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Accelerated charges emit electromagnetic radiation and the consequent energy-momentum loss alters
their trajectory. This phenomenon is known as radiation reaction and the Landau-Lifshitz (LL) equation is
the classical equation of motion of the electron, which takes into account radiation-reaction effects in the
electron trajectory. By using the analytical solution of the LL equation in an arbitrary plane wave, we
compute the analytical expression of the classical emission spectrum via nonlinear Thomson scattering
including radiation-reaction effects. Both the angularly resolved and the angularly integrated spectra are
reported, which are valid in an arbitrary plane wave. Also, we have obtained a phase-dependent expression
of the electron dressed mass, which includes radiation-reaction effects. Finally, the corresponding spectra
within the locally constant field approximation have been derived.

DOI: 10.1103/PhysRevD.104.016007

I. INTRODUCTION

Maxwell’s and Lorentz equations allow one in principle
to describe self-consistently the classical dynamics of elec-
tric charges and their electromagnetic field. However, even
in the case of a single elementary charge, an electron for
definiteness, the solution of the self-consistent problem of
the electron dynamics and of that of its own electromag-
netic field is plagued by physical inconsistencies, which
ultimately are related to the divergent self-energy of a
pointlike charge. In fact, the inclusion of the “reaction” of
the self-electromagnetic field on the electron dynamics
(known as radiation reaction) implies an unavoidable
Coulomb-like divergence when one evaluates the self-field
at the electron position [1–4]. However, this divergence can
be reabsorbed via a redefinition of the electron mass, which
ultimately leads to one of the most controversial equations
in physics, the Lorentz-Abraham-Dirac (LAD) equation
[5–7]. In the case of interest here, where the external force
is also electromagnetic, the LAD equation can be derived
by eliminating from the Maxwell-Lorentz system of equa-
tions the electromagnetic field generated by the electron. In
this respect, solving the LAD equation amounts to solving
exactly the electron dynamics in the external electromag-
netic field and plugging the resulting solution into the

Liénard-Wiechert potentials amounts to determining the
corresponding exact electromagnetic field.
Even after the absorption of the divergent electron self-

energy via the classical mass renormalization, the LAD
equation remains problematic as it allows for so-called
runaway solutions, where the electron’s acceleration may
exponentially increase with time even if the external field,
for example, vanishes identically [1–4]. The origin of the
existence of the runaway solutions is precisely a term in the
radiation-reaction force, known as the Schott term, which
depends on the time derivative of the electron acceleration,
thus rendering the LAD equation a third-order differential
equation with non-Newtonian features.
Landau and Lifshitz realized that within the realm of

classical electrodynamics, i.e., if quantum effects are
negligible, the radiation-reaction force in the instantaneous
rest frame of the electron is always much weaker than the
Lorentz force [2]. This allows one to replace the electron
four-acceleration in the radiation-reaction four-force with
its leading-order expression, i.e., with the Lorentz four-
force divided by the electron mass [2]. It is important to
stress that the “reduction of order” proposed by Landau and
Lifshitz is such that neglected quantities are much smaller
than corrections induced by quantum effects, which are
already ignored classically. The resulting equation is
known as the Landau-Lifshitz (LL) equation and it is free
of the physical inconsistencies of the LAD equation [8].
The equivalence between the LL equation and the LAD
equation within the realm of classical electrodynamics has
to be intended as these equations differ by terms much
smaller than quantum corrections (see Refs. [9,10] for
numerical tests about this equivalence and Ref. [11] for a
numerical example where the predictions of the LL and the
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LAD equations differ but where quantum effects indeed are
large). Presently the LL equation, as well as the problem
of radiation reaction in general, is being investigated by
several groups both theoretically [12–25] and experimen-
tally [26–28] (see also the recent reviews [29–32] for
previous publications).
Here, we present analytical expressions of the energy

emission spectrum of an electron driven by an external
intense plane wave (nonlinear Thomson scattering) by
taking into account radiation-reaction effects via the LL
equation. To achieve this goal, we use the analytical
solution of the LL equation in an arbitrary plane wave
[33] and we derive the angularly resolved and the angularly
integrated energy spectra as double integrals over the
phase of the plane wave. In this respect, we point out that
additional classical corrections to the energy spectra, which
would be brought about, i.e., by using the LAD equation,
would be smaller than already ignored quantum correc-
tions. Finally, the corresponding expressions within the so-
called locally constant field approximation (LCFA) are
derived as single phase integrals [30,34,35]. These results
obtained here also complement the ones obtained in
Ref. [36], where the analytical expression of the infrared
limit of the emission spectrum including radiation-reaction
effects was presented.
Units with ℏ ¼ c ¼ 4πϵ0 ¼ 1 are employed throughout

and the metric tensor is ημν ¼ diagðþ1;−1;−1;−1Þ.

