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A class of noncanonical effective potentials is introduced allowing stable, radially symmetric, solutions
to first order Bogomol’nyi equations for a real scalar field in a fixed spacetime background. This class of
effective potentials generalizes those found previously by Bazeia, Menezes, and Menezes [Phys. Rev. Lett.
91, 241601 (2003)] for radially symmetric defects in a flat spacetime. Use is made of the “on-shell method”
introduced by Atmaja and Ramadhan [Phys. Rev. D 90, 105009 (2014)] of reducing the second order
equation of motion to a first order one, along with a constraint equation. This method and class of potentials
admits radially symmetric, stable solutions for four dimensional static, radially symmetric spacetimes.
Stability against radial fluctuations is established with a modified version of Derrick’s theorem, along with
demonstrating that the radial stress vanishes. Several examples of scalar field configurations are given.
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I. INTRODUCTION

A class of noncanonical scalar field potentials of the
form Uðr;ϕÞ ¼ r−NPðϕÞ, where r is a radial variable, was
introduced by Bazeia, Menezes, and Menezes [1] for scalar
field theories in D space dimensions. It was shown that for
certain constraints for D and N that radially stable scalar
field configurations can exist, evading Derrick’s theorem
[2]. The r−N factor in Uðr;ϕÞ can emerge from a more
fundamental theory which gives rise to an effective scalar
field model. Potentials of this form have been physically
motivated and considered in various contexts [3–7]. They
give rise to field theoretic models with interesting proper-
ties, and are of mathematical interest, as well.
Attention has also been focused upon the possibility of

evading Derrick’s theorem within the context of replacing a
flat spacetime by curved spacetimes. (See, for example, [8–
13].) However, most of this work has been applied to
systems with canonical scalar field potentials, which have
no explicit dependence upon a radial variable, with an
emphasis upon the effects of spacetime curvature on the
stability of solitonic systems.
Presently, another class of potentials of the more general

form Vðr;ϕÞ ¼ FðrÞPðϕÞ is introduced in order to solve
first order Bogomol’nyi equations for a scalar field ϕðrÞ in
a fixed static, radially symmetric four dimensional space-
time background. The nontopological solitonic solutions

depend upon the assumed form of PðϕÞ and the form of the
spacetime metric. These solutions are also found to
minimize the energy and to be radially stable. The radial
stability can be established with a modified version of
Derrick’s theorem [2], along with showing that the radial
stress vanishes. The first order Bogomol’nyi equations can
be solved using the “on-shell” type of method introduced
by Atmaja and Ramadhan [14] whereby a term is added and
subtracted from the second order Euler-Lagrange equations
of motion, thereby allowing a split of the second order
differential equation (DE) into one first order Bogomol’nyi
DE plus a constraint equation. (See also, [15,16].) The
solution to these equations automatically satisfies the
second order equation of motion. Here, this procedure is
adapted to a single static, radially symmetric scalar field
ϕðrÞ for a particular type of potential Vðr;ϕÞ ¼ FðrÞPðϕÞ
whose function FðrÞ depends upon the spacetime metric
gμν. Furthermore, this solution ϕðrÞ provides a lower bound
on the energy, and the scalar configuration described by
ϕðrÞ is shown to be stable against radial collapse or
expansion.
The possibility of scalarization of gravitational sources,

such as neutron stars, was introduced by Damour and
Esposito-Farese [17] in the context of scalar-tensor theory
expressed in an Einstein frame. There, the response of a
scalar field near a gravitational source was due to strong
field effects associated with high curvature. Although a
spontaneous scalarization can occur due to gravitational
effects, the concept of scalarization can be extended to
situations where other fields are involved. An example is
provided by Maxwell-scalar theory, where a real valued
scalar field couples nonminimally to the Maxwell field via
a coupling function, say εðϕÞ, through an interaction term
− 1

4
εðϕÞFμνFμν. A scalar field may form around a compact
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object, even in a flat Minkowski spacetime (see, e.g.,
[7,18], and references therein). Models involving the
formation of a scalar cloud around some source in a fixed
spacetime background can serve as toy models of more
realistic processes where back reactions upon the spacetime
can be taken into account. Here, we examine the case of a
scalar field responding to another, unspecified, field
through an effective scalar potential Vðr;ϕÞ. In particular,
we consider the radially stable solutions of a first order
Bogomol’nyi equation.
Examples of how an effective scalar potential can arise

from interactions with other fields are provided in Sec. II,
and a BPS ansatz for obtaining Bogomol’nyi equations and
solutions is presented in Sec. III. The radial stability of the
solutions is discussed in Sec. IV. Several examples of
application are provided in Sec. V. Section VI concludes
with a brief summary. Details regarding stability arguments
are relegated to an Appendix.

II. AN EFFECTIVE POTENTIAL

A potential of the form Vðr;ϕÞ ¼ FðrÞPðϕÞ ¼ 1
f2h PðϕÞ

that is considered here can arise naturally as an effective
scalar potential for a real scalar field ϕ that interacts with
another field. Two such examples are provided here.

A. Interacting scalars

Consider a model of two interacting real scalar fields, ϕ
and χ, described by

L ¼ 1

2
∂μϕ∂μϕþ 1

2
KðϕÞ∂μχ∂μχ ð1Þ

The equations of motion are given by

∇μ∇μϕ −
1

2
ð∂ϕKÞð∂μχ∂μχÞ ¼ 0 ð2aÞ

1

2
∇μ½KðϕÞ∂μχ� ¼ 0 ð2bÞ

Assume now a radially symmetric (i.e., spherical or
cylindrical symmetry) ansatz for time independent fields in
a static, radially symmetric, four dimensional spacetime,
ϕ ¼ ϕðrÞ and χ ¼ χðrÞ. Also, denote g ¼ j det gμνj and let
the radial part of

ffiffiffi
g

p
be designated by fðrÞ and define

jgrrj ¼ hðrÞ where r is the radial variable. In this case the
equations of motion (2) reduce to

