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Thermomagnetic renormalons in a scalar self-interacting A¢* theory
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In this article we extend a previous discussion about the influence of an external magnetic field on
renormalons in a self-interacting scalar theory by including now temperature effects, in the imaginary
formalism, together with an external weak external magnetic field. We show that the position of
renormalons, which are poles in the Borel plane, does not change, getting their residues, however, a
dependence on temperature and on the magnetic field. The effects of temperature and the magnetic field
strength on the residues turn out to be opposite. We present a detailed discussion about the evolution of
these residues, showing technical details involved in the calculation.
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I. INTRODUCTION

Since the paper by Dyson [1] on the convergence of
perturbative series in quantum electrodynamics (QED), a
seminal article based exclusively on physical arguments, we
have learned that power series expansions in quantum field
theory, in general, are divergent objects. For high orders of
perturbation, the divergence grows like n!, where n is the
order of the expansion, and this is essentially due to the
multiplicity of diagrams that contribute to a certain Green
function, or to a physical process, at such an expansion order.
A usual procedure to improve the convergence relies on the
Borel transform [2-4]. However, in some cases, even the
Borel-transformed series are divergent, spoiling the meaning
of the whole procedure. The new singularities responsible
for this divergent behavior are the renormalons. For a review,
see Ref. [5]. Recently there has been a renewed interest in the
subject by considering the one-loop renormalization group
equation in multifield theories [6] or by considering a finite-
temperature mass correction in the A¢* theory, reanalyzing
the temperature dependence of poles and their residues [7].
There are other sources of divergences, such as instantons in
quantum chromodynamics (QCD) [8,9]. However, we will
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not refer here to such objects that can be handled using
semiclassical methods. In peripheral heavy-ion collisions,
huge magnetic fields appear [10]. In fact, they are the biggest
fields that exist in nature. The interaction between the
produced pions in those collisions may be strongly affected
by the magnetic field. Temperature is, of course, also present
in such a scenario. In fact, several studies on the behavior of
different physical parameters in the presence of an external
magnetic field and/or temperature have been carried out by
different authors. [11-33]. In this article we analyze, in the
frame of a self-interacting scalar A¢* theory, the influence of
the magnetic field and temperature on the position of the UV
renormalons (the only ones relevant in A¢* theory) and their
residues in the Borel plane. Recently, some extensions such
as the g-Borel series have been proposed, allowing the
discussion of series whose coefficients grow like (k!)7 [34].
Also, there have been new attempts to find corrections to the
beta function in QED with N flavors by considering closed
chains of diagrams, like renormalons, and computing
corrections of order N;z and NJI3 [35]. These authors found
a new logarithmic branch cut whose physical role is not
clear. The same situation will probably occur in self-
interacting scalar theories with several components. In the
present article we extend previous discussions where the
behavior of renormalons in A¢* was analyzed, separately, for
the case where thermal corrections appeared in the real time
formalism, and for corrections due to the presence of a
magnetic field. Here we present a discussion where both
effects are simultaneously taken into account. As we will see,
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we need to handle the different possible scenarios with care.
We discuss the high- and low-temperature cases for the weak
magnetic field region, identifying the temperature- and
magnetic-field-dependent subleading poles in the Borel
plane. In the strong magnetic field regime there are no
new singularities. A physical discussion will be presented.
This article is organized as follows. In Sec. Il we go through
general aspects concerning a temperature- and magnetic-
field-dependent scalar propagator. In Sec. III we present a
brief discussion about the concept of Borel summable series
and poles in the Borel plane. In Sec. IV we present the pure
thermal discussion in the imaginary time formalism.
Section V presents the general discussion, including temper-
ature and magnetic field effects, about renormalon correc-
tions to the propagator. Some technical details can be found
in the Appendix. Finally, we present our conclusions.