II. ANALYTICAL SPECTRUM OF NONLINEAR
THOMSON SCATTERING

Let us consider an electron (charge e < 0 and mass m,
respectively), whose trajectory is characterized by the
instantaneous position xðtÞ and the instantaneous velocity
βðtÞ ¼ dxðtÞ=dt. The electromagnetic energy E radiated by
the electron per unit of angular frequency ω and along the
direction n ¼ ðsin ϑ cosφ; sinϑ sinφ; cos ϑÞ within a solid
angle dΩ ¼ sin ϑdϑdφ is given by [see, e.g., Eq. (14.67) in
Ref. [1] ]

dE
dωdΩ

¼ e2ω2

4π2

����
Z

∞

−∞
dt n × ðn × βðtÞÞeiωðt−n·xðtÞÞ

����
2

; ð1Þ

and we stress that this expression of the emitted energy is
valid for an arbitrary trajectory of the electron.
Now, we assume that the electron moves in the presence

of a plane-wave background field, described by the four-
vector potential AμðϕÞ¼ðA0ðϕÞ;AðϕÞÞ, where ϕ¼ðn0xÞ¼
t−n0 ·x, with nμ0 ¼ ð1; n0Þ and the unit vector n0 identify-
ing the propagation direction of the plane wave itself. We
decide to work in the Lorenz gauge ∂μAμðϕÞ ¼
ðn0A0ðϕÞÞ ¼ 0 with the additional condition A0ðϕÞ ¼ 0.
Here and below, the prime indicates the derivative with
respect to the argument of a function. By assuming that
limϕ→�∞ AðϕÞ ¼ 0, then the Lorenz-gauge condition

implies n0 · AðϕÞ ¼ 0. Thus, the four-vector potential
AμðϕÞ can be written as AμðϕÞ ¼ P

2
j¼1 a

μ
jψ jðϕÞ, where

the four-vectors aμj have the form aμj ¼ ð0; ajÞ and fulfill
the orthogonality conditions ðajaj0 Þ ¼ −δjj0 , with j; j0 ¼ 1,
2, and ðn0ajÞ ¼ −n0 · aj ¼ 0, and where the functions
ψ jðϕÞ are arbitrary (physically well-behaved) functions
such that limϕ→�∞ ψ jðϕÞ ¼ 0.
It is convenient first to express the emitted energy

dE=dωdΩ as an integral over the laser phase φ ¼ ω0ϕ,
where ω0 is the central angular frequency of the plane
wave (or, more in general, an arbitrary frequency scale
describing the time dependence of the plane wave). This is
easily done because dϕðtÞ=dt ¼ 1 − n0 · βðtÞ along the
electron trajectory and one obtains

dE
dωdΩ

¼ e2

4π2
ω2

ω2
0

×

����
Z

∞

−∞
dφ

n × ðn × pðφÞÞ
p−ðφÞ

e
i ωω0

R
φ

−∞
dφ0εðφ0Þ−n·pðφ0Þ

p−ðφ0Þ

����
2

;

ð2Þ

where pμðφÞ ¼ ðεðφÞ; pðφÞÞ ¼ εðφÞð1; βðφÞÞ, with εðφÞ ¼
m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2ðφÞ

p
, is the electron four-momentum and

p−ðφÞ ¼ ðn0pðφÞÞ. In fact, it is in general convenient
to introduce also the four-dimensional quantity ñμ0 ¼
ð1;−n0Þ=2 because nμ0, ñμ0, and aμj fulfill the comple-
teness relation: ημν ¼ nμ0ñ

ν
0 þ ñμ0n

ν
0 − aμ1a

ν
1 − aμ2a

ν
2 [note

that ðn0ñ0Þ ¼ 1 and that, as we have already seen,
ða1a1Þ ¼ ða2a2Þ ¼ −1, whereas all other possible scalar
products among nμ0, ñμ0, and aμj vanish]. By using the
quantities nμ0, ñ

μ
0, and aμj one can define the light-cone

coordinates of an arbitrary four-vector vμ ¼ ðv0; vÞ as
vþ ¼ ðñ0vÞ, v⊥ ¼ −ððva1Þ; ðva2ÞÞ, and v− ¼ ðn0vÞ.
Also, the four-dimensional scalar product between two
four-vectors aμ and bμ can be written as ðabÞ ¼ aþb−þ
a−bþ − a⊥ · b⊥.
Now, we recall that the LL equation in an external

electromagnetic field Fμν ¼ FμνðxÞ reads [2]

m
duμ

ds
¼ eFμνuν þ

2

3
e2
�
e
m
ð∂αFμνÞuαuν

þ e2

m2
FμνFναuα þ

e2

m2
ðFανuνÞðFαλuλÞuμ

�
; ð3Þ

where s is the electron proper time and uμðsÞ ¼ pμðsÞ=m
is the electron four-velocity. In the case of the plane
wave described above, we can introduce the central laser
four-wave vector as kμ0 ¼ ω0n