−
1

f
∂rðfh∂rϕÞ þ

1

2
ð∂ϕKÞ½hð∂rχÞ2� ¼ 0 ð3aÞ

∂r½fhKðϕÞ∂rχ� ¼ 0 ð3bÞ

From (3b) it follows that

∂rχ ¼ C
fhKðϕÞ ð4Þ

where C is a constant. From (4) we have

1

2
KðϕÞ∂μχ∂μχ ¼ 1

2
KðϕÞð∂rχ∂rχÞ

¼ −
1

2
Khð∂rχÞ2 ¼ −

1

2f2h
C2

KðϕÞ ð5Þ

Using (5), (1) yields an effective Lagrangian for the field
ϕ, L → 1

2
∂μϕ∂μϕ − Vðr;ϕÞ, where the effective potential is

Vðr;ϕÞ¼−
1

2
KðϕÞ∂μχ∂μχ¼ 1

2f2h
C2

KðϕÞ¼FðrÞPðϕÞ ð6Þ

where FðrÞ ¼ 1=ðf2hÞ and PðϕÞ ¼ 1
2
C2K−1ðϕÞ. The equa-

tion of motion for ϕ can now be written as

□ϕþ ∂ϕVðr;ϕÞ ¼ 0: ð7Þ

B. Maxwell-scalar theory

A second example is provided by a Maxwell-scalar
model involving a real, massless scalar field ϕ coupled
nonminimally to an abelian Maxwell field Fμν. The
Lagrangian is

L ¼ 1

2
∂μϕ∂μϕ −

1

4
εðr;ϕÞFμνFμν − JνAν ð8Þ

where εðr;ϕÞ is a nonminimal coupling function which
may display a tachyonic instability that can depend upon
the radial distance r from the coordinate origin. We want to
consider the spatial region exterior to the source of charge
Q, i.e., the region of space where Jν → 0. The equations of
motion that follow from (8) are

∇μ∇μϕþ 1

4
ð∂ϕεÞFμνFμν þ ∂ϕJνAν ¼ 0

∇μðεFμνÞ ¼ Jν: ð9Þ

(A metric with signature ðþ;−;−;−Þ is assumed. See
Eq. (15) below.) Using FμνFμν ¼ −2ðE2 −B2Þ and setting
Jν ¼ 0 and B ¼ 0, these reduce to

∇μ∇μϕ −
1

2
ð∂ϕεÞE2 ¼ 0

∇μðεFμνÞ ¼ 0: ð10Þ

Assuming radial symmetry, the Maxwell equation
reduces to ∇rðεFr0Þ ¼ 1ffiffi

g
p ∂rð ffiffiffi

g
p

εFr0Þ ¼ 1
f ∂rðfεFr0Þ ¼ 0

which is solved by

Fr0ðr;ϕÞ ¼ Q
fðrÞεðr;ϕÞ ;

Fr0 ¼ grrg00Fr0 ¼ −
g00Q

fðrÞhðrÞεðr;ϕÞ ð11Þ
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where grr ¼ 1=grr and we define a “rationalized charge”
Q ¼ Q0=4π, (or “rationalized linear charge density”
Q ¼ Q0=2π) withQ0 representing the actual charge/charge
density, and

E2 ¼ −Fr0Fr0 ¼ g00jgrrjQ2

f2ε2
¼ g00Q2

f2hε2
: ð12Þ

An effective Lagrangian for the scalar field ϕ is

L ¼ 1

2
∂μϕ∂μϕþ 1

2
εðr;ϕÞE2

¼ 1

2
∂μϕ∂μϕþ g00Q2

2f2h
ε−1ðr;ϕÞ: ð13Þ

Now define an effective potential

Vðr;ϕÞ ¼ 1

2
εE2 ¼ g00Q2

2f2h
ε−1ðr;ϕÞ: ð14Þ

An implementation of a BPS ansatz (presented below)
will allow the coupling function to be expressed as
g00Q2ε−1ðr;ϕÞ ¼ X2ðϕÞ. Using the expression (12) for
E2ðr;ϕÞ ∝ ε−2ðr;ϕÞ, we see that for the ansatz solutions

ϕðrÞ we have, by (14), Vðr;ϕÞ ¼ 1
2
εE2 → 1

2f2h X
2, and

− 1
2
ð∂ϕεÞE2 ¼ þ∂ϕð12 εE2Þ, so that an effective scalar

potential appearing in the equation of motion for ϕ has
the form Vðr;ϕÞ ¼ 1

2
εðr;ϕÞE2ðr;ϕÞ → 1

2f2h X
2ðϕÞ. In this

case the scalar field equation of motion takes its standard
form □ϕþ ∂ϕVðr;ϕÞ ¼ 0.
To summarize, a scalar field ϕ can interact with other

fields (e.g., scalars and gauge fields [14–16]) with an
effective scalar potential of the form Vðr;ϕÞ ¼ 1

f2h PðϕÞ.
Scalar models with such an effective potential will be seen
to have radially stable time independent solutions that obey
a first order Bogomol’nyi equation.

