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Volkov states are exact solutions of the Dirac equation in the presence of an arbitrary plane wave.
Accounting for the interaction between the Dirac field and the electromagnetic field, however, Volkov
states, as well as free photon states, are not stable in the presence of the background plane-wave field but
“decay” as electrons/positrons can emit photons and photons can transform into electron-positron pairs. By
using the solutions of the corresponding Schwinger-Dyson equations within the locally constant field
approximation, we compute the probabilities of nonlinear single Compton scattering and nonlinear Breit-
Wheeler pair production by including the effects of the decay of electron, positron, and photon states. As a
result, we find that the probabilities of these processes can be expressed as the integral over the light-cone
time of the known probabilities valid for stable states per unit of light-cone time times a light-cone time-
dependent exponential damping function for each interacting particle. The exponential function for an
incoming (outgoing) either electron/positron or photon at each light-cone time corresponds to the total
probability that either the electron/positron emits a photon via nonlinear Compton scattering or the photon
transforms into an electron-positron pair via nonlinear Breit-Wheeler pair production until that light-cone
time (from that light-cone time on). It is interesting that the exponential damping terms depend not only on
the particles momentum but also on their spin (for electrons/positrons) and polarization (for photons). This
additional dependence on the discrete quantum numbers prevents the application of the standard electron/
positron spin and photon polarization sum rules in computing, for example, total probabilities.
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I. INTRODUCTION

There is a growing interest in testing QED under the
extreme conditions provided by intense laser fields [1–7].
The typical electromagnetic field scale of QED is deter-
mined by the so-called “critical” field of QED: Fcr ¼
m2=jej ¼ 1.3 × 1016 V=cm ¼ 4.4 × 1013 G (we employ
units with ϵ0 ¼ ℏ ¼ c ¼ 1 throughout, and m and e < 0
denote the electron mass and charge, respectively) [8–10].
In general, in the presence of electromagnetic fields of the
order of Fcr, the vacuum becomes unstable under electron-
positron pair production and the magnetic interaction
energy associated with the intrinsic electron magnetic
moment becomes of the order of the electron rest energy.
High-power optical lasers are becoming an important

tool to test QED at critical field strengths, which corre-
spond to laser intensities of the order of 1029 W=cm2. Due
to the Lorentz invariance of the theory, in fact, observable
quantities like probabilities and rates of physical pro-

cesses depend on the field via Lorentz-invariant parameters.
For processes initiated by an electron/positron (a photon)
with four-momentum pμ ¼ ðε; pÞ (qμ ¼ ðω; qÞ), with ε ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
(ω ¼ jqj) in the presence of a background field

with amplitude given by the electromagnetic field tensor
Fμν
0 ¼ ðE0;B0Þ in the laboratory frame, the invariant

parameter characterizing the strength of the field
is the so-called quantum nonlinearity parameter χ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðFμν

0 pνÞ2j
p

=mFcr (κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðFμν

0 qνÞ2j
p

=mFcr), with the
metric tensor ημν ¼ diagðþ1;−1;−1;−1Þ [1–6]. In the
case of an incoming electron/positron, this parameter
corresponds to the (electric) field strength in the rest frame
of the particle in units of Fcr. Thus, although available
lasers have reached peak intensities I0 of the order of 1.1 ×
1023 W=cm2 [11] and upcoming facilities aim at I0 ∼
1023–1024 W=cm2 [12–16], the availability of ultrarelativ-
istic electron/positron beams allows for testing the theory
effectively at the critical field scale [1–6]. At the mentioned
available intensities, in fact, an electron with an energy of
the order of 1 GeV, already within the reach of the present
technology, would experience a field of the order of Fcr in
its rest frame.
First experiments in this “strong-field” regime of QED

were performed at SLAC in the late 90s [17–19] and
recently two experiments have been also carried out
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probing laser-electron interaction at values of the quantum
nonlinearity parameter close to unity [20,21]. Also, devoted
experimental campaigns are already planned at DESY
[22] and at SLAC [23] to test QED in the strong-field
regime.
On the theory side, the description of the interaction of

high-intensity optical lasers, as those mentioned above, and
electrons/positrons is complicated because the density of
laser photons is so high that nonlinear effects in the laser
electromagnetic field amplitude play a major role [1–6].
These effects are controlled by the classical nonlinearity
parameter ξ0 ¼ jejE0=mω0, where ω0 is the central angular
frequency of the laser field. The parameter ξ0 does not
contain the Planck constant and classically controls the
importance of relativistic effects in laser-electron/positron
interaction. For optical lasers, the parameter ξ0 exceeds
unity already at laser intensities of the order of 1018 W=cm2

and for ξ0 ≳ 1 the laser-electron/positron interaction has to
be taken into account exactly in the calculations. This is
achieved in QED within the so-called Furry picture [24],
where the electron-positron field is quantized in the
presence of the background laser field [8,9]. This in
turn requires that the Dirac equation can be solved
analytically in the presence of the background field, which
has been carried out in Ref. [25] in the case of a plane wave
(see also Ref. [8]). The corresponding electron/positron
states (and propagator) are known as Volkov states (Volkov
propagator).
By employing the Volkov states, the basic processes

corresponding to the emission by an electron/positron of a
single photon (nonlinear Compton scattering) and to the
transformation of a photon into an electron-positron pair
(nonlinear Breit-Wheeler pair production) have been exten-
sively investigated (see Refs. [2,26–52] for nonlinear
Compton scattering and Refs. [4,27,51,53–64] for non-
linear Breit-Wheeler pair production, as well as the reviews
[1–5]).
Now, if one computes the total probabilities of nonlinear

Compton scattering and nonlinear Breit-Wheeler pair
production at the leading order in perturbation theory,
one observes that for sufficiently long pulses they can
exceed unity. The reason behind this apparent contradiction
relies on the importance of higher-order processes. This is,
for example, intuitively clear in the case of nonlinear
Compton scattering as for sufficiently long pulses the
probability that electrons/positrons emit a higher number
of photons becomes sizable. In Ref. [65], Glauber has
shown that in the classical limit of nonlinear Compton
scattering, where recoil effects are negligible, the emission
of an arbitrary number of photons by an electron is
described by a Poisson distribution. Relying on the
unitarity of the S matrix of QED, this result has been
obtained by imposing that the total probability that an
electron either does not emit a photon or does emit an
arbitrary number of photons is equal to unity. In Ref. [66],

the same idea was applied in strong-field QED in the so-
called moderately quantum regime where ξ0 ≫ 1 and χ0 ≲
1 such that nonlinear Breit-Wheeler pair production was
negligible and the so-called locally constant field approxi-
mation (LCFA) was employed [2,5,28]. The LCFA states
that in the limit of low-frequency plane waves with fixed
electric-field amplitude the formation length of QED
processes is much smaller than the typical wavelength of
the plane wave and therefore the probabilities of QED
processes reduce to the corresponding probabilities in a
constant crossed field averaged over the phase-dependent
plane-wave profile [2]. From a QED point of view, the
prescription used in Refs. [65,66] was phenomenological
and not based on first principles. Indeed, from the unitarity
of the S matrix it has to follow automatically that
probabilities of physical processes never exceed unity.
An alternative, consistent approach in this respect was
then presented in Ref. [67] but based on distribution
functions and kinetic equations rather than on single-
particle probabilities (the inclusion of the process of pair
production was carried out in Ref. [68] and we stress here
that kinetic equations had already been used in strong-field
QED to describe the formation and the evolution of QED
cascades [69,70]). The problem of radiation of several
photons is closely related to the problem of radiation
reaction in QED, which has also a classical counterpart
[71–73]. Indeed, the inclusion of classical radiation-
reaction effects in the computation of emission spectra has
been investigated numerically in several works [74–82].
Moreover, the availability of the exact solution of the
underlying classical equation of motion including radiation
reaction (the Landau-Lifshitz equation [71,73]) [83] has also
allowed one to obtain analytical results on the classical
emission spectra including radiation reaction [84–86].
We have mentioned that the unitarity of the S matrix

guarantees that computed probabilities do not exceed unity.
However, this implication holds for probabilities computed
exactly and the use of perturbation theory may and does
lead to violations of unitarity. The contradictions are only
apparent because the use of perturbation theory is allowed
only in those regimes where the obtained probabilities are
smaller than unity. In this respect, a refined probabilistic
approach is presented in Ref. [87] to show that exact
radiation probabilities feature a time-dependent exponen-
tial suppression related to the fact that electron/positron
Volkov states are not stable states due to the emission of
photons.
From the point of view of strong-field QED, in order to

