.21 0.10,0.09 … … … …
NLC sum rules [62] 2 0.248þ0.016

−0.015 0.108þ0.05
−0.03 … … … 3.16(9)

Sum rules [5] 2 0.343 0.181 … … … 4.25
Dyson-Schwinger [RL,DB] [14] 2 0.280, 0.251 0.151, 0.128 … … … 5.5,4.6
Lattice [63] 2 0.28(1)(2) … … … … …
Lattice [64] 2 0.2361(41)(39) … … … … …
Lattice [65] 2 0.27(4) … … … … …
Lattice [66] 2 0.2077(43) … … … … …
Lattice [67] 2 0.234(6)(6) … … … … …
Lattice [68] 2 0.244(30) … … … … …

Eq. (7) + Eq. (9) 1 0.303(19) 0.179(21) 0.128(16) 0.098(14) 0.082(20) …

TABLE IV. Comparison of the second and fourth Gegenbauer moments of the pion leading-twist DA with
different methods.

Method μðGeVÞ a2;π2 a2;π4

BFTSR (this work) 1 0.206� 0.038 0.047� 0.011
BFTSR (this work) 2 0.157� 0.029 0.032� 0.007
Lattice [63] 2 0.233� 0.065
Lattice [64] 2 0.136� 0.021
Lattice [67] 1 0.135� 0.032
Lattice [67] 2 0.101� 0.023
Sum rules [69,70] 1 0.203þ0.069

−0.057 −0.143þ0.094
−0.087

Sum rules [69,70] 2 0.149þ0.052
−0.043 −0.096þ0.063

−0.058
LCSR fitting [72] 1 0.17� 0.08 0.06� 0.10
LCSR fitting [73] 2 0.096
LCSR fitting [74] 2 0.067
LCSR fitting [71] 1 0.22–0.33 0.12–0.25
Dyson-Schwinger (RL) [14] 2 0.233 0.115
Dyson-Schwinger (DB) [14] 2 0.149 0.080
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A2;π ¼ 14.7999 GeV−1;

α2;π ¼ −0.158;

β2;π ¼ 0.920029 GeV; ð39Þ
with χ2min=nd ¼ 0.437236=4, Pχ2min

¼ 0.979316. The
parameters of our LCHO model-IV are

A2;π ¼ 5.95481 GeV−1;

α2;π ¼ −0.717;

â2;π2 ¼ −0.125;

β2;π ¼ 0.937482 GeV; ð40Þ
with χ2min=nd ¼ 0.119251=3, Pχ2min

¼ 0.989431.
The curves for our predictions are shown in Fig. 3. For

comparison, results from the DS model [14], QCD/AdS
model with B ¼ 1 [54], the DAs obtained using the light-
front constituent quark model (LFCQM) [75], and LQCD
[67,68] are also shown in Fig. 3.
(1) From Fig. 3(a), one can find that our LCHO model-

III is nearly flat in the region x ∈ ½0.2; 0.8�, and is a
little wider than LCHO model-IV, both of which are
very close to the AdS/QCD model. With the model
parameters of LCHO model-IV in Eq. (40), one can
calculate the moments of the DA, i.e., hξniIV2;πjμ0 ¼
ð0.269; 0.140; 0.089; 0.063; 0.048Þ for n ¼ ð2; 4; 6;
8; 10Þ, respectively. These values are also very close
to the reference results in Table III.

(2) By substituting our LCHO model-III with the para-
meters in Eq. (39) into Eq. (6), we can get hξniIII2;πjμ0 ¼
ð0.275; 0.142; 0.089; 0.062; 0.046Þ for n ¼ ð2; 4; 6;
8; 10Þ, respectively. Comparing our LCHOmodel-III
with LCHO model-IV, the latter is better, which will
be used in the following discussion and calculation,
and we omit the label “IV.”

(3) From Fig. 3(b), one can find that our LCHOmodel is
narrower than the DS model, wider than the
LFCQM, and closer to the LQCD result in Ref. [67].