III. BPS ANSATZ

The spacetime geometries considered here are assumed
to be fixed, i.e., back reactions of the scalar field upon the
metric are ignored.1 The scalar field is assumed to be
minimally coupled to the gravitational sector, that is, the
action is written in an Einstein frame. We consider 4D
metrics with radial symmetry (spherical or cylindrical) of
the form

�
ds2 ¼ AðrÞdt2 − BðrÞdr2 − R2ðrÞðdθ2 þ sin2θdφ2Þ; ðspherical symmetryÞ
ds2 ¼ AðrÞdt2 − BðrÞdr2 − ρ2ðrÞdφ2 − ζ2ðrÞdz2; ðcylindrical symmetryÞ ð15Þ

in which case we have
ffiffiffi
g

p ¼ ffiffiffiffiffiffiffi
AB

p
R2 sin θ for spherical

symmetry and
ffiffiffi
g

p ¼ ffiffiffiffiffiffiffi
AB

p
ρζ for cylindrical symmetry [19],

where g ¼ j det gμνj. (The functions AðrÞ and BðrÞ for the
cylindrical case are generally different from those for the
spherical case.) We represent the radial part of

ffiffiffi
g

p
by

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞCðrÞ

p
ð16Þ

where
ffiffiffiffiffiffiffiffiffiffi
CðrÞp

is given by

ffiffiffiffiffiffiffiffiffiffi
CðrÞ

p
¼

(
R2ðrÞ; ðspherical symmetryÞ
ρðrÞζðrÞ; ðcylindrical symmetryÞ: ð17Þ

The Lagrangian for the real scalar field ϕ is given by

L ¼ 1

2
∂μϕ∂μϕ − Vðr;ϕÞ; Vðr;ϕÞ ¼ FðrÞPðϕÞ ð18Þ

where the noncanonical potential Vðr;ϕÞ ¼ FðrÞPðϕÞ
depends not only upon the scalar field ϕ, but also has

an explicit dependence upon the radial coordinate r, as in
Ref. [1]. We consider static, radially symmetric solutions
ϕðrÞ, for which the Lagrangian can be written as

L ¼ 1

2
grrðrÞð∂rϕÞ2 − FðrÞPðϕÞ ð19Þ

where grrðrÞ ¼ 1=grrðrÞ ¼ −1=BðrÞ and ∂r ¼ ∂=∂r.
The equation of motion following from (18) is given by

∇μ∇μϕþ ∂ϕVðr;ϕÞ ¼ 0, or

1ffiffiffi
g

p ∂rð
ffiffiffi
g

p
grr∂rϕÞ þ ∂ϕV ¼ 0 ð20Þ

for ϕ ¼ ϕðrÞ, with ∂ϕV ¼ ∂V=∂ϕ. We can also define
hðrÞ≡ jgrrðrÞj ¼ 1=BðrÞ, or grr ¼ −h for our metric
signature. The equation of motion (20) then reduces to

∂r½fðrÞhðrÞ∂rϕ� ¼ fðrÞ∂ϕVðr;ϕÞ: ð21Þ

We now use the method of Atmaja and Ramadhan [14] to
generate a first order Bogomol’nyi equation by subtracting
a term ∂rXðϕÞ from both sides of (21):

1The background metric is fixed and is therefore not required
to solve any particular equation of motion.
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∂r½fðrÞhðrÞ∂rϕ−XðϕÞ�¼fðrÞ∂ϕVðr;ϕÞ−∂rXðϕÞ ð22Þ

where the function X ¼ XðϕÞ and ∂rXðϕÞ ¼ ∂ϕXðϕÞ∂rϕ.
The Euler-Lagrange equation of motion, i.e., Eq. (22) is
then solved by solutions to the set of equations

fðrÞhðrÞ∂rϕ ¼ XðϕÞ; fðrÞ∂ϕVðr;ϕÞ ¼ ∂ϕXðϕÞ∂rϕ:

ð23Þ

The first equation is the first order Bogomol’nyi equa-
tion, and the second equation gives the form of the potential
V in terms of XðϕÞ and r, since

∂ϕV ¼ ∂ϕX ·
1

f2h
X ¼ 1

2f2h
∂ϕX2: ð24Þ

Integrating gives a potential V ¼ ð2f2hÞ−1ðX2 þ cÞ.
Setting the constant c ¼ 0 and requiring that the function
XðϕÞ is chosen so that V is everywhere finite for a finite
energy solution, then yields

Vðr;ϕÞ ¼ 1

2f2ðrÞhðrÞX
2ðϕÞ ð25Þ

where 1=h ¼ jgrrj ¼ B. The second order equation of
motion is then reduced to a first order one, along with a
constraint on the form of Vðr;ϕÞ:

∂rϕðrÞ¼
1

fh
XðϕÞ; Vðr;ϕÞ¼ 1

2f2h
X2ðϕÞ¼FðrÞPðϕÞ:

ð26Þ

We can identify FðrÞ ¼ ðf2hÞ−1 and PðϕÞ ¼ 1
2
X2ðϕÞ.

Upon choosing a suitable form for XðϕÞ that keeps the
energy E (or, energy per unit length for cylindrical
symmetry) of the scalar field configuration finite, the
Bogomol’nyi equation is solved byZ

dϕ
XðϕÞ ¼

Z
dr

fðrÞhðrÞ ; ð27aÞ

Vðr;ϕÞ ¼ 1

2f2ðrÞhðrÞX
2ðϕÞ: ð27bÞ

We note that for h ¼ 1 and f ¼ rN this coincides with
the form of the potential introduced in Ref. [1] for flat
spacetimes, with the identification XðϕÞ ¼ WϕðϕÞ ¼ ∂ϕW,
where WðϕÞ is a superpotential.

IV. ENERGY AND STABILITY

The component of the stress-energy tensor associated
with the energy density of the static scalar field ϕðrÞ is
T0
0 ¼ −L ¼ −½1

2
grrð∂rϕÞ2 − V�, which wewill also label as

H. From (15) we have grr ¼ −hðrÞ ¼ −B−1ðrÞ so that

H ¼ 1
2
hð∂rϕÞ2 þ V. From (26) we have gradient and

potential contributionsHg¼1
2
hð∂rϕÞ2 andHp ¼ Vðr;ϕÞ ¼

1
2f2h X

2ðϕÞ ¼ 1
f2h PðϕÞ. For the ansatz solutions (26) the

gradient and potential parts are connected by XðϕÞ and
contribute equally, but for an arbitrary solution to the
second order equation of motion we consider the gradient
and potential parts separately in applying an approach to
analyze stability. Stability for the ansatz solutions is then
demonstrated by connecting the gradient and potential
pieces.
The energy of the scalar field is E ¼ R

T0
0

ffiffiffi
g

p
d3x, so that

upon removing the integrations over the nonradial coor-
dinates (see Appendix) we have an energy parameter E,
given by