compute, for example, the exact probability of processes
like nonlinear Compton scattering and nonlinear Breit-
Wheeler pair production, one has to use the exact electron
and photon states in a plane wave including radiative
corrections as well as the exact expression of the vertex.
In order to compute the exact electron/positron and photon
states in a background electromagnetic field described by
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the four-vector potential AμðxÞ, one has to solve the
corresponding Schwinger-Dyson equations

fγμ½i∂μ − eAμðxÞ� −mgΨðxÞ ¼
Z

d4yMðx; yÞΨðyÞ; ð1Þ

−∂μ∂μA νðxÞ ¼
Z

d4yPνλðx; yÞA λðyÞ; ð2Þ

where γμ are the Dirac matrices, ΨðxÞ is the electron-
positron field, A μðxÞ is the radiation field in the Lorenz
gauge, and where Mðx; yÞ and Pμνðx; yÞ are the exact mass
and polarization operator in the external field [8]. The mass
operator and the polarization operator correspond to the
sum of all possible one-particle irreducible Feynman
diagrams with two external electron/positron and photon
lines, respectively. The contribution of the one-particle
reducible diagrams is, instead, exactly taken into account
by the Schwinger-Dyson equations themselves, which can
be seen by writing the solutions of Eqs. (1) and (2) as a
perturbative series in Mðx; yÞ and Pμνðx; yÞ, respectively
(see also below). On the contrary, the exact vertex does not
feature by definition one-particle reducible contributions.
This is an important remark for what it follows because in
the presence of a plane wave, probability amplitudes
receive also contributions for momentum regions where
electron and photon propagators describing internal lines
are on shell (we are referring here to amplitudes corre-
sponding to Feynman diagrams which split into two
diagrams by cutting the corresponding internal line).
This is a consequence, ultimately, of the fact that, unlike
in vacuum, single-vertex processes like nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production do
occur in the presence of the plane wave. This aspect has
been thoroughly investigated in the study of higher-order
strong-field QED processes in a plane wave like the
emission of two photons by an electron (nonlinear double
Compton scattering) [88–92], the emission by an electron
of a photon, which then decays into an electron-positron
pair (nonlinear trident pair production) [93–99], and the
annihilation into two photons of an electron-positron pair
[100]. In these studies, the contribution to the probabilities
stemming from intermediate on-shell particles has been
indicated as “incoherent” or “two-step” contribution, and it
features a quadratic dependence on the laser pulse duration
rather than linear as the remaining “coherent” or “one-step”
contribution. Indeed, the quadratic dependence is easily
understood as arising from the fact that the two single-
vertex strong-field QED processes building the whole
second-order process can occur independently and at any
phase of the plane wave. For two-vertex processes primed
by a single particle and for both the classical and the
quantum nonlinearity parameters being of the order of
unity, the one-step (two-step) contribution has been found
to scale as α2ΦL=Φf (α2Φ2

L=Φ2
f), where α ¼ e2=4π ≈

1=137 is the fine-structure constant, ΦL is the total phase
duration of the plane wave, and Φf is a measure of the
formation phase of the single-vertex strong-field QED
processes. Thus, for sufficiently long pulses (ΦL ≫ Φf),
not-only the two-step contribution dominates over the one-
step contribution but for ΦL ≳Φf=α ≈ 137Φf the proba-
bility of a two-step, second-order process would become
comparable with that of a first-order process, a condition
already identified in Ref. [66]. This circumstance is already
reflected by the Poisson distribution of the number of
photons emitted as found in Ref. [65] and it also occurs in
the case of radiative corrections. The structure of the
Schwinger-Dyson equations (1) and (2) gives the possibil-
ity of taking into account these “accumulation” effects in
the electron/positron and photon states exactly and self-
consistently. In fact, the incoherent contribution to the one-
particle reducible diagrams which can be cut into two
diagrams at n internal lines correspond to terms scaling
with the nth power of the pulse duration and, as we have
already mentioned, all these contributions are self-consis-
tently “resummed” in the Schwinger-Dyson equations.
It is important to stress that the mentioned accumulation

effects do not occur if two particles go on shell in the same
loop. This statement would require further analysis in
general as it has been investigated in detail only in
Ref. [101] in the case of the one-loop polarization operator
(see Fig. 1). In that work, in fact, it was shown that
the recombination (recollision) of the electron and the
positron in the loop produced via Breit-Wheeler pair
production cannot occur at an arbitrary phase of the laser
field but only at specific phases correlated with the phase
at which the pair was previously created, such that
recollision effects do not feature a pulse-length enhance-
ment. Correspondingly, higher-order vertex corrections are
expected not to feature accumulation effects like those
arising from the one-particle reducible contributions
described by the Schwinger-Dyson equations (1) and
(2), which is also physically intuitive as vertex corrections
are local corrections, unrelated to the macroscopic propa-
gation of particles inside the plane wave. This can be
explicitly verified in the one-loop vertex correction (see
Fig. 2) recently computed in Ref. [102].

FIG. 1. The one-loop polarization operator in an intense plane
wave. The double lines represent exact electron propagators in
the plane wave (Volkov propagators) [8].
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The Schwinger-Dyson equations (1) and (2) are clearly
impossible to be solved exactly already because it is
impossible to compute exactly the mass operator Mðx; yÞ
and the polarization operator Pμνðx; yÞ. However, the one-
loop mass operator in an arbitrary plane wave (see Fig. 3)
and the one-loop polarization operator in an arbitrary plane
wave (see Fig. 1) have been computed in Ref. [103] and in
Refs. [104–106], respectively. From the perspective of the
mentioned accumulation effects, it is important to point out
that the inclusion of higher-loop corrections to the mass
operator and to the polarization operator would lead to
subdominant contributions scaling with higher powers of
the fine-structure constant α (we do not consider here the
so-called fully nonperturbative regime of strong-field QED
at χ0 ∼ 1=α3=2 ≫ 1 and ξ30 ≫ χ0, where, according to the
so-called Ritus-Narozhny conjecture, the perturbative
approach to strong-field QED breaks down [107–116]).
The conclusion of the above discussion is that, if one

would like to take into account accumulation effects
depending on the laser pulse duration in nonlinear
Compton scattering and in nonlinear Breit-Wheeler pair
production but still neglect corrections scaling only with α,
one could solve the Schwinger-Dyson equations with the
one-loop mass operator and polarization operator, find the
corresponding electron/positron and photon states includ-
ing the decaying effects, and use these states to compute the
probabilities as the modulus square of the single-vertex

amplitude. This is the aim of the present work and we use
the electron/positron and photon states determined from the
Schwinger-Dyson equations in Refs. [117,101] within the
LCFA, respectively (see Refs. [118,119] for a solution of
the Schwinger-Dyson equation of the photon field in a
plane wave, where radiative effects are treated perturba-
tively). For the sake of completeness, we also present an
equivalent but alternative solution of the Schwinger-Dyson
equation (1) of the electron field as compared to that in
Ref. [117] and we provide more details about the derivation
of the solution of the Schwinger-Dyson equation (2) of the
photon field as given in Ref. [101]. As we will see, these
solutions and, in general, the Schwinger-Dyson equa-
tions (1) and (2) apply for electron and photons in-states,
respectively. Thus, we also derive the Schwinger-Dyson
equations for the electron and photon out-states as well as
for the positron in- and out-states, and we provide the
corresponding solutions under the mentioned conditions.
Finally, we use these in- and out-states to derive analytical
expressions of the probabilities of nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production,
which feature exponential damping terms describing the
decay of the particles in the plane wave.

