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Fermion mass and width in QED in a magnetic field
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We revisit the calculation of the fermion self-energy in QED in the presence of a magnetic field. We
show that, after carrying out the renormalization procedure and identifying the most general perturbative
tensor structure for the modified fermion mass operator in the large field limit, the mass develops an
imaginary part. This happens when account is made of the subleading contributions associated to Landau
levels other than the lowest one. The imaginary part is associated to a spectral density describing the spread
of the mass function in momentum. The center of the distribution corresponds to the magnetic-field
modified mass. The width becomes small as the field intensity increases in such a way that for
asymptotically large values of the field, when the separation between Landau levels becomes also large, the
mass function describes a stable particle occupying only the lowest Landau level. For large but finite values
of the magnetic field, the spectral density represents a finite probability for the fermion to occupy Landau

levels other than the lowest Landau level.

DOI: 10.1103/PhysRevD.104.016006

I. INTRODUCTION

Magnetic fields influence the propagation properties of
electrically charged as well as of neutral particles. Whereas
charged particles couple directly to the magnetic field,
neutral particles are affected indirectly when their quantum
fluctuations involve charged particles. For instance, in
QED, the coupling of the magnetic field to photon charged
fluctuations gives rise to vacuum birefringence, whereby
photons develop three polarization modes for the two
polarization states. This means that the breaking of
Lorentz invariance due to the external magnetic field,
implies the appearance of the three tensor structures that
span the polarization tensor. As a consequence, the refrac-
tive index depends on the coefficient (mode) of each
projection as well as on the propagation direction [1-3].
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In the same manner, fermions are also influenced by
magnetic fields through quantum fluctuations that involve
charged particles. This influence is encoded in the fermion
self-energy. Attention to this object has been paid since the
pioneering work by Schwinger [4] who computed the
fermion propagator in the presence of a uniform external
magnetic field. In particular, the use of nonperturbative
techniques revealed the magnetic catalysis phenomenon,
whereby a magnetic field of arbitrary intensity is able to
dynamically generate a fermion mass, even when starting
from massless fermions [5-7].

In vacuum, perturbative calculations have focused on
finding the leading magnetic corrections to the fermion
mass for strong fields [8—12]. After renormalization, these
corrections turn out proportional to [In|eB|/m?]?, where
|eB| and m are the strength of the magnetic field and the
fermion mass, respectively. These double logarithmic
corrections become large when the ratio |eB|/m? is large,
which happens for either large field intensities or small
fermion masses, signaling the need of resummation.
Carrying out this program, Ref. [13] studied the transition
between the perturbative and nonperturbative domains.
A slightly different approach, where the effects of the
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magnetic field-induced photon polarization are included, is
studied in Ref. [14].

In all these works, the calculations focused on finding the
kinematical domain of integration that leads to the double
logarithms for strong fields, which essentially corresponds
to finding the contribution from the lowest Landau level
(LLL) for the internal fermion line. However, it is well
known that for large but still finite field strengths, the
contribution of levels other than the LLL also become
important. Furthermore, in order to find the magnetic field-
driven mass corrections, several calculations [8—12] resort
to finding the self-energy matrix element in the fermion
preferred state, namely, the spinor representing the lowest
energy fermion state. For these purposes, Schwinger’s
phase factor is kept all along the calculation, which makes
it a bit more cumbersome since then, the kinematical
momentum [T¥ = p¥ — eA#(x), instead of the canonical
momentum p*, is involved, where A#(x) is the four-vector
potential that gives rise to the magnetic field. Nevertheless,
as is also well known, for the self-energy calculation, the
phase factor can be gauged away by choosing an appro-
priate gauge transformation. One can then ask whether the
magnetic field induced fermion mass can be found from an
approach where this phase is gauged away and that
emphasizes the general tensor structure of the fermion
self-energy, from whose coefficients the magnetic field
dependent fermion mass can be read off.

In this work we revisit the calculation of the fermion self-
energy in the presence of an external magnetic field. We
carry out the computation of the magnetic field induced
fermion self-energy and then, from its general structure, we
find the mass and width. After introducing a Schwinger
parametrization and removing the vacuum, we identify the
three distinct regions of integration that contribute to the
mass shift. We show that, while working in the large field
limit, it is still possible to include the effect of all Landau
levels. The procedure we employ makes it also possible to
find the subdominant contributions in the ratio |eB|/m?
which include, in particular, the imaginary part of the self-
energy. We interpret the result in terms of the development
not only of a mass but also of a width. For large field
strengths, the former comes mainly from the lowest Landau
level (LLL) whereas the latter comes mainly from con-
tributions other than the LLL. The work is organized as
follows: In Sec. II we set up the computation of the one-
loop fermion self-energy in the presence of a constant
magnetic field. In Sec. III we implement the requirements
of renormalization in vacuum and find the general expres-
sion for the renormalized, magnetic field dependent self-
energy. In Sec. IV we express the mass shift operators in
terms of its most general tensor structure. In order to find
the explicit result, we separate the integration domain into
the three distinct regions that contribute. We show that one
of these regions provides the dominant, real contribution, as
well as a subleading imaginary part, implying a finite decay

rate, whereas the other two regions contribute with sub-
dominant terms. In Sec. V we analyze the results express-
ing the self-energy in terms of its most general tensor
structure and for different values of the magnetic field
strength comparing to those obtained from considering
only the leading, double logarithmic contribution. We show
that the result can be understood as a mass shift with a
Lorentzian width. As the magnetic field increases, the
width decreases in such a way that for very large magnetic
fields the Lorentzian turns into a Dirac delta function
expressing the mass shift and dominated by the LLL. We
finally summarize and conclude in Sec. VI and leave for
the appendices the explicit computation of some of the
expressions and calculations that we use throughout the rest
of the work.