II. THERMOMAGNETIC RENORMALON-TYPE
CORRECTION TO THE PROPAGATOR

Thermomagnetic corrections will be handled through
Schwinger’s bosonic propagator at finite temperature. We
are going to introduce the propagator by first taking only
the external magnetic field into account, and then later
incorporating  finite-temperature effects. Schwinger’s
bosonic propagator is given by [36]

d*k o
DB(x’,x”) _ ¢(x/’x//) / (27[)4 e~ ik-(x'—x )DB(k), (1)

where

lDB(k) _ /oo ds
o cos(eBs)
t B
X exp (zs {kz K3 %SS)

The 4-momentum has been decomposed into parallel
and perpendicular components with respect to the magnetic
field direction. By considering a constant magnetic field,
whose direction defines the z axis, we can write

—m2+ieD. (2)

(a-b) = a’b’ - a’b’, (a-b), =a'b'+a’h* (3)

for two arbitrary 4-vectors a, and b,. We also have
2_ 2 _ 2
a® =aj—aj. (4)

Notice that the phase factor in Eq. (1), given by

S, ) = exp (ie / dx,,Aﬂ(x)>, (5)

which is independent of the path, can be ignored for two-
point functions which are diagonal in configuration space,

as is the case in our analysis. As usual, we shall work in
the momentum representation. In this way, using eBs — s,

we find
1 /00 ds
eB cos(s)

<o (i -

iDB(k) =

S( ) mz—i—ie]).

(6)

This propagator can be expressed as a sum over Landau
levels [37],

lL ( ) —k% /eB
iDB (k) = 2i ,
! Z k2 (214 1)eB — m? + ie

(7)

where L, are the Laguerre polynomials. By considering the
previous expression in the region where eB <« m?, it is
possible to show that [38]

eB—0 i .(63)2
iD” (k) — -
B—id —m? (k3= k3 = m?)}
2i(eB)*k%.

(8)

(=12 —m?)"

which is the desired weak-field expansion for our calcu-
lation. It is straightforward to generalize these expressions
to the finite-temperature scenario through an analytic
continuation into Matsubara frequency space [39,40], i.e.,

2rn

ﬂ b
where § = 1/T, and where the integral in k, converts into a
sum according to

/ gT';ﬂ

III. THE BOREL TRANSFORM

ko = iw, = nez, 9)

Bk
/ Sl B (10
neZ

We will briefly present the Borel transform method,
which can be considered as a tool designed to make sense
of potentially divergent series [2]. For a divergent pertur-
bative expansion

= iD”a”, (11)
n=1

the Borel transform B[b] of the series D[a] is defined
through

016020-2



THERMOMAGNETIC RENORMALONS IN A SCALAR SELF- ...

PHYS. REV. D 104, 016020 (2021)

S bn
Blb] = Dy —- (12)
n=0 n:
The inverse transform is
Dla] = / " dbe/aB[p). (13)
0

We need the last integral to be convergent in order for the
series to make sense, as B[b] is free from singularities in the
range of integration. If these conditions are fulfilled, we say
that the original series D[a| is Borel summable.

It is easy to check that all convergent series are also Borel
summable. For divergent series this is not necessarily the
case. If we find poles in the O — oo range of integration of
the previous equation, the series is no longer Borel sum-
mable. It is possible, however, to make sense of this integral
in such cases through a prescription for the integration path
in the complex [b] plane, avoiding the pole. This will be,
however, a prescription-dependent result.

A classical reference about divergent series is the book
by Hardy [41].

It is known that perturbative expansions in quantum field
theory are not Borel summable. There are two sources for
the appearance of singularities in the Borel plane: renor-
malons and instantons. Here we do not want to comment
about the latter possibility. In QCD, renormalons have been
a matter of debate since these objects may affect our
understanding of the gluon condensate [5].

IV. RENORMALONS IN THE VACUUM

In the A¢* theory the renormalon-type diagrams that
produce poles in the Borel plane correspond to a correction
to the two-point function.

First, we revise the calculation of this diagram with the
insertion of k bubbles, then sum over k£ and study the
behavior of its transform in the Borel plane.

We will denote by Ry (p) the diagram of order k shown in
Fig. 1, where p is the 4-momentum entering and leaving the
diagram and ¢ is the 4-momentum that goes around the
chain of bubbles,

FIG. 1.
function.

Renormalon-type contribution to the two-point

FIG. 2. Fish diagram.