μ
0 such that the laser phase

reads φ ¼ ðk0xÞ. By indicating as pμ
0 ¼ ðε0; p0Þ, with

ε0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p20

p
, the initial four-momentum of the electron,

i.e., limφ→−∞ pμðφÞ ¼ pμ
0, the four-momentum pμðφÞ at

the generic phase φ is given by [33]
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pμðφÞ ¼ 1

hðφÞ
�
pμ
0 þ

1

2η0
½h2ðφÞ − 1�kμ0 þ

ω0

mη0
PμðφÞ

−
ω2
0

2m4η30
P2ðφÞkμ0

�
: ð4Þ

In this expression we have introduced the parameter η0 ¼
ðk0p0Þ=m2 and the functions

hðφÞ ¼ 1þ 2

3
e2η0

Z
φ

−∞
dφ̃ ξ2⊥ðφ̃Þ; ð5Þ

PμðφÞ ¼ F μνðφÞp0;ν; ð6Þ

where

F μνðφÞ ¼
Z

φ

−∞
dφ̃

�
hðφ̃Þξμνðφ̃Þ þ 2

3
e2η0ξ0μνðφ̃Þ

�
; ð7Þ

with ξ⊥ðφÞ¼ðe=mÞA0⊥ðφÞ and ξμνðφÞ ¼ ðe=mÞ½nμ0A0νðφÞ−
nν0A

0μðφÞ�. Note that, assuming that jξμνðφÞj ∼ jξ0μνðφÞj as it
is typically the case for standard laser fields, the term
proportional to ξ0μνðφÞ in F μνðφÞ can be neglected accord-
ing to Landau and Lifshitz reduction of order [2] (see
Ref. [37] for a recent study on this term and Ref. [21] for
a situation where it cannot be ignored). For this reason
we write

F μνðφÞ ¼
Z

φ

−∞
dφ̃ hðφ̃Þξμνðφ̃Þ ð8Þ

and we use this expression below. For the sake of later
convenience, we also report here the light-cone compo-
nents of the four-momentum of the electron in the plane
wave including radiation reaction:

p−ðφÞ ¼
p0;−

hðφÞ ; ð9Þ

p⊥ðφÞ ¼
1

hðφÞ ½p0;⊥ −mF⊥ðφÞ�; ð10Þ

pþðφÞ ¼
m2 þ p2⊥ðφÞ
2p−ðφÞ

¼ 1

hðφÞ
m2h2ðφÞ þ ½p0;⊥ −mF⊥ðφÞ�2

2p0;−
; ð11Þ

where F⊥ðφÞ ¼
R
φ
−∞ dφ̃hðφ̃Þξ⊥ðφ̃Þ [see Eq. (8)] as

well as the corresponding longitudinal momentum
[pkðφÞ ¼ n0 · pðφÞ] and the energy:

pkðφÞ ¼ pþðφÞ −
p−ðφÞ

2

¼ p0;−

2hðφÞ
�
m2h2ðφÞ þ ½p0;⊥ −mF⊥ðφÞ�2

p2
0;−

− 1

�
;

ð12Þ

εðφÞ ¼ pþðφÞ þ
p−ðφÞ

2

¼ p0;−

2hðφÞ
�
m2h2ðφÞ þ ½p0;⊥ −mF⊥ðφÞ�2

p2
0;−

þ 1

�
:

ð13Þ

Before replacing Eq. (4) [or equivalently Eqs. (9)–(11)]
in Eq. (2), it is convenient to write the latter equation in the
form

dE
dk

¼ −
e2

4π2

Z
dφdφ0 ðpðφÞpðφ0ÞÞ

ðk0pðφÞÞðk0pðφ0ÞÞ e
i
R

φ

φ0 dφ̃
ðkpðφ̃ÞÞ
ðk0pðφ̃ÞÞ;

ð14Þ

where we have introduced the four-wave vector of the
emitted radiation kμ ¼ ðω; kÞ ¼ ωð1; nÞ and we have used
the identity (see also Refs. [1,35] on this)