E ¼
Z

T0
0fðrÞdr ¼

Z
HfðrÞdr ð28Þ

For a stable solution ϕðrÞwe require E to be finite, and to
represent a stable minimum of the energy. In order to
determine whether a static, radially dependent solution
ϕðrÞ represents a stable minimum of the action and energy,
we follow the line of reasoning used in Derrick’s theorem
[2]. A solution ϕðrÞ is allowed to be distorted by making
the replacements ϕðrÞ → ϕλðrÞ ¼ ϕðλrÞ and E → Eλ where
Eλ is the energy parameter E with ϕ replaced by ϕλ. Upon
allowing the parameter λ to vary, we require that a solution
representing a stable minimum satisfy δE ¼ 0 and δ2E ≥ 0,
or, in terms of Eλ,

ðiÞ dEλ

dλ

����
λ¼1

¼ 0 ð29aÞ

ðiiÞ d2Eλ

dλ2

����
λ¼1

≥ 0: ð29bÞ

The energy Eλ can be written as a sum of two indepen-
dent parts, I1λ, representing the gradient contributionHg ¼
1
2
hð∂rϕÞ2 to the energy, and I2λ, representing the contri-

bution from the potential, Hp ¼ Vðr;ϕÞ. It is shown (see
Appendix) that for any radially symmetric ansatz solution
satisfying (26) with finite energy (or finite energy per unit
length) in a spacetime with a metric of the form given by
(15), the stability of the solution, as required by (29), is
guaranteed.
Additionally, it is seen that the radial stress vanishes,

Tr
r ¼ 0, using the ansatz (26). Using Tr

r ¼ ∂rϕ∂rϕ − grrL,
we find

Tr
r ¼ −

1

2
hð∂rϕÞ2 þ Vðr;ϕÞ ¼ 0 ð30Þ

where (26) has been used. This indicates a stability against
spontaneous radial collapse or expansion. We also note that
the result Trr ¼ 0 implies
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∂rϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jgrrjV

p
¼ �ðfhÞ−1X: ð31Þ

(This is a radial generalization of the familiar
one-dimensional linear result ∂xϕðxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

2VðϕÞp ¼
�∂ϕWðϕÞ, whereWðϕÞ is a superpotential, with X playing
the role of ∂ϕW.) The nonzero stress components for the

ansatz solutions are Tξ
ξ ¼ −gξξL ¼ T0

0 ¼ HðrÞ (no sum on

ξ), where ξ represents a nonradial coordinate, with Tξ
ξ

independent of ξ.
We note that for ansatz solutions satisfying (26) we

have Hg ¼ Hp and therefore H ¼ T0
0 ¼ 2Vðr;ϕÞ ¼

1
f2ðrÞhðrÞX

2ðϕÞ.

V. EXAMPLES

Several examples are now given for different metrics,
where a form of XðϕÞ is chosen to yield PðϕÞ ¼ 1

2
X2ðϕÞ

corresponding to the ubiquitous and interesting Higgs-type
of potential. The spacetime background is taken to be fixed
—no backreaction of the scalar on the background geom-
etry is considered. It is assumed that the scalar stress-energy
is negligible in comparison to that of the source, and the
scalar field ϕ has no direct interaction with the source
beyond a response to the background geometry.
(1) Spherical ϕ4 bubble: Consider a spherical scalar field

configuration in a flat spacetime with metric given by2

ds2 ¼ dt2 − dr2 − r2ðdθ2 þ sin2 θdφ2Þ: ð32Þ

In this case fðrÞ ¼ r2 ¼ ffiffiffi
g

p
= sin θ and h ¼ jgrrj ¼ 1.

We choose

XðϕÞ ¼ λðη2 − ϕ2Þ;

Vðr;ϕÞ ¼ 1

2f2h
X2ðϕÞ ¼ λ2

2r4
ðη2 − ϕ2Þ2 ð33Þ

where (25) has been used, and we take λ and η to be positive
constants. With (27),

R dϕ
XðϕÞ ¼

R
dr

fðrÞhðrÞ gives

Z
dϕ

ðη2 − ϕ2Þ ¼ λ

Z
dr
r2

⇒ −
1

η
tanh−1ðϕ=ηÞ ¼ −λ

�
1

r
þ C

�
:

ð34Þ

Setting the integration constant C ¼ −1=R gives the
solution

ϕðrÞ ¼ η tanh

�
k

�
1

r
−
1

R

��
; k ¼ λη≡ r0: ð35Þ

With this solution we have ϕðrÞ remaining everywhere
finite. For ϕðrÞ ¼ þη tanh½kð1r − 1

RÞ� we have

ϕðrÞ →
�þη; r → 0

−η tanhðkRÞ; r → ∞

	
ð36Þ

The solution ϕ=η is a monotonically decreasing function of
r with asymptotic value of ϕ → −η tanhðkRÞ (Fig. 1). For ϕ
and η having canonical mass dimension 1, we have a mass
dimension of −1 for k ¼ λη, so that λ has mass dimension
−2. We can write λη ¼ k ¼ r0 where r0 is some radial
constant. The configuration (35) suggests the existence of a
bubble wall centered somewhere near r ∼ R where the
energy density HðrÞ maximizes (Fig. 1). This is a static,
radially stable solution to the equation of motion.
The energy density (28) of the solution (35) is

H ¼ 1

r4
X2ðϕÞ ¼ λ2

r4
ðη2 − ϕ2Þ2 ¼ k2η2

r4
sech4

�
k

�
1

r
−
1

R

��
:

ð37Þ

This maximizes at a finite value of r≲ R, so that a
bubble wall appears near this radius (Fig. 1).
The total configuration energy (mass),M¼ R

d3x
ffiffiffi
g

p
H¼

4πE, is given by

MðRÞ ¼ 4πλ2
Z

dr
1

r2
ðη2 − ϕ2Þ2

¼ 4πλ2η4
Z

∞

0

dr
1

r2
sech4

�
k
r
−
k
R

�

¼ 4πkη2

3

�
2þ 3 tanh

�
k
R

�
− tanh3

�
k
R

��
ð38Þ

The total mass of the bubble MðRÞ decreases mono-
tonically with R. This might lead one to assume that the

FIG. 1. ϕðrÞ=η (solid) and ðk=ηÞ2HðrÞ (dashed) vs k=r with
k=R ¼ 1.