II. BASIC DEFINITIONS AND NOTATION

We consider a plane-wave background field described by
the four-vector potential AμðϕÞ, which only depends on the
light-cone time ϕ ¼ t − n · x. Here, the unit vector n
defines the propagation direction of the plane wave and
can be used to introduce the two four-dimensional quan-
tities nμ ¼ ð1; nÞ and ñμ ¼ ð1;−nÞ=2 [note that ϕ ¼ ðnxÞ].
The four-vector potential AμðϕÞ is a solution of the free
wave equation ∂μ∂μAν ¼ 0 and it is assumed to fulfill the
Lorenz-gauge condition ∂μAμ ¼ 0, with the additional
constraint A0ðϕÞ ¼ 0. Thus, if we represent AμðϕÞ in the
form AμðϕÞ ¼ ð0;AðϕÞÞ, then the Lorenz-gauge condition
implies that n · A0ðϕÞ ¼ 0, with the prime in a function of ϕ
indicating its derivative. If we make the additional
assumption that AðϕÞ vanishes for ϕ → �∞, then it is
n · AðϕÞ ¼ 0. By introducing two four-vectors aμj ¼ð0;ajÞ,
with j ¼ 1, 2, such that ðnajÞ ¼ −n · aj ¼ 0 and
ðajaj0 Þ ¼ −aj · aj0 ¼ −δjj0 , with j; j0 ¼ 1, 2, the vector
potential AðϕÞ can then be written as AðϕÞ ¼
ψ1ðϕÞa1 þ ψ2ðϕÞa2, where the two functions ψ jðϕÞ are
arbitrary, provided that they vanish for ϕ → �∞ and they
feature obvious differential properties. The field tensor
FμνðϕÞ ¼ ∂μAνðϕÞ − ∂νAμðϕÞ of the plane wave is given
by FμνðϕÞ ¼ nμA0νðϕÞ − nνA0μðϕÞ.
Since the four-electric field of the plane wave will always

be multiplied by the electron charge, it is convenient to
introduce the four-vector AμðϕÞ ¼ eAμðϕÞ and the tensor
F μνðϕÞ ¼ eFμνðϕÞ. Also, we will consider below only the
case of linear polarization along the direction a1 and we set
ψ1ðϕÞ ¼ A0ψðϕÞ, with A0 < 0 being related to the

FIG. 2. The one-loop vertex correction in an intense plane
wave. The double lines represent exact electron states and
propagator in the plane wave (Volkov states and propagator,
respectively) [8].

FIG. 3. The one-loop mass operator in an intense plane wave.
The double lines represent exact electron states and propagator in
the plane wave (Volkov states and propagator, respectively) [8].
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amplitude of the electric field of the plane wave, and
ψ2ðϕÞ ¼ 0. In the case of a monochromatic plane wave
with amplitude E0 and angular frequency ω0, then we
would have A0 ¼ −E0=ω0 and, for example, ψðϕÞ ¼
cosðω0ϕÞ, whereas in the constant crossed field case, we
would have A0 ¼ −E0=ω0 and ψðϕÞ ¼ ω0ϕ, such that the
angular frequency cancels out as it should. In this way, the
electromagnetic field tensor FμνðϕÞ can be written as
FμνðϕÞ ¼ Aμν

0 ψ 0ðϕÞ, with Aμν
0 ¼ A0ðnμaν1 − nνaμ1Þ. Also,

we introduce for future convenience the dual field
F̃μνðϕÞ ¼ Ãμν

0 ψ 0ðϕÞ, where Ãμν
0 ¼ ð1=2ÞεμνλρA0;λρ, with

εμνλρ being the four-dimensional antisymmetric tensor
and ε0123 ¼ þ1. Analogous definitions hold for the quan-
tities multiplied by e.
The four-dimensional quantities nμ, ñμ, and aμj fulfill

the relation ημν ¼ nμñν þ ñμnν − aμ1a
ν
1 − aμ2a

ν
2 [note that

ðnñÞ ¼ 1 and ðñajÞ ¼ 0]. Below, we will refer to the
transverse (⊥) plane as the plane spanned by the two
perpendicular unit vectors aj. Thus, together with the light-
cone time ϕ ¼ t − n · x, we also introduce the remaining
three light-cone coordinates τ ¼ ðñxÞ ¼ ðtþ n · xÞ=2,
and x⊥ ¼ ðx⊥;1; x⊥;2Þ ¼ −ððxa1Þ; ðxa2ÞÞ ¼ ðx · a1;x · a2Þ.
Analogously, the light-cone coordinates of an arbitrary
four-vector vμ ¼ ðv0; vÞ will be indicated as v− ¼
ðnvÞ ¼ v0 − n · v, vþ ¼ ðñvÞ ¼ ðv0 þ n · vÞ=2, and v⊥ ¼
ðv⊥;1; v⊥;2Þ ¼ −ððva1Þ; ðva2ÞÞ ¼ ðv · a1; v · a2Þ.
The Volkov states are the exact solutions of the Dirac

equation in a plane wave [8,25]. Below, the four-vector
pμ ¼ ðε; pÞ indicates an on-shell electron four-momentum,
that is, ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. The positive-energy Volkov states

Uðin=outÞ
s ðp; xÞ can be classified by means of the asymptotic

momentum quantum numbers p and of the asymptotic spin
quantum number s ¼ �1 at ϕ →∓ ∞. Since below we will
also consider off-shell four-momenta, for notational sim-
plicity, we indicate the functional dependence on the
four components of the electron four-momentum pμ,
although the energy is a function of p. The Volkov

state Uðin=outÞ
s ðp; xÞ can be written as Uðin=outÞ

s ðp; xÞ ¼
eiΦ

ðin=outÞðpÞEðp; xÞusðpÞ, where

Φðin=outÞðpÞ ¼ −
Z

0

∓∞
dφ

�ðpAðφÞÞ
p−

−
A2ðφÞ
2p−

�
; ð3Þ

where

Eðp; xÞ ¼
�
1þ n̂ ÂðϕÞ

2p−

�
eif−ðpxÞ−

R
ϕ

0
dφ½ðpAðφÞÞ

p−
−A2ðφÞ

2p−
�g; ð4Þ

and where usðpÞ is the free, positive-energy spinor nor-
malized as u†sðpÞus0 ðpÞ ¼ 2εδss0 [8]. In the expression of
the Volkov in- and out-states, we have explicitly indicated a
physically inconsequential overall phase Φðin=outÞðpÞ for

future convenience and in Eq. (4) we have introduced
the notation v̂ ¼ γμvμ for a generic four-vector vμ [8].
Also, the spin quantization axis is conveniently chosen
along the magnetic field of the plane wave in the rest frame
of the electron, i.e., the spin four-vector ζμ is given by
ζμ¼−Ãμν

0 pν=ðp−A0Þ, with ζ2¼−1, and γ5ζ̂usðpÞ ¼
susðpÞ, where γ5 ¼ iγ0γ1γ2γ3 (in the constant crossed
field case and in the rest frame of the electron, the three-
dimensional spin vector ζ points along the same direction
of the magnetic field). Analogously, we introduce the

negative-energyVolkov statesVðin=outÞ
s ðp;xÞ¼eiΦ

ðin=outÞð−pÞ×
Eð−p;xÞvsðpÞ, with vsðpÞ being the free, negative-energy
spinor normalized as v†sðpÞvs0 ðpÞ ¼ 2εδss0 [8].
The expression in Eq. (4) can also formally be used for

the matrix Eðl; xÞ, where lμ ¼ ðl0; lÞ is a generic off-shell
four-momentum, and this matrix fulfills the identities
[2,120]

Z
d4xĒðl; xÞEðl0; xÞ ¼ ð2πÞ4δ4ðl − l0Þ; ð5Þ

Z
d4l
ð2πÞ4 Eðl; xÞĒðl; yÞ ¼ δ4ðx − yÞ; ð6Þ

γμ½i∂μ −AμðϕÞ�Eðl; xÞ ¼ Eðl; xÞl̂; ð7Þ

where l0μ ¼ ðl00; l0Þ is another off-shell four-momentum and
where, for a generic matrix M in the Dirac space, we have
introduced the notation M̄ ¼ γ0M†γ0.
Concerning the states of the radiation field, we will

indicate as qμ ¼ ðω; qÞ, with ω ¼ jqj, the generic on-shell
four-momentum of the photon and the two transverse
(linear) polarization states are conveniently identified by
means of the four-vector Λμ

1ðqÞ ¼ Aμν
0 qν=ðq−A0Þ and the

pseudo-four-vector Λμ
2ðqÞ ¼ Ãμν

0 qν=ðq−A0Þ, which fulfill
the relations ðΛjðqÞΛj0 ðqÞÞ ¼ −δjj0 , with j; j0 ¼ 1, 2.