Z
∞

−∞
dφ

ðkpðφÞÞ
ðk0pðφÞÞ

ei
R

φ

−∞
dφ̃ ðkpðφ̃ÞÞ

ðk0pðφ̃ÞÞ ¼ 0: ð15Þ

Equation (14) is especially useful if one expresses the four-
dimensional scalar products in light-cone coordinates and
exploits the fact that the electron four-momentum is on
shell, i.e., p2ðφÞ ¼ m2. After a few straightforward manip-
ulations, one can easily write Eq. (14) in the form

dE
dk

¼ −
e2

8π2m2η20

Z
dφdφ0ei

k−
2p0;−η0

R
φ

φ0 dφ̃h
2ðφ̃Þ½1þπ2⊥ðφ̃Þ�

× fh2ðφÞ þ h2ðφ0Þ þ ½F⊥ðφÞ −F⊥ðφ0Þ�2g; ð16Þ

where

π⊥ðφÞ ¼
1

m

�
p⊥ðφÞ −

p−ðφÞ
k−

k⊥
�

¼ 1

mhðφÞ
�
p0;⊥ −mF⊥ðφÞ −

p0;−

k−
k⊥

�
: ð17Þ

This expression shows that the effects of radiation reac-
tion are all encoded in the function hðφÞ [see Eq. (5)] and if
radiation reaction is ignored, i.e., for hðφÞ ¼ 1, one obtains
the classical spectrum of Thomson scattering. This, in turn,
can be obtained as the classical limit of the spectrum of
nonlinear Compton scattering as reported, e.g., in Ref. [38],
which is accomplished by neglecting the recoil of the
emitted radiation (emitted photon in the quantum language)
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on the electron. More precisely, we recall here that Eq. (16)
divided by ω corresponds to the classical limit of the
average number of photons emitted by the electron per
units of emitted photon momentum [39–41].

As one can easily recognize, from Eq. (16) one can
obtain the angularly integrated energy emission spectrum
dE=dk− by using the fact that dk ¼ ðω=k−Þdk−dk⊥
and then

dE
dk−

¼ −
e2

8π2m2η20

Z
dk⊥

ω

k−

Z
dφdφ0ei

k−
2p0;−η0

R
φ

φ0 dφ̃h
2ðφ̃Þ½1þπ2⊥ðφ̃Þ�

× fh2ðφÞ þ h2ðφ0Þ þ ½F⊥ðφÞ −F⊥ðφ0Þ�2g: ð18Þ

By noticing that ω ¼ kþ þ k−=2 ¼ k2⊥=2k− þ k−=2, the integral in dk⊥ is easily taken as it is Gaussian. By passing for
convenience to the average and the relative phases φþ ¼ ðφþ φ0Þ=2 and φ− ¼ φ − φ0, the resulting energy spectrum is
given by

dE
dk−

¼ −
ie2

8πη0

k−
p0;−

Z
dφþdφ−

φ− þ i0
e
i k−
2p0;−η0

f
R

φ−=2

−φ−=2
dφ̃½h2ðφþþφ̃ÞþF 2⊥ðφþþφ̃Þ�− 1

φ−
½
R

φ−=2

−φ−=2
dφ̃F⊥ðφþþφ̃Þ�2g

×

�
h2
�
φþ þ φ−

2

	
þ h2

�
φþ −

φ−

2

	
þ
�
F⊥

�
φþ þ φ−

2

	
−F⊥

�
φþ −

φ−

2

	�
2
�

×(1þ m2

p2
0;−

�
1

φ−

Z
φ−=2

−φ−=2
dφ̃

�
p0;⊥
m

−F⊥ðφþ þ φ̃Þ
��

2

þ 2im2η0
k−p0;−

1

φ− þ i0); ð19Þ

where the shift of the pole at φ− ¼ 0 toward the negative imaginary half-plane can be understood by imposing that the
Gaussian integral converges [20,35,38].
We observe that the structure of the exponential function in the first line of this equation allows for introducing the

concept of electron dressed mass inside a plane wave [42,43] also when radiation-reaction effects are important. Indeed, the
phase-dependent electron square dressed mass m̃2ðφþ;φ−Þ can be defined here as [see Eq. (19)]

m̃2ðφþ;φ−Þ ¼ m2

�
1

φ−

Z
φ−=2

−φ−=2
dφ̃ h2ðφþ þ φ̃Þ

þ 1

φ−

Z
φ−=2

−φ−=2
dφ̃F 2⊥ðφþ þ φ̃Þ −

�
1

φ−

Z
φ−=2

−φ−=2
dφ̃F⊥ðφþ þ φ̃Þ

�
2
�
: ð20Þ

This expression generalizes the phase-dependent square electron dressed mass as reported, e.g., in Refs. [42–45], as it
includes radiation-reaction effects.
Equation (19) can be explicitly regularized. First, we integrate by parts the term proportional to ½h2ðφþ þ φ−=2Þ þ