II. SELF-ENERGY

We start by considering the expression for the fermion
self-energy in QED, at one loop, in the presence of an
external magnetic field directed along the Z-axis, namely,
B =2B,

4
i2(p) = (ie) [ S iS 0 Guulp =K. (1)

Here, we use the photon propagator in the Feynman
gauge

_ig/w
Goulp— k)= — I
u(p—K) (p—k)?+ie
= 0w Aoo dxeix[(p—k)z-k—ie]’ (2)

and the fermion propagator in the presence of the magnetic
field, using Schwinger’s proper-time representation

. ¢S] dT iT(kZ—k2 lan(eBr)_m2+l.€)
S k = — _ | "L eBr
rk) l/o cos(eBr)e
X {[cos(eBr) + iy'y? sin(eBr)|(m + kH)

+k7l} (3)

cos(eBr)

where the phase factor has been gauged away (see
Appendix A for details).

In order to separate the two directions, i.e., parallel and
perpendicular, with respect to the magnetic field, we adopt
the following conventional definitions: For the metric
tensor g"¥ = d“‘” + ¢/, with

g = diag(1,0,0,-1), (4a)

and
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¢ = diag(0,—1,-1,0). (4b)

Therefore, we have the basic relations

K=K +k (5a)
and

K=kt — k3, (5b)
with k7 = kg — k3 and k7 = k7 + k3.

By applying the elementary properties of the algebra of
Dirac matrices, we obtain (see details in Appendix B)

- / © dr i =R T m? i)
o cos(eBr)
X {4m cos(eBt) — 2f| cos(eBr)

K - 2 } (6)

cos(eBr)

YﬂiSF(k)

— isin(eBrt)y

Inserting Eqgs. (2) and (6) into Eq. (1), the global
exponential factor becomes
(=R +ie) (k- 12 B2 e}
2

. B : )
[z{(x-s-r)lﬁ—(x-&-”"(g T>)12 +xp ——mﬁmpi—m%ﬁe}]
=e ¢B s (7)

where we defined the shifted, internal momentum variables

X

Ho__
h=K-1377 (3)
x
lli = - x+ tan(eBt) p/i (9)
eB

After integrating over the internal momenta, using the
simple identities

dzlJ_ —ilx tan(eBr) [ 1 —ir
/—(271)26 (ol = (2;1)2 —— B (10)
eB
d21 11n(e8 )
[ Gt <o, (1)
d?l
/ | itror _ 1 T (12)
(2r)? (2n’)2 (x+17)
d?l
[hpeico,

we obtain the expression

5 / / dxdr
P»
(471- x+ lani%Br))
|:2m - 17” - tan(eB)TC)/ﬁL
X+ (x + =5 [cos(eBr))?
xtan(eBt) . | ,
X+7T v
) 2p2
i(xpz—;‘?pﬁJrTjBr)—rszrie)
X e e . (14)
Introducing the change of variables
2
s(l1=y) sy leB] Py
= A B ey=a ()
with the corresponding Jacobian
dr,x) |1-y == (16)
= = S’
d(s,y) y s

we obtain that the self-energy is expressed by

e [T [ i + ) -

¢(y.p.B) +ze (17)

Z(p,
Xels

where we defined the phase

y*cos(Bs(1 - y))pi

in(Bs(1—y))
ycos(Bs(1 —y)) + STV

- (1-y), (18)

as well as the terms that appear in the integrand

o(y.p. B) = yp* = y’pi +

__ (2—ydy)cos(Bs(l _y)), | .
yeos(Bs(1 - y)) + 2E=)
P oo - yy;;l+ e 0
— ysin(Bs(1 —y))
yeos(Bs(1 —y)) + SHEH=)
X iy1y2sign(eB)¢H, 1)

III. FIXING THE COUNTERTERMS
IN THE B =0 LIMIT

Equation (17) corresponds to the unrenormalized self-
energy for arbitrary magnetic field intensities. We impose
the renormalization conditions such that m corresponds to
the physical mass at B = 0, i.e.,
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e (p,0) =0, (22)

|p=m
and the corresponding condition for the wave function
renormalization factor

0
—2(p.0 = 0. 23
5= 0 23)

Each of these conditions will determine a counterterm to
be added to the integrand in Eq. (17). Note that the
expressions for the counterterms are given by imposing
conditions over the canonical momentum p instead of the
kinematical one JI. Nevertheless, both prescriptions are
identical, given that /I — p'when B — 0, and hence, for the
purpose of fixing the appropriate counterterms, the renorm-
alization conditions can be equivalently expressed in terms
of the canonical momentum. Of course, the coincidence
between prescriptions comes form the fact that the potential
A# in the minimal coupling (I" = p* — eA*) vanishes at
zero magnetic field in Mikowski space. However, this is not
the more general case: in curved spaces, the appearance of a
pseudomagnetic field is possible, which arises from cur-
vature effects (see for example Ref. [15]).

Coming back to the counterterms calculation, let us start
with the phase defined in Eq. (18), by obtaining the limit at
B = 0, namely,

llgig(l)co(y,p, B) = ¢(y,p,0)
=y0* =Y (pi —p1) — (1Y)

=({1=y)p*-1)

For the terms in the integrand

lim(A) =2~y

llgl_ff(l)(B ) ==Y/

lim(C) = 0. (25)

Therefore, using g = g + 4., we have for the self-
energy at B =0

2me ds
yren 0 d is(=(1=y)>+ie)
(p. (471' / / e
x [(2 = y)eIFD el (26)
where “c.t.” represents the counterterms to be added to

satisfy Eqs. (22) and (23), respectively. In terms of the
dimensionless variable § = p/m, the condition of Eq. (22)
becomes

Zren(p’o) — Zren(p’

|g:m 0) |p:1 =0, (27)

and hence we conclude that the corresponding counter-
term is

cty=—2-y) (28)

On the other hand, for the condition Eq. (23) we consider
the first derivative of the (unrenormalized) self-energy on

=(1=yy@-D-0-y% (24 el
|
0 10
—22(p,m ——2
2 2(p >F:m i (». >\
/ ds/ dyei=( w)[ Y101 4 (2 — yh)isy(1 — y) et 1)1
(4r)? m =1
2me/ ds/ dyeis(=(1=y) +16)[ Y 1ojs M(z_y)]_ (29)
m m
Thus, the second counterterm is
oy -
c.t.2:—(¢—1){—%+21s¥(2—y)}. (30)