III. DECAYING ELECTRON/POSITRON STATES

Let us consider the Schwinger-Dyson equation (1) for
the electron-positron field, which we rewrite here in
the case of the plane-wave background field introduced
above,

fγμ½i∂μ −AμðϕÞ� −mgΨðxÞ ¼
Z

d4yMLðx; yÞΨðyÞ; ð8Þ

where MLðx; yÞ is now the mass operator in the plane
wave.
Before we start solving this equation, we notice that, by

introducing the Volkov propagator GVðx; yÞ (the usual
Feynman prescription is understood for avoiding the poles),
the solution of Eq. (8) can be formally written as the series
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ΨðxÞ ¼ ΨVðxÞ þ
Z

d4yd4zGVðx; yÞMLðy; zÞΨVðzÞ

þ
Z

d4yd4zd4rd4sGVðx; yÞMLðy; zÞGVðz; rÞMLðr; sÞΨVðsÞ þ � � � ð9Þ

depending on the corresponding (Volkov) solution ΨVðxÞ of the Dirac equation fγμ½i∂μ −AμðϕÞ� −mgΨVðxÞ ¼ 0. By
imagining to use the stateΨðxÞ to compute a Feynman amplitude, we realize that the solution in Eq. (9) is appropriate for an

electron in-state ΨðinÞ
e ðxÞ [see Fig. 4(a)],

ΨðinÞ
e ðxÞ ¼ ΨðinÞ

e;V ðxÞ þ
Z

d4yd4zGVðx; yÞMLðy; zÞΨðinÞ
e;V ðzÞ

þ
Z

d4yd4zd4rd4sGVðx; yÞMLðy; zÞGVðz; rÞMLðr; sÞΨðinÞ
e;V ðsÞ þ � � � : ð10Þ

For this reason, we rewrite Eq. (8) as

fγμ½i∂μ −AμðϕÞ� −mgΨðinÞ
e ðxÞ ¼

Z
d4yMLðx; yÞΨðinÞ

e ðyÞ: ð11Þ

Now, for an exact electron out-state ΨðoutÞ
e ðxÞ, one rather needs the series [see Fig. 4(b)]

Ψ̄ðoutÞ
e ðxÞ ¼ Ψ̄ðoutÞ

e;V ðxÞ þ
Z

d4yd4zΨ̄ðoutÞ
e;V ðzÞMLðz; yÞGVðy; xÞ

þ
Z

d4yd4zd4rd4sΨ̄ðoutÞ
e;V ðsÞMLðs; rÞGVðr; zÞMLðz; yÞGVðy; xÞ þ � � � ; ð12Þ

which is not simply the Dirac conjugated of Eq. (10). Thus, for computing the exact electron out-state ΨðoutÞ
e ðxÞ, we need to

solve the Schwinger-Dyson equation

Ψ̄ðoutÞ
e ðxÞfγμ½−i∂⃖μ −AμðϕÞ� −mg ¼

Z
d4yΨ̄ðoutÞ

e ðyÞMLðy; xÞ; ð13Þ

or, equivalently, the equation

fγμ½i∂μ −AμðϕÞ� −mgΨðoutÞ
e ðxÞ ¼

Z
d4yM̄Lðy; xÞΨðoutÞ

e ðyÞ: ð14Þ

By recalling the Feynman rules for incoming and outgoing positrons, it is easy to derive that the Schwinger-Dyson

equations for the states ΨðinÞ
p ðxÞ and ΨðoutÞ

p ðxÞ are

fγμ½i∂μ −AμðϕÞ� −mgΨðinÞ
p ðxÞ ¼

Z
d4yM̄Lðy; xÞΨðinÞ

p ðyÞ; ð15Þ

fγμ½i∂μ −AμðϕÞ� −mgΨðoutÞ
p ðxÞ ¼

Z
d4yMLðx; yÞΨðoutÞ

p ðyÞ: ð16Þ

At this point, it is sufficient to outline the derivation of the solution of Eq. (11) as the other equations (14)–(16) can be
solved in an analogous way.

(a)

(b)

FIG. 4. The thick lines indicate the exact incoming electron line (a) and the exact outgoing electron line (b) and are symbolically
expressed as series expansion in terms of Volkov propagators (double internal lines) and mass operators (shaded circles).
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As we explained in the Introduction, it is sufficient for
our purposes to consider the one-loop mass operator within

the LCFA, which we indicate asMð1Þ
L ðx; yÞ (see Fig. 3). It is

convenient first to consider the one-loop mass operator

Mð1Þ
L ðl; l0Þ in momentum space, defined as

Mð1Þ
L ðl; l0Þ ¼

Z
d4xd4yĒðl; xÞMð1Þ

L ðx; yÞEðl0; yÞ: ð17Þ

This object can be easily computed from the general
expression of the one-loop mass operator in a plane-wave
field [103] in the locally constant field limit ξ0 → ∞ at
fixed χ0, which, as mentioned in the Introduction, corre-
sponds to a plane wave with smaller and smaller central
frequency and fixed electric-field amplitude. The resulting
expression is given by

Mð1Þ
L ðl; l0Þ ¼ ð2πÞ3δ2ðl⊥ − l0⊥Þδðl− − l0−Þ

Z
dϕe−iðl0þ−lþÞϕ

α

2π

Z
∞

0

du
u

Z
∞

0

dv
ð1þ vÞ2

× e−i½ð1þvÞ λ2
m2þv2þvð1−l02

m2Þ�u
��

2m −
l̂0

1þ v

�
½e−i

3
v4χ2l ðϕÞu3 − 1� þ e−

i
3
v4χ2l ðϕÞu3

×

�
2u2v2

m4

�
1þ v

3

�
ðlF 2ðϕÞγÞ þ i

uv
m

σμνF μνðϕÞ − imuv
2þ v
1þ v

χlðϕÞγ5ζ̂l
�

þ
�
2m −

l̂0

1þ v

�
½1 − eiuvð1−

l02
m2Þ� − 2iuv

1þ 2v
1þ v

ðl̂0 −mÞeiuvð1−l02
m2Þ
�
; ð18Þ

where λ2 is the square of the fictitious photon mass, which has been added for completeness and which will be ultimately set
equal to zero because we will only use the mass operator on the mass shell [2], where χlðϕÞ ¼ ðl−=p−ÞχðϕÞ; with
χðϕÞ ¼ −ðp−=mÞA0ψ

0ðϕÞ=Fcr; where σμν ¼ ði=2Þ½γμ; γν�, and where ζμl ¼ −Ãμν
0 lν=ðl−A0Þ. As expected, the quantity

Mð1Þ
L ðl; l0Þ is exactly the Fourier transform in ϕ of the corresponding expression of the one-loop mass operator in the

constant crossed field Fμν
0 ðF μν

0 ¼ eFμν
0 Þ found in Ref. [107], with the replacements F μν

0 → F μνðϕÞ ¼ Aμν
0 ψ 0ðϕÞ and

χ0 → χlðϕÞ. As a technical remark, we observe that the quantityMð1Þ
L ðl; l0Þ in Eq. (18) is the renormalized expression of the

one-loop mass operator, the renormalization being carried out as in vacuum [103,107].
Going back to configuration space by using Eqs. (5) and (6), we obtain

Mð1Þ
L ðx; yÞ ¼

Z
d4l
ð2πÞ4

d4l0

ð2πÞ4 Eðl; xÞM
ð1Þ
L ðl; l0ÞĒðl0; yÞ ¼

Z
d4l
ð2πÞ4 Eðl; xÞM

ð1Þ
L ðl;ϕxÞĒðl; yÞ; ð19Þ

where

Mð1Þ
L ðl;ϕÞ ¼ α

2π

Z
∞

0

du
u

Z
∞

0

dv
ð1þ vÞ2 e

−i½ð1þvÞ λ2
m2þv2þvð1− l2

m2Þ�u

×

��
2m −

l̂
1þ v

�
½e−i

3
v4χ2l ðϕÞu3 − 1� þ e−

i
3
v4χ2l ðϕÞu3

×

�
2u2v2

m4

�
1þ v

3

�
ðlF 2ðϕÞγÞ þ i

uv
m

σμνF μνðϕÞ − imuv
2þ v
1þ v

χlðϕÞγ5ζ̂l
�

þ
�
2m −

l̂
1þ v

�
½1 − eiuvð1−

l2

m2Þ� − 2iuv
1þ 2v
1þ v

ðl̂ −mÞeiuvð1− l2

m2Þ
�
; ð20Þ

and where ϕx is the minus light-cone coordinate of the
spacetime point x.
Two observations are in order about this intermediate

step. First, in the second equality in Eq. (19), one exploits
the delta functions in Eq. (18) to take the integrals over d2l0⊥
and dl0− such that the integral over d4l is originally given

over the variables l⊥, l−, and l0þ. Only after one renames the
integration variable l0þ as lþ, one can express the result as
the four-dimensional integral over d4l. Second, the appear-

ance of the quantity Mð1Þ
L ðl;ϕxÞ evaluated at ϕx looks

“asymmetric.” However, it arises because we have decided
to express the mass operator in Eq. (18) in terms of l02 and
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l̂0. It is easy to show that one can perform a shift in the
variable ϕ in Eq. (18) and obtain an equivalent expression
within the LCFA only in terms of l2 and l̂. This would result
in an equivalent expression (within the LCFA) of