h2ðφþ − φ−=2Þ�=φ2
− and we obtain

dE
dk−

¼ −
ie2

4πη0

k−
p0;−

Z
dφþdφ−

φ− þ i0
e
i k−
2p0;−

m̃2ðφþ ;φ−Þ
m2η0

φ−

×(h̄2ðφþ;φ−Þ
�
1þ m2

p2
0;−

½p0;⊥ − hF⊥iðφþ;φ−Þ�2 −
m2

p2
0;−

h̄2ðφþ;φ−Þ
�

þ im2η0
k−p0;−

�
h

�
φþ þ φ−

2

	
h0
�
φþ þ φ−

2

	
− h

�
φþ −

φ−

2

	
h0
�
φþ −

φ−

2

	�

−
m2

p2
0;−

h̄2ðφþ;φ−Þ½F̄ 2;⊥ðφþ;φ−Þ þ hF⊥i2ðφþ;φ−Þ − 2F̄⊥ðφþ;φ−Þ · hF⊥iðφþ;φ−Þ�

þ 1

2

�
F⊥

�
φþ þ φ−

2

	
−F⊥

�
φþ −

φ−

2

	�
2

×

�
1þ m2

p2
0;−

½p0;⊥ − hF⊥iðφþ;φ−Þ�2 þ
2im2η0
k−p0;−

1

φ−

�
); ð21Þ
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where we have introduced the notation

h̄2ðφþ;φ−Þ ¼
1

2

�
h2
�
φþ þ φ−

2

	
þ h2

�
φþ −

φ−

2

	�
; ð22Þ

hh2iðφþ;φ−Þ ¼
1

φ−

Z
φ−=2

−φ−=2
dφ̃h2ðφþ þ φ̃Þ; ð23Þ

F̄⊥ðφþ;φ−Þ ¼
1

2

�
F⊥

�
φþ þ φ−

2

	
þF⊥

�
φþ −

φ−

2

	�
; ð24Þ

F̄ 2;⊥ðφþ;φ−Þ ¼
1

2

�
F 2⊥

�
φþ þ φ−

2

	
þF 2⊥

�
φþ −

φ−

2

	�
; ð25Þ

hF⊥iðφþ;φ−Þ ¼
1

φ−

Z
φ−=2

−φ−=2
dφ̃F⊥ðφþ þ φ̃Þ; ð26Þ

hF 2⊥iðφþ;φ−Þ ¼
1

φ−

Z
φ−=2

−φ−=2
dφ̃F 2⊥ðφþ þ φ̃Þ: ð27Þ

Note that with these definitions, the square of the electron dressed mass can be simply written as

m̃2ðφþ;φ−Þ ¼ m2½hh2iðφþ;φ−Þ þ hF 2⊥iðφþ;φ−Þ − hF⊥i2ðφþ;φ−Þ�: ð28Þ

At this point only the terms in the second line of Eq. (21) need an explicit regularization. In the absence of radiation reaction,
this is achieved by imposing that the emission spectrum has to vanish in the absence of the external field [20,35,38]. Here,
due to the effect of radiation reaction, we need to introduce a slightly more complicated regularization procedure. To this
end, we introduce the function

H2ðφþ;φ−Þ ¼ φ−hh2iðφþ;φ−Þ ¼
Z

φ−=2

−φ−=2
dφ̃h2ðφþ þ φ̃Þ ð29Þ

and notice that

∂H2ðφþ;φ−Þ
∂φ−

¼ h̄2ðφþ;φ−Þ > 0 ð30Þ

for any φþ. Now, for any positive real number a, it is

Z
∞

−∞

dH2

H2 þ i0
eiaH2 ¼ 0: ð31Þ

We have indicated the integration variable asH2 here because, by exploiting the result in Eq. (30), we change variable to φ−
and we obtain

Z
∞

−∞

dφ−

H2ðφþ;φ−Þ þ i0
∂H2ðφþ;φ−Þ

∂φ−
eiaH2ðφþ;φ−Þ

¼
Z

∞

−∞

dφ−

H2ðφþ;φ−Þ þ i0
h̄2ðφþ;φ−ÞeiaH2ðφþ;φ−Þ ¼ 0: ð32Þ

This result shows that we can formally regularize the remaining terms of Eq. (21) by subtracting the vanishing quantity
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h2ðφþÞ
�
1þ m2

p2
0;−

½p0;⊥ −F⊥ðφþÞ�2 −
m2

p2
0;−

h2ðφþÞ
�

×
Z

∞

−∞

dφ−

H2ðφþ;φ−Þ þ i0
h̄2ðφþ;φ−Þei

k−
2p0;−η0

H2ðφþ;φ−Þ ð33Þ

inside the integral in φþ. As it will be clear below, the additional front factor h2ðφþÞ is included because for jφ−j ≪ 1 it is
H2ðφþ;φ−Þ ≈ h2ðφþÞφ−. The resulting regularized expression of the energy spectrum reads