[ g i [B(¢)]*"!
Ri(p) = / (27)* (p + q)* = m* + ie (—=id)F2"

(14)

In this expression, B(g) corresponds to the contribution
of one bubble in the chain, which is of course equivalent to
the one-loop correction in the s-channel of the vertex, the
so-called fish diagram (see Fig. 2). The factor (—id)*~2 has
been added to cancel the vertices that have been counted
twice along the chain.

The expression for B(q) is a well-known result [42],

—il)? 4 i
o) =2 [ 4

27)* k> — m? + ie
i
X 9
(k+ q)* —m?* + ie

given by

—il? 1 m? —g*x(1—x)—ie
B(g)=——|A— [ dxl , (16
(@)=3302 [A- [ dwtog("=TEUZIZE |

where A is the divergent part that will be canceled by the
counterterms, and u is an arbitrary mass scale associated
with the regularization procedure, which always appears
when we go through the renormalization program.

The contribution to the renormalon comes from the deep
Euclidean region in the integral in Eq. (14), i.e., where
—q*> > m*. In this way, B(q) in Eq. (16) can be approxi-
mated as

—ir2

Blg) ~ 5y og(-4%/1). (17)

Inserting this result into Eq. (14) and performing a Wick
rotation, we find

—ilk d*q 1
(327%)%! / o)t (p+q)* +m?
x [log(q?/u*)*". (18)

This is an ultraviolet-divergent expression. However,
since the theory is renormalizable, we can separate this

Ri(p) =
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expression into a finite and a divergent part. We are only
interested in the finite part. For this, we expand the
propagator in powers of 1/¢?, neglecting the first two
terms that leave divergent integrals, as we know this is
justified due to the appearance of the counterterms.

So, we find

A A\ © _
R, = —t<32 2) 4m4/ dqllog(q*/u*)]'¢?
b3 A

m*  m° ]
NG LRI 19)
Lﬁ ¢ (

with A > 0. The dependence on the external momentum p
has disappeared. The lower limit A comes from the fact that
we are interested in the deep Euclidean region. It has to be
fixed in order to fulfill this condition.

Introducing ¢ = pe’ in the first two terms of Eq. (19) and
fixing A = pu, we find

A \kdm* foo
Rk:—i<2> n;/ dte?(2t)k1
32 uwJo
2
X <1 —m—ze_2’>
U
A \k2m* A \*2m°
=i ) +il —2) ok
’<32;z2) 7T )+l(64ﬂ2> 1K)

A A \KL A A \km?
= —1 <32”2) mQF(k) + l<@> ﬂ—zmzr(k), (20)

with m? = 2m*/u®. We see that this diagram grows like k!,
thus inducing a pole in the Borel plane.
By taking the series Ry,

D[] :Zﬁ

k

(k). (21)

its Borel transform is given by

R\ bk
- (8)
zk: M) (k=1)!
1 2 1
.m_zr712

7t 1 bj6an

1-b/32% u (22)

= —im

identifying, finally, the leading pole on the positive semi-
real axis in the Borel plane b = 3222 and the second pole
in b = 647°.

V. THERMAL RENORMALONS

First we are going to calculate the renormalon contri-
bution at finite temperature, and in the next section we will
consider both temperature as well as the presence of a weak
magnetic field. Although the finite-temperature calculation
was considered in Ref. [43], that analysis was carried on in

the frame of the real time formalism, more precisely
thermo-field dynamics. We are now going to calculate
the finite-temperature renormalon in the imaginary time
formalism. There are some interesting technical details that
are worth mentioning. The diagram to be calculated is

4
Bri= i | gD+ OB (@ (@)

(

Notice that the D(p + ¢q) propagator could also be
taken as temperature dependent. However, in our
previous work [44] for the pure magnetic corrections
case, we showed that if the propagator D(p + ¢) included
magnetic field contributions, taking also these magnetic
corrections in the calculation of B(g), subleading terms
appear. Also, we showed that if we now take magnetic
corrections for D(p + ¢), as B(q) is independent of the
magnetic field, it has the same effect as taking
D(p + ¢q) without a magnetic field and B(g) with a
magnetic field. The same situation also happens here
when dealing with only temperature corrections.
Therefore, our calculation will be carried out by consid-
ering B(g) as temperature dependent, whereas D(p + q)
will be handled without temperature effects. First, let us
consider one bubble,

sig ="y [ K prwpne-a). ey

2 (27)3

where

DT() = 5 (25)
w? + k> + m?