2See Ref. [7] (See Section II. B. 1) for the example of a charge
immersed in a medium with electric permittivity controlled by
real scalar field.
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bubble would tend to expand radially to decrease its mass,
but the stability arguments, including the fact that Trr ¼ 0,
indicate otherwise. A bubble that is initially formed with a
radius R maintains that radius, and larger bubbles will be
less massive. This is opposite to the case of a spherical
bubble formed from a standard domain wall with a
canonical potential UðϕÞ ∼ g2ðη2 − ϕ2Þ2 with no explicit
r dependence. In the standard type of scenario the bubble
experiences a radially inward force due to the surface
tension, causing it to collapse. Therefore, without some
stabilizing mechanism, the solution ϕ ¼ ϕðr; tÞ must be
time dependent.
It can be noted that these results essentially duplicate

those found in Ref. [3] for the source field ϕðrÞ of a
magnetic monopole with internal structure.3 That is, the
spherical shell ϕðrÞ serves as the source field of a monopole
for the model in [3]. Additionally, these results basically
reproduce those obtained for the scalar field in Ref. [7]
regarding electrically charged solitonic structures.4

(2) Schwarzschild ϕ4 bubble: Consider a spherical scalar
field configuration centered on a black hole with a
Schwarzschild radius rS in a Schwarzschild spacetime
with metric described by

ds2 ¼
�
1 −

rS
r

�
dt2 −

�
1 −

rS
r

�
−1
dr2 − r2ðdθ2 þ sin2 θdφ2Þ ð39Þ

In this case we have

fðrÞ ¼ r2; hðrÞ ¼ AðrÞ ¼
�
1 −

rS
r

�
; f2ðrÞhðrÞ ¼ r4A ¼ r4

�
1 −

rS
r

�
ð40Þ

Again, let us choose a ϕ4 potential with

XðϕÞ ¼ −λðη2 − ϕ2Þ; Vðr;ϕÞ ¼ 1

2f2ðrÞhðrÞX
2ðϕÞ ¼ λ2A−1ðrÞ

2r4
ðη2 − ϕ2Þ2 ð41Þ

With (27),
R dϕ

XðϕÞ ¼
R

dr
fðrÞhðrÞ gives

R dϕ
ðη2−ϕ2Þ ¼ λ

R A−1ðrÞ
r2 dr, so that,

ϕðrÞ
η

¼ ψðrÞ ¼ tanh ½K lnAðrÞ�;
�
K ¼ λη

rS

�
ð42Þ

where the integration constant has been set to zero in this case and K ≡ λη=rS. The function ψðrÞ is a finite, bounded
function of r, with ψðrÞ defined for r ∈ ðrS;∞Þ, with ψ → 0 as r → ∞ (Fig. 2). The energy density H ¼ T0

0 is

Hðr;ϕÞ ¼ A−1ðrÞ
f2ðrÞ X

2ðϕÞ ¼ A−1

r4 X2, i.e.,

H ¼ A−1

r4
X2ðrÞ ¼ A−1r−4Bð1 − ψ2Þ2; ðB ¼ λ2η4Þ: ð43Þ

The energy density is finite for all r ≥ rS (i.e., outside the Schwarzschild horizon), with a maximum beyond rS, and
H → 0 as r → ∞ (Fig. 2).

FIG. 2. Sketches of ϕðrÞ=η (solid) and r4SHðrÞ (dashed) vs r=rS
with B ¼ 10.

3See Sec. 3A of Ref. [3]. There, the choice of R ¼ 0 is made and parameters have been rescaled, and XðϕÞ corresponds to WϕðϕÞ.
4See Sec. II. B. 1 of Ref. [7]. There, again, the choice of R ¼ 0 is made and parameters have been rescaled, and XðϕÞ corresponds

to Wϕ.
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The total energy (mass) of this scalar field configuration
is M ¼ R

∞
rS
d3x

ffiffiffi
g

p
HðrÞ. Using ffiffiffi

g
p ¼ r2 sin θ gives

M ¼ 4π

Z
∞

rS

HðrÞr2dr ¼ 8πB
3KrS

¼ 8πλ2η4

3KrS
¼ 8πλη3

3
ð44Þ

(3) Cosmic string background: Here, the spacetime
metric sourced by a straight cosmic string along the z axis
is described by [20,21,22,19]

ds2 ¼ dt2 − dr2 − b2r2dφ2 − dz2 ð45Þ

where b ¼ ð1 − 4GμÞwith μ being the mass per unit length
of the string, and φ ∈ ½0; 2πÞ. (One can also define φ0 ¼ bφ
with φ0 ∈ ½0; 2πbÞ. For b ¼ 1 we have a flat spacetime.) In
this case

fðrÞ ¼ ffiffiffi
g

p ¼ br; hðrÞ ¼ B−1ðrÞ ¼ AðrÞ ¼ 1 ð46Þ
We again choose a ϕ4 potential, and define ψðrÞ ¼

ϕðrÞ=η,

XðϕÞ ¼ −λðη2 − ϕ2Þ ¼ −λη2ð1 − ψ2Þ;

Vðr;ϕÞ ¼ 1

2f2h
X2 ¼ λ2

2b2r2
ðη2 − ϕ2Þ2 ð47Þ

From (27) we obtain

ψðrÞ ¼ ðρ−2α − 1Þ
ðρ−2α þ 1Þ ; ρ≡ r

r0
;