dE
dk−

¼ −
ie2

4πη0

k−
p0;−

Z
dφþdφ−e

i k−
2p0;−

m̃2ðφþ ;φ−Þ
m2η0

φ−

×(h̄2ðφþ;φ−Þ
�1þ m2

p2
0;−
½p0;⊥ − hF⊥iðφþ;φ−Þ�2 − m2

p2
0;−
h̄2ðφþ;φ−Þ

φ−

−
1þ m2

p2
0;−
½p0;⊥ −F⊥ðφþÞ�2 − m2

p2
0;−
h2ðφþÞ

H2ðφþ;φ−Þ=h2ðφþÞ
e
−i k−

2p0;−η0
φ−½hF 2⊥iðφþ;φ−Þ−hF⊥i2ðφþ;φ−Þ�

�

þ im2η0
k−p0;−

1

φ−

�
h

�
φþ þ φ−

2

	
h0
�
φþ þ φ−

2

	
− h

�
φþ −

φ−

2

	
h0
�
φþ −

φ−

2

	�

−
m2

p2
0;−

h̄2ðφþ;φ−Þ
φ−

½F̄ 2;⊥ðφþ;φ−Þ þ hF⊥i2ðφþ;φ−Þ − 2F̄⊥ðφþ;φ−Þ · hF⊥iðφþ;φ−Þ�

þ 1

2φ−

�
F⊥

�
φþ þ φ−

2

	
−F⊥

�
φþ −

φ−

2

	�
2

×

�
1þ m2

p2
0;−

½p0;⊥ − hF⊥iðφþ;φ−Þ�2 þ
2im2η0
k−p0;−

1

φ−

�
); ð34Þ

where we have removed the now unnecessary shift þi0
of the pole. Notice that the above regularization pre-
scription reduces to the known one in the absence of
radiation reaction, which guarantees that the energy spec-
trum dE=dk− vanishes if the external plane wave vanishes.

III. THE EMISSION SPECTRUM
WITHIN THE LCFA

In order to implement the LCFA, we use the same strategy
as in Ref. [38] by expanding Eqs. (16) and (19) for small
values of jφ−j [recall that within the LCFA the problematic
term proportional to 1=ðφ− þ i0Þ can be integrated analyti-
cally (see, e.g., Refs. [35,38]), whereas it is easier to per-
form the integration by parts of the terms proportional to
1=ðφ− þ i0Þ2 after the expansion for jφ−j ≪ 1].
It is interesting to notice that the regime where the LCFA

applies well overlaps with the regime where classical
radiation-reaction effects are large. In fact, the LCFA is
typically applicable at large values of the classical non-
linearity parameter ξ0 ¼ jejA0=m¼ jejE0=mω0 [30,34,35],
where A0 ¼ E0=ω0 and E0 are the amplitude of the vector

potential A⊥ðφÞ and of the electric field E⊥ðφÞ ¼
−ω0A0⊥ðφÞ of the plane wave, such that ξ0 is the amplitude
of ξ⊥ðφÞ ¼ ðe=mÞA0⊥ðφÞ (see Refs. [20,38,46–57] for
investigations about the limitations of the LCFA).
Moreover, in the realm of classical electrodynamics one
has to assume that the quantum nonlinearity parameter
χ0 ¼ η0ξ0 is much smaller than unity [30,34,35]. Under
these conditions the LCFA is expected to be very accurate
except possibly for extremely small emitted radiation
frequencies, which we do not consider here [38,53,54].
This indeed well overlaps with the regime where classical
radiation-reaction effects are typically large because, apart
from long laser pulses, radiation-reaction effects become
large for ξ0 ≫ 1 [see Eq. (5)] but still with χ0 ≪ 1, to be
able to neglect quantum corrections.
Under the above assumptions, as it is known, one has to

expand the phases in Eqs. (16) and (19) up to the third order
in φ−, whereas the leading-order expansion is sufficient for
the preexponential functions. The resulting angularly
resolved and angularly integrated energy spectra within
the LCFA can be written as [see the Appendix for details on
the more involved derivation of Eq. (36)]
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dELCFA

dk

¼ e2ffiffiffi
3

p
π2

1

m2η0

Z
dφþ

h2ðφþÞ
χðφþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2⊥ðφþÞ

q

× ½1þ 2π2⊥ðφþÞ�K1=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

½1þ π2⊥ðφþÞ�3=2
	
;

ð35Þ

dELCFA

dk−
¼ 2e2ffiffiffi

3
p

π

k−
p0;−

Z
dφþ

εðφþÞ
p−ðφþÞ

h2ðφþÞ
η0

×

�
K2=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

	