In summary, including both counterterms the renormalized self-energy at B = 0 is given by the expression

Zren <p’

2 feo
0) = 2 / ds / ! dyeis-0=7) | (2 Z yh) sl 0 +1-3) _ (2 )
(47[)2 0 S Jo

_(ﬂ;_1){—%+2isy(lr;y)(2—y)H. (31)
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IV. RENORMALIZED SELF-ENERGY AND MASS
RENORMALIZATION AT FINITE B

From the definition of the counterterms in the previous
section, in particular Eq. (31), we have that the renormal-
ized self-energy for any finite strength of the magnetic field
is given by

— zme / dS/ dye” (1=y)*+ie)

X [((A) + (B) = (C))eistwlrB) (1))
-2-y)-F-1)
X{‘%H“W(%w}], (32)

where the phase ¢(y, p, B) was defined in Eq. (18), while
the tensor coefficents (A), (B), and (C) are given by
Egs. (19)—(21). It is straightforward to verify that, by
construction, the renormalized self-energy Eq. (32) satisfies
the renormalization conditions, Eqgs. (22) and (23), in the
limit B — 0, as they should. The mass shift for a finite
magnetic field strength is thus defined by

Zren p ,

dmp = mp —m = X*"(p,B)

|pH:m
= (p. B)) . 33)

and, by construction, it clearly satisfies
};1_1}})5m3 =0. (34)

Fixing the conditions #; =1 and g, = 0 amounts to
finding the particle’s energy in the lowest energy state,
namely, p, = mp, which indicates that the three-vector
components of the four momentum are equal to zero. Since
po comes in combination with p3 to form p| and this
variable decouples from p |, it is natural to first take p | =
0 to later take p; equal to zero. Then, as stated in Eq. (33),
we obtain the explicit integral expression for the magnetic
mass shift operator

/ / _elS (1=y)?+ie)

x{ (2 —y)cos(Bs(1 —y))
y

—(2-y
cos(Bs(1 —y)) +7§m(6§_¥1 ) ( )

Y sin(Bs(1 — y))i}’l}ﬂSign(eB)}
ycos(Bs(1 —y)) _ sin(Bs(1-y)) |

Bs

(35)

We notice that the physical origin of the third term
in Eq. (35) comes from the electromagnetic coupling
SO = eBiy'y?, that determines a different value of

the self-energy, and hence of the mass, for each spin
component parallel or anti-parallel to the external magnetic
field, respectively. In Appendix F, we compare our result in
Eq. (35) with Ref. [8].

It is convenient to express the operator in terms of the
projectors

A 1
o) = 5(1 + iy'y?sign(eB)), (36)
such that we have
smy = ODomi + 0 sm'). (37)

Here, the magnetic mass shift components are given by

e _2me [y [ oo

% 2=y)cos(Bs(1—-y))
L} cos(Bs(1 —y)) + W (2-)
ysin(Bs(1 —y)) ]

in(Bs(1-y)) |
yeos(Bs(1—y)) + SHT‘

(38)

Notice that the presence of the counterterm makes the
integrand to identically vanish in the limit s — 0. Similarly,
in the limit y — 0, the integrand is finite. Therefore, for
large magnetic fields, B> 1, it is convenient to split the
integration domain (y, s) € [0, 1] x [0, co] into three sepa-
rate regions (R, R,, R3), as depicted in Fig. 1, as follows

2.

1.5

Rs:s>BAy>B1t

[Va)
—
Re:s>B1Ay< B!

0.5

0 Ri:s< Bt
0. 0.5 1.
Y
FIG. 1. The three integration regions in the domain
(v,5) € ]0,1] x [0, 00], as described in the text.
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1 © 1 B! B! ;S
/dy/ ds:/dy/ ds+/ dy/ ds
0 0 0 0 0 B!
Rl RZ

such that we write the mass shift components as

smy” = omy |+ omy7 |, +my|n,.  (40)

The integrand in the first term, where Bs < 1, is bounded
from above, and its singularity as s — 0 is removed by the
counterterm. Moreover (see Appendix C for details), its
contribution is

2
W, 2med [ 157 2041
5 - -
"5 r, (471)2( 2016 567000
o1 257 .
[% oSBT D+0(B ). (41)

Similarly, as shown in Appendix C, the contribution
arising from the second region is (for 5>> 1)

Na’"_’si{_

+B—1(2y—2ln[|1 =] +i<”i;)>}

+0(B7?). (42)

om’) %, —2B7'In(B)

The contribution of both of these subleading kinematic
regions becomes finite and strictly real as 5 — oo.

Finally, for the remaining, and hence dominant, kin-
ematic region, characterized by the condition Bs > 1, since
|sin(Bs(1 —y))| < 1, we have the inequality

sin(Bs(1 —y))
Bs

1
<« 4
_Bs<< (43)

Under this assumption, the asymptotic expression for the
mass shift components in Eq. (35) is

L
(4r)? [ Bl

% [% F tan(Bs(1 — ))} (44)

5’"1(9 |R3

We notice the presence of the tan(Bs(1 — y)) function in
the integrand of Eq. (44) which is continuous when defined
in the open interval (—%,%), and extends itself periodically
along the real axis, namely, tan(x + nz) = tan(x), pos-
sessing infinitely many poles at every odd multiple of z/2,

ie., for x > iu tan(x) — £oo. Therefore, the inte-

gral in Eq. (44) must be interpreted as a principal value and
hence, in the sense of distributions, we can use the periodic
series (see Appendix D for details)

tan(Bs(1 —y)) =2y (=1)""'sin(2Bs(1 —y))

1M

(_l)n(e2in8s(l—y) _ e—ZinBs(l—y)).