�
α≡ λη

b

�
ð48Þ

where r0 is an integration constant. We have H ¼ T0
0 ¼

−L ¼ 1
2
hð∂rϕÞ2 þ V ¼ 1

f2h X
2ðϕÞ, or

H ¼ T0
0 ¼

1

b2r2
X2 ¼ β

ρ2
ð1 − ψ2Þ2;

β ¼
�
λ2η2

b2

�
η2

r20
¼ α2η2

r20

The functions ψ andH are finite for all ρ ∈ ½0;∞Þ, withH
maximizing at some finite radius with ρ ¼ 1, locating a
“wall” of the cylindrical shell (Fig. 3). The scalar field
configuration has a finite energy/length Λ given by

Λ ¼ 2πbr20

Z
∞

0

HðρÞρdρ ¼ 8πbβr20
3α

ð49Þ

Again, we can notice that the results obtained here for a
cylindrical shell in flat spacetime (b ¼ 1) appear to be in
agreement with those found in Ref. [4] for the source field
χðrÞ for multilayered vortices.5 This shell of a neutral scalar
field is responsible for the structure of a vortex. The results

reported here are also in apparent agreement with those6

of Ref. [7].
(4) Wormhole background: Next, consider a scalar field

ϕðrÞ in the background spacetime of an Ellis-Bronnikov-
Morris-Thorne wormhole [23–25]. The wormhole metric is
given by

ds2 ¼ dt2 − dr2 − ðr2 þ a2Þðdθ2 þ sin2 θdφ2Þ ð50Þ

where r ∈ ð−∞;∞Þ and the parameter a represents the
“radius” of the wormhole throat where r ¼ 0. For this case
we have

ffiffiffi
g

p ¼ ðr2 þ a2Þ sin θ, with

fðrÞ ¼ ðr2 þ a2Þ; A ¼ h ¼ 1: ð51Þ

Again we choose a ϕ4 potential, with

X ¼ λðη2 − ϕ2Þ ¼ λη2ð1 − ψ2Þ;

Vðr;ϕÞ ¼ 1

2f2h
X2 ¼ λ2ðη2 − ϕ2Þ2

2ðr2 þ a2Þ2 ð52Þ

where ψðrÞ ¼ ϕðrÞ=η. We define the dimensionless radial
variable ρ≡ r=a and the dimensionless constant K ¼ λη=a
so that

Vðρ;ψÞ ¼ K4

2λ2
ð1 − ψ2Þ2
ðρ2 þ 1Þ2 : ð53Þ

Using (27), along with (51) and (52), then yields

ψðρÞ ¼ tanh ½Kðtan−1 ρ − tan−1 ρ0Þ� ð54Þ

where −K tan−1 ρ0 is an integration constant, with ρ0 ¼
r0=a representing the center of the scalar field cloud ψðρÞ
where ψðρ0Þ ¼ 0.
The energy density is represented by H ¼ T0

0 ¼
1
2
ð∂rϕÞ2 þ Vðr;ϕÞ, which for ansatz solutions satisfying

(26) becomes H ¼ 2Vðr;ϕÞ. From (53) and (54),

FIG. 3. Sketches of ϕðρÞ=η (solid) and HðρÞ=β (dashed) vs ρ.

5See Sec. II. A. 1 of Ref. [4]. 6See Sec. II. A. 1 of Ref. [7].
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H ¼ T0
0 ¼

K4

λ2
ð1 − ψ2Þ2
ðρ2 þ 1Þ2 : ð55Þ

The functions ψðρÞ and HðρÞ are finite for all ρ, with H
maximizing at ρ0 where ψ vanishes (Fig. 4).
The mass M of the scalar field configuration occupying

the r ≥ 0 region of the spacetime is

M ¼
Z

HðrÞ ffiffiffi
g

p
d3x ¼ 4π

Z
∞

0

HðrÞðr2 þ a2Þdr

¼ 4πa3
Z

∞

0

HðρÞðρ2 þ 1Þdρ: ð56Þ

Using (54) and (55) then gives the result

M ¼ 4πa3K3

3λ2

�
2þ sech2

Kπ

2
tanh

Kπ
2

�
: ð57Þ

VI. SUMMARY

A set of scalar field potentials having the noncanonical
form Uðr;ϕÞ ¼ r−NPðϕÞ, where N ∈ Zþ is a positive
integer, and PðϕÞ ¼ 1

2
W2

ϕðϕÞ with WðϕÞ a superpotential,
was introduced in Ref. [1]. Physical motivations include
possible descriptions of effective potentials arising from
other fields interacting with the scalar field ϕ. Additionally,
potentials of this form have been imposed in scalar field
theories in order to produce field theoretic models with new
and different features. This has proven to be of value in

subsequent investigations of various models. (See, for
example, [3–7].) The function Uðr;ϕÞ is applicable to
situations where there is a spherical symmetry in D space
dimensions of flat spacetimes, provided that N and D
satisfy certain constraints.
Here, a new set of effective potentials is introduced,

taking the general form Vðr;ϕÞ ¼ FðrÞPðϕÞwhere FðrÞ ¼
ðf2ðrÞhðrÞÞ−1 is a function of a radial coordinate r (i.e.,
spherical or cylindrical symmetry) in a four dimensional
spacetime, with fðrÞ and hðrÞ determined by the spacetime
metric gμν. (Specifically, fðrÞ is the radial part of

ffiffiffi
g

p
and

hðrÞ ¼ jgrrj.) The ϕ dependent part of the potential is given
by PðϕÞ ¼ 1

2
X2ðϕÞ, where XðϕÞ is a function taking the

role of Wϕ. This form of potential Vðr;ϕÞ coincides with
the potential Uðr;ϕÞ in the case of a flat four dimensional
spacetime with spherical symmetry. Thus, at least in the
case of four dimensions, the set of potentials Vðr;ϕÞ
includes and generalizes the set of potentials Uðr;ϕÞ of
[1]. Both types of potentials are of interest from both
physical and mathematical points of view, allowing stable,
energy minimizing radial solutions derivable from a first
order differential equation.
The utility of incorporating a potential Vðr;ϕÞ in a scalar