−
1

2
IK1=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

	�
: ð36Þ

Here, we have introduced the local quantum nonlinearity
parameter χðφÞ ¼ η0jξ⊥ðφÞj (it is easily checked that the
above formulas do not contain ℏ explicitly), the modified
Bessel function KνðzÞ of order ν [58] and the function

IKνðzÞ ¼
Z

∞

z
dz0Kνðz0Þ: ð37Þ

As expected from the very meaning of the LCFA, the
above Eqs. (35) and (36) can be obtained from the
corresponding expressions in the absence of radiation
reaction by replacing the components of the electron
four-momentum obtained from solving the Lorentz equa-
tion in the plane wave with the corresponding expressions
obtained from solving the LL equation [see Eqs. (9)–(13)].
In particular, one can find that in the absence of radiation
reaction Eq. (36) has exactly the same form as the classical
limit of the quantum energy emitted spectrum as computed
in Ref. [34]. However, we point out that the quantities
dELCFA=dk and dELCFA=dk− are not local in φþ because
both the function hðφÞ [see Eq. (5)] and the function
F⊥ðφÞ [see the definitions below Eqs. (7) and (11)] are
not local in the laser phase. This is also expected from the
physical meaning of radiation reaction, with one of the
main physical consequences being the accumulation effects
of energy-momentum loss.
As an additional remark, we notice that by taking the

integral of Eq. (36) in dk− one obtains that the total energy
radiated is given by

ELCFA ¼ 2

3
e2η0

Z
dφþ

εðφþÞ
hðφþÞ

ξ2⊥ðφþÞ: ð38Þ

Although this result is obtained within the LCFA, it
coincides with the total energy radiated by the electron
in general, i.e., also beyond the LCFA [see Eq. (19) in
Ref. [36] ]. This circumstance also occurs in the absence
of radiation reaction, as it can be ascertained by comparing

the general relativistic Larmor formula dE=dt ¼
−ð2=3Þe2a2 ¼ ð2=3Þe2m2χ2 (see, e.g., Ref. [1]), where
aμ ¼ F μνuν=m is the four-acceleration of the electron, with
the last equation on page 522 in Ref. [34].
Interestingly, the total minus component

dK−

dφþ
¼

Z
∞

0

dk−

Z
dk⊥

k−
ω

dE
dk−dk⊥dφþ

¼
Z

∞

0

dk−

Z
dk⊥

dE
dkdφþ

ð39Þ

of the four-momentum radiated classically per unit of laser
phase by an electron in a plane wave including radiation
reaction has been recently computed within the LCFA
in Ref. [59] in the different context of the so-called
Ritus-Narozhny conjecture on strong-field QED [60–65].
According to Eq. (39), by defining dELCFA=dkdφþ as the
integrand in Eq. (35), and by performing the integral of this
quantity over dk⊥ one can easily show that

dK−;LCFA

dφþ

¼ 2e2ffiffiffi
3

p
π

Z
∞

0

dk−
k−
p0;−

h2ðφþÞ
η0

×

�
K2=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

	
−
1

2
IK1=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

	�

ð40Þ

in agreement with the result in Ref. [59].

IV. CONCLUSIONS

In conclusion, we have derived analytically the angularly
resolved and the angularly integrated energy emission
spectra of nonlinear Thomson scattering by including
radiation-reaction effects. This has been accomplished by
starting from the analytical solution of the LL in an
arbitrary plane wave and by using the classical formulas
of radiation by accelerated charges.
The general expressions of the spectra are presented

in Eqs. (16) and (34), are valid for an arbitrary plane wave,
and are obtained as double integrals over the plane-wave
phase. A particular, new regularization technique has to
be used in order to regularize the angularly integrated
spectrum. We point out that the resulting spectra include
higher-order classical radiative corrections according to
the Landau and Lifshitz reduction of order, meaning that
neglected classical corrections are much smaller than
quantum corrections, which have been of course ignored
from the beginning.
Moreover, we have obtained a phase-dependent expres-

sion of the electron dressed mass, which includes radiation-
reaction effects.
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Finally, the expressions of the angularly resolved and
the angularly integrated spectra within the locally con-
stant field approximations have been derived as well.
These expressions have the property that are expressed
as single integrals over the laser phase of the corres-
ponding expressions without radiation reaction with
the electron four-momentum replaced with its expres-
sion including radiation reaction. Thus, they turn out
to be nonlocal exactly for the nature itself of radiation

reaction giving rise to cumulative energy-momentum loss
effects.