and therefore

(—i/l)2 . / Pk 1
BT(q) = T
@)= i Z (27) @ + K+ m?
1

x (26)

(w, —®)> + (k+q)> + m*

The sum over Matsubara frequencies is calculated using
well-known techniques [39] to obtain

B(q) (=id)? / Pk —sys,
= i

1 2 (21)} 4E,E,
(Lt n(siEy) + n(s:E)

. L@
1100 SlEl — 52E2

where
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E? =k +m?, s) = %1,
E% = (k+q)?+m? s,==1,.
ni(E;) = 1/(e5/T = 1)

Writing s, and s, explicitly, we obtain

/1) &Pk 1
BT _( l /
(9)=" (27)} 4E, E,
1 1
1 _
[( +"1+”2)< _E —E, iw+E1+E2>
1 1
—(ny=ny)| - =
io—E,+E, iw+E —-E,
EBV&C(q) +BT<q)’ (28)
where
iA Pk 1
Bvac(q) - ( )

2 (27)3 4E\E,

1 1
x| - —- (29)
la)—E]—Ez lCU‘I‘E]"‘EQ

is the vacuum part equal to Eq. (17) in the deep Euclidean
region. Notice that we will use the notation B (g) for the
total fish diagram, including both vacuum and thermal
corrections, whereas By(g) will refer only to thermal
corrections to the fish, where

(—id)?, [ Pk 1
2 /(2;;)*415152
1 1
x {(n1+n2)<ico—El—Ez_iaH—El—f—Ez)

_(I’ll—nz)(. S I_Ezﬂ (30)

io—E\+E, iw+E
is the temperature-dependent part. Since the contribution to
the renormalon comes from the deep Euclidean region, we
calculate Eq. (30) in the limit —g? > m?, obtaining

Br(q)=

ir? 1
B ~
r(4) 47r2q2 \/k2 + m? gV R4+m? T _
=% wp) G1)
4n?g? ’
with

o K2 1
h(p)= | dk
) A V2 + m? oV R+m T _

Hence, the contribution for one bubble is

12

B(0)~ oo (1osle®) - ). 39

Now we have to insert this temperature-dependent fish
diagram term into the chain of bubbles that define the
renormalon-type diagram. We find

e Lo )

x <log(q2//42) —%Mﬁ))k_l- (34)

As we already mentioned, we proceed to expand the
propagator D(p + ¢) in powers of 1/q¢?, neglecting the
first two terms that give rise to divergent integrals. We then
have to calculate

1 d*q [m* m®
Rry =1 k—2/ q4 DY i B
(=id) 27)* 1¢° ¢

_1/12 k—1 - Q k—1
— 1 ——h . (35
() (1oetern) = Sm) ™ 69
Using the binomial theorem
(A+BN=AN+ N -AN"'B 4 ..., (36)
we get
2k d*q [m* m®
Ryy=—i 2k—1/ q4 ST
(327%) 27)* 14° ¢

. [1og<q2/u2>k-1 - (k= 1) 25 hp)

x log(g*/u*)*=2 + - ] : (37)

Notice that the vacuum leading term as well as the next-to-
leading-order vacuum term can be extracted from the first
two terms inside the first square brackets, together with the
first term of the second square brackets in the previous
equation. The leading term in the magnetic field strength is
obtained by multiplying the first term of the first square
brackets with the second term of the second square brackets
in the above equation. The next terms are subleading.