The pionic twist-2 DA behavior of our model at any
other scale can be related to that of an initial scale by using
the energy evolution equation [41], which is shown in the
Fig. 3(c). One can find the following.
(1) Our LCHO model at μ0 is significantly broader than

the asymptotic form.
(2) With the increase of the scale μ, our pionic leading-

twist DA model curve becomes narrower and closer
to the asymptotic form. In particular, when the scale
μ is lower than 2 GeV, our pionic leading-twist
DA behavior is more sensitive to μ, while when
μ > 2 GeV, it is close to the asymptotic behavior
and insensitive to the scale μ.

(3) In order to have a clear look at the changes of DA
with factorization scale, one can set x ¼ 0.5 and the
numerical results are ϕIV

2;πðx ¼ 0.5; μÞ ¼ ð1.186;
1.414; 1.475; 1.490; 1.498Þ for μ ¼ ð1; 2; 3; 10;
100Þ GeV, respectively.

As a further step, the sensitivity/goodness of fit for the
behavior of our LCHO model φIV

2;πðxÞ with the constituent
quark mass, i.e., mq ¼ ð350; 340;…; 200Þ GeV is also
shown in Table V, which indicates that the value of the
goodness of fit increases as the constituent quark mass
decreases. Pχ2min

is less than 0.9 when mq > 300 MeV. In
order to more intuitively understand the impact of mq on
our ϕ2;πðx; μÞ, the curves of our LCHOmodel for the pionic
leading-twist DA ϕ2;πðx; μÞ at μ ¼ 1 GeV with the con-
stituent quark mass mq ¼ ð200; 250; 300; 350Þ MeV are
shown in Fig. 4. One can find that as mq increases, our
model tends to a flat-like form.
Within the resultant LCHO model of our predictions,

there also exists a Jacobi factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂kn=∂x

p
that contributes

to the wave functions [76], which can be read off as

∂kn
∂x ¼ M0

4xx̄

�
1 −

�
m2

q −m2
q̄

M2
0

�
2
�
; ð41Þ

with M2
0 ¼ ðk2⊥ þm2

qÞ=xþ ðk2⊥ þm2
q̄Þ=x̄. Due to the

invariant meson mass scheme [27–33], one can take

(a) (b) (c)

FIG. 3. Pionic leading-twist DA curves in this work. In panels (a) and (b) we present the DS model [14], QCD/AdS model [54], the
DAs obtained using LFCQM [75], and LQCD [67,68] as a comparison. In panel (c) we show results from our LCHOmodel-IVat several
typical energy scales, e.g., μ ¼ 1; 2; 3; 10; 100 GeV.
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mq ¼ mq̄ for the pion cases, and thus the spatial wave
function is

ΨR
2;πðx;k⊥Þ ¼ A2;πφ2;πðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

q

q
4ðxx̄Þ3=2 exp

�
−
k2⊥ þm2

q

8β22;πxx̄

�
:

ð42Þ

Finally, we can get the expression for pionic twist-2 DA,

ϕ2;πðx; μÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p
A2;πmqβ

2
2;πφ2;πðxÞ

2π2fπ
ffiffiffiffiffi
xx̄

p exp

�
−

m2
q

8β22;πxx̄

�

×

�
1 − exp

�
−

μ2

8β22;πxx̄

��
: ð43Þ

Then, we can fit the values of the moments hξni2;π from the
sum rules (11) by using the least squares method with the
above model. Comparing the behavior of the two pionic
leading-twist DA LCHO models with and without the
Jacobi factor, the difference between the two is not obvious,
as can be seen in Fig. 5.
As significant applications, we recalculate the pion-

photon TFF FπγðQ2Þ and the B → π TFF fB→πþ ðq2Þ with
our pionic leading-twist DA model. The pion-photon TFF
FπγðQ2Þ can be calculated using LCSR [69,70,77] and the
pQCD method [19,78]. With the pQCD method, FπγðQ2Þ
can be expressed as the sum of the valence quark part

contribution FðVÞ
πγ ðQ2Þ and the nonvalence quark part

contribution FðNVÞ
πγ ðQ2Þ,

FπγðQ2Þ ¼ FðVÞ
πγ ðQ2Þ þ FðNVÞ

πγ ðQ2Þ; ð44Þ

where the corresponding analytical formulas for FðVÞ
πγ ðQ2Þ

and FðNVÞ
πγ ðQ2Þ can be found in Refs. [19,78]. Figure 6

shows the curve of Q2FπγðQ2Þ versus Q2 obtained using
our pionic leading-twist DA model and the experimental
data reported by the CELLO [79], CLEO [80,81], BABAR
[82], and Belle [83] collaborations, and one can find that
our prediction is consistent with the BELLE data in the
large-Q2 region.
Furthermore, as another important application for the

pion twist-2 DA, the TFF for the B → π decay processes
should be analyzed. We start with the following correlation
function:

Πμðp; qÞ ¼ i
Z

d4xeiq·xhπþðpÞjTfjμVðxÞ; j†Bð0Þgj0i; ð45Þ

with jμVðxÞ ¼ ūðxÞγμð1þ γ5ÞbðxÞ. For the B-meson current

j†Bð0Þ, we choose the right-handed current j†Bð0Þ ¼
mbbð0Þið1þ γ5Þdð0Þ which can highlight the twist-2 and
-4 DA contributions, and the twist-3 DAs contributions
vanish. By following the standard procedures of the light-
cone sum rules approach [84,85], we can get the B → π
TFF fB→πþ ðq2Þ, which reads

fB→πþ ðq2Þ ¼ em
2
B=M

2

m2
BfB

�
F0ðq2;M2; sB0 Þ

þ αsCF

4π
F1ðq2;M2; sB0 Þ

�
; ð46Þ

where CF ¼ 4=3, mB and fB are the B-meson mass and
decay constant, respectively, and sB0 is the continuum
threshold. The LO contribution of the LCSR (46) is
expressed as

FIG. 4. Curves of our LCHO model for the pionic leading-twist
DA ϕ2;πðx; μÞ at μ ¼ 1 GeV with the constituent quark mass
mq ¼ 200; 250; 300; 350 MeV, respectively.

TABLE V. Model parameters of our LCHO model with φIV
2;πðxÞ

and the corresponding goodness of fit for several typical
constituent quark mass values mq.

mqðMeVÞ A2;πðGeV−1Þ α2;π B2;π
2

β2;πðGeVÞ Pχ2min

350 2.24732 −1.382 −0.115 0.608317 0.797900
340 2.40934 −1.330 −0.115 0.617249 0.824339
330 2.55114 −1.286 −0.116 0.627146 0.848822
320 2.70534 −1.242 −0.117 0.637809 0.871190
310 2.92676 −1.186 −0.116 0.649553 0.891410
300 3.10553 −1.143 −0.117 0.662378 0.909415
290 3.32326 −1.095 −0.117 0.676766 0.925250
280 3.52839 −1.053 −0.118 0.692543 0.938962
270 3.82177 −0.999 −0.117 0.710313 0.950620
260 4.14554 −0.945 −0.116 0.730185 0.960338
250 4.45116 −0.898 −0.116 0.752879 0.968389
240 4.79603 −0.850 −0.116 0.778565 0.974850
230 5.21220 −0.797 −0.115 0.808690 0.979973
220 5.63027 −0.749 −0.115 0.843751 0.983961
210 5.85107 −0.726 −0.119 0.885935 0.987168
200 5.95481 −0.717 −0.125 0.937482 0.989431
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F0ðq2;M2; sB0 Þ

¼ m2
bfπ

Z
1

u0

due−
m2
b
−q2 ū

uM2

�
ϕ2;πðuÞ

u
þ 1

m2
b − q2

×

�
−

m2
bu

4ðm2
b − q2Þ

d2ϕ4πðuÞ
du2

þ uψ4πðuÞ

þ
Z

u

0

dvψ4πðvÞ − I4πðuÞ
��

; ð47Þ

and the NLO term of fB→πþ ðq2Þ is

F1ðq2;M2; sB0 Þ

¼ fπ
π

Z
sB
0

m2
b

dse−s=M
2

Z
1

0

duImsT1ðq2; s; uÞϕ2;πðuÞ; ð48Þ

wheremb is the b-quark mass, ū ¼ 1 − u, u0 ¼ ðm2
b − q2Þ=

ðsB0 − q2Þ, ϕ4πðuÞ and ψ4πðuÞ are the pionic twist-4 DAs,
and I4πðuÞ is the combined function of the four pionic