APPENDIX: DERIVATION OF EQ. (36)

The staring point is Eq. (19) and in order to implement
the LCFA there, we expand each term of the preexponent
up to the leading order for jφ−j ≪ 1, whereas we keep
terms up to φ3

− in the phase (see, e.g., [38]):

dELCFA

dk−
¼ −

ie2

4πη0

k−
p0;−

Z
dφþh2ðφþÞ

Z
dφ−

φ− þ i0
e
i k−
2p0;−η0

h2ðφþÞφ−½1þ 1
12
ξ2⊥ðφþÞφ2

−�

×

�
1þ 1

2
ξ2⊥ðφþÞφ2

−

��
1þ m2

p2
0;−

�
p0;⊥
m

−F⊥ðφþÞ
�
2

þ 2im2η0
k−p0;−

1

φ− þ i0

�
: ðA1Þ

Now, we integrate by parts the only term containing 1=ðφ− þ i0Þ2 in the preexponent and we obtain

dELCFA

dk−
¼ −

ie2

4πη0

k−
p0;−

Z
dφþh2ðφþÞ

Z
dφ−

φ− þ i0
e
i k−
2p0;−η0

h2ðφþÞφ−½1þ 1
12
ξ2⊥ðφþÞφ2

−�

× (
�
1þ m2

p2
0;−

�
p0;⊥
m

−F⊥ðφþÞ
�
2
��

1þ 1

2
ξ2⊥ðφþÞφ2

−

�

− m2

p2
0;−

h2ðφþÞ
�
1þ 1

4
ξ2⊥ðφþÞφ2

−

�
þ im2η0
k−p0;−

ξ2⊥ðφþÞφ−): ðA2Þ

This equation is already regular and can been expressed in terms of modified Bessel functions but, for the sake of
convenience, we integrate by parts the last term and have

dELCFA

dk−
¼ −

ie2

4πη0

k−
p0;−

Z
dφþh2ðφþÞ

Z
dφ−

φ− þ i0
e
i k−
2p0;−η0

h2ðφþÞφ−½1þ 1
12
ξ2⊥ðφþÞφ2

−�

×(
�
1þ m2

p2
0;−

�
p0;⊥
m

−F⊥ðφþÞ
�
2
��

1þ 1

2
ξ2⊥ðφþÞφ2

−

�

−
m2

p2
0;−

h2ðφþÞ
�
1 −

1

2
ξ2⊥ðφþÞφ2

−

��
1þ 1

4
ξ2⊥ðφþÞφ2

−

�
)

¼ −
ie2

4πη0

k−
p0;−

Z
dφþh2ðφþÞ

Z
dy

yþ i0
e
i k−
p0;−

h2ðφþÞ
χðφþÞ yð1þy2

3
Þ

× ð1þ 2y2Þ
�
1þ m2

p2
0;−

�
p0;⊥
m

−F⊥ðφþÞ
�
2

−
m2

p2
0;−

h2ðφþÞ
1 − y2 − 2y4

1þ 2y2

�
; ðA3Þ

where we have introduced local quantum nonlinearity parameter χðφÞ ¼ η0jξ⊥ðφÞj (see also the main text). At this point, we
observe that the main contribution to the integral in y ¼ φ−jξ⊥ðφÞj=2 comes from the region jyj≲ 1. Moreover, we recall
that within the LCFAwe are assuming that ξ0 ≫ 1 (see the discussion at the beginning of Sec. III), which means that the
largest contribution to the integral in φþ comes from the regions whereF⊥ðφþÞ is at the largest. From the definitions below
Eqs. (7) and (11), we obtain that

F⊥ðφÞ ¼
Z

φ

−∞
dφ̃ hðφ̃Þξ⊥ðφ̃Þ ¼

e
m

Z
φ

−∞
dφ̃ hðφ̃ÞA0⊥ðφÞ

¼ e
m

�
hðφÞA⊥ðφÞ −

2

3
e2η0

Z
φ

−∞
dφ̃ ξ2⊥ðφ̃ÞA⊥ðφ̃Þ

�
; ðA4Þ
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which shows that jF⊥ðφÞj≲ hðφÞξ0. In conclusion, we can consistently neglect the last term in Eq. (A3) as compared to the
second-last one within the LCFA (note that we do not make any assumptions about the values of jp0;⊥j=m and p0;−=m as
compared with ξ0) and we finally obtain the expression in the main text:

dELCFA

dk−
¼ 2e2ffiffiffi

3
p

π

k−
p0;−

Z
dφþ

εðφþÞ
p−ðφþÞ

h2ðφþÞ
η0

×

�
K2=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

	
−
1

2
IK1=3

�
2

3

k−
p0;−

h2ðφþÞ
χðφþÞ

	�
; ðA5Þ

where we have used the integral definitions of the modified Bessel functions KνðzÞ [58] and the expression (13) of the
energy of the electron inside the plane wave, neglecting the term proportional to m2 there. The last approximations used
prevent the possibility of interpreting the integrand of Eq. (A5) as the energy emitted per unit of laser phase and unit of k−.
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