Mð1Þ
L ðx; yÞ, where the quantity Mð1Þ

L ðl;ϕyÞ appears on the
right-hand side of Eq. (19), with ϕy being the minus light-
cone coordinate of the spacetime point y. The expression

featuring the quantity Mð1Þ
L ðl;ϕxÞ has been chosen for later

convenience.
Now, similarly as in Ref. [117] and without loss of

generality, we decide to determine how the effects of the
mass operator in the right-hand side of the Schwinger-

Dyson equation (11) modify the Volkov in-state UðinÞ
s ðp; xÞ

[recall that pμ ¼ ðε; pÞ, with ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
]. Thus, we

seek for a solution of Eq. (11) of the form

ΨðinÞ
e ðxÞ ¼ eiΦ

ðinÞðpÞfðinÞs ðp;ϕÞEðp; xÞusðpÞ; ð21Þ

where fðinÞs ðp;ϕÞ is a function to be determined, which

satisfies the initial condition limϕ→−∞ fðinÞs ðp;ϕÞ ¼ 1. This
initial condition corresponds to the physical requirement
that the electron state coincides with the free state
expð−iðpxÞÞusðpÞ before the electron interacts with the
plane-wave field. By substituting the above expression of

ΨðinÞ
e ðxÞ in Eq. (11), by exploiting the relation in

Eq. (7), and by multiplying the resulting expression by
ūs0 ðpÞĒðp; xÞ, we obtain

2ip−δss0
dfðinÞs ðp;ϕxÞ

dϕx

¼
Z

d4y
d4l
ð2πÞ4 ūs0 ðpÞĒðp; xÞEðl; xÞM

ð1Þ
L ðl;ϕxÞĒðl; yÞEðp; yÞusðpÞfðinÞs ðp;ϕyÞ; ð22Þ

where we have used the relation ūs0 ðpÞn̂usðpÞ ¼ 2p−δss0 .
Now, the integrals in y⊥ ¼ −ððya1Þ; ðya2ÞÞ and in τy ¼ ðy0 þ n · yÞ=2 in Eq. (22) can be taken analytically because the

matrices Eðp; xÞ depend on the transverse and the plus light-cone coordinates only linearly in the phase. Thus, these
integrals provide delta functions enforcing that l⊥ ¼ p⊥ and l− ¼ p−. By taking the corresponding integrals in l⊥ and l−, we
obtain

2ip−δss0
dfðinÞs ðp;ϕxÞ

dϕx
¼

Z
dϕy

dlþ
2π

eiðpþ−lþÞðϕx−ϕyÞūs0 ðpÞMð1Þ
L ðl;ϕxÞusðpÞfðinÞs ðp;ϕyÞ: ð23Þ

Here, the four-momentum lμ is intended to have light-cone
components p−, p⊥, and lþ, and it is important to notice
from Eq. (20) that lþ only appears linearly in the exponents
via the squared four-momentum l2 ¼ 2p−lþ − p2⊥ and also
linearly in the preexponential function via the matrix
l̂ ¼ lþn̂þ p− ˆ̃n − ðpa1Þâ1 − ðpa2Þâ2. This observation al-
lows us to take the integral in lþ analytically. It is first
convenient to perform the change of variable from lþ to
rþ ¼ lþ − pþ. The result of the integral over rþ is rather
cumbersome, but it can be simplified by means of the
following two remarks related to the dependence of

Mð1Þ
L ðl;ϕxÞ on lþ and then on rþ [see Eq. (20)]:
(1) The presence of the exponential functions

expð2iuvp−rþ=m2Þ leads to the presence of the delta
function δðϕy − ϕx þ 2uvp−=m2Þ, which results in

the function fðinÞs ðp;ϕyÞ to be computed at ϕy ¼
ϕx − 2uvp−=m2 for those terms.However, within the

LCFA and since the function fðinÞs ðp;ϕyÞ can be
a posteriori ascertained to be sufficiently smooth in

ϕy, one can approximate fðinÞs ðp;ϕx − 2uvp−=m2Þ ≈
fðinÞs ðp;ϕxÞ (see also below).

(2) The terms proportional to rþn̂ in the preexponent
turn into terms containing the derivative of the
function fsðp;ϕyÞ also on the right-hand side of
Eq. (23). However, these terms can be easily proven
to have exactly the same structure of the left-hand
side of Eq. (23), apart of course, being already
proportional to α. Thus, after exploiting the delta
function in the light-cone times, by imagining to
combine these terms with the left-hand side of
Eq. (23) and to divide the resulting equation by

the overall coefficient of dfðinÞs ðp;ϕxÞ=dϕx, one
finally concludes that these additional terms lead
to higher-order corrections in α and can be ignored
within our analysis.

By means of these considerations, it is straightforward to
obtain that

ip−δss0
dfðinÞs ðp;ϕÞ

dϕ
¼ mMss0 ðp;ϕÞfðinÞs ðp;ϕÞ; ð24Þ

where Mss0 ðp; ϕÞ ¼ ūs0 ðpÞMðp; ϕÞusðpÞ=ūsðpÞusðpÞ,
with
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Mðp;ϕÞ ¼ α

2π

Z
∞

0

du
u

Z
∞

0

dv
ð1þ vÞ2 e

−iv2u
��

2m −
m

1þ v

�
½e−i

3
v4χ2ðϕÞu3 − 1� þ e−

i
3
v4χ2ðϕÞu3

×
�
2u2v2

m4

�
1þ v

3

�
ðpF 2ðϕÞγÞ þ i

uv
m

σμνF μνðϕÞ − imuv
2þ v
1þ v

χðϕÞγ5ζ̂
��

: ð25Þ

It is worth noticing that the quantityMðp;ϕÞ does not contain vacuum terms and it vanishes if the plane wave vanishes. This
is in agreement with the well-known fact that on-shell states do not undergo radiative corrections in vacuum [8].
At this point, by using the properties of the free states usðpÞ, it is not difficult to prove that the matrix Mss0 ðp;ϕÞ is

diagonal. Thus, we conclude that the function fðinÞs ðp;ϕÞ satisfies the equation

i
dfðinÞs ðp;ϕÞ

dϕ
¼ m

p−
Msðp;ϕÞfðinÞs ðp;ϕÞ; ð26Þ

where

Msðp;ϕÞ ¼ m
α

2π

Z
∞

0

du
u

Z
∞

0

dv
ð1þ vÞ2 e

−iv2u
�
1þ 2v
1þ v

½e−i
3
v4χ2ðϕÞu3 − 1�

þe−
i
3
v4χ2ðϕÞu3

�
2u2v2

�
1þ v

3

�
χ2ðϕÞ þ is

uv2

1þ v
χðϕÞ

��
: ð27Þ

The quantityMsðp;ϕÞ is easily shown, by means of changes of variables in u and v in the first term, to exactly coincide with
the spin-dependent mass correction in a constant crossed field, with the replacement χ0 → χðϕÞ [107,121],

Msðp;ϕÞ ¼ m
α

2π

Z
∞

0

du
Z

∞

0

dv
ð1þ vÞ3 e

−iu½1þ1
3

χ2ðϕÞ
v2

u2�
�
5þ 7vþ 5v2

3

χ2ðϕÞ
v2

uþ isχðϕÞ
�
: ð28Þ

Now, Eq. (26) can be easily integrated. In fact, by imposing the initial condition limϕ→−∞ fðinÞs ðp;ϕÞ ¼ 1, we obtain that

the radiatively corrected positive-energy Volkov in-state UðinÞ
R;s ðp; xÞ, which includes the decay of the state itself, is given by