twist-4 DAs Ψ4πðuÞ, Φ4πðuÞ, Ψ̃4πðuÞ, and Φ̃4πðuÞ. One can
find the expressions for these pionic twist-4 DAs, I4πðuÞ,
and the imaginary part of the amplitude T1 in Ref. [85].
By taking μ ¼ 3 GeV, M2 ¼ 18� 1 GeV2, sB0 ¼ 35.75�
0.25 GeV2,mB ¼ 5.279 GeV, and fB ¼ 214þ7

−5 MeV [85],
we can obtain

fB→πþ ð0Þ ¼ 0.295þ0.018
−0.013 : ð49Þ

This value is consistent with that of other theoretical group
[85–88] by the conventional current correlation. The differ-
ence between the central value in Eq. (49) and that in
Ref. [85] is mainly due to the difference in the selected
correlation function. Comparing Eqs. (46)–(48) above with
Eqs. (4.4), (4.5), and (4.7) in Ref. [85], one can find that the
contributions from the pionic twist-3 DAs disappear, while
the contributions from the pionic twist-2 and -4 DAs are
doubled. Then, the difference between the twist-2 DA’s
contribution and twist-3 DAs’ contributions in the LCSR
with the conventional current correlation can be used as the
systematic error caused by adopting the chiral current
correlation function.

IV. SUMMARY

In this paper, we have improved the traditional LCHO
model of the pionic leading-twist DA ϕ2;πðx; μÞ by intro-
ducing a new WF’s longitudinal DA, i.e., φIV

2;π in Eq. (21).
At the same time, we have improved the method of
determining the model parameters. More explicitly, the least
squares method was adopted to fit the moments hξni2;πjμ
directly to determine the model parameters. This makes
it necessary and meaningful to calculate higher-order
moments, and we can obtain a stronger constraint on the
DA behavior by including more moments.
We have adopted the QCD sum rules based on the

BFT to calculate the moments hξni2;πjμ, and the values
of the first five moments are hξ2i2;πjμ0 ¼ 0.271� 0.013,
hξ4i2;πjμ0 ¼ 0.138� 0.010, hξ6i2;πjμ0 ¼ 0.087� 0.008,

FIG. 6. Pion-photon TFF Q2FðVÞ
πγ ðQ2Þ with our model. For

comparison, the experimental data reported by the CELLO [79],
CLEO [80,81], BABAR [82], and Belle [83] collaborations
are shown.

FIG. 5. Comparison of two pionic leading-twist DA LCHO models with and without the Jacobi factor. The three panels correspond to
the constituent quark masses mq ¼ 200; 250; 300 MeV, respectively.
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hξ8i2;πjμ0 ¼ 0.064� 0.007, and hξ10i2;πjμ0 ¼ 0.050�
0.006. Based on these values, we obtained the behavior
of ϕ2;πðx; μÞ, that is, Eqs. (15), (21), and (40).
Compared with our previous work, in addition to

the improvement of the LCHO model, there are three
improvements: (i) the moments hξni2;πjμ, rather than the

Gegenbauer moments a2;πn ðμÞ, were used as constraint
conditions to determine the model parameters; (ii) the least
squares method was used to fit the moments hξni2;πjμ to get
the appropriate model parameters; (iii) we took Eq. (11)
rather than Eq. (7) as the sum rules of hξni2;πjμ, which can
avoid the error caused by the non-normalized zeroth
moment hξ0i2;πjμ on the left-hand side of Eq. (7), and
cause the accuracy of the resulting values of hξni2;πjμ to
increase by more than 10%. These improvements can be
widely used in QCD sum rules studies of other meson DAs
to obtain more accurate DA behavior.
As an application, we have used our model to calculate

the pion-photon TFF FπγðQ2Þ, which is shown in Fig. 6.

Our results agree with the Belle predictions in the large
Q2-region. Meanwhile, the B → π TFF fB→πþ ðq2Þ has been
calculated up to NLO accuracy, which agrees with other
theoretical predictions.
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