I
s

1

1

(45)

Substituting Eq. (45) into Eq. (44), and using the exact
definitions (as € — 0),

- _ 2
/ @eis(—(l—y)zﬂe) — F(O, zu> (46)
: B

-1 S

/°°ds
—e
/B S

_F@ u—>u;yi%m)’ )

is(—(1=y)(1=y£2nB)+ie)

we obtain that the magnetic mass shift components are

given by
:(252411 dy[@—y)y(l—Y)F(O,i(l;y)z)
:Fig(—l)”{l“<0,i(l_y)(lgy_2”5)>
_r<07i(1—y)(1l—gy+2n8)>}]. s

We notice that the incomplete Gamma function I'(0, z)
satisfies the following identity

+
5’”% )‘R3

['(0,iz) = —y — In(iz)

(49)
k=1
Therefore, for large B> 1 we have the following
asymptotics

f(041=2) <o ({027 Lo, 50

thus leading to a double logarithmic dependence of the
mass shift operator Smy ~ (In(B))? for B> 1. More
precisely, as shown in Appendix D, the integrals involved
in Eq. (48) display the following asymptotic behavior (for
B> 1),

016006-6



FERMION MASS AND WIDTH IN QED IN A MAGNETIC FIELD

PHYS. REV. D 104, 016006 (2021)

LS a-ne-yrois -y
Bty

=2[In(B)]* - <2y + % + iﬂ') In(B) + O(B%), (51)

and the infinite sum over Landau levels in Eq. (48), as
shown in Appendix E, is given by

4 ii /1 dy{T[0,iB- (1 = y)(1 — y = 2nB)]

-I0,iB~'(1 = y)(1 —y +2nB)|}
In(2)

2
+0(B2). (52)

= F0.421794(1 - B™") F In(2) £ i(1 - B™)

Therefore, the dominant contribution to the magnetic
mass shift components is, after Eq. (48) (for B> 1)

m g, = Z:; {2[ln(8)]2 - [2)/ + g + m} ln(B)}

+0(B). (53)

Note that the above result is the same when only the LLL
is taken into account. Moreover, given that Eq. (53) is
independent of the sign of the projection, we rename it
as omplg,.

V. ANALYSIS OF THE RESULTS

In order to interpret the results obtained, let us write the
inverse propagator in momentum space and at finite
magnetic field in the form

[=iSr(p)]” = p—m —(p. B)
= (0% 4+ 0 (pr = m) = O (p, B)
—O)x) (p,B)
= O [=ia ) (p)] ™ + 0 =il (p))!

(54)

where the Feynman propagators for each spin projection
(£) parallel to the magnetic field direction are thus given by

i
p—-m—-35(p,B)+ic’

A (p) (55)

As obtained after the explicit calculations in the
previous section, the pole in each of these propagators
contains an imaginary part, whose magnitude scales as
ImEZ) (m, B) ~ —In(B), while the real part scales as

ReX™®) (m, B) ~ [In(B)]?, and hence the latter becomes
dominant at large magnetic fields, B> 1. Therefore, the
physical mass is determined by the real part,

mi = m+Rex® (m, B), (56)

while the imaginary part determines an spectral width,
since near the pole

i

(+)
Ay (p) ~
! 7 m%i) — iImX®) (m, B) + ie

7+ mt +iIm=® (m, B)
p? = (m$) = 2imIm=®) (m, B)

~i

(57)

Figures 2 and 3 show the behavior of the real and
imaginary parts for both projections (4) of the mass-shift
given in Eq. (40), compared with the dominant émp|y,.
All the contributions are normalized to the quantity

8f— oms) (a)

— §m(§)

— 0N .
Bl 7

0
10 15 20

10 15 20

FIG. 2. (a)Real and (b) imaginary parts for both projections (+)
of the mass-shift given in Eq. (40), compared with the dominant
dmp|z, contribution.
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00— 5mg>
5o (=)
60 ompg
——Omp
~— 50 R

10 102 103
B
(b)
20
g
2
3 1
g
S
——
E
10 — ng)
— 6m§;)
= 0B
Rs
10 102 103

B

FIG.3. (a)Real and (b) imaginary parts for both projections (4)
of the mass-shift given in Eq. (40), compared with the dominant
Smp|z, contribution.

C,, = 2me?*/(4r)?. Figure 2 shows the case for a moderate
range of the field strength in units of the fermion mass
whereas Fig. 3 is for the case of a larger range of field
strengths. It is important to mention, that our approximation
is valid in the region where In B > 1, therefore, the results
have B~ 10 as a lower limit. Notice that as the field
strength increases, both the real and the imaginary parts are
better described by the dominant contribution which in turn
comes from the LLL or dmgl|g..

The appearance of an imaginary part is an interesting and
expected feature, which has a direct physical picture: An
electron not yet affected by the magnetic field (correspond-
ing to the external leg in the self-energy diagram) enters a
region where the magnetic field forces it to occupy a
Landau level and thus (in classical terms), an orbit around
the field lines. The emission of photons comes from the fact
that the fermion need to preserve its energy and momentum
(a syncroton-like process). At lowest order, this is repre-
sented by the emission of one photon, but as we shall see,
when the Landau levels are close to each other, the process

is better represented by a distribution of Landau levels that
can possibly be occupied and thus the need of the spectral
function representation. In that spirit, note that the real and
imaginary parts combined define a Breit-Wigner resonance
'®) = —2ImX™) (m, B), whose relative width

r 2Im=*) (m,B)  In(B)

m%ﬂ m%i) [In(B)]?

~[In(B)]~"  (58)

decreases to zero at a rate [In(8)]~! as the magnetic field
grows large (B — o0). This effect can be highlighted
analyzing the spectral density, which is, as usual, calculated
from the imaginary part of the scalar denominator in the
Feynman propagator. For a well-defined single-particle

state with mass m%i), we would have (as ¢ = 0T)

B e/n
(=) e
— 8[p* — (my”)’). (59)

e—0"

In the present case, however, due to the presence of a
finite imaginary part in the pole, a similar calculation leads
to a spectral density of the form

p(77) = =1 : )
P\P”) = ——
T \p?- (m,(;))2 + im%i)F(i) + ie
e/n+ m%i)l"(ﬂ/ﬂ

(P2 = (mg)*)? + (m§T®) +¢)