In this way, following the same procedure as in Sec. IV
and performing the angular integrals, we find
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A \F (log(q*/u*))*!
Rpp = —idm* (-2 ) [ dg| ==L
T,k 1am <32n’2> / CI|: q3

_ %105;(612/#2)1(_l
(k= 1)8h(ﬁ)(;§>g(qz/ﬂz))k'2 L. ] , (38)

Using the change of variable ¢ = pe’, dg = pe'dt,

A \t4 2
Ry, — —i o’ / di| e (2r)=1 = g (ke
' 3272 u u

5 (39)

(k= D8hpeten? ]
7

we see the appearance of the gamma function in both terms.
Using the definition of 71, we have

A \* A\ km?
Ry = —ii? (k) +i(— | —m*T(k
T .k m <327[2> ( )+l<64 2) /42 m ( )

+ 2iﬁ1—2 <6 j ) 8$h(B)L (k) + (40)

where we have also used the property I'(z + 1) = zI'(z).
Now we can find the Borel transform B[b] of Rz,

=308 =
- _’m22<3zn >
N (:;2”12 z16h(ﬁ )Z(Mﬂ) phol

(41)

These sums correspond to well-known geometrical series,
and we obtain our final result

2

—im
Bl = e
2 ; )
.m> _, i16h(B)m 1
il 42
+<lﬂ2m+ e b—64n'2+ (42)

This result coincides with that reported in Ref. [43].
Although the location of the poles does not depend on
temperature, the residues of these poles get a temperature
dependence, and this behavior depends on the function
h(p). For details, see the Appendix.

VI. THERMOMAGNETIC RENORMALONS

In this section we calculate the renormalon contribution
at finite temperature, also taking into account the presence

of a weak external magnetic field. The expression for the
diagram to be calculated now is given by

1 d*q
(=id)k=2 / (2r)*

where (7, B) refers to finite-temperature and weak mag-
netic field effects. First, let us consider one bubble,

iD(p + q)[B"H(q)!, (43)

RB,T,k =

Pk -
i

2
BT (g) =2 ) (k)

x iD"B) (k- q), (44)

where iD"-P)(k) is the finite-temperature propagator up to
order (eB)? in the magnetic field, defined as

iDTB (k) = iD” (k) + iDTB)(k), (45)
with .
. l
Y e
iDTB) (k) = i'i—Blz
(w; + k" +m?)?
__ RileBPK (46)

(w? + 2+ m?)*

Therefore, using this notation, Eq. (44) becomes

B(T,B)(

)3
x(D()+1DTB(k)
x (iD"(k = q) + D" (k- q)).  (47)

Note that the previous multiplication will produce terms of
order greater than (eB)?>. If we restrict ourselves up to order

(eB)?, we obtain

B")(q) = Dy(k,q) + Dy(k,q) + D3(k,q),  (48)
with

_\2 3
D, (k. ) iTy / %iDT(k)iDT(k—q), (49)
D, (k, q) d3’;3 iD” (k)iD"B) (k — q),
(50)
3
D;(k Z ’)‘3 iD"B) (k)iD” (k — q).

(51)
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It is straightforward to prove that D,(k,q) = Ds(k, q).
Notice that D (k, q) is the bubble with only temperature
corrections obtained in the previous section [Eq. (24)], and
hence

Di(ke) = oo [tog (%) - )| (52

Now we have to calculate D;(k, g). Since we know that

D, (k,q) = D5(k, q), we have
Ds(k.q zDTB k)iD” (k — q)
(— /1)2 . d3k
= T
2 ! Z (27)?
{ z|eB\2 _ 2ileBPkT }
23 (@2 4 K+ m2)
[ . |
(0, — )2 + (k — §)* + m?
= D3, (k,q) + D3, (k. q), (53)
with
2T Pk eB|?
Ds,(k, q) Z/ |~2| 3
P (@2 + k* + m?)
1
X { — ] (54)
(@, —w)* + (k= q)* + m?
and
lT Pk 2|eB|*k?
D3, (k,q) = Z/ |*2| L24
(@2 + k° + m?)
-1
X { = ] (55)
(a)n - 0))2 + (k - Q)z + m2

Let us first calculate D5 (k, q),

2 i (
Pege v | e
X _2 = —» b
o +k +m?] (o, —0)*+ (k= q)* +m?
(56)
where we have used
1/ 0\* 1 1
21 <8ﬁ12) 2= (R —m) 57)

Let us note that we again have the expression from the
previous section [Eq. (26)], with the difference that we have
to derive with respect to /? twice. In this way, we obtain

leB|?(—il)%i
2.2!