UðinÞ
R;s ðp; xÞ ¼ eiΦ

ðinÞðpÞe−i
m
p−

R
ϕ

−∞
dφMsðp;φÞEðp; xÞusðpÞ

¼
�
1þ n̂ ÂðϕÞ

2p−

�
eif−ðpxÞ−

R
ϕ

−∞
dφ½ðpAðφÞÞ

p−
−A2ðφÞ

2p−
þ m

p−
Msðp;φÞ�gusðpÞ: ð29Þ

Within the LCFA, this expression exactly coincides with
the corresponding solution found in Ref. [117] (the addi-
tional term in the preexponential function in Ref. [117] can
be shown to be equivalent to one having the same matrix
structure of the field-dependent term of the Volkov state
and being smaller than that term by a factor proportional to
ξ0 ≫ 1, which can be ignored at the leading order in the
LCFA considered here). Also, we observe in relation to
point 1, below Eq. (23), that a shift of ϕ in the decaying
exponential function by a term scaling as p−=m2 would
result into a correction of the order of α to the preexpo-
nential function, which can be neglected under our ap-
proximations.
Analogously, by solving the Schwinger-Dyson equa-

tion (15), one obtains that the positron state VðinÞ
s ðp; xÞ

turns into the radiatively corrected state

VðinÞ
R;s ðp; xÞ

¼
�
1 −

n̂ ÂðϕÞ
2p−

�
eifðpxÞ−

R
ϕ

−∞
dφ½ðpAðφÞÞ

p−
þA2ðφÞ

2p−
− m

p−
M�

sð−p;φÞ�gvsðpÞ;

ð30Þ

which includes the decay effects. Note that Msð−p;φÞ ¼
M−sðp;φÞ [see Eq. (28)], which correctly corresponds to
the interaction magnetic energy of the positron intrinsic
magnetic moment having the opposite sign of that of the
electron.
Note that the radiatively corrected electron in-states are

normalized as

ŪðinÞ
R;s ðp; xÞUðinÞ

R;s ðp; xÞ
ūsðpÞusðpÞ

¼ e
2m
p−

R
ϕ

−∞
dφIm½Msðp;φÞ�; ð31Þ
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V̄ðinÞ
R;s ðp; xÞVðinÞ

R;s ðp; xÞ
v̄sðpÞvsðpÞ

¼ e
2m
p−

R
ϕ

−∞
dφIm½Msð−p;φÞ�: ð32Þ

In accordance with the optical theorem, it can be shown that
the quantity −ð2m=p−ÞIm½Msð�p;ϕÞ� is the total proba-
bility per unit of light-cone time ϕ that an electron/positron
with initial four-momentum pμ and spin quantum number s
emits a photon [103]. Then, these normalization conditions
exactly describe the decay of the state as due to the fact that
electron/positron states are unstable under emission of
photons in the presence of the plane wave.
Finally, by solving in a completely analogous way the

Schwinger-Dyson equations (14) and (16), one obtains the
following expressions for the radiatively corrected electron
and positron out-states:

UðoutÞ
R;s ðp; xÞ

¼
�
1þ n̂ ÂðϕÞ

2p−

�
e
if−ðpxÞþ

R
∞
ϕ

dφ½ðpAðφÞÞ
p−

−A2ðφÞ
2p−

þ m
p−

M�
sðp;φÞ�gusðpÞ;

ð33Þ

VðoutÞ
R;s ðp; xÞ

¼
�
1 −

n̂ ÂðϕÞ
2p−

�
e
ifðpxÞþ

R
∞
ϕ

dφ½ðpAðφÞÞ
p−

þ A2ðφÞ
2p−

− m
p−
Msð−p;φÞ�gvsðpÞ:

ð34Þ

As expected and appropriate for out-states, in this case, the
decaying exponential functions feature light-cone integrals
from ϕ to ∞.

IV. DECAYING PHOTON STATES

Analogously as in the previous section, we first observe
that the Schwinger-Dyson equation (2) applies to photon

in-states A ðinÞ
ν ðxÞ and, in the case of a background plane

wave, can be rewritten as [see Fig. 5(a)]

−∂μ∂μA
ðinÞ
ν ðxÞ ¼

Z
d4yPL;ν

λðx; yÞA ðinÞ
λ ðyÞ; ð35Þ

where Pνλ
L ðx; yÞ is the polarization operator in the plane-

wave field. The corresponding Schwinger-Dyson equation

for the photon out-stateA ðoutÞ
ν ðxÞ is given by [see Fig. 5(b)]

−∂μ∂μA
ðoutÞ
ν ðxÞ ¼

Z
d4yP�

L
λ
νðy; xÞA ðoutÞ

λ ðyÞ: ð36Þ

By limiting to the case of photon in-states, we recall that
Eq. (35) has been solved in Ref. [101] for Pνλ

L ðx; yÞ being
replaced by the corresponding one-loop polarization oper-
ator within the LCFA. Here, for the sake of completeness,
we only present a few steps of the derivation in Ref. [101].
As we mentioned in the Introduction, the one-loop

polarization operator, denoted here as Pð1Þμν
L ðx; yÞ, was

computed in Refs. [101,104,105]. By limiting to the
contributions corresponding to photons with transverse

polarization, the polarization operator Pð1Þμν
L ðx; yÞ within

the LCFA can be written in the form [101]

Pð1Þμν
L ðx; yÞ ¼

Z
d4l
ð2πÞ4

d4l0

ð2πÞ4 e
−iðlxÞPð1Þμν

L ðl; l0Þeiðl0yÞ; ð37Þ

where

Pð1Þμν
L ðl; l0Þ ¼ −ð2πÞ3δ2ðl⊥ − l0⊥Þδðl− − l0−Þ

Z
dϕe−iðl0þ−lþÞϕ

α

24π
m2κ2l ðϕÞ

×
Z

∞

0

duu
Z

1

0

dvð1 − v2Þe−iu½1− l02
m2

1−v2
4

þ ð1−v2Þ2
48

κ2l ðϕÞu2�

× ½ð3þ v2ÞΛμ
1ðlÞΛν

1ðlÞ þ ð6 − 2v2ÞΛμ
2ðlÞΛν

2ðlÞ� ð38Þ

is the transverse part of the polarization operator in momentum space (for notational simplicity, we have used the same
symbol as the whole polarization operator). Note that the above expression of the one-loop polarization operator is exactly

(a)

(b)

FIG. 5. The thick wiggly lines indicate the exact incoming photon line (a) and the exact outgoing photon line (b), and are
symbolically expressed as series expansion in terms of free photon propagator (thin wiggly internal lines) and polarization operators
(shaded circles).
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the Fourier transform in the light-cone time ϕ of the corresponding expression in a constant crossed field with the
replacement κ0 → κlðϕÞ ¼ ðl−=q−ÞκðϕÞ, with κðϕÞ ¼ −ðq−=mÞA0ψ

0ðϕÞ=Fcr [122–124].
Analogously as in electron/positron case, the polarization operator in configuration space can be written as

Pð1Þμν
L ðx; yÞ ¼

Z
d4l
ð2πÞ4 e

−iðlxÞPð1Þμν
L ðl;ϕxÞeiðlyÞ; ð39Þ

where

Pð1Þμν
L ðl;ϕÞ ¼ −

α

24π
m2κ2l ðϕÞ

Z
∞

0

duu
Z

1

0

dvð1 − v2Þe−iu½1− l2

m2
1−v2
4

þ ð1−v2Þ2
48

κ2l ðϕÞu2�

× ½ð3þ v2ÞΛμ
1ðlÞΛν

1ðlÞ þ ð6 − 2v2ÞΛμ
2ðlÞΛν

2ðlÞ�: ð40Þ

Now, by using the above expression of the polarization operator, we investigate how radiative corrections represented by

the right-hand side of Eq. (35) modify the photon in-state A
ðinÞ
j;μ ðxÞ ¼ expð−iðqxÞÞΛj;μðqÞ [recall that qμ ¼ ðω; qÞ, with

ω ¼ jqj]. Thus, we seek for a solution of the Schwinger-Dyson equation (35) of the form