+
~ Z% jrz(i)/” ) 7 (60)
(P2 — (mp")")" + [my F<i>]

that clearly shows a smeared, roughly Lorentzian distribu-
tion, representing a quasicontinuum of unstable energy
states. While the dominant contribution at very large values
of the magnetic field can be easily traced back to the LLL,
the smearing is related to the probability to populate the
higher Landau levels, with a relative width T'*) / m%i) ~
[In(B)]~! that decays to zero as B — oo, and hence in this
limit all the spectral weight is concentrated on the stable
LLL. Figure 4 shows the spectral densities as functions of
the momentum squared scaled by the fermion mass
squared, for two values of the magnetic field B = 10?
(a) and B =10° (b). Notice that as the field strength
increases, the peaks for both modes approach each other
and at the same time, the Lorentzian distribution narrows.
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5 Im2
1p——p " /m a
e ()

— i m? (b)
—— ﬁ(’)/mz
B =100

p & /m?x 107

-6 -4 =2 0 2 4 6
p*/m? x 10°

FIG. 4. Spectral density from Eq. (61) for (a) B = 10 and
(b) B =100 as a function of the momentum squared. The solid

line represents the contribution of 5m§:)

().

whereas the dashed line
is the contribution of ém

VI. CONCLUSIONS

In summary, we have studied the fermion self-energy in
QED in the presence of a magnetic field. After carrying out
the renormalization procedure we have shown that in the
large field limit, when accounting for subleading contribu-
tions associated to Landau levels other than the LLL, the
mass function develops also an imaginary part. From this
imaginary part it is possible to define a spectral density
describing the spread of the mass function in momentum
which is centered at the magnetic-field modified mass. The
width of this distribution becomes small as the field intensity
increases in such a way that for asymptotic values of the field,
when the separation between Landau levels becomes also
large, the mass function describes a stable particle occupying
only the LLL. For large but finite values of the magnetic field,
the spectral density represents the finite probability for the
fermion to occupy Landau levels other than the LLL.

The present calculation has potential applications.
Recent works consider dilepton production from a single

photon in a strong magnetic field, giving rise to vacuum
dichroism, i.e., the spectrum becomes anisotropic with
respect to the magnetic field direction, depending also on
the photon polarization. [16]. There, the usual QED vertex
is considered when the outgoing fermions are dressed by
corrections due to the external magnetic field. Nevertheless,
self-energy correction for these outgoing fermions is not
taken into account, which would soft the spiky structure of
the spectrum through the imaginary part that we report. On
the other hand, in the field of condensed matter systems, the
vacuum-polarization diagram plays an important role in the
optical conductivity and transparency in graphene [17,18].
Normally, the fermion propagators are dressed by external
field corrections but the inclusion of quantum self-energy
corrections for the fermion propagators, as we have done in
this paper, have not been considered. Certainly it would be
interesting to explore the relevance of this correction for the
optical transparency of graphene in the presence of an
external magnetic field.

Finally, it is important to mention the range of validity of
our approach, in terms of the magnetic field strength. As
discussed in the main text, we focus on the region where
In B > 1 so that B ~ 10 is a lower limit of validity, and no
restrictions over the upper limit were done. However, notice
that, when the real part of the magnetic field-dependent
coefficient that multiplies the mass, 7, that represents the
dimensionless mass correction, becomes of order O(1), it is
important to resum all the leading double logarithmic
corrections. As it is discussed in Ref. [13] when the
resummation becomes singular at some value of 7, this
signals the breakdown of perturbation theory and the
transition to the nonperturbative regime is heralded. In that
regime, the coupling may also receive important magnetic
field corrections which certainly deserve a thorough inves-
tigation but are outside the scope of the present work.
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APPENDIX A: GAUGING AWAY THE
PHASE FACTOR

It is well known that in the presence of an external
magnetic field, charged particle propagators can develop a
phase factor ®(x, x'). In particular, the fermion propagator
S;(x,x") including the phase factor, is given by
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TS (p).

Sp(x,x') = O(x, x’)/(z (A1)

where Sp(p) is given by Eq. (3) and the phase takes the
form

CD(x,x’):exp{ie / ¥ ag [A +;Fﬂy(§—x’)”]}. (A2)

In order to perform the integral, let us take a straight line
path parametrized as
forO0<r<1.

=X 4 (= xM), (A3)

Therefore, the phase actor becomes

B(x, ¥') = exp [ie A LA — )dt] (A4)

where the antisymmetry of F,, was used.
From the above, the phase can be removed by the gauge
transformation

Au(8) > AL (&) + o ald). (A5)

o

For our case, where the magnetic field is oriented in the
z-direction, we have

B
A/l 5 (O —X2, X1, O) (A6a)
Therefore, choosing
B 1
a(g) = 5 (&' — &), (A6b)
we obtain
! B / /
A, = E(O Xy — X5, x1 —x1,0), (A7)
which implies that
Al (X = x") =0, (A8)

and thus the phase can be safely removed.

APPENDIX B: DIRAC ALGEBRA

Here we list the properties of products of Dirac matrices
that appear in the calculation of the fermion self-energy in
the presence of a magnetic field:

vt =4 (B1)

vy vt =497 =0 (B2)

Rive = kpor'r've = =2k rY = =2f (B3)
YEiy, = 2K, (B4)
v 'R = k' ey, = 26'y - (BS)

APPENDIX C: SUBDOMINANT
INTEGRATION REGION

As presented in the main text, the magnetic mass shift
components are given by

smy = 0O sm + 0Csm|), (C1)

where the magnetic mass shift components are given by the
integral expressions

st 2’”6 / / 95 jis(-(1-v+ie

« (2-y)cos(Bs(1-y))
{y cos(Bs(1 —y)) + nEsl=y) 2-v)
ysin(Bs(1 —y)) ]

sin(Bs(1-y)) |
ycos(Bs(1 —y)) +==5—=4

(C2)

Moreover, as explained in the main text, we shall split the
integration domain into three subregions, as follows

+ +
Iz, + 5’"2 )|R2 + 5’"53 )|R3'

+ +
5m% ) = 5m1(3 ) (C3)
Let us now restrict ourselves to the kinematic region

0 < Bs < 1, which corresponds to the s-integral domain
s € [0, B7!). Within this region, we can Taylor expand the
expressions in the square bracket as a power series in