2! 1 0 \?
x [327r2m2q2 a 2n%q? (6_ﬁ1> h<ﬁ)]' (58)

Note that the derivatives in /- have not been calculated
because, as in the previous section, the function 4 (/) needs
to be analyzed separately for the low- and high-temperature
cases. In a similar fashion, we calculate D5, (k, g),

(=i [ 9 \3 ., / Pk
31 \amz) 1B Z (27)}
W) + K+ i

" [(a}n —w)? +_(112 — g2+ mz} ’ (59)

D3.1(k7 Q) =

D3.2(k, 6]) =

where we have used

170\ 1 1
31 <8rh2> K- (K —m?)* (60)

Let us note that again we have the expression from the
previous section [Eq. (26)], with the difference that we have
to derive three times with respect to /2. Hence, we obtain

(B (—id)%i
2-3!
=3I 2
X
962m2q>  672q>

Ds,(k,q) =

< 822)3/&;1([;)] . (61)

Taking into account the results D,(k,q), D,(k, q), and

Ds(k, q), we obtain for B(T-B) (q)

)2 i -q* 8i
B(T.B) :(l log| 42— | ————»1
(4) 2 |1672 8 u? 167172q2 )
1 I 1 0 \?2
2leB|i - —
+2leB] l{48ﬂ2m2q2 272 q*2! (am2> hip)

_%zqz% (%)Bh(ﬂ) -k2H. (62)

As mentioned in the previous section, the function h(f)
cannot be calculated in a closed analytic form, but it can be
expressed analytically for the cases of high and low
temperature. Therefore, before calculatlng the renormalon
diagram, we will calculate B7-?)(q) for the cases of high
and low temperature. In the high-temperature case,
we calculate the corresponding derivatives using the
expressions given in the Appendix to obtain
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Byur(q)

mP® 7 aT
M £(5) + |eBP
g ¢ +leBl {32}%2

For the low-temperature case, we have

Bi1(q)

X [4m*Li_y jy(e™™/T) = 3T?Lis o (e="/T)]

ir? q° 1 47’ T? 1 4nT m*
=———|log| 5 ) +— (- 2amT —2m*( =+ log| — | —7 )| — =
3277 {Og<ﬂ2> +C]2( 3 e " (2+ og< m ) 7/) T2 ¢G)

1 3m?

—ﬁ'Fmé’@)_mg(S) )] (63)

ir g 1 T3mz\'/? 2leB|? 1 x \/2
— " og( L)+~ (- Liz p(e/T) + 227 _30)epp|— (-2
327 {°g<,ﬂ> +q2< 8( 2 foya(e™) =55 = 32eBE 55 5\ Sr

1 T 12 27 ; -m/T
+ﬂ m 3T 4m Lll/z(é’ )

+ 5T{2mLis,(e7™/") 4 TLis /2(6_’”/T)}) - 8m3Li_, /2(e—m/T)} ] )] : (64)

At this point, we have to calculate the renormalon-type
diagram, both for high- and low-temperature regions, in the
presence of a weak magnetic field.

A. Magnetic renormalons in the
high-temperature region

Following the same procedure as in the previous section,
we have to calculate the renormalon-type diagram

Rt = = | G Pl + B @1 (69

7)
A\ 2 \rm?
2 ! k 471'2T2

4
—2m? G +log (‘”%) - y> - %m)

and we obtain

2

HT _ _ .~
RB’T,k = —im
-2

m® 7 T
_— B2 -
g t0) T leBl [32m2 m
1 3m?
+WC(3>—WC<5)}>+'“ (66)

This can be written as

|
where
4 2T2
FHT = — id + 27rmT
1 4xT m*
mo 7 zT
—((5 B|? -=
+8ﬂ4T4(:( )+ leBl [32m2 m?
1 3m?
———((3) ——=<C(5)]. 68
+2ﬂ2T2C() 167z4T4¢( )] (68)

Now we can find the Borel transform B[b],

0.00
-0.02
3 -0.04
>
[
O, -0.06 — T=60 MeV
[
=
W -o.08 — T=100 MeV
-0.10 — T=140 MeV ]
-0.12 \
0.0 0.2 0.4 0.6 0.8 1.0
qB/m?,
FIG. 3. FHT vs T.
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_ —im? m? 5 2iim? concavity changes, implying this situation a decreasing
=2 ’ﬂ_zm T2 THT by Zean? T behavior for the evolution of the residues of the renorma-
(69) lons. This indicates that temperature becomes dominant

with respect to the magnetic field.