A
ðinÞ
μ ðxÞ ¼ gðinÞj ðq;ϕÞe−iðqxÞΛj;μðqÞ; ð41Þ

where the unknown function gðinÞj ðq;ϕÞ has to fulfill the initial condition limϕ→−∞ gðinÞj ðq;ϕÞ ¼ 1. By substituting this

expression of A ðinÞ
μ ðxÞ in the Schwinger-Dyson equation (35), we obtain

2iq−δjj0
dgðinÞj ðq;ϕÞ

dϕ
¼

Z
d4y

d4l
ð2πÞ4 e

−iððl−qÞxÞΛj0;μðqÞPð1Þμν
L ðl;ϕxÞΛj;νðqÞeiððl−qÞyÞgðinÞj ðq;ϕyÞ: ð42Þ

The integrals over d2y⊥ and dτy can be taken analogously as in the electron/positron case and result into the delta functions

δ2ðl⊥ − q⊥Þ and δðl− − q−Þ, respectively, such that the equation for gðinÞj ðq;ϕÞ becomes

2iq−δjj0
dgðinÞj ðq;ϕÞ

dϕ
¼

Z
dϕy

dlþ
2π

eiðqþ−lþÞðϕx−ϕyÞΛj0;μðqÞPð1Þμν
L ðl;ϕxÞΛj;νðqÞgðinÞj ðq;ϕyÞ; ð43Þ

where now the four-vector lμ has light-cone components q−, q⊥, and lþ. Due to the special dependence of the quantities
Λμ
j ðqÞ on the four-momentum, one can already ascertain that the right-hand side is also diagonal on the indices j and j0.

Also, one can now take the integral over lþ because Pð1Þμν
L ðl;ϕxÞ contains lþ only in the exponent via the squared four-

momentum l2 ¼ 2q−lþ − q2⊥. Exactly with the same reasoning as in the electron/positron case, we can show that within the

LCFA the function gðinÞj ðq;ϕÞ has to fulfill the equation

iq−
dgðinÞj ðq;ϕÞ

dϕ
¼ mPjðq;ϕÞgðinÞj ðq;ϕÞ; ð44Þ

where

P1ðq;ϕÞ ¼
α

48π
mκ2ðϕÞ

Z
∞

0

duu
Z

1

0

dve−iu½1þ
ð1−v2Þ2

48
κ2ðϕÞu2�ð1 − v2Þð3þ v2Þ; ð45Þ

P2ðq;ϕÞ ¼
α

48π
mκ2ðϕÞ

Z
∞

0

duu
Z

1

0

dve−iu½1þ
ð1−v2Þ2

48
κ2ðϕÞu2�ð1 − v2Þð6 − 2v2Þ: ð46Þ

Note that since κðϕÞ is proportional to q−, both P1ðq;ϕÞ and P2ðq;ϕÞ tend to zero in the limit of vanishing photon
momentum.
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By accounting for the initial condition on gðinÞj ðq;ϕÞ, we
finally obtain

A
ðinÞ
R;j;μðq; xÞ ¼ e−iðqxÞ−i

m
q−

R
ϕ

−∞
dφPjðq;φÞΛj;μðqÞ: ð47Þ

In a completely analogous way, by solving the Schwinger-
Dyson equation (36) for the photon out-state, we obtain

A
ðoutÞ
R;j;μðq; xÞ ¼ e

−iðqxÞþi mq−

R
∞
ϕ

dφP�
j ðq;φÞΛj;μðqÞ: ð48Þ

As in the case of the electron/positron states, one can easily
recognize that the damping of the photon states physically
corresponds to the fact that photons can decay into
electron-positron pairs inside a plane wave. Indeed, in
agreement with the optical theorem, the quantity
−ð2m=q−ÞIm½Pjðq;ϕÞ� corresponds to the total probability
per unit of light-cone time ϕ that a photon with four-
momentum qμ and polarization j decays into an electron-
positron pair [105].

V. PROBABILITIES OF NONLINEAR
COMPTON SCATTERING AND NONLINEAR

BREIT-WHEELER PAIR PRODUCTION
INCLUDING THE PARTICLES STATES DECAY

Having obtained the electron/positron and photon states
including the effects of the states decay, it is now straight-
forward to write down the probabilities of the basic strong-
field QED processes at the leading order in α but including
the mentioned effects of the decay of the states.
Concerning nonlinear Compton scattering, the leading-

order amplitude in α of the process is (we set for simplicity
the quantization volume equal to unity)

Sðe−→e−γÞ ¼−ie
Z

d4x
ŪðoutÞ

R;s0 ðp0; xÞffiffiffiffiffiffi
2ε0

p Â
ðoutÞ�
R;j ðq;xÞffiffiffiffiffiffi

2ω
p UðinÞ

R;s ðp;xÞffiffiffiffiffi
2ε

p ;

ð49Þ

where the meaning of the quantum numbers of the initial
and final particles is clear.
After a few standard manipulations, this amplitude can

be reduced to a single-dimensional integral over the light-
cone time ϕ,

Sðe−→e−γÞ ¼ −
ieffiffiffiffiffiffiffiffiffiffiffi
8εε0ω

p ð2πÞ3δ2ðp0⊥ þ q⊥ − p⊥Þδðp0
− þ q− − p−Þ

×
Z

dϕe
−i mp−

R
ϕ

−∞
dφMsðp;φÞ−i

R
∞
ϕ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

q−
Pjðq;φÞ�

× e
ifðp0

þþqþ−pþÞϕ−
R

∞
ϕ

dφ½ðp0AðφÞÞ
p0−

−A2ðφÞ
2p0−

�−
R

ϕ

−∞
dφ½ðpAðφÞÞ

p−
−A2ðφÞ

2p−
�g

× ūs0 ðp0Þ
�
1 −

n̂ ÂðϕÞ
2p0

−

�
Λ̂jðqÞ

�
1þ n̂ ÂðϕÞ

2p−

�
usðpÞ: ð50Þ

Since the quantitiesMsðp;ϕÞ and Pjðq;ϕÞ are already computed within the LCFA, the above amplitude is meaningful only
within the same approximation, which we implement directly in the probability

Pðe−→e−γÞ ¼
Z

d3q
ð2πÞ3

d3p0

ð2πÞ3 jS
ðe−→e−γÞj2

¼
Z

d3q
16π2

α

p−p0
−ω

Z
dϕdϕ0e−i

m
p−

R
ϕ

−∞
dφMsðp;φÞþi mp−

R
ϕ0
−∞

dφM�
sðp;φÞ

× e
−i
R

∞
ϕ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

q−
Pjðq;φÞ�þi

R
∞
ϕ0 dφ½

m
p0−
M�

s0 ðp
0;φÞþ m

q−
P�
j ðq;φÞ�

× e
ifðp0

þþqþ−pþÞðϕ−ϕ0Þþ
R

ϕ

ϕ0 dφ½
ðp0AðφÞÞ

p0−
−A2ðφÞ

2p0−
−ðpAðφÞÞ

p−
þA2ðφÞ

2p−
�g

×
1

4
tr

��
1 −

n̂ ÂðϕÞ
2p0

−

�
Λ̂jðqÞ

�
1þ n̂ ÂðϕÞ

2p−

�
ðp̂þmÞð1þ sγ5ζ̂Þ

×

�
1 −

n̂ Âðϕ0Þ
2p−

�
Λ̂jðqÞ

�
1þ n̂ Âðϕ0Þ

2p0
−

�
ðp̂0 þmÞð1þ s0γ5ζ̂0Þ

�
; ð51Þ
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where we have used the positive-energy electron density
matrix usðpÞūsðpÞ ¼ ðp̂þmÞð1þ sγ5ζ̂Þ=2 and the analo-
gous for us0 ðp0Þūs0 ðp0Þ [8]. Indeed, by following the
procedure as outlined, for example, in Refs. [49,51], we
can pass from the variables ϕ and ϕ0 to the variables ϕþ ¼
ðϕþ ϕ0Þ=2 and ϕ− ¼ ϕ − ϕ0, and expand the integrand for
ϕ− around ϕ− ¼ 0. Since within the LCFA the phase ω0ϕ−
can be estimated to be of the order of 1=ξ0 and ξ0 is
assumed to be much larger than unity, it is sufficient to
expand the preexponential function up to the linear order in

ϕ− in order to obtain the leading-order result. For the same
reason, we expand the new terms in the phase, coming from
the decay of the states, at the zero order in ϕ−, as they are
already within the LCFA (see also below). Finally, the
remaining terms in the phase, which contain large coef-
ficients, should be expanded up to the third order in ϕ−, as
it is already known [2,28].
In this way, we arrive at the following expression of the

photon emission probability (see also Refs. [49,51] for the
expression of the probability without the decay of the states):