Bs < 1, to obtain

(2 —y) cos(Bs(1 - y))

V) - (2_)7)

cos{Bs(1 — ) + ST
-
_(2- )<1:55y>( —y)’ (Bs) + 0(Bs).  (C4)
and similarly
ysin(Bs(1 —y))
yeos(Bs(1 - y)) + B2
Sy E) M (Bs)* + O(Bs)S.  (C5)

Integrating the first group of terms, we obtain
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1 Brds e 2—y)cos(Bs(l—y
/ dy/ —e (=(1=y)"+ie) |: ( ) ( ( sin(Bs)g—v)) - (2 - y):|
0 o yecos(Bs(1 —y)) + =5+

Bs

;zz 5 [ (30i(2B% + 1)E (— é) — 14ie 8B + 14i3? — 3028* — 60iy B> + 30i(2B + 1) log(B)

| | 3/4
~Te 5B — 248 — 64ie™% — 30i — 157 — 30iy) + 15V~=1/z(B - 6:)\/EErf1<( \/% )]

157 2041 B2 1 0B, (o)

_ 15T 2041, 14749
2016 56700 1425600

and similarly, for the second term

/ /Bl ,s —(1-y) +,€)|: ysm(Bs(l_ )) :|
ycos(Bs(1 — y)) 4 SnBsd=y)

Bs
1 ' V-1
~ 5B {(6 — 4B%)Ei (— é) +2(3 —2B2) log(B) — 6v/—1/zVB(B - i)Erf< 7B )
+2B(B(=3e75 +3 + 2y —in) 4+ i) + 12 — 6y + 3m]
91 257 307
= — — Bl _B?4+0(B" C7
540 10080" 756000 +OB7). (€7)
Combining both expressions, we obtain for the contribution of this first kinematic region
2
() 2me 157 2041 o1 257 | .
5 = - - 0 . C8
"5 Ir, (47)? ( 2016 56700 0 540 " 100800 +0(B7) (C8)

Let us now consider the second integration region defined in the main text (see Fig. 1), corresponding to s € (B!, 00)
and y € [0, B7"). The last condition means that, for large magnetic fields B >> 1 the integration variable y < 1 within this
interval. Therefore, a Taylor expansion around y = 0 yields for the first term,

cos(Bs(1 —y)) B
yecos(Bs(1 —y)) + W

= e8¢ (Bs — cot(Bs)) + ye U= (1 4+ 2(Bs)? — 4is — Bs cot(Bs) + 4iBs* cot(Bs)) + O(y?),  (C9)

eis(—(l—y)2+i€) (2 _

and similarly for the second term

ysin(Bs(1 —y))

sin(Bs(1—y))
yecos(Bs(1 —y)) + Ty

eis(—(]—y)erie) = ye —is(1—ie BS+O( ) (CIO)

Integrating these expressions in their corresponding kinematic region, we obtain for Eq. (C9)
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5 ts( )2 +ie) COS(BS(l _y)) _
/ l@ 2-7) [ycos(Bs(l —y)) 4 SnBs=y) 1}

Bs

2s 2

— (g2 _op 00,iB~" — e~ (1 +iB' +2B72) + 2—8—_ e Fif 1, LIS S I
—\2 ! ¢ ! 2B-12"! 28°° " 28°¢

+e(26>F11+12+1 -2i +2le(23)F11 Loy 1
— — T d—i2—-—e
2B+1 21 2B’ 2B’ B2B-1)%" 2B’ 2B
i(=2-B7) 1 1 .
le
7F ILl4+—:24—;e %
BB 1<’ P AT A )

1 0 (o 1
- —i(5+2 )q) —2i 2.1 _ Li(—5t2 )q) —2i 21— —
+283{e ) ( +23) o 28

~—=1=2B"In(B) + B~ '(2y = 2In[]1 — €] + in) + O(B7?) (C11)

o o -1 2 -1
~ / dse="s(1-1€) {s -2iB72 — 2B— + B——l— <2 _5 + 2il§"ls> cot(Bs)]
B—l

and for Eq. (C10)

. . ~ . .
/ / ois(—(1=y)2 i) ysin(Bs(1 —y)) ~ ol emiB o —éB‘l +0(B?) (C12)
B!

sin(Bs(1—y
ycos(Bs(1 —y)) + SnBsi=y) - ) 2B

In these expressions, we have used the periodic series expansion (see Appendix D)

cot(Bs) = —i Y _ (e2nBs — ¢72inbs) (C13)

n=1

to obtain the analytical integrals

© is(1—ic) © To=i(1-2nB)B™  ,=i(1+2nB)B
d —is(1—1t€ t B —
/B_1 se cot(Bs) ;{—1—1—%8—’_ 15 2nB }

25 L TS DL S AN SURRE SIS Sy Cl4
" 2B- 121< ~2B° _%’6)+2B+121<’ 2B +%’e> (CL4)

and

(1o © —i(1-2nB) e i(1+2nB) © (1-2nB) —i(1+2nB)
dse—is(1=ie) t —
/B] se scot(Bs) = 12[ 2nB)2 (1+2nB ] 2{1—2;18 14_2”3}

el B 1. i(=2-B7) 1 1 :

F 1.1= . 20 F 1.1 Y, I —2i
(28 2 L B,e >+B(28—|—1)2 1( , +2B, +28,e )
1 . 1
482{ (5+2)(I)< —2i .2, 1+ZB) el(—%+2)q)< —2i .2, 1_%)} (CIS)

where ,F(a, b; c; z) is the hypergeometric function, while ®(z, s, a) is the Hurwitz-Lerch transcendent function, along
with the exact infinite series expressions
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o =i(l+2nB)/B  ,=i(2+B7")
2 TvamB 1428 2"
o —i(1+2nB)/B e —i(24B7)
Z 1 +2nB)? 4132

n=1

1
—2i
<I)< .21 +28>

1 1 .
1.1 —:2 20
( 9 +2BV +28’e >

(C16)