As we mentioned, the location of the poles does not
depend on temperature or the magnetic field. However,
from Fig. 3 we notice a competition between temperature
and the strength of the magnetic field for the evolution of RLT  _ 1 / d'q ;
the residue. For T = 60 MeV the curve grows with the BTk — (=id)2 ) (2x)*
magnetic field, but its concavity is low. When we start
increasing the temperature, this concavity becomes smaller ~ Again, we calculate in the same fashion as in the previous
until we reach a temperature value where the sign of the  section. We obtain
|

B I L B VAL Tmr\12 -
R = () T+ () ST =215 (i) 00 (<8(757) it )

B. Magnetic renormalons in the low-temperature region

D(p + q)[BY" (@), (70)

2|eB|? 1 T \'/? . . -
+ 3m2 - 32|eB|2 32m3 m [4m2Ll_1/2(e /T) — 3T2Ll3/2(€ /T)]
1 T\ 2 —m/T : —m/T : -m/T
+ 384 \ 3,07 3T ( 4m>Liy o (e™™") 4 5T{2mLiz 5 (e™™/") + TLis )5 (e™™/")}
- 8m3Li_1 2 e_’"/T + .- 71
/
It is convenient to write this (as we did in the high-temperature case) as
o A\ A \km? 2 A \k
R%TTJ( = —im? <327[2> F(k) + l<647z'2) szl—‘(k) —2i M—z <6471'2> F(k)FLT 4+ (72)
where
T’ma\'/% 2|eB|? 1 x \/?2 . .
FLT = —8( 2 ) Ll3/2(€_m/T) +—:|%m2| - 32|€B|2 |:32m3 (M) [4m2L1_1/2(e_m/T) - 3T2L13/2(€_m/T)]

1 1/2
+—< i ) [3T(4m2Li1/2(e"”/T)+5T{2mLi3/2(e""/T)+TLi5/2(e"”/T)})—8m3Li_1/2(e"”/T)H. (73)

Now we can find the Borel transform B[b],

—im? .m? _, 2im? 1
Bl = b —32x° * {l u? . u? FLT} b — 64x? L 0.012
— T=10 MeV
(74) 0.010
—_ — T=25MeV
Again, we see that for low temperature and weak magnetic 3 0.008
field, the location of the renormalons does not depend on 9,_ 0.006
temperature or the magnetic field. As we can see in Fig. 4, 0y 0.004
in the low-temperature region we have a growing evolution
of the residue with the magnetic field. The curvature is 0.002
bigger than that in the high-temperature region. This is 0.000
reasonable since we are in the low-temperature region 0o 02 02 06 0B 0
where the magnetic field dominates, although we already qBIm?,
notice that for higher values of temperature the tendency of
the residue is to diminish. FIG. 4. FyrvsT.

016020-9



M. LOEWE, L. MONIJE, and R. ZAMORA

PHYS. REV. D 104, 016020 (2021)

VII. CONCLUSIONS

Using the imaginary time formalism for dealing with
temperature effects and the Schwinger propagator for
handling the external magnetic field, we have analyzed
the influence of temperature and a weak external magnetic
field on the renormalon diagram in the theory A¢™*.

Initially we considered only temperature effects, finding
the same results obtained in the frame of thermofield
dynamics [43]. This again confirms the validity of both
formalisms.

In the case of the thermomagnetic corrections to our
renormalon type of diagram, we obtained a nonanalytic
closed expression. However, for the low- and high-temper-
ature regions it is possible to have analytic expressions. The
agreement between our analytic expression in the high-
temperature regions and the numerical results is amazing,
being valid for a wide temperature region. Something
interesting is the competition we found, in the calculation
of the residue, between the magnetic field and temperature.
As we said, in the low-temperature region and for low
magnetic field strength, the residue grows. As soon as the
temperature starts to increase, this growing behavior
becomes less pronounced. We also found in the high-
temperature region that, for example, for 7' = 60 MeV we
still have a growing behavior but with much less concavity.
In the case of really high temperature, the residue dimin-
ishes with the magnetic field. It is interesting to point out
that this scenario was also found in the behavior of the
7 — m scattering lengths [45,46] where we have exactly the
same competition between temperature and magnetic field
strength.
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APPENDIX: LOW- AND HIGH-TEMPERATURE
APPROXIMATIONS FOR THE FUNCTION £ (f)

In this appendix we analyze the function A(f). As this
function is nonanalytic, we are going to study its behavior
for the high- and low-temperature cases separately.