Pðe−→e−γÞ ¼
Z

d3q
16π2

α

p−p0
−ω

Z
dϕþe

2Imf m
p−

R
ϕþ
−∞

dφMsðp;φÞþ
R

∞
ϕþ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

q−
Pjðq;φÞ�g

×
Z

dϕ−e
i m

2

2p−
q−
p0−
f½1þπ2⊥;eðϕþÞ�ϕ−þE2ðϕþÞ

m2
ϕ3−
12
g 1
4
tr

��
1 −

n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�
2p0

−

�
Λ̂jðqÞ

×

�
1þ n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�

2p−

�
ðp̂þmÞð1þ sγ5ζ̂Þ

�
1 −

n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�
2p−

�

× Λ̂jðqÞ
�
1þ n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�

2p0
−

�
ðp̂0 þmÞð1þ s0γ5ζ̂0Þ

�
; ð52Þ

where p0⊥ ¼ p⊥ − q⊥; p0− ¼ p− − q−,

π⊥;eðϕÞ ¼
p⊥
m

−
p−

q−

q⊥
m

−
A⊥ðϕÞ

m
; ð53Þ

and EðϕÞ ¼ −A 0ðϕÞ. Due to the inverse scaling of the
damping terms with the minus components of the momenta
in Eq. (51), one may think that a first-order expansion in ϕ−
is required for those terms. However, one realizes that the
resulting terms would provide a local correction in ϕþ of
the order of α to the term linear in ϕ− in the phase, which
can be neglected within our leading-order treatment.
Equation (52) can be further manipulated and the

integrals in dϕ− and in d2q⊥ can be taken analytically
with standard methods, as it has been carried out, for
example, in Refs. [49,51]: the integral in dϕ− results in
modified Bessel functions and the integral in d2q⊥ is
Gaussian. Also, the Dirac trace is easily computed and
spin- and polarization-resolved probabilities of Compton
scattering are known [28,125–129]. Our main remark here
is that these results can still be used here. The novelty of the
present analysis is, however, that the decay of the electron
and the photon states affects the total emission probability
and not simply as an overall damping factor (this was
already found within the probabilistic approach in
Ref. [87]). The precise structure of the decaying exponen-
tial functions depends on whether the corresponding
particle is either an incoming or an outgoing particle. In
the case of an incoming (outgoing) particle in a given state
and for a fixed light-cone time ϕ0, the decay exponent
corresponds to the total probability that the particle in that

state radiates a photon via nonlinear Compton scattering
(for electrons and positrons) or transforms into an electron-
positron pair via nonlinear Breit-Wheeler pair production
(for photons) from ϕ → −∞ to ϕ ¼ ϕ0 (from ϕ ¼ ϕ0 to
ϕ → ∞). For this reason, we can conclude that for χ0 ∼ 1 or
κ0 ∼ 1, the effects of the particles states decay are important
for pulse phase lengths ΦL such that αξ0ΦL ≳ 1 [2,28].
It is also important to stress that the decaying exponential

depends on all quantum numbers characterizing the par-
ticles, that is, not only on their momentum but also on their
spin (for electrons and positrons) and polarization (for
photons). These spin and polarization effects significantly
complicate the computations as they prevent using the well-
known spin and polarization sum rules [8,130].
Finally, we observe that if we ignore electron spin effects

and photon polarization effects [i.e., use probabilities
averaged (summed) over the discrete quantum numbers
of the initial (final) particles] as well as the decay of the
photon state, our results are in agreement with those in
Ref. [87].
We pass now to the case of nonlinear Breit-Wheeler pair

production. In this case, the leading-order amplitude in α
but taking into account the decay of the states is given by

Sðγ→e−eþÞ ¼ −ie
Z

d4x
ŪðoutÞ

R;s0 ðp0; xÞffiffiffiffiffiffi
2ε0

p Â
ðinÞ
R;j ðq; xÞffiffiffiffiffiffi
2ω

p VðoutÞ
R;s ðp; xÞffiffiffiffiffi

2ε
p ;

ð54Þ

where, for notational convenience, we assumed that the
positron is produced with four-momentum pμ and spin
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quantum number s. In fact, due to the symmetry structure of
the amplitude, we can already conclude that the probability
of nonlinear Breit-Wheeler pair production within the

LCFA and by taking into account the decay of the states
is given by (see also Ref. [51] for the expression of the
probability without the decay of the states)

Pðγ→e−eþÞ ¼
Z

d3p
16π2

α

q−p0
−ε

Z
dϕþe

2Imf m
q−

R
ϕþ
−∞

dφPjðq;φÞþ
R

∞
ϕþ

dφ½ m
p0−
Ms0 ðp0;φÞþ m

p−
Msð−p;φÞ�g

×
Z

dϕ−e
i m

2

2p−
q−
p0−
f½1þπ2⊥;pðϕþÞ�ϕ−þE2ðϕþÞ

m2
ϕ3−
12
g 1
4
tr

��
1 −

n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�
2p0

−

�
Λ̂jðqÞ

×

�
1 −

n̂½ÂðϕþÞ þ Â0ðϕþÞϕ−=2�
2p−

�
ðp̂ −mÞð1þ sγ5ζ̂Þ

�
1þ n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�

2p−

�

× Λ̂jðqÞ
�
1þ n̂½ÂðϕþÞ − Â0ðϕþÞϕ−=2�

2p0
−

�
ðp̂0 þmÞð1þ s0γ5ζ̂0Þ

�
; ð55Þ

where p0⊥ ¼ q⊥ − p⊥; p0− ¼ q− − p−,

π⊥;pðϕÞ ¼
p⊥
m

−
p−

q−

q⊥
m

þA⊥ðϕÞ
m

; ð56Þ

and where we have also used the negative-energy electron
density matrix vsðpÞv̄sðpÞ ¼ ðp̂ −mÞð1þ sγ5ζ̂Þ=2 [8].
Analogous remarks about the importance of the particles
states decay effects and of the dependence of the decay
exponential functions on the electron/positron and photon
quantum numbers apply here too.

VI. CONCLUSIONS

In conclusion, we have derived analytical expressions of
the probability of nonlinear Compton scattering and non-
linear Breit-Wheeler pair production within the locally
constant field approximation by including the effects of the
decay of the particles states but still neglecting radiative
corrections of the order of α. The effects of the decay of the
states, in fact, are cumulative effects scaling with the laser
pulse duration and amount to exponential damping factors,
which take into account the fact that Volkov electron/
positron states and free photon states are not stable states in
a plane wave, once the interaction between the electron/
positron Dirac field and the electromagnetic field is taken
into account.
After solving the Schwinger-Dyson equations for elec-

tron, positron, and photon in- and out-states, we have
inserted them into the leading order in α amplitudes of
nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production to determine the effects of the states
decay into the corresponding probabilities. We have found
that these probabilities can be expressed as integrals
over the light-cone time ϕ of the corresponding proba-
bilities without states decay per unit ϕ times a light-cone
time-dependent exponential damping function for each

participating particle. The exponential function for an
incoming electron/positron (photon) at each light-cone
time corresponds to the total probability that the elec-
tron/positron (photon) emits a photon via nonlinear
Compton scattering (transforms into an electron-positron
pair via nonlinear Breit-Wheeler pair production) until that
light-cone time. Analogously, the exponential damping
function for an outgoing electron/positron (photon) at each
light-cone time corresponds to the total probability that the
electron/positron (photon) emits a photon via nonlinear
Compton scattering (transforms into an electron-positron
pair via nonlinear Breit-Wheeler pair production) from that
light-cone time on.
Interestingly, the exponential damping functions depend

not only on the particles momentum but also on their spin
(for electrons/positrons) and polarization (for photons).
An important consequence of this last dependence is
that the spin and polarization sum rules employed in
perturbative calculations cannot be used anymore.
Finally, since the exponential damping functions feature

light-cone-time-integrated probabilities of nonlinear
Compton scattering and nonlinear Breit-Wheeler pair
production (computed for stable particles), the effects of
the states decay at χ0 ∼ 1 or κ0 ∼ 1 are expected to become
significant when the laser pulse length is sufficiently large
that αξ0ΦL ≳ 1.
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