Combining these expressions, we obtain for the mass shift contribution in this second subdominant kinematic region

2me® 1
6m1(3 )|R, N%{—l -2B'In(B) + B! <2y 21n[|1 — €%|] +l<7l’:|:§>>} + 0(B72). (C17)
2 3
|
APPENDIX D: A PERIODIC SERIES EXPANSION - el
FOR THE FUNCTIONS tan(x) AND cot(x) tan(x) =2 (~1)""sin(2nx)
n=1
The function tan(z) possesses infinitely many isolated S ‘ A
poles over the real axis, at every odd multiple of /2, i.e., at =i Z(—l)" (e2inx — g=2inx) (D4)

7;=(2j—1)x/2, j€ Z, and it is periodic with funda-
mental period 7z, tan(z + z) = tan(z). Therefore, in the
domain of complex functions, it only admits a Laurent
series representations defined inside concentric open discs
of the form |z| < 7/2,7/2 < |z] < 37/2, etc. It is therefore
possible to obtain an explicit representation within the
open real interval Rez = x € (—x/2,7x/2), that extends
periodically to all the open intervals of the form
(—=(2j = 1)x/2,(2j — 1)x/2). For this purpose, let us first
consider the general definition in the complex plane

: .eiz —e iz d : ~
tan(z) = :—1eiz+e_izz—d—zlog(ez+e ?)

(D1)

The complex log(z) = In |z| + i arg(z) is an analytic func-
tion, and hence it possesses a Taylor series with conver-
gence radius |z] < 1

|z] < 1. (D2)

log i s

n=1

Therefore, using Eq. (D2), we obtain the convergent series
for |e=%%| < 1 (or equivalently for Imz < 0)

log (e + ™) = log (e'*(1 + e7%%))
=iz +log (1 + e72%)

o -1 n—1
e
n=l1

—2inz

(D3)

Choosing z = x € R (Imz = 0) in the series (D3), inserting
into Eq. (D1), and further taking the real part, we obtain the
following periodic series representation for the real tangent
function

Il
=

n

This constitutes a generalized Fourier series representation
in the open interval (—z/2,7z/2), that also provides a
periodic extension tan(x 4+ z) = tan(x). It must, however,
be interpreted in the distributional sense, and not as a strict
pointwise convergence, since the last is only guaranteed for
the logarithm expansion in Eq. (D3). Therefore, in the sense
of distributions, for any continuous differentiable function
f(x) within an interval x € [a, b], such that a > —z/2 and
b < r/2, we have

/f ) tan(x

= —Re [/ flx —log(e’x + e ™) dx

b , :
:l g(x)Relog(e“‘ + e ™)dx

— [f(x) log(e™ + e™™)]; (D5)
and hence the integral of the series provides the correct
result [thanks to the pointwise convergence of Eq. (D3)].
This is illustrated in the upper panel of Fig. 5. Following a
similar analysis, we have that cot(z) is also a periodic
function with fundamental period =, ie., cot(z +x) =
cot(z), that possesses infinitely many poles located along
the real axis at z; = jx, j € Z. Therefore, in the domain of
complex functions, it only admits a Laurent series repre-
sentations defined inside concentric open discs of the form
0 < |z| <7 7 <|z| <2nm, etc. It is therefore possible to
obtain an explicit representation within the open interval
Rez = x € (0, ), that periodically extends to the remain-
ing open intervals of the form (nx, (n + 1)x). By analogy
with the previous case, we consider the definition in the
complex plane of

eiZ + e—iZ d )
t(z) = — = iz _ ,—iz
cot(z) sin(z) Vet — iz dz og (€ = e™)

(D6)
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FIG. 5. (a) Comparison between the periodic series Eq. (D4)
(truncated at 8 terms) and the function tan(x). (b) Comparison
between the periodic series Eq. (D8) and the function cot(x).

Using again the convergent power series for the logarithm
in Eq. (D3), we have (for Imz < 0)

i —i . ( 1)” ! —2i
1 1z __ 17y — — z\n
og (e —e )—lz+n§1 (—e™%)

[So]

— iZ _ Zle—Zmz'
n

n=1

(D7)

bdy -1 21 _ 2 5 SR P
A—(l—y)(Z—y)F[O,lB (1-y)?] =2[In(B)] —5—}’{5—38 +EB —ZIH(B)}

,]y

As before, setting z =x € R (Imz = 0), inserting into
Eq. (D6) and further taking the real part, we obtain the
periodic series representation for the real cot(x) function

cot(x) =2 Z sin(2nx)
n=1
(eZinx _ e—2inx).

=—i

(D8)

n=1

As in the former case, this series must be interpreted in
the generalized sense of distributions, and not as point-
wise converging, as follows from an identical analysis
as in Eq. (D5). This is illustrated in the lower panel
of Fig. 5.

APPENDIX E: INTEGRALS OF THE
INCOMPLETE GAMMA FUNCTIONS

Here we show the details of the calculation of the
integrals of the incomplete Gamma functions. For this
we use the exact series expansion

(=iz)*
k(k!)

(0, iz) = —y — In(iz) — i (E1)

k=1

and integrate the three contributions separately. Therefore,
for the first integral we obtain

_18+iﬂ+58_1

_%3—2 —2In(i(1-B")*)In(B) +3 (1 -B! +%B‘2> In <i(B— 1)2>

+4Liy(1-B"1) —1In(B-1) +§ln(B) i
X {2F1(1’2(k+1);2k+3;1_8_1)_5}

=2(In(B)]* - (2)/ +§+ iﬂ') In(B) + (3+2i)B~'In(B) +

-1

12

33
) B'k(—i(l _B—l))kﬂ
2 (k+1)kk!