We will start with the high-temperature case hyr (). We
have

o k2dk 1
0 VIR nR Ve

Defining m/T =y and k/T = x, we get

h(p) = (A1)

(A2)

p =7 [T
o VR e

The last expression can be related to the functions
presented in the Appendix of Ref. [40]. We have
h(B) = T*T'(3)h3(y) = 2T*h3(y). To find hs(y), we use
the relation

dhs(y)  —yh(y)
c;y - 21 ’ (A3)
where
7 0) = =+ g1oe () + 37 - ) (£ )
e (2) + (A)

Therefore, we obtain

dni" (y) Ty y\ ¥ y v\
= g Z) -2 Ze3) (=
dy 4748 <4n> 4YE+8C( )<2n>

3y y\*
_=2 2 e A
2o(5) (3)
Solving the previous equation,
AT (y) = — zy y —HO ar\ _
3\ 4 8 ) g 4
v y6
5)+C A6
128;;2‘:() et et (48)

In order to find the constant of integration (C,), we
calculate

1 fe X 1 1 o2
3(0) r(3)A Yool Ttae 1 A
2
P
C=—. A8
= (i B (A8)
Therefore,
2
T nomy |y 1 4z
T loo[ 22 —
Wty = 4+8[2+og<y) y]
X
A9
12871'2 (3)- 102471'2 (5)+ (49)

Finally, for the high-temperature case we obtain
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0.30 ——— ; : ;
E— h(B) No approximations

0.25
020} E— h(B) Low T

€ 015 —_— h(B) High T ]
0.10 —
0.05 _
0.00 - - - - -
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FIG. 5.

T [MeV?]

Comparison of the function A(ff) with the high- and low-temperature approximations. The blue line corresponds to the

numerical evaluation of /(f3), the red line to the case of h(f) at low temperature, and the green line to the case of /(f) at high

temperature.

hHT(ﬂ) = 2T2h§ﬂ()’) = 2T2h§" <%>

oY L L
o 12 4T 8T%|2

m* mo

3 —_
128n2T4§() 10247r4T6&:

()]

+ @%) (A10)

Now we will analyze the behavior of A(f) in the low-
temperature regime. We have

= [ (A1)
0 VR e _
Using @® = k> + m?, we get
©(0? —m?)wdo 1
h = s Al12
)= [T (A1)
which can be written as
0 e—a)/T
m — e

In the case of low temperature, the last part of the previous
equation corresponds to a geometric series. Therefore,

() =Y / " doVa? —memlT. (Al4)
n=1+Jm
Performing the integral, we get
= mT mn
hpr(B) = Z7K1 T ) (A15)
n=1

Note that for low temperature
T T3 1/2
Pk () TS0 (=) e/t (Al6)
n T 2n

Using the above result, we have

. (T3ma\/?
hir(B) = Z( 53 ) o—mn/T

n=1

(A17)

The above sum is analytical, and corresponds to the
polylogarithm functions (Li). Finally, we obtain

T3mr
2

b ) = (F55) “Ligate . ary

Now we are going to plot the function 4(f3), comparing its
numerical value with the high- and low-temperature approx-
imations as it is shown in Fig. 5. We note that our
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approximation for the low-temperature case, up to a value of
around 7' ~ 40 MeV, is quite good, whereas for a temper-
ature greater than 7 ~40 MeV the high-temperature
approximation is also excellent. Therefore, with our approx-
imations, we are able to cover in an analytic way the whole

range of temperatures. It is important, however, to stress how
sensible our analytic expressions are. For example, if we do
notinclude the terms that involve the Riemann zeta factors in
the high-temperature region, the approximation turns out to
be valid only for a temperature greater than 7'~ 140 MeV.
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