field theory can be illustrated by using the method
introduced by Atmaja and Ramadhan [14] whereby the
second order Euler-Lagrange equation of motion for ϕðrÞ
can be reduced to a first order Bogomol’nyi equation
yielding a BPS type of minimal energy solution for the
potential. Moreover, in Sec. IVand the Appendix, a general
expression for the energy has been obtained, along with a
proof, along the lines of Derrick’s theorem [2], that the
solution ϕðrÞ is radially stable. Examples of applying this
method with potentials Vðr;ϕÞ have been provided in
Sec. V, which include using the ubiquitous symmetry
breaking ϕ4 potential (where XðϕÞ ¼ λðη2 − ϕ2Þ) in back-
ground spacetimes (flat, Schwarzschild, cosmic string, and
wormhole) with radial symmetry (spherical or cylindrical).
The results of examples (1) and (3) presented here are seen
to coincide with those of [3,4] for models describing
magnetic monopoles with internal structure [3] and multi-
layered vortices [4] and charged solitons [7].

APPENDIX: STABILITY CONSIDERATIONS

We consider 4D metrics with radial symmetry (spherical
or cylindrical) of the form

�
ds2 ¼ AðrÞdt2 − BðrÞdr2 − R2ðrÞðdθ2 þ sin2θdφ2Þ; ðspherical symmetryÞ
ds2 ¼ AðrÞdt2 − BðrÞdr2 − ρ2ðrÞdφ2 − ζ2ðrÞdz2; ðcylindrical symmetryÞ ðA1Þ

in which case we have
ffiffiffi
g

p ¼ ffiffiffiffiffiffiffi
AB

p
R2 sin θ for

spherical symmetry and
ffiffiffi
g

p ¼ ffiffiffiffiffiffiffi
AB

p
ρζ for cylindrical

symmetry [19]. (The functions AðrÞ and BðrÞ for

the cylindrical case are generally different from those
for the spherical case.) We represent the radial part offfiffiffi
g

p
by

FIG. 4. Sketches of ψðρÞ (solid) and ðλ2=K4ÞHðρÞ (dashed) vs
ρ. The center of the cloud is chosen to be centered on the
wormhole throat, ρ0 ¼ 0.
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fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞCðrÞ

p
ðA2Þ

where
ffiffiffiffiffiffiffiffiffiffi
CðrÞp

is given by

ffiffiffiffiffiffiffiffiffiffi
CðrÞ

p
¼

�
R2ðrÞ; ðspherical symmetryÞ
ρðrÞζðrÞ; ðcylindrical symmetryÞ : ðA3Þ

Our ansatz for radially symmetric solutions is given by

∂rϕ ¼ 1

fðrÞhðrÞXðϕÞ; ðA4aÞ

Vðr;ϕÞ ¼ 1

f2ðrÞhðrÞPðϕÞ ¼
1

2f2ðrÞhðrÞX
2ðϕÞ ðA4bÞ

where hðrÞ≡ jgrrj ¼ B−1ðrÞ, and PðϕÞ ¼ 1
2
X2ðϕÞ. The

function XðϕÞ must be chosen to yield a finite energy
(or finite energy per unit length) solution.
The energy of a spherically symmetric solution is

E ¼
Z

T0
0

ffiffiffi
g

p
d3x ¼ Ω

Z
T0
0fðrÞdr ðA5Þ

where Ω ¼ R
dΩ ¼ R R

sin θdθdφ. (The solid angle factor
Ω takes a value of 4π in a flat spacetime, but may differ
from 4π in spacetimes with a solid angular deficit or
surplus.)
In the case of cylindrical symmetry, we can define the

energy in a length L along the z direction as

E ¼ ωL
Z

T0
0fðrÞdr ðA6Þ

where ω ¼ R
dφ. (We have ω ¼ 2π for a flat spacetime

with no angular deficit or surplus.) For either case, let us
define the quantity

E ¼

8>><
>>:

E
Ω ; ðspherical symmetryÞ

or
E
ωL ; ðcylindrical symmetryÞ

ðA7Þ

so that, in either case,

E ¼
Z

T0
0fðrÞdr ¼

Z
HfðrÞdr ðA8Þ

with H≡ T0
0.

To investigate solution stability, we demand that E be
finite, and that, furthermore, the solution considered repre-
sents a stable minimum for the energy. We follow the
procedure used in Derrick’s theorem [2] requiring that
δE ¼ 0 andδ2E ≥ 0 for a stable static solution thatminimizes
the action. To do so, we define ϕλðrÞ ¼ ϕðλrÞ ¼ ϕðr0Þ,
where r0 ¼ λr with λ being an arbitrary real parameter. We

thendefine the energyparameterEλwithϕðrÞ → ϕλðrÞ in the
energy integral. For stability, we require

ðiÞ dEλ

dλ

����
λ¼1

¼ 0 ðA9aÞ

ðiiÞ d2Eλ

dλ2

����
λ¼1

≥ 0 ðA9bÞ

Now, for any static, radially symmetric solution to the
second order equation of motion □ϕþ ∂ϕVðr;ϕÞ ¼ 0, for
which L¼ 1

2
∂rϕ∂rϕ−Vðr;ϕÞ andH ¼ T0

0 ¼ −g00L ¼ −L,
i.e., H ¼ 1

2
hð∂rϕÞ2 þ Vðr;ϕÞ, where Vðr;ϕÞ is given by

(A4), the energy integral can be written as a sum of gradient
plus potential contributions, E ¼ I1 þ I2:

E ¼ I1 þ I2; I1 ¼
Z

1

2
ð∂rϕÞ2GðrÞdr;

I2 ¼
Z

PðϕÞHðrÞdr ðA10Þ

where we define G ¼ hf, and H ¼ 1=ðfhÞ ¼ G−1:

GðrÞ ¼ hf ¼
ffiffiffiffiffiffiffi
AC
B

r
; HðrÞ ¼ 1

hf
¼

ffiffiffiffiffiffiffi
B
AC

r
¼ G−1ðrÞ:

ðA11Þ

Upon making the replacement ϕ → ϕλ we have
E → Eλ ¼ I1λ þ I2λ, with

I1λ¼
Z

1

2
ð∂rϕλÞ2GðrÞdr¼λ

Z
1

2
ð∂r0ϕλÞ2GðrÞdr0≡λJ1ðrÞ

I2λ¼
Z

PðϕλÞHðrÞdr¼λ−1
Z

PðϕλÞHðrÞdr0≡λ−1J2ðrÞ:

ðA12Þ

The integrals J1 and J2 are functions of r ¼ λ−1r0.
Therefore, derivatives ∂λJ1;2ðrÞ ¼ ∂λJ1;2ðλ−1r0Þ involve
∂λGðrÞ and ∂λHðrÞ, with r ¼ λ−1r0, where

dGðrÞ
dλ

¼ dGðrÞ
dr

dr
dλ

¼ −λ−2r0G0ðrÞ;
dHðrÞ
dλ

¼ −λ−2r0H0ðrÞ ðA13Þ

where we denote G0ðrÞ ¼ ∂rGðrÞ, H0ðrÞ ¼ ∂rHðrÞ.
Now using Eλ ¼ I1λ þ I2λ along with some straightfor-

ward (but a little tedious) algebra, we arrive at

dEλ

dλ
¼ J1 − λ−1K1 − λ−2J2 − λ−3Q1 ðA14aÞ
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d2Eλ

dλ2
¼ λ−3K2 þ 2λ−3J2 þ 4λ−4Q1 þ λ−5Q2 ðA14bÞ

where

J1¼
Z

1

2
ð∂r0ϕλÞ2GðrÞdr0; J2¼

Z
PðϕλÞHðrÞdr0

K1¼
Z

1

2
ð∂r0ϕλÞ2r0G0ðrÞdr0; Q1¼

Z
PðϕλÞr0H0ðrÞdr0

K2¼
Z

1

2
ð∂r0ϕλÞ2r02G00ðrÞdr0; Q2¼

Z
PðϕλÞr02H00ðrÞdr0:

ðA15Þ

The objective is to evaluate (A14) at λ ¼ 1 using (A15)
evaluated at λ ¼ 1 to verify the stability conditions (A9) for
all ansatz solutions satisfying (A4), subject to the metric
conditions of (A1)–(A3). For ansatz solutions satisfying the
Bogomol’nyi equation (A4a) with the potential (A4b) it is
found that I1 ¼ I2, i.e., the gradient and potential contri-
butions to E ¼ I1 þ I2 are equal. Furthermore, setting
λ ¼ 1 for the integrals of (A15) simply amounts to setting
r0 ¼ r. In that case, it turns out to be convenient to
reexpress the integrals J1, K1, and K2, when evaluated
at λ ¼ 1, in terms of PðϕÞ and the function GðrÞ.
Specifically, using 1

2
ð∂rϕÞ2GðrÞ ¼ PðϕÞHðrÞ

J1 →
Z

ðPH2ÞGdr; J2 ¼
Z

PHdr

K1 →
Z

ðPH2ÞrG0dr; Q1 ¼
Z

PrH0dr

K2 →
Z

ðPH2Þr2G00dr; Q2 ¼
Z

Pr2H00ðrÞdr ðA16Þ

where P ¼ PðϕÞ, G ¼ GðrÞ, H ¼ HðrÞ, etc.
Now evaluating (A14) at λ ¼ 1 and enforcing (A9) gives

dE
dλ

jλ¼1 ¼ ðJ1 − K1 − J2 −Q1Þjλ¼1

¼ ðI1 − I2Þjλ¼1 − ðK1 þQ1Þjλ¼1 ¼ 0

⇒ ðK1 þQ1Þjλ¼1 ¼ 0 ðA17Þ

In fact, using

H¼G−1; H0 ¼−G−2G0; H00 ¼2G−3G02−G−2G00

ðA18Þ

one can see that K1 þQ1 ¼
R
PrðH2G0 þH0Þdr ¼ 0, i.e.,

dE
dλ jλ¼1 vanishes identically.
Next, an evaluation of (A14b) at λ ¼ 1 gives

d2Eλ

dλ2

����
λ¼1

¼ ðK2 þ 2J2 þ 4Q1 þQ2Þjλ¼1: ðA19Þ

Using the integrals in (A16) produces

d2Eλ

dλ2

����
λ¼1

¼
Z

PðϕÞ½ðr2H2G00Þþð2HÞþð4rH0Þþðr2H00Þ�dr:

ðA20Þ

Upon using (A18) with a little algebra, this can be
reduced to

d2Eλ

dλ2

����
λ¼1

¼
Z

PðϕÞG−3βðrÞdr ðA21Þ

where

βðrÞ ¼ r2G02 − 2rGG0 þ G2 ¼ ðrG0 −GÞ2 ≥ 0: ðA22Þ

Since PðϕÞG−3ðrÞβðrÞ ≥ 0 for any ansatz solution, we
have the condition of (A9b) being automatically satisfied,
∂2
λEλjλ¼1 ≥ 0. We then conclude that for any radially

symmetric ansatz solution with finite energy (or finite
energy per unit length) in a spacetime with a metric of the
form given by (A1), the radial stability of the solution (i.e.,
stability against spontaneous radial expansion or collapse),
as required by (A9), is guaranteed.
In addition, we can take notice of the vanishing of the

radial tension Tr
r for the ansatz solutions for both the

spherical and cylindrical symmetries:

Tr
r ¼ ∂rϕ∂rϕ − grrL ¼ −

1

2
hð∂rϕÞ2 þ Vðr;ϕÞ ¼ 0: ðA23Þ

This also indicates a stability against spontaneous radial
expansion or contraction.
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