2 k=1

1

(30y — 54+ 8x* + 15in)
12

(48 + 36y + i(187 4 47)) + O(B2). (E2)

Finally, for the third type of integrals, with n =1, ..., oo, we obtain from Eq. (E1)

—1

L &[0, iB-1(1 = y)(1 =y + 2nB)] :—yln(B)—é] dyn[iB1(1 = y)(1 —y+2nB)] - S(B.n).  (E3)
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Here, we defined the series

= (iB)~
Z kk!

k=1

/ dy[(1-y)(1=y+2nB)|* (E4)

Each of the integrals can be performed analytically, to
obtain

| asl-n -y + 2nB)

2k(B _ 1)k+lnk B

Here, ,F(a;.ay;by;z) is one of the Hypergeometric
functions. Inserting this result into Eq. (E3), we obtain

_ g f: 2nll—B ))k

=1

1-B
><2F1( bkt Lkt 2 )

S(B,n) =

(E6)

Since the hypergeometric function satisfies
1-B 1
kk+1k—|—2262 =1+0B", (E7)

and when substituted into Eq. (E6), we thus obtain the
asymptotics

[so]

Z 27’” 1—

k=1

S(B.n) ))k+ 0(52)

e—2m )
T (=ie?
+2e%¥mn1n(2in) + 2¢*"nl(0,2in) + i)

B~'(In(2in) +T(0,2in) +y) + O(B~2)

—2e2%iny + zyeZinn

(E8)

Using this result into Eq. (E3), as shown in the main text
we need the combination

/311 dy(T[0,iB7'(1 = y)(1 =y —2nB)] = T[0,iB~'(1 —y)(1 —y + 2nB)])

= —411 dy(In[iB~'(1 —y)(1 =y —=2nB)|-In[iB-'(1 = y)(1 =y + 2nB)]) + S(B,n) — S(B, —n)

= (1= B~')(T[0. 2in] — T[0, —2in]) — i 4L

Finally, using the Taylor expansion for the logarithm

o (_l)nJrlZn
In(1 = _ E10
o149 =3 (E10)
we have the simple identities
Z = —1In(2) (Ella)

n=1
n

f:(_’i) (eZin —e

n=1

~2im) = —In (14 €*) +1In (1 +e7%)

=—In(1+e*)+In(e”
— 2,

2[(1 +€2i))
(E11b)

along with the sum

i [0, 2in] —

n=1

T[0,—2in]) = 0.421794i. (E12)

5 (eQin _ e—2in) + 0(6_2)

|
Therefore, we finally obtain

i i /Bl dy{T[0, iB-1(1 = y)(1 = y = 2nB)]

—I0,iB~'(1 —y)(1 —y + 2nB)]}

= F0.421794(1 = B7") ¥ In(2) £i(1 - B)
+ 0(B7).

APPENDIX F: CONNECTION WITH REF. [8]

In this Appendix we compare our results with well-
known calculations in the limit of a strong magnetic field.
In particular, we demonstrate that the expressions for the
counterterms and the relevant integrals are the same as the
ones presented in Ref. [8] by Tsai. In order to do that, let us
begin with Egs. (28) and (30) which correspond to the
counterterms, namely

C.t.l =

—-(2-v), (F1)
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and
ety =—(f—1) [—% + 21'W] . (F2)

so that, in terms of the canonical momentum p*, the sum of
counterterms is

ctytcto=—2-y)
+ﬁ;m F_zl.sy(l —y)(2—y)]_ (F3)

n m

In order to compare with Ref. [8], it is necessary to
identify our integration variables with the ones used in that
work. Explicitly, the latter is given by

u—1-y s— m’s. (F4)

Moreover, in Ref. [8] the metric is

¢ = diag(—1,1,1,1) (F5)
whereas we use
¢ = diag(1,-1,-1,-1), (Fo6)
therefore, we also identify
p+m—p—m. (F7)
Now, the counterterm in Ref. [8] is
ct.=—(1—u)— (m+H) %—Zimu(l —u)s|,  (F8)

so that after applying Eqgs. (F4) and (F7) it gives Eq. (F3),
with the difference that in our calculation there appears p
instead of .

For the sake of completeness, let us find the parallelism
with the other expressions in the reference of interest. First,
for Eq. (21) in Tsai’s work:

- a ds e_is(um2+§”)ei£yT
(1) = [ an .
2z ) s (1l —u)cosyr+ u(sinyy)/yr

« [1 + ekt 4 (1 y)e2in Pl
m

(1-u)p /m
(1 = u)cos yr + u(sinyr)/yr|’

(F9)

where yr means the y-variable used there (yr = eHsu) and
= qi3 = gy'y? is the spin matrix. Now, from the fact that

e = cos yr + igE; sin yr

— el + e T = 2 cos VT, (FIO)

Eq. (F9) becomes:

e_is(”mz‘H/’) el[}'T

1\71( ) a /ds
=— | —du
Pr=oz] s (1 = u)cosyr + u(sinyr)/yr

X [ZcosyT + (1 —u)(cosyr —i¢ Sirl}’T)ﬂ
m

(1-u)p./m
(1 —u)cos yp + u(sinyy)/yr]

(F11)

On the other hand, from Eq. (20) in Tsai’s work

¢ = u(l—u)pf
u (1 — u)sinyg )
+— . pi.  (F12)
yr (1 —u)cos yr + u(sinyr)/yr "+
then, the overall phase factor is
2
—is(um® + @) = —ism® |u + u(1 — u)m—!
L (1 — u)sinyr P
yr (1 = u)cosyr + u(sin yr)/yr m*
(F13)

but given the metric choice, pﬁ connects with our pﬁ as

pﬁ = —mzpﬁ. (F14)

Moreover, by using Eqgs. (F4) and (F7)

yr = eHsu — Bs(1 —y),

u . sin [Bs(1 —y)]
—sinyp - ————,
V1 Bs

(1 —u)cosyr — ycos [Bs(l —y)]. (F15)

The above replacements in Eq. (F14) yield our phase
factor. With the same argument, note that the factors
(A),(B) and (C) given in our Egs. (19)-(21), can be
identified in Eq. (F11) as

2cosyr + (1 —u)cosyr  #j

(A) - (1 _ I/t) cos yr + M(SinyT)/YT m
- (1—u) il
(B) [(1 — u) cos yr + u(sinyy)/yr]* m
(C) > —iC U~ ) sinyr 7L (F16)

(1 —u)cosyr + u(sinyy)/yr m

with ¢ = ¢%3 = gy'y%.
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